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We explore the interplay of fractal geometry and quantum entanglement by analyzing the von Neumann
entropy (known as entanglement entropy) and the entanglement contour in the scaling limit. Focusing on free-
fermion quantum models known for their simplicity and effectiveness in studying highly entangled quantum
systems, we uncover intriguing findings. For gapless ground states exhibiting a finite density of states at the
chemical potential, we reveal a super-area law characterized by the presence of a logarithmic divergence in
the entanglement entropy. This extends the well-established super-area law observed on translationally invari-
ant Euclidean lattices where the Gioev-Klich-Widom conjecture regarding the asymptotic behavior of Toeplitz
matrices holds significant influence. Furthermore, we observe the emergence of a self-similar and universal
pattern termed an “entanglement fractal” in the entanglement contour data as we approach the scaling limit.
Remarkably, this pattern bears resemblance to intricate Chinese paper-cutting designs. We provide general rules
to artificially generate this fractal, offering insights into the universal scaling of entanglement entropy. Building
upon the insights gained from the entanglement fractal, we explicitly elucidate the origin of the logarithmic
divergence on fractals where translation symmetry is broken and the Widom conjecture is inapplicable. For
gapped ground states, we observe that the entanglement entropy adheres to a generalized area law, with its
dependence on the Hausdorff dimension of the boundary between complementary subsystems.

Introduction—Entanglement provides a quantum-
informative perspective for understanding non-local correla-
tions in many-body quantum systems [1–3]. Quantitatively,
entanglement entropy (EE), or von Neumann entropy, stands
out as one of the most useful quantities for characterizing
the strength of quantum entanglement. For quantum many-
body systems defined on Euclidean lattice with dimension
ds, it is well-known that the EE of gapped ground states
follows a universal scaling feature called the area law1,
given by S ∼ Lds−1

A , where LA is the linear size of the
boundary between the two complementary subsystems A
and B [2–4]. Interestingly, gapped phases hosting anyons
exhibit a universal constant entropy known as topological
entanglement entropy. This appears as the subleading term in
EE, quantitatively fixed by the total quantum dimension of all
anyons [5, 6].

On the other hand, for gapless free-fermion systems defined
on translational invariant Euclidean lattice with dimension ds,
when the Fermi surface is of codimension-1, the EE scales as a
“super area law”, given by S ∼ Lds−1

A logLA. This scaling is
derived by applying Gioev-Klich-Widom (Widom) conjecture
of asymptotic behavior of Toeplitz matrices [3, 7–13], where
translation symmetry plays a vital role. The scaling also
demonstrates how logarithmic divergence is induced by the
infinite number of gapless modes on the Fermi surface. How-
ever, the situation differs for Fermi surfaces of higher codi-
mension. For example, in 2D systems with Fermi points, such
as graphene with Dirac points, the EE still follows the area
law. This implies that the vanishing density-of-state of Fermi
points cannot provide sufficient long-range quantum correla-
tion to enhance quantum entanglement between the two com-
plementary subsystems.

∗ yepeng5@mail.sysu.edu.cn
1 Here, the term ”area” specifically refers to the boundary area between the

two complementary subsystems, denoted as A and B.

All the aforementioned investigations into fermion system
entanglement are conducted under the assumption of a trans-
lationally invariant lattice. However, fermions may also move
on a fractal lattice [14] embedded in some Euclidean space,
resulting in a scenario where fermions experience fractional
dimensionality and translation symmetry is absent. As a type
of very exotic geometric patterns, fractals, common in nature,
have attracted academic interest since the last century, with
statistical models and critical phenomena on fractals gain-
ing substantial research attention [15–21]. Ongoing efforts
continue to explore various physical phenomena [22–36], in-
cluding topological effects, optical and transport properties,
and the practical implementation of fractal topological quan-
tum memory. These findings are substantially influenced by
the unique features of fractals: fractional dimensions affect-
ing microscopic degrees of freedom and self-similarity with
broken translation symmetry. Therefore, considering that the
aforementioned super area law depends on translation symme-
try, enabling the application of the mathematical Widom con-
jecture of Toeplitz matrices, it is natural to explore the scaling
law of the EE in many-body systems defined on fractal lat-
tices. These systems lack translation symmetry and have non-
integer dimensions, where the Widom conjecture is no longer
applicable. This line of thinking, exploring the interplay of
quantum entanglement and fractal geometry, serves as the mo-
tivation for the present work. Ultimately, we aim to gain
a deeper understanding of how quantum entanglement is in-
fluenced by fractals where macroscopic number of fermionic
quantum particles move.

In this paper, we investigate the entanglement properties
of many-body systems on the Sierpinski carpet using free-
fermion models, with a focus on both the entanglement en-
tropy (EE) and the entanglement contour (EC) [37]. Mathe-
matically, the EE can be decomposed into site-dependent con-
tributions denoted as s(i): SA =

∑
i∈A s(i). Here, s(i)’s as

a whole constitute the EC data. Thus, the EC, serving as a
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Sierpinski carpet Entanglement fractal

FIG. 1. Pictorial illustration of fractal lattice and entanglement frac-
tal which resembles Chinese papercutting. See main texts for details.

real-space “tomography” of quantum entanglement, provides
insight into the fine structure of the real-space distribution of
entanglement entropy [38].

Our initial examination considers a gapless system embed-
ded in 2D space with a finite density-of-state (DOS) at the
chemical potential within the fractal lattice. To assess entan-
glement between the two complementary subsystems (labeled
as A and B) of a pure state, we employ various bi-partition
schemes, even allowing for the fractal structure of the bound-
ary between A and B. For generic free-fermion systems on
fractal lattices with a finite DOS at the chemical potential,
we observe a super-area scaling of EE: SA ∼ Lds−1

A logLA,
where ds = 2 denotes the dimension of the embedding space
in our numerical setting. This scaling result found in the
numerical computation extends generalizes the applicability
of the super-area law from translationally invariant Euclidean
lattices to fractal lattices.

