Non-linear non-zero-sum Dynkin games with Bermudan strategies

Miryana Grigorova^{1*} Marie-Claire Quenez² †

Peng Yuan^{3 ‡}

^{1,3}University of Warwick ²Université Paris Cité

November 3, 2023

Abstract: In this paper, we study a non-zero-sum game with two players, where each of the players plays what we call Bermudan strategies and optimizes a general non-linear assessment functional of the pay-off. By using a recursive construction, we show that the game has a Nash equilibrium point.

1 Introduction

Game problems with linear evaluations between a finite number of players are by now classical problems in stochastic control and optimal stopping (cf., e.g., [1], [3], [5], [9], [13], [14], [15], [16], [17], [18], [25], [26] and [28]) with various applications, in particular in economics and finance (cf., e.g., [13], [14], [22] and [25]). In the recent years game problems with *non-linear* evaluation functionals have attracted considerable interest: cf. [2] for the case of nonlinear functionals of the form of worst case expectations over a set of possibly singular measures; [6], [7], [8] and [10] for the case of non-linear functionals induced by backward stochastic differential equations (BSDEs). Most of the works dealing with *non-linear* games have focused on the *zero-sum* case (cf.,

^{*}Corresponding Author. Department of Statistics, University of Warwick, Email:miryana.grigorova@warwick.ac.uk

[†]LPSM, University Paris-Cité

[‡]Department of Statistics, University of Warwick

e.g., [2], [6], [7], [8] and [10]). Non-zero-sum games are notoriously more intricate than their zero-sum counterparts even in the case of linear evaluations (cf., e.g., [14], [16], [17], [27], [29] and [31]). Non-zero-sum games with nonlinear functionals have been considered in [12] in the discrete-time framework and with non-linear functionals induced by Backward SDEs with Lipschitz driver, in [21] in the continuous time framework and with non-linear functionals of the form of expected exponential utilities.

In the current paper, we address the question of existence of a Nash equilibrium point in a framework with general non-linear evaluations and with a set of stopping strategies which is in between the discrete time and the continuous time stopping strategies. The results of [12] can be seen as a particular case of the current paper.

The paper is organised as follows: In Section 2, we introduce the framework, including the set of optimal stopping strategies of the agents (namely the Bermudan strategies), the pay-off as well as the properties on the risk functionals ρ^1 and ρ^2 of agent 1 and agent 2. In Section 3, we present our main results and show that the non-linear non-zero-sum game with Bermudan strategies has a Nash equilibrium point.

2 The framework

Let T > 0 be a **fixed finite** terminal horizon.

Let (Ω, \mathcal{F}, P) be a (complete) probability space equipped with a right-continuous complete filtration $\mathbb{F} = \{\mathcal{F}_t : t \in [0, T]\}.$

In the sequel, equalities and inequalities between random variables are to be understood in the *P*-almost sure sense. Equalities between measurable sets are to be understood in the *P*-almost sure sense.

Let \mathbb{N} be the set of natural numbers, including 0. Let \mathbb{N}^* be the set of natural numbers, excluding 0.

We first define the so-called Bermudan stopping strategies (introduced in [11]).

Let $(\theta_k)_{k\in\mathbb{N}}$ be a sequence of stopping times satisfying the following properties:

- (a) The sequence $(\theta_k)_{k \in \mathbb{N}}$ is non-decreasing, i.e. for all $k \in \mathbb{N}$, $\theta_k \leq \theta_{k+1}$, a.s.
- (b) $\lim_{k\to\infty} \uparrow \theta_k = T$ a.s.

Moreover, we set $\theta_0 = 0$.

We note that the family of σ -algebras $(\mathcal{F}_{\theta_k})_{k\in\mathbb{N}}$ is non-decreasing (as the sequence (θ_k) is non-decreasing). We denote by Θ the set of stopping times τ of the form

$$\tau = \sum_{k=0}^{+\infty} \theta_k \mathbf{1}_{A_k} + T \mathbf{1}_{\bar{A}},\tag{1}$$

where $\{(A_k)_{k=0}^{+\infty}, \bar{A}\}$ form a partition of Ω such that, for each $k \in \mathbb{N}, A_k \in \mathcal{F}_{\theta_k}$, and $\bar{A} \in \mathcal{F}_T$.

The set Θ can also be described as the set of stopping times τ such that for almost all $\omega \in \Omega$, either $\tau(\omega) = T$ or $\tau(\omega) = \theta_k(\omega)$, for some $k = k(\omega) \in \mathbb{N}$.

Note that the set Θ is closed under concatenation, that is, for each $\tau \in \Theta$ and each $A \in \mathcal{F}_{\tau}$, the stopping time $\tau \mathbf{1}_{A} + T \mathbf{1}_{A^{c}} \in \Theta$. More generally, for each $\tau \in \Theta$, $\tau' \in \Theta$ and each $A \in \mathcal{F}_{\tau \wedge \tau'}$, the stopping time $\tau \mathbf{1}_{A} + \tau' \mathbf{1}_{A^{c}}$ is in Θ . The set Θ is also closed under pairwise minimization (that is, for each $\tau \in \Theta$ and $\tau' \in \Theta$, we have $\tau \wedge \tau' \in \Theta$) and under pairwise maximization (that is, for each $\tau \in \Theta$ and $\tau' \in \Theta$, we have $\tau \vee \tau' \in \Theta$). Moreover, the set Θ is closed under monotone limit, that is, for each non-decreasing (resp. non-increasing) sequence of stopping times $(\tau_n)_{n \in \mathbb{N}} \in \Theta^{\mathbb{N}}$, we have $\lim_{n \to +\infty} \tau_n \in \Theta$.

We note also that all stopping times in Θ are bounded from above by T.

Remark 1. We have the following canonical writing of the sets in (1):

$$A_0 = \{\tau = \theta_0\};$$

$$A_{n+1} = \{\tau = \theta_{n+1}, \theta_{n+1} < T\} \setminus (A_n \cup \ldots \cup A_0); \text{ for all } n \in \mathbb{N}^*$$

$$\bar{A} = (\bigcup_{k=0}^{+\infty} A_k)^c$$

From this writing, we have: if $\omega \in A_{k+1} \cap \{\theta_k < T\}$, then $\omega \notin \{\tau = \theta_k\}$.

For each $\tau \in \Theta$, we denote by Θ_{τ} the set of stopping times $\nu \in \Theta$ such that $\nu \geq \tau$ a.s. The set Θ_{τ} satisfies the same properties as the set Θ . We will refer to the set Θ as the set of **Bermudan stopping strategies**, and to the set Θ_{τ} as the set of Bermudan stopping strategies, greater than or equal to τ (or the set of Bermudan stopping strategies from time τ perspective). For simplicity, the set Θ_{θ_k} will be denoted by Θ_k .

Definition 1. We say that a family $\phi = (\phi(\tau), \tau \in \Theta)$ is admissible if it satisfies the following conditions

1. for all $\tau \in \Theta$, $\phi(\tau)$ is a real valued random variable, which is \mathcal{F}_{τ} -measurable.

2. for all $\tau, \tau' \in \Theta$, $\phi(\tau) = \phi(\tau')$ a.s. on $\{\tau = \tau'\}$.

Moreover, for $p \in [1, +\infty]$ fixed, we say that an admissible family ϕ is *p*-integrable, if for all $\tau \in \Theta$, $\phi(\tau)$ is in L^p .

Let $\phi = (\phi(\tau), \tau \in \Theta)$ be an admissible family. For a stopping time τ of the form (1), we have

$$\phi(\tau) = \sum_{k=0}^{+\infty} \phi(\theta_k) \mathbf{1}_{A_k} + \phi(T) \mathbf{1}_{\bar{A}} \quad \text{a.s.}$$
(2)

Given two admissible families $\phi = (\phi(\tau), \tau \in \Theta)$ and $\phi' = (\phi'(\tau), \tau \in \Theta)$, we say that ϕ is equal to ϕ' and write $\phi = \phi'$ if, for all $\tau \in \Theta$, $\phi(\tau) = \phi'(\tau)$ a.s. We say that ϕ dominates ϕ' and write $\phi \ge \phi'$ if, for all $\tau \in \Theta$, $\phi(\tau) \ge \phi'(\tau)$ a.s.

