
ar
X

iv
:2

31
1.

01
08

6v
1 

 [
m

at
h.

O
C

] 
 2

 N
ov

 2
02

3

Non-linear non-zero-sum Dynkin games with

Bermudan strategies

Miryana Grigorova1∗ Marie-Claire Quenez2 †

Peng Yuan3 ‡

1,3University of Warwick
2Université Paris Cité
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Abstract: In this paper, we study a non-zero-sum game with two players,
where each of the players plays what we call Bermudan strategies and opti-
mizes a general non-linear assessment functional of the pay-off. By using a
recursive construction, we show that the game has a Nash equilibrium point.

1 Introduction

Game problems with linear evaluations between a finite number of players
are by now classical problems in stochastic control and optimal stopping (cf.,
e.g., [1], [3], [5], [9], [13], [14], [15], [16], [17], [18], [25], [26] and [28]) with var-
ious applications, in particular in economics and finance (cf., e.g., [13], [14],
[22] and [25]). In the recent years game problems with non-linear evaluation
functionals have attracted considerable interest: cf. [2] for the case of non-
linear functionals of the form of worst case expectations over a set of possibly
singular measures; [6], [7], [8] and [10] for the case of non-linear functionals
induced by backward stochastic differential equations (BSDEs). Most of the
works dealing with non-linear games have focused on the zero-sum case (cf.,
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e.g., [2], [6], [7], [8] and [10]). Non-zero-sum games are notoriously more in-
tricate than their zero-sum counterparts even in the case of linear evaluations
(cf., e.g., [14], [16], [17], [27], [29] and [31]). Non-zero-sum games with non-
linear functionals have been considered in [12] in the discrete-time framework
and with non-linear functionals induced by Backward SDEs with Lipschitz
driver, in [21] in the continuous time framework and with non-linear func-
tionals of the form of expected exponential utilities.

In the current paper, we address the question of existence of a Nash equilib-
rium point in a framework with general non-linear evaluations and with a set
of stopping strategies which is in between the discrete time and the continu-
ous time stopping strategies. The results of [12] can be seen as a particular
case of the current paper.

The paper is organised as follows: In Section 2, we introduce the framework,
including the set of optimal stopping strategies of the agents (namely the
Bermudan strategies), the pay-off as well as the properties on the risk func-
tionals ρ1 and ρ2 of agent 1 and agent 2. In Section 3, we present our main
results and show that the non-linear non-zero-sum game with Bermudan
strategies has a Nash equilibrium point.

2 The framework

Let T ą 0 be a fixed finite terminal horizon.

Let pΩ,F , P q be a (complete) probability space equipped with a right-continuous
complete filtration F “ tFt : t P r0, T su.

In the sequel, equalities and inequalities between random variables are to be
understood in the P -almost sure sense. Equalities between measurable sets
are to be understood in the P -almost sure sense.

Let N be the set of natural numbers, including 0. Let N˚ be the set of natural
numbers, excluding 0.

We first define the so-called Bermudan stopping strategies (introduced in
[11]).

Let (θkqkPN be a sequence of stopping times satisfying the following proper-
ties:

(a) The sequence pθkqkPN is non-decreasing, i.e. for all k P N, θk ď θk`1,
a.s.

(b) limkÑ8 Ò θk “ T a.s.
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Moreover, we set θ0 “ 0.

We note that the family of σ-algebras pFθkqkPN is non- decreasing (as the
sequence pθkq is non-decreasing). We denote by Θ the set of stopping times
τ of the form

τ “
`8
ÿ

k“0

θk1Ak
` T1Ā, (1)

where tpAkq`8
k“0

, Āu form a partition of Ω such that, for each k P N, Ak P Fθk ,
and Ā P FT .

The set Θ can also be described as the set of stopping times τ such that for
almost all ω P Ω, either τpωq “ T or τpωq “ θkpωq, for some k “ kpωq P N.

Note that the set Θ is closed under concatenation, that is, for each τ P Θ and
each A P Fτ , the stopping time τ1A ` T1Ac P Θ. More generally, for each τ

P Θ, τ 1 P Θ and each A P Fτ^τ 1, the stopping time τ1A ` τ 11Ac is in Θ. The
set Θ is also closed under pairwise minimization (that is, for each τ P Θ and
τ 1 P Θ, we have τ ^ τ 1 P Θ) and under pairwise maximization (that is, for
each τ P Θ and τ 1 P Θ, we have τ _ τ 1 P Θ). Moreover, the set Θ is closed
under monotone limit, that is, for each non-decreasing (resp. non-increasing)
sequence of stopping times pτnqnPN P ΘN, we have limnÑ`8 τn P Θ.

We note also that all stopping times in Θ are bounded from above by T .