Next, we turn our attention to the EC data and unveil an-
other intriguing revelation: the emergence of a self-similar
and universally present pattern, which we term an “entan-
glement fractal” (EF) pattern (Fig. 1). Notably, this intricate
pattern bears a striking resemblance to the elaborate designs
found in Chinese paper-cutting artistry. Surprisingly, despite
being discovered through numerical computation, the EF pat-
tern can be reproduced through a set of general rules. This
gives us confidence to believe that the EF pattern may encode
the origin of the logarithmic divergence in the super-area scal-
ing of the EE. Indeed, upon delving into the EF pattern, we
find that the logarithmic divergence can be traced back to the
power law decay of

∑′
i s(i) ∼ 1

ℓ , where ℓ measures the dis-
tance between the site i ∈ A and the boundary between A and
B at the scaling limit.

∑′
i means the summation over all site

i with the same ℓ.

For gapped systems, our numerical analysis proposes a uni-
versal scaling of EE as SA ∼ Ldbf

A , where dbf denotes the
Hausdorff dimension of A’s boundary, thereby extending be-
yond the conventional area law. Furthermore, in gapped sys-
tems, the EC predominantly resides at A’s boundary and ex-
hibits an exponential decay into the bulk.

METHOD

Consider a many-body ground state |G⟩ with density matrix
ρ = |G⟩ ⟨G|. When partitioning the system into two subsys-
tems A and B, the reduced density matrix can be obtained by
tracing over subsystem B:

ρA = TrB |G⟩ ⟨G| = 1

N
exp

(
−HE

)
, (1)

where N is a normalization constant. In the free-fermion
limit, owing to the quadratic form of the entanglement Hamil-
tonian [39, 40]:

HE =
∑
i,j

c†ih
E
i,jcj (2)

with i, j ∈ A, where c†i represents a fermionic creation oper-
ator at the i-th lattice site. Consequently, entanglement infor-
mation can be extracted from the entanglement Hamiltonian
matrix hE . Additionally, as discussed in Ref. [39, 40], the
spectrum {ει} of hE and the spectrum {ξι} of the correla-
tion matrix CA(i, j) = ⟨G| c†i cj |G⟩ with i, j in subsystem A
have a one-to-one correspondence with the same eigenvector,
expressed as:

ει = log[(ξι)
−1 − 1] . (3)

For convenience in free-fermion systems, the spectrum {ξι}
is typically adopted as the entanglement spectrum, and the en-
tanglement entropy (EE) is calculated using the equation:

SA = Tr[f(CA)] = −
∑
ι

[ξι log ξι + (1− ξι) log(1− ξι)] .

(4)

Utilizing the eigenvalues and eigenvectors of the correlation
matrix CA, the entanglement contour (EC) in free-fermion
systems is defined as:

s(i) =
∑
ι

pi(ι)Sι , (5)

where Sι = −[ξι log ξι + (1 − ξι) log(1− ξι)]. pi(ι) =
| ⟨i|ι|i|ι⟩ |2 represents the probability of the eigenvector |ι⟩ of
the correlation matrix at site i in A, and

∑
i pi(ι) = 1. These

eigenvectors, often referred to as “Schmidt vectors” or “en-
tanglement wavefunctions”, encapsulate information regard-
ing bulk-boundary correspondence in topological gapless sys-
tems [41].

EE OF GAPLESS GROUND STATES

At the outset, prior to delving into the examination of en-
tanglement features within fractal systems, it is imperative to
address the process of constructing a lattice system exhibiting
a fractal structure. Initially, we introduce two variable ele-
ments crucial to the fractal lattice—namely, an initial unit cell
and a fractal iteration method. These components uniquely
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determine a specific type of fractal lattice. Employing the it-
eration method iteratively n times on the unit cell with lattice
sites yields the nth-order approximation of the fractal. For
instance, the 5th-order approximation SC(5, 1) of the Sier-
pinski carpet [14], depicted in the upper part of Fig. 1 (refer to
Supporting Information, section S1 and Fig. S1 for detailed
information; note that “1” in SC(5, 1) represents the width of
a unit cell).

Subsequently, we investigate the scaling of Entanglement
Entropy (EE) for the gapless system defined on the fractal
lattice SC(n, 1) embedded in a 2-dimensional spatial space,
as illustrated in Fig. 2A. We consider a spinless tight-binding
model described by the Hamiltonian:

H1 = −t
∑
<ij>

c†i cj − µ
∑
i

c†i ci . (6)

Here, c†i represents a fermionic creation operator at the ith
lattice site, < ij > denotes nearest-neighbor sites, and µ is
the chemical potential. The model H1 exhibits symmetries
due to the properties of the fractal lattice SC(3, 1), such as
a four-fold rotation symmetry. To ascertain the bulk gap, it
is necessary to compute the Density of States (DOS) of the
model H1 on the fractal lattice SC(n, 1). Given the exponen-
tial increase in the number of lattice sites with each iteration of
the fractal lattice [14], the numerical exploration of entangle-
ment presents considerable challenges. Specifically, numeri-
cal calculations in entanglement for translation-invariant sys-
tems hinge on the diagonalization of a non-sparse matrix at a
large size limit. The challenge is further amplified when trans-
lation symmetry is absent, necessitating a computationally in-
tensive numerical study. In our case, through an analysis of
the scaling of the energy gap and the DOS, we demonstrate
that the model H1 on the Sierpinski carpet exhibits a gapless
ground state with a finite DOS at the chemical potential (see
Supporting Information, section S2 and Fig. S2 for techni-
cal details), indicative of a metalic ground state on the fractal
lattice.