Let $p \in [1, +\infty]$. We introduce the following properties on the non-linear operators $\rho_{S,\tau}[\cdot]$, which will appear in the sequel.

For $S \in \Theta$, $S' \in \Theta$, $\tau \in \Theta$, for η , η_1 and η_2 in $L^p(\mathcal{F}_{\tau})$, for $\xi = (\xi(\tau))$ an admissible p-integrable family:

- (i) $\rho_{S,\tau}: L^p(\mathcal{F}_{\tau}) \longrightarrow L^p(\mathcal{F}_S)$
- (ii) (admissibility) $\rho_{S,\tau}[\eta] = \rho_{S',\tau}[\eta]$ a.s. on $\{S = S'\}$.
- (iii) (knowledge preservation) $\rho_{\tau,S}[\eta] = \eta$, for all $\eta \in L^p(\mathcal{F}_S)$, all $\tau \in \Theta_S$.
- (iv) (monotonicity) $\rho_{S,\tau}[\eta_1] \leq \rho_{S,\tau}[\eta_2]$ a.s., if $\eta_1 \leq \eta_2$ a.s.
- (v) (consistency) $\rho_{S,\theta}[\rho_{\theta,\tau}[\eta]] = \rho_{S,\tau}[\eta]$, for all S, θ, τ in Θ such that $S \leq \theta \leq \tau$ a.s.
- (vi) ("generalized zero-one law") $I_A \rho_{S,\tau}[\xi(\tau)] = I_A \rho_{S,\tau'}[\xi(\tau')]$, for all $A \in \mathcal{F}_S, \tau \in \Theta_S, \tau' \in \Theta_S$ such that $\tau = \tau'$ on A.
- (vii) (monotone Fatou property with respect to terminal condition) $\rho_{S,\tau}[\eta] \leq \liminf_{n \to +\infty} \rho_{S,\tau}[\eta_n], \text{ for } (\eta_n), \eta \text{ such that } (\eta_n) \text{ is non-decreasing},$ $\eta_n \in L^p(\mathcal{F}_{\tau}), \sup_n \eta_n \in L^p, \text{ and } \lim_{n \to +\infty} \uparrow \eta_n = \eta \text{ a.s.}$
- (viii) (left-upper-semicontinuity (LUSC) along Bermudan stopping times with respect to the terminal condition and the terminal time), that is,

$$\limsup_{n \to +\infty} \rho_{S,\tau_n}[\phi(\tau_n)] \leqslant \rho_{S,\nu}[\limsup_{n \to +\infty} \phi(\tau_n)],$$

for each non-decreasing sequence $(\tau_n) \in \Theta_S^{\mathbb{N}}$ such that $\lim_{n \to +\infty} \uparrow \tau_n = \nu$ a.s., and for each *p*-integrable admissible family ϕ such that $\sup_{n \in \mathbb{N}} |\phi(\tau_n)| \in L^p$.

(ix) $\limsup_{n\to+\infty} \rho_{\theta_n,T}[\eta] \leq \rho_{T,T}[\eta]$, for all $\eta \in L^p(\mathcal{F}_T)$.

These assumptions on ρ ensure that the one-agent's non-linear optimal stopping problem admits a solution and that the first hitting time (when the value family "hits" the pay-off family) is optimal (cf. [11] for more details).

3 The game problem

We consider two agents, agent 1 and agent 2, whose pay-offs are defined via four admissible families $X^1 = (X^1(\tau))_{\tau \in \Theta}$, $X^2 = (X^2(\tau))_{\tau \in \Theta}$, $Y^1 = (Y^1(\tau))_{\tau \in \Theta}$ and $Y^2 = (Y^2(\tau))_{\tau \in \Theta}$. We assume that X^1, X^2, Y^1 and Y^2 are *p*-integrable families such that

- (A1) $X^1 \leq Y^1, X^2 \leq Y^2$ (that is, for each $\tau \in \Theta, X^1(\tau) \leq Y^1(\tau)$, and $X^2(\tau) \leq Y^2(\tau)$).
- (A2) $X^1(T) = Y^1(T), \ X^2(T) = Y^2(T).$
- (A3) ess $\sup_{\tau \in \Theta} X^1(\tau) \in L^p$, ess $\sup_{\tau \in \Theta} X^2(\tau) \in L^p$, ess $\sup_{\tau \in \Theta} Y^1(\tau) \in L^p$ and ess $\sup_{\tau \in \Theta} Y^2(\tau) \in L^p$.
- (A4) $\limsup_{k \to +\infty} X^1(\theta_k) \leq X^1(T)$, $\limsup_{k \to +\infty} X^2(\theta_k) \leq X^2(T)$.

The set of stopping strategies of each agent at time 0 is the set Θ of Bermudan stopping times. If the first agent plays $\tau_1 \in \Theta$ and the second agent plays $\tau_2 \in \Theta$, the pay-off of agent 1 (resp. agent 2) at time $\tau_1 \wedge \tau_2$ is given by:

$$I^{1}(\tau_{1}, \tau_{2}) := X^{1}(\tau_{1}) \mathbb{1}_{\{\tau_{1} \leq \tau_{2}\}} + Y^{1}(\tau_{2}) \mathbb{1}_{\{\tau_{2} < \tau_{1}\}}$$

(resp. $I^{2}(\tau_{1}, \tau_{2}) := X^{2}(\tau_{2}) \mathbb{1}_{\{\tau_{2} < \tau_{1}\}} + Y^{2}(\tau_{1}) \mathbb{1}_{\{\tau_{1} \leq \tau_{2}\}}),$

where we have adopted the convention: when $\tau_1 = \tau_2$, it is the first agent who is responsible for stopping the game. The agents evaluate their respective pay-offs via possibly different evaluation functionals. Let $\rho^1 = (\rho_{S,\tau}[\cdot])$ be the family of evaluation operators of agent 1, and let $\rho^2 = (\rho_{S,\tau}[\cdot])$ be the family of evaluation operators of agents 2. If agent 1 plays $\tau_1 \in \Theta$, and agent 2 plays $\tau_2 \in \Theta$, then the assessment (or evaluation) of agent 1 (resp. agent 2) at time 0 of his/her pay-off is given by:

$$J_1(\tau_1, \tau_2) \coloneqq \rho^1_{0,\tau_1 \wedge \tau_2} [X^1(\tau_1) \mathbb{1}_{\{\tau_1 \leq \tau_2\}} + Y^1(\tau_2) \mathbb{1}_{\{\tau_2 < \tau_1\}}].$$

(resp. $J_2(\tau_1, \tau_2) \coloneqq \rho^2_{0,\tau_1 \wedge \tau_2} [X^2(\tau_2) \mathbb{1}_{\{\tau_2 < \tau_1\}} + Y^2(\tau_1) \mathbb{1}_{\{\tau_1 \leq \tau_2\}}]).$

We assume that both ρ^1 and ρ^2 satisfy the properties (i) - (ix). We will investigate the problem of existence of a Nash equilibrium strategy (τ_1^*, τ_2^*) .

Definition 2. A pair of Bermudan stopping times $(\tau_1^*, \tau_2^*) \in \Theta \times \Theta$ is called a Nash equilibrium strategy (or a Nash equilibrium point) for the above nonzero-sum non-linear Bermudan Dynkin game if: $J_1(\tau_1^*, \tau_2^*) \ge J_1(\tau_1, \tau_2^*)$, for any $\tau_1 \in \Theta$, and $J_2(\tau_1^*, \tau_2^*) \ge J_2(\tau_1^*, \tau_2)$, for any $\tau_2 \in \Theta$. In other words, any unilateral deviation from the strategy (τ_1^*, τ_2^*) by one of the agent (the strategy of the other remaining fixed) does not render the deviating agent better off.