Remark 1. We have the following canonical writing of the sets in (1):

A0 “ tτ “ θ0u;

An`1 “ tτ “ θn`1, θn`1 ă T uzpAn Y ... Y A0q; for all n P N
˚

Ā “ pY`8
k“0

Akqc

From this writing, we have: if ω P Ak`1 X tθk ă T u, then ω R tτ “ θku.

For each τ P Θ, we denote by Θτ the set of stopping times ν P Θ such that
ν ě τ a.s. The set Θτ satisfies the same properties as the set Θ. We will
refer to the set Θ as the set of Bermudan stopping strategies, and to the
set Θτ as the set of Bermudan stopping strategies, greater than or equal to
τ (or the set of Bermudan stopping strategies from time τ perspective). For
simplicity, the set Θθk will be denoted by Θk.

Definition 1. We say that a family φ “ pφpτq, τ P Θq is admissible if it
satisfies the following conditions

1. for all τ P Θ, φpτq is a real valued random variable, which is Fτ -
measurable.

2. for all τ, τ 1 P Θ, φpτq “ φpτ 1q a.s. on tτ “ τ 1u.

3



Moreover, for p P r1,`8s fixed, we say that an admissible family φ is
p-integrable, if for all τ P Θ, φpτq is in Lp.

Let φ “ pφpτq, τ P Θq be an admissible family. For a stopping time τ of the
form (1), we have

φpτq “
`8
ÿ

k“0

φpθkq1Ak
` φpT q1Ā a.s. (2)

Given two admissible families φ “ pφpτq, τ P Θq and φ1 “ pφ1pτq, τ P Θq, we
say that φ is equal to φ1 and write φ “ φ1 if, for all τ P Θ, φpτq “ φ1pτq a.s.
We say that φ dominates φ1 and write φ ě φ1 if, for all τ P Θ, φpτq ě φ1pτq
a.s.

Let p P r1,`8s. We introduce the following properties on the non-linear
operators ρS,τ r¨s, which will appear in the sequel.

For S P Θ, S 1 P Θ, τ P Θ, for η, η1 and η2 in LppFτ q, for ξ “ pξpτqq an
admissible p-integrable family:
(i) ρS,τ : L

ppFτ q ÝÑ LppFSq
(ii) (admissibility) ρS,τ rηs “ ρS1,τ rηs a.s. on tS “ S 1u.
(iii) (knowledge preservation) ρτ,Srηs “ η, for all η P LppFSq, all τ P ΘS.

(iv) (monotonicity) ρS,τ rη1s ď ρS,τ rη2s a.s., if η1 ď η2 a.s.
(v) (consistency) ρS,θrρθ,τ rηss “ ρS,τ rηs, for all S, θ, τ in Θ such that S ď

θ ď τ a.s.
(vi) (”generalized zero-one law”) IAρS,τ rξpτqs “ IAρS,τ 1rξpτ 1qs, for all A P

FS, τ P ΘS, τ
1 P ΘS such that τ “ τ 1 on A.

(vii) (monotone Fatou property with respect to terminal condition)
ρS,τ rηs ď lim infnÑ`8 ρS,τ rηns, for pηnq, η such that pηnq is non-decreasing,
ηn P LppFτq, supn ηn P Lp, and limnÑ`8 Ò ηn “ η a.s.

(viii) (left-upper-semicontinuity (LUSC) along Bermudan stopping times with
respect to the terminal condition and the terminal time), that is,

lim sup
nÑ`8

ρS,τnrφpτnqs ď ρS,νrlim sup
nÑ`8

φpτnqs,

for each non-decreasing sequence pτnq P ΘN

S such that limnÑ`8 Ò τn “
ν a.s., and for each p-integrable admissible family φ such that supnPN |φpτnq| P
Lp.

(ix) lim supnÑ`8 ρθn,T rηs ď ρT,T rηs, for all η P LppFT q.

These assumptions on ρ ensure that the one-agent’s non-linear optimal stop-
ping problem admits a solution and that the first hitting time (when the
value family “hits” the pay-off family) is optimal (cf. [11] for more details).

4



3 The game problem

We consider two agents, agent 1 and agent 2, whose pay-offs are defined
via four admissible families X1 “ pX1pτqqτPΘ, X2 “ pX2pτqqτPΘ, Y 1 “
pY 1pτqqτPΘ and Y 2 “ pY 2pτqqτPΘ. We assume that X1, X2, Y 1 and Y 2 are
p-integrable families such that

(A1) X1 ď Y 1, X2 ď Y 2 (that is, for each τ P Θ, X1pτq ď Y 1pτq, and
X2pτq ď Y 2pτq).

(A2) X1pT q “ Y 1pT q, X2pT q “ Y 2pT q.

(A3) ess supτPΘX
1pτq P Lp, ess supτPΘX

2pτq P Lp,

ess supτPΘY
1pτq P Lp and ess supτPΘY

2pτq P Lp.