To progress further, we initially establish various bi-
partition schemes in order to compute entanglement quan-
tities. In Fig. 2A, we present the 3rd-order approximation
SC(3, 1) of the Sierpinski carpet as an illustrative example.
Four distinct partitioning methods (labeled I-IV) for divid-
ing the original fractal lattice into subsystems A and B are
demonstrated, where the area enclosed by dashed lines is des-
ignated as the subsystem A for each partition scheme. Specif-
ically, for Partition-I, the subsystem A geometrically corre-
sponds to the 2nd-order approximation SC(2, 1) that pre-
serves all spatial symmetry of the original fractal lattice. In
a general sense, for the nth-order approximation SC(n, 1), A
represents the (n − 1)th-order approximation SC(n − 1, 1)
with linear length LA = 3n−1l and the number of boundary
sites NbA = 3n−1, where the lattice constant l = 1. By not-
ing LA = NbA, the boundary ofA using Partition-I in Fig. 2A
forms a regular 1D line (not a fractal line).

Following this, Partition-I is utilized to scrutinize the EE
scaling for the model H1 on SC(n, 1). As outlined in Sup-
porting Information section S2 and Fig. S2, the energy gap
of the model H1 on the Sierpinski carpet diminishes at the

SC(3,1)

FB(2,1)

FB(3,1)

FB(4,1)

...

A

B D

C

Partition-I

Partition-II

Partition-IV

Partition-III

FIG. 2. (A) Four kinds of partitions on the 3rd-order approximation
SC(3, 1) of Sierpinski carpet as an example. Partition-I has a normal
boundary and Partition-II has a fractal boundary in the blue area. (C)
The fractal structure of the boundary for different n. (B) and (D) The
EE of the model on the nth-order approximation SC(n, 1) of Sier-
pinski carpet, using Partition-I and II, respectively. The insets show
the coefficient of determination R2 as a function of α to measure the
goodness of fit. Here t = 1 and µ = 0.

scaling limit, and the DOS attains a finite value, indicating a
metallic ground state on the fractal lattice. Concurrently, it
is well-established that the model H1 on a square lattice re-
spects translation symmetry and displays a one-dimensional
Fermi surface with a finite DOS. In accordance with the
Widom conjecture of Toeplitz matrices, the EE scales as
SA = aLA logLA + · · · , where the coefficient a is deter-
mined by the geometric details of the Fermi surface and the
specifics of the partitioning method [10].

By comparing these two scenarios, we are motivated to test
whether or not the EE when the model is placed on the Sier-
pinski carpet would also scale as SA = aLα

A logLA + · · · ,
where the parameter αmight encode the fractal information of
the lattice, and a remains a nonuniversal constant determined
by certain details of the model. To substantiate this proposal,
we numerically compute SA for different n of SC(n, 1) to
increase the fractal lattice size, as depicted in Fig. 2B. By fit-
ting the numerical data with α = 1, we obtain SA/ logLA =
0.22372LA+0.37143. Additionally, we utilize the coefficient
of determination denoted as R2, which is a function of α, to
measure the goodness of fit, as shown in the inset of Fig. 2B.
We observe that α ≈ 1 yields the best fit, withR2 closest to 1.
Based on this fitting expression in 2D where the fractal lattice
is embedded, we propose that the EE scaling of the model H1

on the fractal lattice is given by:

SA = aLds−1
A logLA + · · · . (7)
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Here, ds is the integer-valued spatial dimension of the Eu-
clidean space where the fractal lattice is embedded. How-
ever, as only one specific partition scheme is applied during
the above analysis, one may wonder if this scaling is universal
enough.

To assess the universality of (7) across different partition
schemes, we incorporate Partition-II alongside Partition-I as
depicted in Fig. 2A. In the case of Partition-II, A explicitly
breaks the symmetry and fractal structure of the original Sier-
pinski carpet. Notably, the linear length of A’s boundary is
LA = 3n−1l in SC(n, 1) and the number of sites on the
boundary of the subsystem A is NbA = 2n−1, illustrated
in Fig. 2C for varying n. Since LA > NbA, the boundary
“FB(n, 1)” of A exhibits a distinct fractal structure, contrast-
ing sharply with Partition-I where the boundary is a regular
1D line. For convenience, we define a boundary Hausdorff
dimension dbf = logLA

NbA = log3 2 for FB(n, 1), akin to
the nth-order approximation of the Cantor set [14].

With this foundation, we numerically determine the EE on
SC(n, 1) as depicted in Fig. 2D. We anticipate that the EE
scaling in this case remains SA = aLα

A logLA + · · · . Fit-
ting the data with α = 1 yields SA/ logLA = 0.15858LA +
0.82249. The optimal fit is obtained with α ≈ 1, with the
coefficient of determination R2 closest to 1, as shown in the
inset of Fig. 2D. Based on these findings, the EE scaling of the
model H1 on the fractal lattice is consistent with (7). While
it is impractical to exhaustively consider an infinite array of
partition schemes, the two partitions discussed, i.e., Partition-
I and Partition-II, which respectively preserve and break the
symmetry of the original Sierpinski carpet, serve as represen-
tative cases. Thus, we conclude that (7) universally governs
the scaling of EE for gapless free-fermion systems with fi-
nite DOS on a fractal lattice embedded in ds dimensional Eu-
clidean space.