Theorem 1. Under assumptions (i) - (ix) on ρ^1 and ρ^2 , there exists a Nash equilibrium point (τ_1^*, τ_2^*) for the game described above.

We will construct a sequence $(\tau_{2n+1}, \tau_{2n})_{n \in \mathbb{N}}$ (by induction), for which we will show that it converges to a Nash equilibrium point.

We set $\tau_1 := T$ and $\tau_2 := T$. We suppose that $\tau_{2n-1} \in \Theta$ and $\tau_{2n} \in \Theta$ have been defined. We set, for each $k \in \mathbb{N}$,

$$\xi^{2n+1}(\theta_k) := X^1(\theta_k) \mathbb{1}_{\{\theta_k < \tau_{2n}\}} + Y^1(\tau_{2n}) \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}}.$$
 (3)

Moreover, $\xi^{2n+1}(T) := Y^1(\tau_{2n})$. This definition is "consistent" with the above, as by (3), $\mathbb{1}_{\{\theta_k=T\}}\xi^{2n+1}(\theta_k) = \mathbb{1}_{\{\theta_k=T\}}Y^1(\tau_{2n})$.

For $\tau \in \Theta$ of the form $\tau = \sum_{k \in \mathbb{N}} \theta_k \mathbb{1}_{A_k} + T \mathbb{1}_{\bar{A}}$, where $((A_k), \bar{A})$ is a partition, A_k is \mathcal{F}_{θ_k} -measurable for each $k \in \mathbb{N}$, and \bar{A} is \mathcal{F}_T -measurable,

$$\xi^{2n+1}(\tau) := \sum_{k \in \mathbb{N}} \xi^{2n+1}(\theta_k) \mathbb{1}_{A_k} + \xi^{2n+1}(T) \mathbb{1}_{\bar{A}}.$$
 (4)

We note that $\xi^{2n+1}(\theta_k)$ is the pay-off at $\theta_k \wedge \tau_{2n}$ of agent 1 (up to the equality $\{\theta_k = \tau_{2n}\}$) if agent 1 plays θ_k and agent 2 plays τ_{2n} .

We also note that:

$$\xi^{2n+1}(\tau) = X^1(\tau) \mathbb{1}_{\{\tau < \tau_{2n}\}} + Y^1(\tau_{2n}) \mathbb{1}_{\{\tau_{2n} \le \tau\}}.$$

Thus, $\xi^{2n+1}(\tau)$ is the pay-off at $\tau \wedge \tau_{2n}$ of agent 1 (up to the equality $\{\tau = \tau_{2n}\}$) if agent 1 plays τ and agent 2 plays τ_{2n} .

For each $S \in \Theta$, we define

$$V^{2n+1}(S) := \operatorname{ess\ sup}_{\tau \in \Theta_S} \rho^1_{S, \tau \wedge \tau_{2n}} [\xi^{2n+1}(\tau)]$$

$$\tilde{\tau}_{2n+1} := \operatorname{ess\ inf\ } \tilde{\mathcal{A}}^1, \text{ where } \tilde{\mathcal{A}}^1 := \{\tau \in \Theta : V^{2n+1}(\tau) = \xi^{2n+1}(\tau)\}$$

$$\tau_{2n+1} := (\tilde{\tau}_{2n+1} \wedge \tau_{2n-1}) \mathbb{1}_{\{\tilde{\tau}_{2n+1} \wedge \tau_{2n-1} < \tau_{2n}\}} + \tau_{2n-1} \mathbb{1}_{\{\tilde{\tau}_{2n+1} \wedge \tau_{2n-1} \geqslant \tau_{2n}\}}.$$
(5)

Assuming that $\limsup_{k\to+\infty} X^1(\theta_k) \leq X^1(T)$ (from (A4)) ensures that $\limsup_{k\to+\infty} \xi^{2n+1}(\theta_k) \leq \xi^{2n+1}(T)$. This is a technical condition on the payoff which we use to apply Theorem 2.3 in [11].

We recall that under the assumptions of Theorem 2.3 in [11], the Bermudan

stopping time $\tilde{\tau}_{2n+1}$ is optimal for the optimal stopping problem with value $V^{2n+1}(0)$, that is

$$V^{2n+1}(0) = \rho^{1}_{0,\tilde{\tau}_{2n+1}\wedge\tau_{2n}}[\xi(\tilde{\tau}_{2n+1})] = \sup_{\tau\in\Theta} \rho^{1}_{0,\tau\wedge\tau_{2n}}[\xi^{2n+1}(\tau)].$$
(6)

We also recall that $V^{2n+1}(T) = \xi^{2n+1}(T)$, under the assumption of knowledge preservation on ρ .

Remark 2. i) It is not difficult to show, by induction, that for each $n \in \mathbb{N}$, $(\xi^{2n+1}(\tau))_{\tau \in \Theta}$ is an admissible L^p -integrable family, and τ_{2n+1} is a Bermudan stopping time (for the latter property, we use that Θ has the property of stability by concatenation of two Bermudan stopping times).

ii) For each $n \in \mathbb{N}$, for each $\tau \in \Theta$, $\xi^{2n+1}(\tau) = \xi^{2n+1}(\tau \wedge \tau_{2n})$.

Indeed, we have:

$$\xi^{2n+1}(\theta_k) = X^1(\theta_k) \mathbb{1}_{\{\theta_k < \tau_{2n}\}} + Y^1(\tau_{2n}) \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} = X^1(\theta_k \wedge \tau_{2n}) \mathbb{1}_{\{\theta_k \wedge \tau_{2n} < \tau_{2n}\}} + Y^1(\tau_{2n}) \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k \wedge \tau_{2n}\}} = \xi^{2n+1}(\theta_k \wedge \tau_{2n}).$$
(7)

Now, let $\tau \in \Theta$ be of the form $\tau = \sum_{k \in \mathbb{N}} \theta_k \mathbb{1}_{A_k} + T \mathbb{1}_{\bar{A}}$. By definition of $\xi^{2n+1}(\tau)$, of $\xi^{2n+1}(T)$ and by Eq. (7), we have:

$$\xi^{2n+1}(\tau) = \sum_{k \in \mathbb{N}} \xi^{2n+1}(\theta_k) \mathbb{1}_{A_k} + \xi^{2n+1}(T) \mathbb{1}_{\bar{A}}$$

= $\sum_{k \in \mathbb{N}} \xi^{2n+1}(\theta_k \wedge \tau_{2n}) \mathbb{1}_{A_k} + Y^1(\tau_{2n}) \mathbb{1}_{\bar{A}} = \xi^{2n+1}(\tau \wedge \tau_{2n}).$

Proposition 1. i) $\xi^{2n+1}(\tau) \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} = Y^1(\tau_{2n}) \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}}.$

 $ii) V^{2n+1}(\theta_k) \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} = Y^1(\tau_{2n}) \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}}.$

iii) $V^{2n+1}(\tau) \mathbb{1}_{\{\tau_{2n} \leq \tau\}} = Y^1(\tau_{2n}) \mathbb{1}_{\{\tau_{2n} \leq \tau\}}.$

iv) For each $n \in \mathbb{N}$, $\tilde{\tau}_{2n+1} = \operatorname{ess\,inf} \{ \tau \in \Theta : V^{2n+1}(\tau) = X^1(\tau) \} \wedge \tau_{2n}$. In particular, $\tilde{\tau}_{2n+1} \leq \tau_{2n}$.