(A4) lim supkÑ`8 X1pθkq ď X1pT q, lim supkÑ`8 X2pθkq ď X2pT q.

The set of stopping strategies of each agent at time 0 is the set Θ of Bermudan
stopping times. If the first agent plays τ1 P Θ and the second agent plays
τ2 P Θ, the pay-off of agent 1 (resp. agent 2) at time τ1 ^ τ2 is given by:

I1pτ1, τ2q :“ X1pτ1q1tτ1ďτ2u ` Y 1pτ2q1tτ2ăτ1u

presp. I2pτ1, τ2q :“ X2pτ2q1tτ2ăτ1u ` Y 2pτ1q1tτ1ďτ2uq,

where we have adopted the convention: when τ1 “ τ2, it is the first agent who
is responsible for stopping the game. The agents evaluate their respective
pay-offs via possibly different evaluation functionals. Let ρ1 “ pρS,τ r¨sq be
the family of evaluation operators of agent 1, and let ρ2 “ pρS,τ r¨sq be the
family of evaluation operators of agents 2. If agent 1 plays τ1 P Θ, and agent
2 plays τ2 P Θ, then the assessment (or evaluation) of agent 1 (resp. agent
2) at time 0 of his/her pay-off is given by:

J1pτ1, τ2q :“ ρ10,τ1^τ2
rX1pτ1q1tτ1ďτ2u ` Y 1pτ2q1tτ2ăτ1us.

presp. J2pτ1, τ2q :“ ρ2
0,τ1^τ2

rX2pτ2q1tτ2ăτ1u ` Y 2pτ1q1tτ1ďτ2usq.

We assume that both ρ1 and ρ2 satisfy the properties (i) - (ix). We will
investigate the problem of existence of a Nash equilibrium strategy pτ˚

1
, τ˚

2
q.

Definition 2. A pair of Bermudan stopping times pτ˚
1
, τ˚

2
q P ΘˆΘ is called

a Nash equilibrium strategy (or a Nash equilibrium point) for the above non-
zero-sum non-linear Bermudan Dynkin game if: J1pτ˚

1 , τ
˚
2 q ě J1pτ1, τ

˚
2 q, for

any τ1 P Θ, and J2pτ
˚
1
, τ˚

2
q ě J2pτ˚

1
, τ2q, for any τ2 P Θ.
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In other words, any unilateral deviation from the strategy pτ˚
1 , τ

˚
2 q by one

of the agent (the strategy of the other remaining fixed) does not render the
deviating agent better off.

Theorem 1. Under assumptions (i) - (ix) on ρ1 and ρ2, there exists a Nash
equilibrium point pτ˚

1
, τ˚

2
q for the game described above.

We will construct a sequence pτ2n`1, τ2nqnPN (by induction), for which we will
show that it converges to a Nash equilibrium point.

We set τ1 :“ T and τ2 :“ T . We suppose that τ2n´1 P Θ and τ2n P Θ have
been defined. We set, for each k P N,

ξ2n`1pθkq :“ X1pθkq1tθkăτ2nu ` Y 1pτ2nq1tτ2nďθku. (3)

Moreover, ξ2n`1pT q :“ Y 1pτ2nq. This definition is “consistent” with the
above, as by (3), 1tθk“T uξ

2n`1pθkq “ 1tθk“T uY
1pτ2nq.

For τ P Θ of the form τ “
ř

kPN θk1Ak
` T1Ā, where ppAkq, Āq is a partition,

Ak is Fθk-measurable for each k P N, and Ā is FT -measurable,

ξ2n`1pτq :“
ÿ

kPN

ξ2n`1pθkq1Ak
` ξ2n`1pT q1Ā. (4)

We note that ξ2n`1pθkq is the pay-off at θk ^τ2n of agent 1 (up to the equality
tθk “ τ2nu) if agent 1 plays θk and agent 2 plays τ2n.

We also note that:

ξ2n`1pτq “ X1pτq1tτăτ2nu ` Y 1pτ2nq1tτ2nďτu.

Thus, ξ2n`1pτq is the pay-off at τ^τ2n of agent 1 (up to the equality tτ “ τ2nu)
if agent 1 plays τ and agent 2 plays τ2n.

For each S P Θ, we define

V 2n`1pSq :“ ess supτPΘS
ρ1S,τ^τ2n

rξ2n`1pτqs

τ̃2n`1 :“ ess inf Ã1, where Ã
1 :“ tτ P Θ : V 2n`1pτq “ ξ2n`1pτqu

τ2n`1 :“ pτ̃2n`1 ^ τ2n´1q1tτ̃2n`1^τ2n´1ăτ2nu ` τ2n´11tτ̃2n`1^τ2n´1ěτ2nu.