ENTANGLEMENT FRACTAL AND ITS ARTIFICIAL
GENERATING

To deeply probe into the entanglement characteristics of
fractal geometry and the intricate details of EE, we embark
on an investigation of a measure known as the entanglement
contour (EC) [37], denoted as s(i) where i represents any lat-
tice site within the subsystem A. EC provides a real-space
“tomography” of EE and is defined in (5) (for more details,
refer to Methods). By utilizing EC, we can reconstruct EE
as:

SA =
∑
i∈A

s(i) . (8)

Initially, we employ Partition-II to examine the distribution
of EC s(i) for the model H1 on SC(5, 1). As illustrated in
Fig. 4A, our numerical findings indicate that the predominant
s(i) in the scaling limit, whose color tends to be red, exhibits
a distinct pattern within the bulk of the subsystem A, reminis-
cent of Chinese papercutting. Additionally, we observe self-
similarity in the EC, as indicated by the black rhombuses in
Fig. 4A. To advance our exploration, we employ Partition-I,

A

Artificial generating of B5

B1

B4

B3B2

B5

B6

...

...

...

...

FIG. 3. (A) Illustration of the artificial generating rules for en-
tanglement fractal on the 4th-order approximation SC(4, 1). The
red closed loop shows the artificial generating structure of (B5) in
the gapless fractal systems and the blue sites are the boundaries of
SC(4, 1). (B1-B6) All possible structures by the artificial generat-
ing rules.

III, and IV to examine the EC of the model H1 on SC(5, 1).
All numerical results are presented in Fig. 4A, B, D, and E,
where the predominant EC data (formed by significantly large
value of s(i) whose color tends to be red) display a clearly
self-similar structure.

Up to this point, we haven’t yet discussed the pattern in
Fig. 4C. This pattern is referred to as “Entanglement fractals”
(EF), which is not obtained through numerical computations
but is instead artificially generated using a set of rules. We
will discuss EF below and discover that EF effectively repre-
sents the real-space distribution of the predominant EC data
observed in Fig. 4A, B, D, and E (as indicated by the four
arrows from C to A, B, D, and E).

More concretely, to comprehend the numerical outcomes,
we delineate a set of generative rules to artificially construct
predominant EC on the fractal lattice SC(n, 1) illustrated in
Fig. 4A, B, D, and E. As an illustrative instance, we depict a
red closed loop within SC(4, 1) in Fig. 3A, where the blue
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Artificial entanglement fractal A C D

EB

Partition-I Partition-IV

Partition-II Partition-III

FIG. 4. (A), (B), (D) and (E) are EC of the model H1 using Partition-II,I,III and IV, respectively. (C) The artificially generated structure, called
entanglement fractal (EF), and its four partitions. The predominant EC data (formed by significantly large value of s(i) whose color tends to
be red) of (A), (B), (D), and (E) match the artificially generated EF pattern in (C).

sites form the boundaries of SC(4, 1). The fundamental rules
encompass:

i. The predominant EC is constituted by closed loops;

ii. Each loop line consists of two sites arranged in a
zig-zag pattern, as depicted in the magnified view in
Fig. 3A.

iii. Each loop line extends along one of the four diagonal
directions: 45◦, 135◦, 225◦, or 315◦, as indicated by
the black arrows in Fig. 3A;

iv. Each loop line originates from and reflects specularly at
the boundaries of SC(n, 1).

By adhering to these rules, we artificially generate all con-
ceivable structures on the fractal lattice SC(n, 1) as presented
in Fig. 3B1-B6. Notably, the patterns in Fig. 3B3-B6 exhibit
self-similarity, while the pattern set in Fig. 3B3 does not man-
ifest in the EC of H1 on SC(n, 1). The prohibited EC may be
contingent on the fractal structure or the Hamiltonian model
(see Supporting Information, section S3 and Fig. S3 and
Fig. S4 for more details).

By applying the patterns in Fig. 3B1-B2 and B4-B6 to
SC(5, 1), we successfully generate a fractal structure on
SC(5, 1), as depicted in Fig. 4C. Subsequently, by employ-
ing Partition-(I-IV) to Fig. 4C and contrasting the resulting
patterns with the numerical outcomes in Fig. 4A, B, D, and
E, we observe that the distribution of predominant EC data in
the bulk of A closely resembles the artificially generated pat-
tern shown in Fig. 4C. This similarity indicates that the chosen
rules have been successful. The distinctive fractal pattern, ar-
tificially generated by a set of rules, is referred to as the EF,
which can be considered as the entanglement “fingerprint” of
the fractal geometry of the original lattice.

Although the EF pattern may appear aesthetically pleas-
ing, its physical significance and relevance to physics may be

questioned. In the next section, we will demonstrate that the
EF pattern leads to the logarithmic divergence observed in the
scaling law of the EE in (7), which plays a vital role in gener-
alizing the super-area law from translationally invariant lattice
to fractal lattice (see Supporting Information, section S4 for
more details).

RECONSTRUCTING EE VIA ENTANGLEMENT FRACTAL

As shown in (8), the EE can be decomposed into the real-
space distribution within the subsystemA. Thus, we infer that
the universal scaling of the entanglement entropy originates
from the aforementioned EF pattern. Let us elaborate on this
point in more detail below.

Since EF only captures the distribution of predominant EC
data, the EC data in the rest of the subsystem A, where EC
data are relatively weaker, are entirely neglected (see Fig. 4).
To explore the distinct behaviors of s(i) on EF and the re-
maining part of subsystem A, as illustrated in Fig. 4E where
Partition-IV is applied, we introduce two quantities defined
as:

sAs(Ās)(iy) =

∑
ix∈As(Ās)

s(ix, iy)

N (iy)
, (9)

where As and Ās represent the lattice sites covered by EF and
the rest sites in the subsystem A, respectively. Each lattice
site i is uniquely labeled by two integers: (ix, iy) in Fig. 4E.
Here N (iy) =