Proof. i) On the set $\{\tau = T\}$, we have $\xi^{2n+1}(\tau) = \xi^{2n+1}(T) = Y^1(\tau_{2n})$. On the set $\{\tau = \theta_k < T\}$, by the second statement in Remark 2, we have $\xi^{2n+1}(\tau) = \xi^{2n+1}(\theta_k) = \xi^{2n+1}(\theta_k \land \tau_{2n})$. Hence, on the set $\{\tau = \theta_k < T\} \cap \{\tau_{2n} \leq \theta_k\}$, we have $\xi^{2n+1}(\tau) = \xi^{2n+1}(\tau_{2n}) = Y^1(\tau_{2n})$, which proves the desired property.

ii) We have:

$$\mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} V^{2n+1}(\theta_k) = \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} \operatorname{ess sup}_{\tau \in \Theta_k} \rho_{\theta_k, \tau \land \tau_{2n}} [\xi^{2n+1}(\tau \land \tau_{2n})] \\
= \operatorname{ess sup}_{\tau \in \Theta_k} \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} \rho_{\theta_k, \tau \land \tau_{2n}} [\xi^{2n+1}(\tau \land \tau_{2n})] \\
= \operatorname{ess sup}_{\tau \in \Theta_k} \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} \rho_{\theta_k, \tau \land \tau_{2n} \land \theta_k} [\xi^{2n+1}(\tau \land \tau_{2n} \land \theta_k)],$$

where we have used the "genrealized zero-one law" to obtain the last equality. For any $\tau \in \Theta_k$, $\tau \wedge \tau_{2n} \wedge \theta_k = \tau_{2n} \wedge \theta_k \leq \theta_k$. Hence,

$$\mathbb{1}_{\{\tau_{2n}\leqslant\theta_k\}}\rho_{\theta_k,\tau\wedge\tau_{2n}\wedge\theta_k}[\xi^{2n+1}(\tau\wedge\tau_{2n}\wedge\theta_k)] = \mathbb{1}_{\{\tau_{2n}\leqslant\theta_k\}}\rho_{\theta_k,\tau_{2n}\wedge\theta_k}[\xi^{2n+1}(\tau_{2n}\wedge\theta_k)]$$
$$= \mathbb{1}_{\{\tau_{2n}\leqslant\theta_k\}}\xi^{2n+1}(\tau_{2n}\wedge\theta_k),$$

where we have used the knowledge-preserving property of ρ to obtain the last equality.

Finally, we get

$$\mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} V^{2n+1}(\theta_k) = \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} \xi^{2n+1}(\tau_{2n}) = \mathbb{1}_{\{\tau_{2n} \leqslant \theta_k\}} Y^1(\tau_{2n}).$$

iii) Let $\tau \in \Theta$ be the form $\tau = \sum_{k \in \mathbb{N}} \theta_k \mathbb{1}_{A_k} + T \mathbb{1}_{\bar{A}}$. Then, by admissibility, we have

$$V^{2n+1}(\tau) = \sum_{k \in \mathbb{N}} V^{2n+1}(\theta_k) \mathbb{1}_{A_k} + V^{2n+1}(T) \mathbb{1}_{\bar{A}}.$$

Hence,

$$V^{2n+1}(\tau)\mathbb{1}_{\{\tau_{2n}\leqslant\tau\}} = \sum_{k\in\mathbb{N}} V^{2n+1}(\theta_k)\mathbb{1}_{A_k\cap\{\tau_{2n}\leqslant\tau\}} + V^{2n+1}(T)\mathbb{1}_{\bar{A}\cap\{\tau_{2n}\leqslant\tau\}}$$
$$= \sum_{k\in\mathbb{N}} V^{2n+1}(\theta_k)\mathbb{1}_{A_k\cap\{\tau_{2n}\leqslant\theta_k\}} + V^{2n+1}(T)\mathbb{1}_{\bar{A}\cap\{\tau_{2n}\leqslant T\}}$$
$$= \sum_{k\in\mathbb{N}} Y^1(\tau_{2n})\mathbb{1}_{A_k\cap\{\tau_{2n}\leqslant\theta_k\}} + \xi^{2n+1}(T)\mathbb{1}_{\bar{A}\cap\{\tau_{2n}\leqslant T\}},$$

where we have used the previous property (ii) to obtain the last equality. Hence, we get

$$V^{2n+1}(\tau)\mathbb{1}_{\{\tau_{2n}\leqslant\tau\}} = \sum_{k\in\mathbb{N}} Y^{1}(\tau_{2n})\mathbb{1}_{A_{k}\cap\{\tau_{2n}\leqslant\theta_{k}\}} + \xi^{2n+1}(T)\mathbb{1}_{\bar{A}\cap\{\tau_{2n}\leqslant T\}}$$
$$= \sum_{k\in\mathbb{N}} Y^{1}(\tau_{2n})\mathbb{1}_{A_{k}\cap\{\tau_{2n}\leqslant\theta_{k}\}} + Y^{1}(\tau_{2n})\mathbb{1}_{\bar{A}\cap\{\tau_{2n}\leqslant T\}} = Y^{1}(\tau_{2n})\mathbb{1}_{\{\tau_{2n}\leqslant\tau\}}$$

iv) By the previous property (iii), we have, $V^{2n+1}(\tau) = \xi^{2n+1}(\tau)$ if and only if $V^{2n+1}(\tau)\mathbb{1}_{\{\tau < \tau_{2n}\}} = \xi^{2n+1}(\tau)\mathbb{1}_{\{\tau < \tau_{2n}\}}$. Hence,

$$\tilde{\tau}_{2n+1} = \operatorname{ess\,inf} \{ \tau \in \Theta : V^{2n+1}(\tau) = X^1(\tau) \} \land \tau_{2n}.$$

Similarly to (3), (4) and (5), we define:

$$\xi^{2n+2}(\theta_k) := X^2(\theta_k) \mathbb{1}_{\{\theta_k < \tau_{2n+1}\}} + Y^2(\tau_{2n+1}) \mathbb{1}_{\{\tau_{2n+1} \le \theta_k\}}, \text{ and}$$

 $\xi^{2n+2}(T) \coloneqq Y^2(\tau_{2n+1}).$

For $\tau \in \Theta$ of the form $\tau = \sum_{k \in \mathbb{N}} \theta_k \mathbb{1}_{A_k} + T \mathbb{1}_{\bar{A}}$, we define

$$\xi^{2n+2}(\tau) := \sum_{k \in \mathbb{N}} \xi^{2n+2}(\theta_k) \mathbb{1}_{A_k} + \xi^{2n+2}(T) \mathbb{1}_{\bar{A}}$$

$$V^{2n+2}(S) := \operatorname{ess\,sup}_{\tau \in \Theta_S} \rho_{S, \tau \wedge \tau_{2n+1}}^2 [\xi^{2n+2}(\tau)]$$

$$\tilde{\tau}_{2n+2} := \operatorname{ess\,inf} \tilde{\mathcal{A}}^2, \text{ where } \tilde{\mathcal{A}}^2 := \{\tau \in \Theta : V^{2n+2}(\tau) = \xi^{2n+2}(\tau)\}$$

$$\tau_{2n+2} := (\tilde{\tau}_{2n+2} \wedge \tau_{2n}) \mathbb{1}_{\{\tilde{\tau}_{2n+2} \wedge \tau_{2n} < \tau_{2n+1}\}} + \tau_{2n} \mathbb{1}_{\{\tilde{\tau}_{2n+2} \wedge \tau_{2n} > \tau_{2n+1}\}}.$$
(8)

The random variable $\xi^{2n+2}(\tau)$ is exactly the pay-off at $\tau \wedge \tau_{2n+1}$ of agent 2, if agent 1 plays τ_{2n+1} and agent 2 plays τ . Hence, $V^{2n+2}(S)$ is the optimal value at time S for agent 2, when agent 1's strategy is fixed to τ_{2n+1} . Assuming that $\limsup_{k\to+\infty} X^2(\theta_k) \leq X^2(T)$ leads to $\limsup_{k\to+\infty} \xi^{2n+2}(\theta_k) \leq \xi^{2n+2}(T)$, which we use in applying Theorem 2.3 in [11]. By Theorem 2.3 in [11], the Bermudan stopping time $\tilde{\tau}_{2n+2}$ is optimal for the problem with value $V^{2n+2}(0)$, that is,

$$V^{2n+2}(0) = \rho_{0,\tilde{\tau}_{2n+2}\wedge\tau_{2n+1}}^2[\xi^{2n+2}(\tilde{\tau}_{2n+2})] = \sup_{\tau\in\Theta}\rho_{0,\tau\wedge\tau_{2n+1}}^2[\xi^{2n+2}(\tau)].$$

Remark 3. Let us recall that (cf. [11]) $\tilde{\tau}_n = \operatorname{ess\,inf} \{\tau \in \Theta : V^n(\tau) = \xi^n(\tau)\}$ satisfies the property: $V^n(\tilde{\tau}_n) = \xi^n(\tilde{\tau}_n)$. (This is due to the property of stability of Θ by monotone limit and to the right-continuity-along Bermudan stopping strategies of the families $(V^n(\tau))$ and $(\xi^n(\tau))$).