(5)

Assuming that lim supkÑ`8 X1pθkq ď X1pT q (from (A4)) ensures that
lim supkÑ`8 ξ2n`1pθkq ď ξ2n`1pT q. This is a technical condition on the pay-
off which we use to apply Theorem 2.3 in [11].

We recall that under the assumptions of Theorem 2.3 in [11], the Bermudan

6



stopping time τ̃2n`1 is optimal for the optimal stopping problem with value
V 2n`1p0q, that is

V 2n`1p0q “ ρ10,τ̃2n`1^τ2n
rξpτ̃2n`1qs “ sup

τPΘ
ρ10,τ^τ2n

rξ2n`1pτqs. (6)

We also recall that V 2n`1pT q “ ξ2n`1pT q, under the assumption of knowledge
preservation on ρ.

Remark 2. i) It is not difficult to show, by induction, that for each n P N,
pξ2n`1pτqqτPΘ is an admissible Lp-integrable family, and τ2n`1 is a Bermudan
stopping time (for the latter property, we use that Θ has the property of
stability by concatenation of two Bermudan stopping times).

ii) For each n P N, for each τ P Θ, ξ2n`1pτq “ ξ2n`1pτ ^ τ2nq.

Indeed, we have:

ξ2n`1pθkq “ X1pθkq1tθkăτ2nu ` Y 1pτ2nq1tτ2nďθku

“ X1pθk ^ τ2nq1tθk^τ2năτ2nu ` Y 1pτ2nq1tτ2nďθk^τ2nu “ ξ2n`1pθk ^ τ2nq.
(7)

Now, let τ P Θ be of the form τ “
ř

kPN θk1Ak
` T1Ā. By definition of

ξ2n`1pτq, of ξ2n`1pT q and by Eq. (7), we have:

ξ2n`1pτq “
ÿ

kPN

ξ2n`1pθkq1Ak
` ξ2n`1pT q1Ā

“
ÿ

kPN

ξ2n`1pθk ^ τ2nq1Ak
` Y 1pτ2nq1Ā “ ξ2n`1pτ ^ τ2nq.

Proposition 1. i) ξ2n`1pτq1tτ2nďθku “ Y 1pτ2nq1tτ2nďθku.

ii) V 2n`1pθkq1tτ2nďθku “ Y 1pτ2nq1tτ2nďθku.

iii) V 2n`1pτq1tτ2nďτu “ Y 1pτ2nq1tτ2nďτu.

iv) For each n P N, τ̃2n`1 “ ess inftτ P Θ : V 2n`1pτq “ X1pτqu ^ τ2n. In
particular, τ̃2n`1 ď τ2n.

Proof. i) On the set tτ “ T u, we have ξ2n`1pτq “ ξ2n`1pT q “ Y 1pτ2nq.
On the set tτ “ θk ă T u, by the second statement in Remark 2, we have
ξ2n`1pτq “ ξ2n`1pθkq “ ξ2n`1pθk ^ τ2nq. Hence, on the set tτ “ θk ă T u X
tτ2n ď θku, we have ξ2n`1pτq “ ξ2n`1pτ2nq “ Y 1pτ2nq, which proves the
desired property.

ii) We have:

1tτ2nďθkuV
2n`1pθkq “ 1tτ2nďθkuess supτPΘk

ρθk ,τ^τ2nrξ2n`1pτ ^ τ2nqs

“ ess supτPΘk
1tτ2nďθkuρθk ,τ^τ2nrξ2n`1pτ ^ τ2nqs

“ ess supτPΘk
1tτ2nďθkuρθk ,τ^τ2n^θkrξ2n`1pτ ^ τ2n ^ θkqs,
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where we have used the “genrealized zero-one law” to obtain the last equality.

For any τ P Θk, τ ^ τ2n ^ θk “ τ2n ^ θk ď θk. Hence,

1tτ2nďθkuρθk,τ^τ2n^θkrξ2n`1pτ ^ τ2n ^ θkqs “ 1tτ2nďθkuρθk,τ2n^θkrξ2n`1pτ2n ^ θkqs

“ 1tτ2nďθkuξ
2n`1pτ2n ^ θkq,

where we have used the knowledge-preserving property of ρ to obtain the
last equality.

Finally, we get

1tτ2nďθkuV
2n`1pθkq “ 1tτ2nďθkuξ

2n`1pτ2nq “ 1tτ2nďθkuY
1pτ2nq.

iii) Let τ P Θ be the form τ “
ř

kPN θk1Ak
` T1Ā. Then, by admissibility,

we have
V 2n`1pτq “

ÿ

kPN

V 2n`1pθkq1Ak
` V 2n`1pT q1Ā.