∑
ix∈As

1 is the number of lattice sites with the
same iy in Fig. 4E. The coordinate iy measures the distance of
lattice site i from the boundary between the two subsystemsA
and B. From (9), sAs(Ās)(iy) is simply the average value of
EC data for a given iy for all sites ix ∈ As(Ās). As depicted
in Fig. 5A as iy increases, we numerically find that:

sAs
(iy) ∼ 1/(iy)

1.12 , sĀs
(iy) ∼ 1/(iy)

3.69 (10)
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which motivates us to propose the following equation for cal-
culating the EE from the EC:

SA =
∑
i∈As

s(i) + · · · . (11)

Here, the ellipsis represents the subleading term
∑

i∈Ās
s(i)

of the EE. Only the first term of (11) significantly contributes
to the EE at the scaling limit. In terms of the quantity sAs

(iy),
we have

SA ≈
∑
i∈As

s(i) =
∑
iy

N (iy)sAs(iy). (12)

Since numerically we find that the denominator N (iy) in (9)
is always less than LA, we can rewrite the denominator as
N (iy) = LA ·p(iy) with p(iy) ≡ N (iy)/LA and 0 < p(iy) <
1. Then we obtain:

SA ≈ LA

∑
iy

p(iy)sAs
(iy) . (13)

Here the series
∑

iy
p(iy)sAs(iy) can be regarded as a random

series whose convergence depends on the distribution of p(iy)
and the series

∑
iy
sAs(iy) [42].

The next question is: can we really reconstruct the super-
area law of the EE in (7) (ds = 2) by using the asymptotic
behavior sAs

(iy) ∼ 1/(iy)
1.12? To achieve this goal, let us

consider the linear size of A is LA along both horizontal and
vertical directions, i.e., iy ∈ (0, LA), such that the subsys-
tem is properly scaled to a thermodynamical two-dimensional
region. Mathematically, the series

∑∞
n=1 1/n

β converges to
a constant called the Riemann zeta function ζ(β) if β > 1.
Consequently, when sAs

(iy) ∼ 1/(iy)
1.12 is utilized, we can

deduce the series
∑

iy
p(iy)sAs

(iy) <
∑

iy
sAs

(iy) is con-
vergent by noting that 0 < p(iy) < 1. As a result, based on
(13), we can deduce that the EE SA ≲ LA, which corresponds
to, at most, the area law but not the super-area law at large LA

limit.
Therefore, to recover the logarithmic divergence logLA ap-

peared in the super-area law in (7), firstly, we assume the fol-
lowing asymptotic behavior:

sAs
(iy) ∼ 1/iy . (14)

We observe that the exponent “1.12” in (10) is very close
to 1; the deviation here can be considered a consequence
of the finite size effect of the numerical calculation. Sec-
ondly, we assume that p(iy) should have a non-zero lower
bound p(iy) > ϵ. As shown in Fig. 5B, we plot p(iy) and
numerically confirm that the nonzero lower bound of p(iy)
indeed exists. Based on these two assumptions, and com-
bining (13) and (14), we can infer the EE should adhere to
ϵLA logLA ≲ SA ≲ LA logLA, i.e., SA ∼ LA logLA at
large LA limit, which aligns with the super-area law in (7)
(ds = 2).

In conclusion, we have shown how to reconstruct the super-
area law of the EE through the asymptotic behavior of the
EC data distributed on the EF pattern, especially providing

A

B

FIG. 5. (A) The behavior of EC s(i) on the self-similar structure
As and the rest of the subsystem Ās by adpoting Partition-IV in
Fig. 4(E), where the blue and yellow lines represent sAs(iy) ∼
1/(iy)

1.12 and sĀs
(iy) ∼ 1/(iy)

3.69, respectively. (B) The dis-
tribution of p(iy) with iy in the EC of Partition-IV, where ϵ is the
lower bound of p(iy).

insight into the origin of the logarithmic divergence in the EE
formula. In comparison, as aforementioned, the logarithmic
divergence for the case of translationally invariant Euclidean
lattices arises from the application of the Widom conjecture
of the asymptotic behavior of Toeplitz matrices.

Finally, noting that the EE of free-fermion systems can be
formally expressed as SA = Tr[f(CA)] as shown in Meth-
ods [39, 40], (11) provides information about the asymptotic
behavior of the spectrum of the correlation matrix CA. This
may assist in analytically generalizing the Widom conjecture
of Toeplitz matrices to matrices with self-similarity. Mathe-
matically, Brownian motion on infinitely ramified self-similar
fractals (see Refs. [43, 44] and references therein), such as
the Sierpinski carpet, presents a challenging problem concern-
ing the asymptotic behaviors of the Laplacian on the frac-
tals [45, 46]. Formulating a new ‘conjecture’ for the asymp-
totic behaviors of matrices with self-similarity would be in-
strumental in understanding Brownian motion on fractals, rep-
resenting an important avenue for future study.

EE & EC OF GAPPED GROUND STATES

Turning to the entanglement of gapped systems on frac-
tals, we consider a tight-binding model on the fractal lattice
SC(n, 1) embedded in a two-dimensional space, as shown in



7

0

0.1

0.2

0.3

0.4

A

C D

B

0

0.2

0.4

0.6

FIG. 6. (A) and (B) are the EE of the model H2 as a function of the
number of iteration n by using Partition-I and II, respectively. The
insets show the coefficient of determination R2 as a function of α to
measure the goodness of fit. (C) and (D) are the distribution of EC
of the model H2 in the subsystem A of SC(5, 1) by using Partition-I
and II, respectively. Here t1 = 0.5 and t = 1.

Fig. 2A. The model is given by

H2 =
∑
i

(c†s,ic
†
p,i)t1σx

(
cs,i
cp,i

)
+

∑
<i,j>

(c†s,ic
†
p,i)tσz

(
cs,j
cp,j

)
,

(15)
where c†s(p),i(j) is a fermionic creation operator of s(p) orbital
at the i(j)th lattice site and σx,y are Pauli matrices. As dis-
cussed in Supporting Information section S2 and Fig. S2,
through analyzing the scaling of the energy gap and the DOS,
we find that the ground state of the model is gapped.