Remark 4. By analogy with Remark 2, we have:

i) $(\xi^{2n+2}(\tau))$ is a admissible L^p -integrable family; ii) for each $n \in \mathbb{N}$, for each $\tau \in \Theta$, $\xi^{2n+2}(\tau) = \xi^{2n+2}(\tau \wedge \tau_{2n+1})$.

Proposition 2. We assume that ρ satisfies the usual "zero-one law". Then, for all $m \ge 1$, $\tilde{\tau}_{m+2} \le \tau_m$.

Proof. We suppose, by way of contradiction, that there exists $m \ge 1$ such that $P(\tilde{\tau}_{m+2} > \tau_m) > 0$, and we set $n := \min\{m \ge 1 : P(\tilde{\tau}_{m+2} > \tau_m) > 0\}$. We have $\tilde{\tau}_{n+1} \le \tau_{n-1}$, by definition of n. This observation, together with the definition of τ_{n+1} and with the inequality of part (iv) of Proposition 1 gives:

$$\tau_{n+1} = (\tilde{\tau}_{n+1} \wedge \tau_{n-1}) \mathbb{1}_{\{\tilde{\tau}_{n+1} \wedge \tau_{n-1} < \tau_n\}} + \tau_{n-1} \mathbb{1}_{\{\tilde{\tau}_{n+1} \wedge \tau_{n-1} \ge \tau_n\}}$$

= $\tilde{\tau}_{n+1} \mathbb{1}_{\{\tilde{\tau}_{n+1} < \tau_n\}} + \tau_{n-1} \mathbb{1}_{\{\tilde{\tau}_{n+1} \ge \tau_n\}}$
= $\tilde{\tau}_{n+1} \mathbb{1}_{\{\tilde{\tau}_{n+1} < \tau_n\}} + \tau_{n-1} \mathbb{1}_{\{\tilde{\tau}_{n+1} = \tau_n\}}$ (9)

For similar reasons, we have

$$\tau_n = \tilde{\tau}_n \mathbb{1}_{\{\tilde{\tau}_n < \tau_{n-1}\}} + \tau_{n-2} \mathbb{1}_{\{\tilde{\tau}_n = \tau_{n-1}\}}.$$
(10)

For the easing of the presentation, we set $\Gamma := \{\tau_n < \tilde{\tau}_{n+2}\}.$

On the set Γ , we have:

1) $\tau_n < \tilde{\tau}_{n+2} \leq \tau_{n+1}$, the last inequality being due to property (iv) of Proposition 1.

2) $\tau_{n+1} = \tau_{n-1}$. This is due to (1), together with Eq. (9).

3) ξⁿ⁺² = ξⁿ. This is a consequence of (2) and the definitions of ξⁿ⁺² and ξⁿ.
4) τ_n = τ̃_n.

We prove that $\{\tilde{\tau}_n = \tau_{n-1}\} \cap \Gamma = \emptyset$, which together with Eq. (10), gives the desired statement.

Due to Eq. (10), we have $\{\tilde{\tau}_n = \tau_{n-1}\} = \{\tilde{\tau}_n = \tau_{n-1}\} \cap \{\tau_n = \tau_{n-2}\}$. Thus, we have

$$\{\tilde{\tau}_n = \tau_{n-1}\} \cap \Gamma = \{\tilde{\tau}_n = \tau_{n-1}, \tau_n = \tau_{n-2} < \tilde{\tau}_{n+2}\}.$$

Now, we have $\tilde{\tau}_n \leq \tau_{n-2}$ (due to the definition of *n*). Hence,

$$\{\tilde{\tau}_n = \tau_{n-1}\} \cap \Gamma = \{\tilde{\tau}_n = \tau_{n-1} \leqslant \tau_{n-2} = \tau_n < \tilde{\tau}_{n+2}\} = \emptyset,$$

where the equality with \emptyset is due to $\tilde{\tau}_{n+2} \leq \tau_{n-1}$.

We note that combining properties (1) and (4) gives $\tilde{\tau}_n < \tilde{\tau}_{n+2}$ on Γ . We will obtain a contradiction with this property. To this end, we will show that:

$$\mathbb{1}_{\Gamma} V^{n+2}(\tilde{\tau}_n) = \mathbb{1}_{\Gamma} \xi^{n+2}(\tilde{\tau}_n).$$
(11)

By definition of $\tilde{\tau}_n$ and by Remark 3, we have:

$$V^n(\tilde{\tau}_n) = \xi^n(\tilde{\tau}_n).$$

This property, together with property (3) on Γ , gives $V^n(\tilde{\tau}_n) = \xi^n(\tilde{\tau}_n) = \xi^{n+2}(\tilde{\tau}_n)$ on Γ . In order to show Eq. (11), it suffices to show

$$\mathbb{1}_{\Gamma} V^{n+2}(\tilde{\tau}_n) = \mathbb{1}_{\Gamma} V^n(\tilde{\tau}_n)$$

By property (4) on Γ and Proposition 4 (applied with $A = \Gamma \in \mathcal{F}_{\tau_n}$ and $\tau = \tau_n$), we have

$$\mathbb{1}_{\Gamma}V^{n+2}(\tilde{\tau}_n) = \mathbb{1}_{\Gamma}V^{n+2}(\tau_n) = \mathbb{1}_{\Gamma}V^{n+2}_{\Gamma}(\tau_n).$$

Due to property (3) on Γ , V_{Γ}^{n+2} and V_{Γ}^{n} have the same pay-off, and by applying again Proposition 4 and property (4) on Γ , we have

$$\mathbb{1}_{\Gamma}V_{\Gamma}^{n+2}(\tau_n) = \mathbb{1}_{\Gamma}V_{\Gamma}^n(\tau_n) = \mathbb{1}_{\Gamma}V^n(\tau_n) = \mathbb{1}_{\Gamma}V^n(\tilde{\tau}_n).$$

We have shown that $\mathbb{1}_{\Gamma}V^{n+2}(\tilde{\tau}_n) = \mathbb{1}_{\Gamma}V^n(\tilde{\tau}_n)$, which is the desired equality. Hence, we get $\tilde{\tau}_{n+2} \leq \tilde{\tau}_n$ on Γ (as by definition $\tilde{\tau}_{n+2} = \text{ess inf}\{\tau \in \Theta : V^{n+2}(\tau) = \xi^{n+2}(\tau)\}$). However, this is in contradiction with the property $\tilde{\tau}_{n+2} > \tilde{\tau}_n$ on Γ . The proof is complete.