Hence,

V 2n`1pτq1tτ2nďτu “
ÿ

kPN

V 2n`1pθkq1AkXtτ2nďτu ` V 2n`1pT q1ĀXtτ2nďτu

“
ÿ

kPN

V 2n`1pθkq1AkXtτ2nďθku ` V 2n`1pT q1ĀXtτ2nďT u

“
ÿ

kPN

Y 1pτ2nq1AkXtτ2nďθku ` ξ2n`1pT q1ĀXtτ2nďT u,

where we have used the previous property (ii) to obtain the last equality.
Hence, we get

V 2n`1pτq1tτ2nďτu “
ÿ

kPN

Y 1pτ2nq1AkXtτ2nďθku ` ξ2n`1pT q1ĀXtτ2nďT u

“
ÿ

kPN

Y 1pτ2nq1AkXtτ2nďθku ` Y 1pτ2nq1ĀXtτ2nďT u “ Y 1pτ2nq1tτ2nďτu.

iv) By the previous property (iii), we have, V 2n`1pτq “ ξ2n`1pτq if and only
if V 2n`1pτq1tτăτ2nu “ ξ2n`1pτq1tτăτ2nu. Hence,

τ̃2n`1 “ ess inftτ P Θ : V 2n`1pτq “ X1pτqu ^ τ2n.

Similarly to (3), (4) and (5), we define:

ξ2n`2pθkq :“ X2pθkq1tθkăτ2n`1u ` Y 2pτ2n`1q1tτ2n`1ďθku, and
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ξ2n`2pT q :“ Y 2pτ2n`1q.

For τ P Θ of the form τ “
ř

kPN θk1Ak
` T1Ā, we define

ξ2n`2pτq :“
ÿ

kPN

ξ2n`2pθkq1Ak
` ξ2n`2pT q1Ā

V 2n`2pSq :“ ess supτPΘS
ρ2S,τ^τ2n`1

rξ2n`2pτqs

τ̃2n`2 :“ ess inf Ã2, where Ã
2 :“ tτ P Θ : V 2n`2pτq “ ξ2n`2pτqu

τ2n`2 :“ pτ̃2n`2 ^ τ2nq1tτ̃2n`2^τ2năτ2n`1u ` τ2n1tτ̃2n`2^τ2něτ2n`1u.

(8)

The random variable ξ2n`2pτq is exactly the pay-off at τ ^ τ2n`1 of agent 2, if
agent 1 plays τ2n`1 and agent 2 plays τ . Hence, V 2n`2pSq is the optimal value
at time S for agent 2, when agent 1’s strategy is fixed to τ2n`1. Assuming that
lim supkÑ`8 X2pθkq ď X2pT q leads to lim supkÑ`8 ξ2n`2pθkq ď ξ2n`2pT q,
which we use in applying Theorem 2.3 in [11]. By Theorem 2.3 in [11],
the Bermudan stopping time τ̃2n`2 is optimal for the problem with value
V 2n`2p0q, that is,

V 2n`2p0q “ ρ20,τ̃2n`2^τ2n`1
rξ2n`2pτ̃2n`2qs “ sup

τPΘ
ρ20,τ^τ2n`1

rξ2n`2pτqs.

Remark 3. Let us recall that (cf. [11]) τ̃n “ ess inftτ P Θ : V npτq “ ξnpτqu
satisfies the property: V npτ̃nq “ ξnpτ̃nq. (This is due to the property of
stability of Θ by monotone limit and to the right-continuity-along Bermudan
stopping strategies of the families pV npτqq and pξnpτqq).

Remark 4. By analogy with Remark 2, we have:

i) pξ2n`2pτqq is a admissible Lp-integrable family;

ii) for each n P N, for each τ P Θ, ξ2n`2pτq “ ξ2n`2pτ ^ τ2n`1q.

Proposition 2. We assume that ρ satisfies the usual “zero-one law”. Then,
for all m ě 1, τ̃m`2 ď τm.

Proof. We suppose, by way of contradiction, that there exists m ě 1 such
that P pτ̃m`2 ą τmq ą 0, and we set n :“ mintm ě 1 : P pτ̃m`2 ą τmq ą 0u.
We have τ̃n`1 ď τn´1, by definition of n. This observation, together with the
definition of τn`1 and with the inequality of part (iv) of Proposition 1 gives:

τn`1 “ pτ̃n`1 ^ τn´1q1tτ̃n`1^τn´1ăτnu ` τn´11tτ̃n`1^τn´1ěτnu

“ τ̃n`11tτ̃n`1ăτnu ` τn´11tτ̃n`1ěτnu

“ τ̃n`11tτ̃n`1ăτnu ` τn´11tτ̃n`1“τnu

(9)
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For similar reasons, we have

τn “ τ̃n1tτ̃năτn´1u ` τn´21tτ̃n“τn´1u. (10)

For the easing of the presentation, we set Γ :“ tτn ă τ̃n`2u.