Due to the existence of a finite gap, we propose that the
EE of this model H2 on the Sierpinski carpet would scale as
SA = aLα

A + · · · , where α is a universal parameter to be de-
termined. To verify this proposal, we first adopt Partition-I in
Fig. 2A to study the scaling of EE of the model H2 on the
nth-order approximation SC(n, 1) of Sierpinski carpet. As
shown in Fig. 6A, by fitting the data with α = 1, the nu-
merical data of EE is fit to SA = 1.10033LA − 0.120981.
The best fit is α ≈ 1 with the coefficient of determination
R2 closest to 1, as shown in the inset of Fig. 6A. Further-
more, we consider Partition-II in Fig. 2A to divide SC(n, 1)
into A and B, where the boundary FB(n, 1) in the blue area
of Fig. 2A has fractal structure. Through numerical calcu-
lation, the EE of the model H2 in this case is demonstrated
in Fig. 6B. By fitting the numerical data, the EE scales to
SA = 1.84893L0.62

A −0.234274, where α ≈ 0.62 is the best fit
with the coefficient of determinationR2 closest to 1. Note that
for Sierpinski carpet, its spatial dimension ds = 2 and Haus-
dorff dimension df = log3 8 ≈ 1.8928, while the boundary
FB(n − 1) of the subsystem A has the Hausdorff dimension
dbf = log3 2 ≈ 0.6309. Combining the numerical results
of EE with Partition-I and II, we observe that the EE of the

gapped systems can reflect the fractal feature of the subsys-
tem’s boundaries. Then, for gapped systems on fractal, we
obtain a generalized area law written as

SA = aLdbf

A + · · · , (16)

where dbf is the boundary Hausdorff dimension. Finally, con-
sidering the EC s(i) in this case, as demonstrated in Fig. 6C
and D, the distribution of s(i) is localized at the boundaries of
the subsystem A.

DISCUSSIONS AND OUTLOOK

In this study, we have investigated the interaction between
fractal geometry and quantum entanglement of free fermions
using two entanglement measures: entanglement entropy (EE)
and entanglement contour (EC). Several intriguing questions
arise, prompting further exploration. For instance, we have
introduced several guidelines for artificially generating entan-
glement fractals (EF) as depicted in Fig. 4C, which emerge
from the predominant EC data at the scaling limit. However,
the foundational theory of EF remains to be established, repre-
senting a critical next step in comprehending the two assump-
tions outlined in the main text. To formulate this theory, one
approach could involve continuously adjusting the hopping
energies of a tight-binding model. This adjustment would lead
to a gradual evolution of the hopping energy distribution from
a regular translationally invariant lattice to a fractal lattice. By
examining the changes in EE and EC throughout this evolu-
tion, we suggest that the topology of the Fermi surface [47] on
the regular translationally invariant lattice could significantly
influence the EF structure on the fractal lattice.

Furthermore, drawing inspiration from the Widom conjec-
ture and analytical findings [48, 49] concerning Toeplitz ma-
trices in translation-invariant systems for computing EE, it be-
comes imperative to investigate the asymptotic behavior of the
correlation matrix CA on fractals. Such exploration could po-
tentially aid in determining the analytical expression of the
non-universal coefficient in the EE scaling formulas. Addi-
tionally, similar analyses can be conducted on hyperbolic lat-
tices, where insights from non-Abelian hyperbolic band the-
ory may prove beneficial [50]. Furthermore, for exactly solv-
able models of interacting many-body systems exhibiting ex-
otic scaling of EE [51], exploring the scaling of their EC
presents an intriguing avenue, potentially revealing universal
behaviors extending beyond free-fermion systems.

The correlation matrix typically retains symmetries inher-
ited from the Hamiltonian of lattice systems, including proper-
ties like translation invariance and self-similarity. By delving
into conjectures regarding the asymptotic behavior of the cor-
relation matrix on fractals, we stand to glean valuable insights
into the asymptotic tendencies of a particular matrix class ex-
hibiting self-similarity. Moreover, such endeavors pave the
way for examining Brownian motion on fractals, establishing
connections with the spectral characteristics of the Laplacian
on fractals [45, 46].

With advancements in experimental techniques, it has be-
come feasible to experimentally realize lattice systems with
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fractal structures in physics and chemistry [22–26]. This
development opens avenues for studying many-body sys-
tems with fractal geometries. Furthermore, in the realm of
phononic platforms, it is now possible to simulate and mea-
sure the entanglement of many-body systems using pumping-
probe responses in fractal phononic lattices [13, 33, 52]. For
free-fermion systems, the entanglement contour can be de-

composed into the summation of particle-number cumulants’
densities, providing a method to measure the entanglement
fractal in the transport of quantum point contacts [38].
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Supporting information

S1. FRACTAL LATTICE AND THE DEFINITION OF
ENTANGLEMENT QUANTITY

Here, we discuss the construction of a lattice system with
a fractal structure. Initially, we consider an initial unit cell
U and a fractal iteration method F to generate the fractal lat-
tice. As illustrated in Fig. S1, employing the method F on
the cell U iteratively n times allows us to obtain the nth-order
approximation SC(n, s) of the Sierpinski carpet [14]. Here,
n represents the nth iteration, and the number of lattice sites
in a unit cell is s2. Without loss of generality, when n → ∞
and setting the lattice constant l = 1, the Hausdorff fractal
dimension of the Sierpinski carpet is defined as

df = lim
n→∞

logL N = log3 8, (17)

where the number of lattice sites N = s2 × 8n in the nth-
order approximation SC(n, s) of the Sierpinski carpet, and
the width of SC(n, s) is L = s × 3n. The Hausdorff fractal
dimension df does not depend on the number s2 of lattice sites
in a unit cell U when n → ∞. Then, for convenience, we set
s = 1 in this work.