- **Lemma 1.** *i*) For all $n \ge 2$, $\tau_{n+1} = \tilde{\tau}_{n+1} \mathbb{1}_{\{\tilde{\tau}_{n+1} < \tau_n\}} + \tau_{n-1} \mathbb{1}_{\{\tilde{\tau}_{n+1} = \tau_n\}}$. *ii*) For all $n \ge 2$, $\tilde{\tau}_{n+1} = \tau_{n+1} \land \tau_n$. *iii*) On $\{\tau_n = \tau_{n-1}\}, \tau_m = T$, for all $m \in \{1, ..., n\}$.

Proof. i) This property follows from the definition of τ_{n+1} , together with Proposition 2, and with property (iv) of Proposition 1.

ii) By using (i), we get

$$\begin{aligned} \tau_{n+1} \wedge \tau_n &= (\tilde{\tau}_{n+1} \wedge \tau_n) \mathbb{1}_{\{\tilde{\tau}_{n+1} < \tau_n\}} + (\tau_{n-1} \wedge \tau_n) \mathbb{1}_{\{\tilde{\tau}_{n+1} = \tau_n\}} \\ &= \tilde{\tau}_{n+1} \mathbb{1}_{\{\tilde{\tau}_{n+1} < \tau_n\}} + (\tau_{n-1} \wedge \tilde{\tau}_{n+1}) \mathbb{1}_{\{\tilde{\tau}_{n+1} = \tau_n\}} \\ &= \tilde{\tau}_{n+1} \mathbb{1}_{\{\tilde{\tau}_{n+1} < \tau_n\}} + \tilde{\tau}_{n+1} \mathbb{1}_{\{\tilde{\tau}_{n+1} = \tau_n\}}, \end{aligned}$$

where we have used Proposition 2 for the last equality.

Finally, by using property (iv) of Proposition 1, we get $\tau_{n+1} \wedge \tau_n = \tilde{\tau}_{n+1}$.

iii) To prove this property, we proceed by induction. The property is true for n = 2. We suppose that the property is true at rank n-1 (where $n \ge 3$), that is on $\{\tau_{n-1} = \tau_{n-2}\}, \tau_m = T$, for all $m \in \{1, ..., n-1\}$.

From the expression for τ_n from statement (i), we get

$$\tau_n = \tilde{\tau}_n \mathbb{1}_{\{\tilde{\tau}_n < \tau_{n-1}\}} + \tau_{n-2} \mathbb{1}_{\{\tilde{\tau}_n = \tau_{n-1}\}}.$$

Hence, $\tau_n = \tau_{n-2}$ on the set $\{\tau_n = \tau_{n-1}\}$. We conclude by the induction hypothesis.

Lemma 2. The following inequalities hold true:

i) $J_1(\tau, \tau_{2n}) \leq J_1(\tau_{2n+1}, \tau_{2n})$, for all $\tau \in \Theta$. *ii*) $J_2(\tau_{2n+1}, \tau) \leq J_2(\tau_{2n+1}, \tau_{2n+2})$, for all $\tau \in \Theta$. **Proof.** Let us first prove statement i):

By (A1), we have $X^1 \leq Y^1$; it follows

$$X^{1}(\tau)\mathbb{1}_{\{\tau \leq \tau_{2n}\}} + Y^{1}(\tau_{2n})\mathbb{1}_{\{\tau_{2n} < \tau\}} \leq \xi^{2n+1}(\tau).$$

Hence, by monotonicity, and by definition of $V^{2n+1}(0)$, we have

$$J_1(\tau, \tau_{2n}) \leqslant V^{2n+1}(0) \tag{12}$$

We will now show that $V^{2n+1}(0) = J_1(\tau_{2n+1}, \tau_{2n})$, which will complete the proof of statement i).

We have

$$J_1(\tau_{2n+1},\tau_{2n}) = \rho_{0,\tau_{2n+1}\wedge\tau_{2n}}^1(X^1(\tau_{2n+1})\mathbb{1}_{\{\tau_{2n+1}\leqslant\tau_{2n}\}} + Y^1(\tau_{2n})\mathbb{1}_{\{\tau_{2n}<\tau_{2n+1}\}})$$

= $\rho_{0,\tau_{2n+1}\wedge\tau_{2n}}^1(\xi^{2n+1}(\tau_{2n+1})),$

where we have used iii) from Lemma 1, and $X^1(T) = Y^1(T)$ from (A2) to show the last equality.

On the other hand, by ii) from Remark 2 and ii) from Lemma 1,

$$\rho_{0,\tau_{2n+1}\wedge\tau_{2n}}^{1}(\xi^{2n+1}(\tau_{2n+1})) = \rho_{0,\tau_{2n+1}\wedge\tau_{2n}}^{1}(\xi^{2n+1}(\tau_{2n+1}\wedge\tau_{2n})) = \rho_{0,\tilde{\tau}_{2n+1}\wedge\tau_{2n}}^{1}(\xi^{2n+1}(\tilde{\tau}_{2n+1}))$$

By optimality of $\tilde{\tau}_{2n+1}$ for $V^{2n+1}(0)$ (cf. Eq. (6)), we get

$$\rho_{0,\tilde{\tau}_{2n+1}\wedge\tau_{2n}}^{1}(\xi^{2n+1}(\tilde{\tau}_{2n+1})) = V^{2n+1}(0).$$

Hence, we conclude

$$J_1(\tau_{2n+1},\tau_{2n}) = \rho_{0,\tau_{2n+1}\wedge\tau_{2n}}^1(\xi^{2n+1}(\tau_{2n+1})) = \rho_{0,\tilde{\tau}_{2n+1}\wedge\tau_{2n}}^1(\xi^{2n+1}(\tilde{\tau}_{2n+1})) = V^{2n+1}(0)$$
(13)

From Eq. (13) and Eq. (12), we get

$$J_1(\tau, \tau_{2n}) \leqslant J_1(\tau_{2n+1}, \tau_{2n})$$

Let us now prove statement ii):

We have

$$J_2(\tau_{2n+1},\tau) \leqslant V^{2n+2}(0), \tag{14}$$

by definition of $V^{2n+2}(0)$ (cf. Eq. (8)).

We will now show that $J_2(\tau_{2n+1}, \tau_{2n+2}) = V^{2n+2}(0)$, which will complete the proof.

By definition of $\xi^{2n+2}(\tau_{2n})$, by ii) from Remark 4, and by ii) from Lemma 1, we have

$$J_{2}(\tau_{2n+1},\tau_{2n+2}) = \rho_{0,\tau_{2n+1}\wedge\tau_{2n+2}}^{2} (X^{2}(\tau_{2n+2})\mathbb{1}_{\{\tau_{2n+2}<\tau_{2n+1}\}} + Y^{2}(\tau_{2n+1})\mathbb{1}_{\{\tau_{2n+1}\leqslant\tau_{2n+2}\}})$$

$$= \rho_{0,\tau_{2n+1}\wedge\tau_{2n+2}}^{2} (\xi^{2n+2}(\tau_{2n+2}))$$

$$= \rho_{0,\tau_{2n+1}\wedge\tau_{2n+2}}^{2} (\xi^{2n+2}(\tau_{2n+2}\wedge\tau_{2n+1}))$$

$$= \rho_{0,\tilde{\tau}_{2n+2}\wedge\tau_{2n+1}}^{2} (\xi^{2n+2}(\tilde{\tau}_{2n+2})).$$

By Eq. (8), we have

$$\rho_{0,\tilde{\tau}_{2n+2}\wedge\tau_{2n+1}}^2(\xi^{2n+2}(\tilde{\tau}_{2n+2})) = V^{2n+2}(0).$$

Hence, we conclude

$$J_{2}(\tau_{2n+1},\tau_{2n+2}) = \rho_{0,\tau_{2n+1}\wedge\tau_{2n+2}}^{2}(\xi^{2n+2}(\tau_{2n+2})) = \rho_{0,\tilde{\tau}_{2n+2}\wedge\tau_{2n+1}}^{2}(\xi^{2n+2}(\tilde{\tau}_{2n+2})) = V^{2n+2}(0).$$
(15)

From Eq. (15) and Eq. (14), we get

$$J_2(\tau_{2n+1},\tau) \leqslant J_2(\tau_{2n+1},\tau_{2n+2}).$$

Remark 5. As a by-product of the previous proof, we find that τ_{2n+1} is optimal for the problem with value $V^{2n+1}(0)$, and τ_{2n+2} is optimal for the problem with value $V^{2n+2}(0)$.