On the set Γ, we have:

1) τn ă τ̃n`2 ď τn`1, the last inequality being due to property (iv) of Propo-
sition 1.

2) τn`1 “ τn´1. This is due to (1), together with Eq. (9).

3) ξn`2 “ ξn. This is a consequence of (2) and the definitions of ξn`2 and ξn.

4) τn “ τ̃n.

We prove that tτ̃n “ τn´1u XΓ “ H, which together with Eq. (10), gives the
desired statement.

Due to Eq. (10), we have tτ̃n “ τn´1u “ tτ̃n “ τn´1u X tτn “ τn´2u. Thus,
we have

tτ̃n “ τn´1u X Γ “ tτ̃n “ τn´1, τn “ τn´2 ă τ̃n`2u.

Now, we have τ̃n ď τn´2 (due to the definition of n). Hence,

tτ̃n “ τn´1u X Γ “ tτ̃n “ τn´1 ď τn´2 “ τn ă τ̃n`2u “ H,

where the equality with H is due to τ̃n`2 ď τn´1.

We note that combining properties (1) and (4) gives τ̃n ă τ̃n`2 on Γ. We will
obtain a contradiction with this property. To this end, we will show that:

1ΓV
n`2pτ̃nq “ 1Γξ

n`2pτ̃nq. (11)

By definition of τ̃n and by Remark 3, we have:

V npτ̃nq “ ξnpτ̃nq.

This property, together with property (3) on Γ, gives V npτ̃nq “ ξnpτ̃nq “
ξn`2pτ̃nq on Γ. In order to show Eq. (11), it suffices to show

1ΓV
n`2pτ̃nq “ 1ΓV

npτ̃nq.

By property (4) on Γ and Proposition 4 (applied with A “ Γ P Fτn and
τ “ τn), we have

1ΓV
n`2pτ̃nq “ 1ΓV

n`2pτnq “ 1ΓV
n`2

Γ
pτnq.
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Due to property (3) on Γ, V n`2

Γ
and V n

Γ
have the same pay-off, and by

applying again Proposition 4 and property (4) on Γ, we have

1ΓV
n`2

Γ
pτnq “ 1ΓV

n
Γ

pτnq “ 1ΓV
npτnq “ 1ΓV

npτ̃nq.

We have shown that 1ΓV
n`2pτ̃nq “ 1ΓV

npτ̃nq, which is the desired equality.
Hence, we get τ̃n`2 ď τ̃n on Γ (as by definition τ̃n`2 “ ess inftτ P Θ :
V n`2pτq “ ξn`2pτqu). However, this is in contradiction with the property
τ̃n`2 ą τ̃n on Γ. The proof is complete.

Lemma 1. i) For all n ě 2, τn`1 “ τ̃n`11tτ̃n`1ăτnu ` τn´11tτ̃n`1“τnu.

ii) For all n ě 2, τ̃n`1 “ τn`1 ^ τn.

iii) On tτn “ τn´1u, τm “ T , for all m P t1, ..., nu.

Proof. i) This property follows from the definition of τn`1, together with
Proposition 2, and with property (iv) of Proposition 1.

ii) By using (i), we get

τn`1 ^ τn “ pτ̃n`1 ^ τnq1tτ̃n`1ăτnu ` pτn´1 ^ τnq1tτ̃n`1“τnu

“ τ̃n`11tτ̃n`1ăτnu ` pτn´1 ^ τ̃n`1q1tτ̃n`1“τnu

“ τ̃n`11tτ̃n`1ăτnu ` τ̃n`11tτ̃n`1“τnu,

where we have used Proposition 2 for the last equality.

Finally, by using property (iv) of Proposition 1, we get τn`1 ^ τn “ τ̃n`1.

iii) To prove this property, we proceed by induction. The property is true
for n “ 2. We suppose that the property is true at rank n´1 (where n ě 3),
that is on tτn´1 “ τn´2u, τm “ T , for all m P t1, ..., n ´ 1u.

From the expression for τn from statement (i), we get

τn “ τ̃n1tτ̃năτn´1u ` τn´21tτ̃n“τn´1u.

Hence, τn “ τn´2 on the set tτn “ τn´1u. We conclude by the induction
hypothesis.

Lemma 2. The following inequalities hold true:

i) J1pτ, τ2nq ď J1pτ2n`1, τ2nq, for all τ P Θ.

ii) J2pτ2n`1, τq ď J2pτ2n`1, τ2n`2q, for all τ P Θ.
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Proof. Let us first prove statement i):

By (A1), we have X1 ď Y 1; it follows

X1pτq1tτďτ2nu ` Y 1pτ2nq1tτ2năτu ď ξ2n`1pτq.