S2. SCALING OF ENERGY GAP AND DOS OF THE
MODEL H1 AND H2 ON FRACTAL SC(n, 1)

In this section, we delve into the properties of the energy
spectrum for the models H1 and H2. For the nth-order ap-
proximation SC(n, 1) with a finite number of lattice sites,
its energy spectrum exhibits a finite number of gaps Ej . We
then examine the scaling behavior of the maximum energy
gap max(Ej) as the number n of iterations increases. As
illustrated in Fig. S2(a) and (b), we observe that the scal-
ing of max(Ej) for model H1 decreases exponentially, while
max(Ej) for model H2 remains invariant.

Furthermore, we consider the density of states (DOS) of the
models H1 and H2 on SC(n, 1) to provide more information
about their energy spectrum. Specifically, when model H1 is
defined on the square lattice with translation invariance, lat-
tice constant l = 1, and periodic boundary conditions, we can
utilize Bloch band theory to clearly determine its energy spec-
trum. Moreover, its density of states in the thermodynamic
limit can be obtained from the energy dispersion:

E(k) = −2t(cos kx + cos ky)− µ, (18)

where the DOS in Fig. S2(c) is depicted with t = 1 and µ =
0. From the continuity of the DOS in Fig. S2(c), we observe
that the energy spectrum of the model on the square lattice
is gapless, and the maximum point of the DOS indicates the
presence of a nesting Fermi surface.

Next, we consider model H1 defined on the nth-order ap-
proximation of the Sierpinski carpet. To practically deter-
mine the energy gap of the model on SC(n, 1), we adopt
the method outlined in Ref. [53] to calculate its DOS. This
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F F F

FIG. S1. Illustration of using iteration method F to generate the nth-
order approximation SC(n, 1) of Sierpinski carpet with N = 8n

lattice sites.

method proves to be very useful and efficient for large lat-
tice systems without translation invariance. Utilizing this ap-
proach, we demonstrate the DOS of the model on the 6th-
order approximation SC(6, 1) in Fig. S2(e) as an example,
where SC(6, 1) comprises 86 lattice sites. Upon comparison
with the DOS in Fig. S2(c), we observe that although the frac-
tal structure induces fluctuations in the DOS of the model, it
remains continuous, with its maximum point still located at
E = 0. Furthermore, with an increase in the number n of
iterations, the maximum energy gap max(Ej) of the model
on SC(n, 1) becomes progressively smaller. Therefore, we
propose that the model on the Sierpinski carpet, in the ther-
modynamic limit, can be regarded as a gapless system.

Here, we consider the DOS of model H2 to determine
the nature of its energy spectrum. Firstly, when considering
model H2 on the square lattice with periodic boundary condi-
tions, we can determine its DOS in the thermodynamic limit
using Bloch band theory, which is determined by the energy
dispersion:

E(k) = ±
√
4t2(cos kx + cos ky)2 + t21 , (19)

where the DOS is illustrated in Fig. S2(d) with t = 1 and
t1 = 0.5. We observe that the energy spectrum of the model in
this case exhibits an energy gap. Next, considering the model
defined on the approximation SC(6, 1) of the Sierpinski car-
pet as an example, by employing the efficient method outlined
in Ref. [53], we find that the energy gap of the model still per-
sists, as shown in Fig. S2(f). Additionally, compared with
the results in Fig. S2(d), the fractal structure of SC(6, 1) in-
duces fluctuations in the DOS and increases the DOS at the
maximum point, as depicted in Fig. S2(f). Furthermore, by
increasing the number n of iterations, the maximum energy
gap max(Ej) of model H2 on SC(n, 1) remains invariant, as
shown in Fig. S2(b). Therefore, we propose that the model
on the Sierpinski carpet in the thermodynamic limit is still a
gapped system.
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FIG. S2. Scaling of maximum energy gap max(Ej) for the model
and in (a) and (b). (c) and (d) are the DOS of the model and on a
square lattice with periodic boundary condition, respectively. (e) and
(f) are the DOS of the model and on the approximation SC(6, 1) of
Sierpinski carpet, respectively. Here t = 1 and µ = 0 in the model,
t = 1, t1 = 0.5 in the model.

S3. MORE NUMERICAL RESULTS FOR
ENTANGLEMENT CONTOUR

For fractal systems, the fractal dimension is determined by
the iteration method F and the unit cell U . As the number of
iterations n approaches infinity, the fractal dimension solely
depends on the iteration method F . Therefore, it is impera-
tive to study the entanglement contour(EC) of model H1 on
a fractal lattice with identical iteration method but different
unit cells to elucidate the entanglement fingerprint of fractal
geometry. Specifically, in Fig. S3, we present numerical re-
sults of the EC of model H1 in three types of approximations
SC(n, s) of the Sierpinski carpet, where the unit cell U com-
prises s2 lattice sites. Remarkably, we observe that for model
H1, its EC exhibits a universal pattern across the three types of
approximations SC(n, s), indicating that it is not influenced
by the unit cell U . These numerical findings suggest that the
structure of EC may solely depend on the iteration method.