Definition 3. We define $\tau_1^* = \lim_{n \to +\infty} \tau_{2n+1}$, and $\tau_2^* = \lim_{n \to +\infty} \tau_{2n}$.

Proposition 3. We assume that ρ^1 and ρ^2 satisfy properties (i) - (vii), and the following additional property: for $i \in \{1, 2\}$,

$$\lim_{n \to +\infty} \sup_{\nu_{0,\nu_{n}}} \rho_{0,\nu_{n}}^{i}[\xi(\nu_{n})] = \rho_{0,\nu}^{i}[\xi(\nu)], \qquad (16)$$

for any sequence $(\nu_n) \subset \Theta^{\mathbb{N}}$, $\nu \in \Theta$, such that $\nu_n \downarrow \nu$. We have:

i) For all
$$\tau \in \Theta$$
, $\lim_{n \to +\infty} J_1(\tau, \tau_{2n}) = J_1(\tau, \tau_2^*)$.

ii) For all $\tau \in \Theta$, $\lim_{n \to +\infty} J_2(\tau_{2n+1}, \tau) = J_2(\tau_1^*, \tau)$.

iii) For all $\tau \in \Theta$, $\lim_{n \to +\infty} J_1(\tau_{2n+1}, \tau_{2n+2}) = J_1(\tau_1^*, \tau_2^*)$.

iv) For all
$$\tau \in \Theta$$
, $\lim_{n \to +\infty} J_2(\tau_{2n+1}, \tau_{2n+2}) = J_2(\tau_1^*, \tau_2^*)$.

Proof. Let us first show statement i):

Let us recall the following notation:

for a fixed $\tau \in \Theta$,

$$I^{1}(\tau,\nu) := X^{1}(\tau)\mathbb{1}_{\{\tau \leq \nu\}} + Y^{1}(\nu)\mathbb{1}_{\{\nu < \tau\}},$$
$$I^{1}(\tau,\tau_{2}^{*}) := X^{1}(\tau)\mathbb{1}_{\{\tau \leq \tau_{2}^{*}\}} + Y^{1}(\tau_{2}^{*})\mathbb{1}_{\{\tau_{2}^{*} < \tau\}}.$$

With this notation, we have

$$J_1(\tau, \tau_{2n}) = \rho_{0, \tau \wedge \tau_{2n}}^1 [I(\tau, \tau_{2n})], \quad \text{and} \quad J_1(\tau, \tau_2^*) = \rho_{0, \tau \wedge \tau_2^*}^1 [I(\tau, \tau_2^*)].$$

We note that the sequence (τ_{2n}) and $(\tau \wedge \tau_{2n})$ converges from above to τ_2^* and $\tau \wedge \tau_2^*$, respectively. Moreover, for each $\tau \in \Theta$, the family $(I^1(\tau,\nu))_{\nu \in \Theta}$ is admissible. Indeed, for each $\nu \in \Theta$, $I^1(\tau,\nu)$ is \mathcal{F}_{ν} -measurable. Moreover, if $\{\nu = \nu'\}, I(\tau,\nu) = I(\tau,\nu')$ a.s. Hence, as any admissible family in our framework is right-continuous along Bermudan stopping strategies (cf. Remark 2.10 in [11]), we get

$$\lim_{n \to +\infty} I(\tau, \tau_{2n}) = I(\tau, \tau_2^*).$$

Hence, by property (16) on ρ^1 , we get

$$\limsup_{n \to +\infty} \rho_{0, \tau \wedge \tau_{2n}}^1 [I(\tau, \tau_{2n})] = \rho_{0, \tau \wedge \tau_2^*}^1 [I(\tau, \tau_2^*)].$$

Now, let us prove statement ii):

For $\tau \in \Theta$, we recall the following notation:

$$I^{2}(\nu,\tau) \coloneqq X^{2}(\tau)\mathbb{1}_{\{\tau < \nu\}} + Y^{2}(\nu)\mathbb{1}_{\{\nu \leq \tau\}},$$

The family $(I^2(\nu, \tau)_{\nu \in \Theta})$ is admissible. Indeed, for each $\nu \in \Theta$, $I^2(\nu, \tau)$ is \mathcal{F}_{ν} -measurable. Moreover, on $\{\nu_1 = \nu_2\}$, $I^2(\nu_1, \tau) = I^2(\nu_2, \tau)$ a.s.

As (τ_{2n+1}) converges from above to τ_1^* , and as $(I^2(\nu, \tau)_{\nu \in \Theta})$ is right-continuous along Bermudan stopping strategies (cf. Remark 2.10 in [11]), we get

$$\lim_{n \to +\infty} I^2(\tau_{2n+1}, \tau) = I^2(\tau_1^*, \tau).$$

By property (16) on ρ^2 , we get

$$\limsup_{n \to +\infty} \rho_{0,\tau_{2n+1} \wedge \tau}^2 [I^2(\tau_{2n+1},\tau)] = \rho_{0,\tau_1^* \wedge \tau}^2 [I^2(\tau_1^*,\tau)]$$

We now prove statement iii).

The proof relies again on the Bermudan structure on Θ . For any sequence $(\tau_n) \in \Theta^{\mathbb{N}}$ converging from above to $\tau \in \Theta$, we have: for almost each $\omega \in \Omega$, there exists $n_0 = n_0(\omega)$ such that for all $n \ge n_0$, $\tau_n(\omega) = \tau(\omega)$ (cf. Remark

10 in [11]).

Hence, for almost each $\omega \in \Omega$, there exists $n_0 = n_0(\omega)$ such that for $n \ge n_0$, $\tau_{2n+1}(\omega) = \tau_1^*(\omega), \tau_{2n+2}(\omega) = \tau_2^*(\omega)$ and

$$I(\tau_{2n+1}, \tau_{2n+2})(\omega) = X^{1}(\tau_{1}^{*})(\omega) \mathbb{1}_{\{\tau_{1}^{*} \leq \tau_{2}^{*}\}}(\omega) + Y^{1}(\tau_{2}^{*})(\omega) \mathbb{1}_{\{\tau_{2}^{*} < \tau_{1}^{*}\}}(\omega).$$

By property (16) on ρ^1 , we get

$$\lim_{n \to +\infty} J_1(\tau_{2n+1}, \tau_{2n+2}) = J_1(\tau_1^*, \tau_2^*).$$

The proof of iv) is based on the same arguments.

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. By combining Lemma 2 and Proposition 3, we get:

$$J_1(\tau, \tau_2^*) \leqslant J_1(\tau_1^*, \tau_2^*), \text{ for all } \tau \in \Theta.$$

$$J_2(\tau_1^*, \tau) \leqslant J_2(\tau_1^*, \tau_2^*), \text{ for all } \tau \in \Theta.$$

Hence, (τ_1^*, τ_2^*) is a Nash equilibrium point.

We have thus shown that the non-linear non-zero-sum Dynkin game with Bermudan strategies admits a Nash equilibrium point.