Hence, by monotonicity, and by definition of V 2n`1p0q, we have

J1pτ, τ2nq ď V 2n`1p0q (12)

We will now show that V 2n`1p0q “ J1pτ2n`1, τ2nq, which will complete the
proof of statement i).

We have

J1pτ2n`1, τ2nq “ ρ10,τ2n`1^τ2n
pX1pτ2n`1q1tτ2n`1ďτ2nu ` Y 1pτ2nq1tτ2năτ2n`1uq

“ ρ10,τ2n`1^τ2n
pξ2n`1pτ2n`1qq,

where we have used iii) from Lemma 1, and X1pT q “ Y 1pT q from (A2) to
show the last equality.

On the other hand, by ii) from Remark 2 and ii) from Lemma 1,

ρ10,τ2n`1^τ2n
pξ2n`1pτ2n`1qq “ ρ10,τ2n`1^τ2n

pξ2n`1pτ2n`1 ^ τ2nqq “ ρ10,τ̃2n`1^τ2n
pξ2n`1pτ̃2n`1qq.

By optimality of τ̃2n`1 for V 2n`1p0q (cf. Eq. (6)), we get

ρ10,τ̃2n`1^τ2n
pξ2n`1pτ̃2n`1qq “ V 2n`1p0q.

Hence, we conclude

J1pτ2n`1, τ2nq “ ρ10,τ2n`1^τ2n
pξ2n`1pτ2n`1qq “ ρ10,τ̃2n`1^τ2n

pξ2n`1pτ̃2n`1qq “ V 2n`1p0q.
(13)

From Eq. (13) and Eq. (12), we get

J1pτ, τ2nq ď J1pτ2n`1, τ2nq.

Let us now prove statement ii):

We have
J2pτ2n`1, τq ď V 2n`2p0q, (14)

by definition of V 2n`2p0q (cf. Eq. (8)).

We will now show that J2pτ2n`1, τ2n`2q “ V 2n`2p0q, which will complete the
proof.
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By definition of ξ2n`2pτ2nq, by ii) from Remark 4, and by ii) from Lemma 1,
we have

J2pτ2n`1, τ2n`2q “ ρ2
0,τ2n`1^τ2n`2

pX2pτ2n`2q1tτ2n`2ăτ2n`1u ` Y 2pτ2n`1q1tτ2n`1ďτ2n`2uq

“ ρ2
0,τ2n`1^τ2n`2

pξ2n`2pτ2n`2qq

“ ρ2
0,τ2n`1^τ2n`2

pξ2n`2pτ2n`2 ^ τ2n`1qq

“ ρ20,τ̃2n`2^τ2n`1
pξ2n`2pτ̃2n`2qq.

By Eq. (8), we have

ρ2
0,τ̃2n`2^τ2n`1

pξ2n`2pτ̃2n`2qq “ V 2n`2p0q.

Hence, we conclude

J2pτ2n`1, τ2n`2q “ ρ2
0,τ2n`1^τ2n`2

pξ2n`2pτ2n`2qq “ ρ2
0,τ̃2n`2^τ2n`1

pξ2n`2pτ̃2n`2qq “ V 2n`2p0q.
(15)

From Eq. (15) and Eq. (14), we get

J2pτ2n`1, τq ď J2pτ2n`1, τ2n`2q.

Remark 5. As a by-product of the previous proof, we find that τ2n`1 is
optimal for the problem with value V 2n`1p0q, and τ2n`2 is optimal for the
problem with value V 2n`2p0q.

Definition 3. We define τ˚
1

“ limnÑ`8 τ2n`1, and τ˚
2

“ limnÑ`8 τ2n.

Proposition 3. We assume that ρ1 and ρ2 satisfy properties piq ´ pviiq, and
the following additional property: for i P t1, 2u,

lim sup
nÑ`8

ρi
0,νn

rξpνnqs “ ρi
0,νrξpνqs, (16)

for any sequence pνnq Ă ΘN, ν P Θ, such that νn Ó ν. We have:

i) For all τ P Θ, limnÑ`8 J1pτ, τ2nq “ J1pτ, τ
˚
2 q.

ii) For all τ P Θ, limnÑ`8 J2pτ2n`1, τq “ J2pτ
˚
1
, τq.

iii) For all τ P Θ, limnÑ`8 J1pτ2n`1, τ2n`2q “ J1pτ˚
1
, τ˚

2
q.

iv) For all τ P Θ, limnÑ`8 J2pτ2n`1, τ2n`2q “ J2pτ˚
1 , τ

˚
2 q.

Proof. Let us first show statement i):

Let us recall the following notation:
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for a fixed τ P Θ,

I1pτ, νq :“ X1pτq1tτďνu ` Y 1pνq1tνăτu,

I1pτ, τ˚
2 q :“ X1pτq1tτďτ˚

2
u ` Y 1pτ˚

2 q1tτ˚

2
ăτu.