In the following, we delve into the effect of the iteration
method F on the EC of model H1. Firstly, we provide a de-
tailed discussion of the generalized Sierpinski carpet. As de-
picted in Fig. S4, considering a unit cell with one lattice site,
we employ an iteration method F (m,mf ) to act on the unit
cell once. Then, the system comprises m2 −m2

f lattice sites
with a width of m unit cells. Here m > mf and both are pos-
itive integer. If mf = 0, we obtain the normal lattice system
NL(n, 1) with a trivial fractal structure and fractal dimension
df = 2, as shown in Fig. S4 (a), where n is the number of
iterations. When mf ̸= 0, we obtain the nth-order approxi-
mation GSCmf

(n, 1) of the generalized Sierpinski carpet in
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(a) (b) (c)

FIG. S3. (a-c) is the EC of the model H1 on the nth-order approximation SC(n, s) with different unit cell. Here t = 1 and µ = 0.

(a) (b) (c)

... ......

FIG. S4. The upper of (a-c) show the generating process of normal lattice NL(n, 1) and the approximation GCS1(3)(n, 1) generalized
Sierpinski carpet. The bottom of (a-c) is the EC of the model H1 on the normal lattice and the approximation GSC1(3)(3, 1) of generalized
Sierpinski carpet. Here t = 1 and µ = 0.

Fig. S4(b) and (d), with the fractal dimension represented as:

df = logm(m2 −m2
f ). (20)

Next, we investigate the EC of model H1 on the approxi-
mation GSCmf

(n, 1) of the generalized Sierpinski carpet. To
eliminate irrelevant effects on the EC, we set n = 3 to en-
sure that three lattice systems have identical widths, as shown
in Fig. S4. From the numerical results of the EC depicted in
Fig. S4(a-c), we observe that for the normal lattice NL(n, 1),
the EC does not exhibit the special pattern consistent with the
results in Ref. [37]. However, for the generalized Sierpin-
ski carpet, the EC is influenced by the iteration method F , as
shown in Fig. S4(b-c). Based on these numerical findings, we
conjecture that the EC of gapless systems with fractal geome-
try may exhibit a correspondence with the iteration method.

S4. THE SUPER-AREA LAW OF FREE-FERMION
SYSTEMS ON TRANSLATIONAL INVARIANT LATTICE

In this section, we delve into the scaling behavior of the
EE in free-fermion systems with translational invariance. The
correlation matrixCA, defined in the main text, typically man-
ifests as a Toeplitz matrix, making it challenging to discern
its asymptotic spectrum. Consequently, even in translation-
ally invariant lattices, analytically studying the scaling of EE
poses significant difficulties. Ref. [49] provides an alternative
definition of the correlation matrix CA for the subsystem A.
By employing a projection operator R̂ =

∑
x∈Ω |x⟩ ⟨x| onto

the lattice set Ω, CA can be succinctly defined as:

CA = R̂P̂ R̂, (21)

where P̂ is also a projection operator that projects onto the
occupied states via P̂ = θ(−H) =

∑
k θ(−εF ) |ψk⟩ ⟨ψk|.

Here, |ψk⟩ and εk denote the eigenvectors and eigenvalues
of the single-particle Hamiltonian matrix H with the momen-
tum k, and θ represents the step function, indicating occupied
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single-particle states with energy εk ≤ εF . Based on the ex-
pression of EE SA in free-fermion systems in Eq.(15) of the
main text, we can rewrite EE as follows:

SA = Tr(ρA ln ρA)

= −
∑
i

[ξi ln ξi + (1− ξi) ln(1− ξi)]

=
∑
i

f(ξi)

= Tr
[
f(R̂P̂ R̂)

]
,

(22)

where the function f(t) = −t ln t−(1−t) ln(1− t). Ref. [10]
discusses that the sum of function f acting on the spectrum of
the Hermitian operator R̂P̂ R̂ equals the trace of the function
f acting on the Hermitian operator R̂P̂ R̂. Meanwhile, the
kernel of the operator R̂P̂ R̂ is given by

⟨ψk| R̂P̂ R̂ |ψk′ ⟩ = χΓ(k)χΓ(k
′
)
V

(2π)d

ˆ
Ω

ei(k−k
′
)xdx,

(23)
where χΓ(k) is defined for Γ as χΓ(k) = 1 if k ∈ Γ and
χΓ(k) = 0 otherwise. In a d-dimensional system with a
(d − 1)-dimensional Fermi surface, the Fermi sea region of
the system is represented as Γ = {k|εk ≤ εF } in momentum
space. Ref. [10] discusses that when L → ∞, the scaling of
the system is determined by the Widom conjecture.

Next, we delve into employing the Widom conjecture to
derive the super-area law for d-dimensional systems with (d−
1)-dimensional Fermi surfaces. In Ref. [10], considering the
operator R̂P̂ R̂ defined in two sets Ω and Γ, with the kernel
in (23), and a general class of functions f , the asymptotic
formula of the trace for R̂P̂ R̂ is derived as follows:

Trf(R̂P̂ R̂) =
(
LA

2π

)d

f(1)

ˆ
Ω

ˆ
Γ

dxdk

+

(
LA

2π

)d−1
ln 2 lnLA

4π2
U(f)

ˆ
∂Ω

ˆ
∂Γ

|nx · nk|dSxdSk

+ o(Ld−1
A lnLA),

(24)
where ∂Γ and ∂Ω represent the boundaries of the Fermi sea
and the subsystem A respectively. nx and nk denote unit
normal vectors to ∂Γ and ∂Ω respectively, and U(f) =´ 1
0

f(t)−tf(t)
t(1−t) dt. Utilizing this formula, we readily obtain

the scaling of EE in d-dimensional systems with (d − 1)-
dimensional Fermi surfaces. From (24), the first term van-
ishes due to limx→1− f(x) = 0. The second term of (24) de-
termines the scaling of EE and is proportional toLd−1

A logLA.
It is essential to note that this formula holds true only when
R̂P̂ R̂ is Hermitian. In conclusion, by leveraging the Widom
conjecture, we establish the logarithmic divergence of the
scaling of EE on translationally invariant lattice.
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