4 Appendix

Proposition 4. (Localisation property) Let $(\xi(\tau))_{\tau\in\Theta}$ be a given admissible *p*-integrable family. Let $(V(\tau))_{\tau\in\Theta}$ be the value family of the optimal stopping problem: for $S \in \Theta$,

$$V(S) = ess \ sup_{\tau \in \Theta_S} \rho_{S,\tau}[\xi(\tau)].$$

Let $S \in \Theta$, and let A be in \mathcal{F}_S . We consider the pay-off family $(\xi(\tau)\mathbb{1}_A)_{\tau\in\Theta_S}$, and we denote by $(V_A(\tau))_{\tau\in\Theta_S}$ the corresponding value family, defined by:

$$V_A(\tau) = ess \ sup_{\nu \in \Theta_\tau} \rho_{\tau,\nu}[\xi(\nu) \mathbb{1}_A]$$

If ρ satisfies the usual "zero-one law" (that is $\mathbb{1}_A \rho_{S,\tau}[\eta] = \mathbb{1}_A \rho_{S,\tau}[\mathbb{1}_A \eta]$ for all $A \in \mathcal{F}_S$, for all $\eta \in L^p(\mathcal{F}_\tau)$), then for each $\tau \in \Theta_S$,

$$\mathbb{1}_A V_A(\tau) = \mathbb{1}_A V(\tau).$$

Proof. By the definition of $V(\tau)$ and the usual "zero-one law", we have

$$\mathbb{1}_{A}V(\tau) = \mathbb{1}_{A} \text{ess sup}_{\nu \in \Theta_{\tau}} \rho_{\tau,\nu}[\xi(\nu)] = \text{ess sup}_{\nu \in \Theta_{\tau}} \mathbb{1}_{A} \rho_{\tau,\nu}[\xi(\nu)]$$
$$= \text{ess sup}_{\nu \in \Theta_{\tau}} \mathbb{1}_{A} \rho_{\tau,\nu}[\mathbb{1}_{A}\xi(\nu)] = \mathbb{1}_{A} \text{ess sup}_{\nu \in \Theta_{\tau}} \rho_{\tau,\nu}[\mathbb{1}_{A}\xi(\nu)] = \mathbb{1}_{A} V_{A}(\tau).$$

References

- M. Alario-Nazaret, J. P. Lepeltier, and B. Marchal, *Dynkin games*, Stochastic Differential Systems, Lecture Notes in Control and Information Sciences, Vol. 43, 1982, pp. 23-32.
- [2] E. Bayraktar and S. Yao, On the robust Dynkin game, Ann. Appl. Probab., Vol. 27(3), 2017, pp. 1702-1755.
- [3] J.-M. Bismut, Sur un probleme de Dynkin, Z.Wahrsch. Verw. Gebiete 39, 1977, pp. 31-53.
- [4] S. Crepey and A. Matoussi, Reflected and Doubly Reflected BSDEs with jumps, Annals of App. Prob. 18(5), 2008, pp. 2041-2069.
- [5] J. Cvitanic and I. Karatzas, Backward stochastic differential equations with reflection and Dynkin games, Annals of Prob. 24 (4), 1996, pp. 2024-2056.
- [6] R. Dumitrescu, M.-C. Quenez, and A. Sulem, Game options in an imperfect market with default, SIAM Journal on Financial Mathematics 8, 2017, pp. 532-559.
- [7] R. Dumitrescu, M.-C. Quenez, and A. Sulem, Mixed Generalized Dynkin Games and Stochastic control in a Markovian framework, Stochastics 89, 2017, pp. 400-429.
- [8] R. Dumitrescu, M.-C. Quenez, and A. Sulem, Generalized Dynkin games and doubly reflected BSDEs with jumps, Electron. J. Probab. 21, no. 64, 2016, pp. 1-32.
- [9] E. B. Dynkin, Game variant of a problem of optimal stopping, Soviet Math. Dokl. 10, 1969, pp. 16-19.
- [10] M. Grigorova, P. Imkeller , E. Offen, Y. Ouknine, and M.-C. Quenez, Doubly Reflected BSDEs and E^f-Dynkin games: beyond the right-continuous case, Electron. J. Probab. 23 pp. 1 - 38, 2018. (https://doi.org/10.1214/18-EJP225)
- [11] M. Grigorova, M.-C. Quenez and P. Yuan, Optimal stopping: Bermudan strategies meet non-linear evaluations, 2301.11102, (https://arxiv.org/pdf/2301.11102.pdf)

- [12] M. Grigorova and M.-C. Quenez, Optimal stopping and a non-zero-sum Dynkin game in discrete time with risk measures induced by BSDEs, Stochastics: An International Journal of Probability and Stochastic Processes, Vol. 89, 2017, pp. 259-279.
- [13] S. Hamadene, Mixed zero-sum stochastic differential game and American game options, SIAM J. Control Optim. 45(2), 2006, pp. 496-518.
- [14] S. Hamadene and J. Zhang, The continuous time nonzero-sum Dynkin game problem and application in game options, SIAM Journal on Control and Optimization 48, 2015, pp. 3659-3669.
- [15] S. Hamadene and M. Hassani, BSDEs with two reflecting barriers driven by a Brownian motion and a Poisson noise and related Dynkin game, Electron. J. Probab. 11(5), 2006, pp. 121-145.
- [16] S. Hamadene and M. Hassani, *The multiplayer nonzero-sum Dynkin game in continuous time*, SIAM Journal on Control and Optimization 52, 2014, 821-835.
- [17] S. Hamadene and M. Hassani, The multi-player nonzero-sum Dynkin game in discrete time, Math. Methods Oper. Res. 79, 2014, pp. 179-194.
- [18] S. Hamadene and J.-P. Lepeltier, Reflected BSDEs and mixed game problem, Stochastic Process. Appl. 85, 2000, pp. 177-188.
- [19] J. Kallsen and C. Kühn, Pricing derivatives of American and game type in incomplete markets, Finance Stoch., 8(2), 2004, pp. 261-284.
- [20] J. Kallsen and C. Kühn, Convertible bonds: financial derivatives of game type, Exotic Option Pricing and Advanced Levy Models, 2005, pp. 277-291.
- [21] K. Kentia and C. Kühn, Nash Equilibria for Game Contingent Claims with Utility-Based Hedging, SIAM Journal on Control and Optimization. vol. 56, 2018, pp. 3948-3972.
- [22] Y. Kifer, *Game options*, Finance and Stochastics 4, 2000, pp. 443-463.
- [23] Y. Kifer, Dynkin games and Israeli options, ISRN Probability and Statistics, Article ID: 856458, vol. 2013.
- [24] M. Kobylanski and M.-C. Quenez, Optimal stopping time problem in a general framework, Electron. J. Probab. 17, 2012.

- [25] M. Kobylanski, M.-C. Quenez, and E. Rouy-Mironescu, Optimal multiple stopping time problem, Ann. Appl. Probab. 21, 2011, pp. 1365-1399.
- [26] M. Kobylanski, M.-C. Quenez and M. Roger de Campagnolle, Dynkin games in a general framework, Stochastics 86(2), 2013, pp. 304-329.
- [27] R. Laraki and E. Solan, Equilibrium in two-player non-zero-sum Dynkin games in continuous time, Stochastics 85, 2013, pp. 997-1014.
- [28] J.P. Lepeltier and M.A. Maingueneau, Le jeu de Dynkin en theorie generale sans l'hypothese de Mokobodski, Stochastics 13, 1984, pp. 25-44.
- [29] H. Morimoto, Non-zero-sum discrete parameter stochastic games with stopping times, Probability Theory and Related Fields 72, 1986, pp. 155-160.
- [30] T. Nie, E. Kim and M. Rutkowski, Arbitrage-Free Pricing of Game Options in Nonlinear Markets, 1807.05448. Available at (https://arxiv.org/pdf/1807.05448.pdf)
- [31] Y. Ohtsubo, A non-zero-sum extension of Dynkin's stopping problem, Mathematics of Operations Research 12, 1987, pp. 277-296.
- [32] M.-C. Quenez and A. Sulem, BSDEs with jumps, optimization and applications to dynamic risk measures, Stochastic Processes and their Applications 123, 2013, pp. 3328-3357.
- [33] M.-C. Quenez and A. Sulem, Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps, Stochastic Processes and their Applications 124(9), 2014, pp. 3031-3054.