With this notation, we have

J1pτ, τ2nq “ ρ1
0,τ^τ2n

rIpτ, τ2nqs, and J1pτ, τ
˚
2

q “ ρ1
0,τ^τ˚

2

rIpτ, τ˚
2

qs.

We note that the sequence pτ2nq and pτ ^ τ2nq converges from above to τ˚
2

and τ ^ τ˚
2 , respectively. Moreover, for each τ P Θ, the family pI1pτ, νqqνPΘ

is admissible. Indeed, for each ν P Θ, I1pτ, νq is Fν-measurable. Moreover, if
tν “ ν 1u, Ipτ, νq “ Ipτ, ν 1q a.s. Hence, as any admissible family in our frame-
work is right-continuous along Bermudan stopping strategies (cf. Remark
2.10 in [11]), we get

lim
nÑ`8

Ipτ, τ2nq “ Ipτ, τ˚
2 q.

Hence, by property (16) on ρ1, we get

lim sup
nÑ`8

ρ1
0,τ^τ2n

rIpτ, τ2nqs “ ρ1
0,τ^τ˚

2

rIpτ, τ˚
2

qs.

Now, let us prove statement ii):

For τ P Θ, we recall the following notation:

I2pν, τq :“ X2pτq1tτăνu ` Y 2pνq1tνďτu,

The family pI2pν, τqνPΘ is admissible. Indeed, for each ν P Θ, I2pν, τq is Fν-
measurable. Moreover, on tν1 “ ν2u, I2pν1, τq “ I2pν2, τq a.s.

As pτ2n`1q converges from above to τ˚
1
, and as pI2pν, τqνPΘq is right-continuous

along Bermudan stopping strategies (cf. Remark 2.10 in [11]), we get

lim
nÑ`8

I2pτ2n`1, τq “ I2pτ˚
1 , τq.

By property (16) on ρ2, we get

lim sup
nÑ`8

ρ2
0,τ2n`1^τ rI2pτ2n`1, τqs “ ρ2

0,τ˚

1
^τ rI2pτ˚

1
, τqs.

We now prove statement iii).

The proof relies again on the Bermudan structure on Θ. For any sequence
pτnq P ΘN converging from above to τ P Θ, we have: for almost each ω P Ω,
there exists n0 “ n0pωq such that for all n ě n0, τnpωq “ τpωq (cf. Remark
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10 in [11]).

Hence, for almost each ω P Ω, there exists n0 “ n0pωq such that for n ě n0,
τ2n`1pωq “ τ˚

1 pωq, τ2n`2pωq “ τ˚
2 pωq and

Ipτ2n`1, τ2n`2qpωq “ X1pτ˚
1 qpωq1tτ˚

1
ďτ˚

2
upωq ` Y 1pτ˚

2 qpωq1tτ˚

2
ăτ˚

1
upωq.

By property (16) on ρ1, we get

lim
nÑ`8

J1pτ2n`1, τ2n`2q “ J1pτ
˚
1
, τ˚

2
q.

The proof of iv) is based on the same arguments.

We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. By combining Lemma 2 and Proposition 3, we get:

J1pτ, τ
˚
2 q ď J1pτ

˚
1 , τ

˚
2 q, for all τ P Θ.

J2pτ˚
1 , τq ď J2pτ

˚
1 , τ

˚
2 q, for all τ P Θ.

Hence, pτ˚
1
, τ˚

2
q is a Nash equilibrium point.

We have thus shown that the non-linear non-zero-sum Dynkin game with
Bermudan strategies admits a Nash equilibrium point.
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4 Appendix

Proposition 4. (Localisation property) Let pξpτqqτPΘ be a given admissible
p-integrable family. Let pV pτqqτPΘ be the value family of the optimal stopping
problem: for S P Θ,

V pSq “ ess supτPΘS
ρS,τ rξpτqs.

Let S P Θ, and let A be in FS. We consider the pay-off family pξpτq1AqτPΘS
,

and we denote by pVApτqqτPΘS
the corresponding value family, defined by:

VApτq “ ess supνPΘτ
ρτ,νrξpνq1As.

If ρ satisfies the usual “zero-one law” (that is 1AρS,τ rηs “ 1AρS,τ r1Aηs for
all A P FS, for all η P LppFτq), then for each τ P ΘS,

1AVApτq “ 1AV pτq.

Proof. By the definition of V pτq and the usual “zero-one law”, we have

1AV pτq “ 1Aess supνPΘτ
ρτ,νrξpνqs “ ess supνPΘτ

1Aρτ,νrξpνqs

“ ess supνPΘτ
1Aρτ,νr1Aξpνqs “ 1Aess supνPΘτ

ρτ,νr1Aξpνqs “ 1AVApτq.
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