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Abstract. We determine the asymptotic density of coprime fractions in those of the reduced
fractions of number fields. When ordered by norms of denominators, we count a fraction as soon
as it “appears” for the first time and no later. The natural density of coprime fractions in the
set of reduced fractions may then be computed using well-known facts about Hecke L-functions.
Furthermore, we draw some connections to the modular group and Heegner points.

1. Introduction

1.1. Motivation. In the field of fractions of an integral domain, it is natural to pick a unique
representative for each equivalence class of tuples that represent the same fraction. In a unique
factorization domain (UFD), the following definition provides the typical characteristic which such
representatives are required to fulfill.

Definition 1.1. Let R be an integral domain and K its field of fractions, a ∈ R and b ∈ R \ {0}.
We call the fraction a

b reduced if there exists no c ∈ R \R× such that c | a and c | b.
In the rational numbers, but also in all other number fields with class number 1, the terms

reduced and coprime coincide, in the sense that a fraction is reduced if and only if numerator
and denominator are coprime. However, this is no longer true for number fields with higher class
number, so not every reduced fraction is already coprime. For example, the fraction

1 +
√
−5

2

is reduced in the field Q(
√
−5) but not coprime since the ideal ⟨2, 1+

√
−5⟩ does not equal Z[

√
−5].

Moreover, non-coprime reduced fractions appear to lack a unique representation, as may be seen
by the example

1 +
√
−5

2
=

3

1−
√
−5

.

This ambiguity arises from Z[
√
−5] not being a UFD and 6 = 2 · 3 = (1 +

√
−5)(1−

√
−5).

1.2. Extending the notion of density. Note that Q may be identified with

{(m,n) ∈ Z× N : gcd(m,n) = 1}.
To study subsets of the rationals that are invariant under multiplication by a unit (i.e. ±1) and
translation by an integer, it suffices to study subsets of

{(m,n) ∈ Z/nZ × N : gcd(m,n) = 1} =: I. (1.1)

Classical definitions of natural and Dirichlet density for subsets of N may then be extended to
subsets of I in a straightforward manner; see Section 2.1 for details.

Turning now to number fields, note that K may be identified with{
(a, b) ∈ OK × OK\{0}/O×

K :
a

b
is a reduced fraction.

}
.
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Similarly to the case of the rational numbers, we may define a density on subsets of{
(a, b) ∈ OK/bOK × OK\{0}/O×

K :
a

b
is a reduced fraction.

}
=: IK . (1.2)

Note that IQ = I. We are then interested in the set of coprime reduced fractions, i.e.

CK := {(a, b) ∈ IK : ⟨a, b⟩ = OK} ⊂ IK . (1.3)

After extending the aforementioned notion of density to this setting, we will see that the density
of CK depends on a representative system of the class group of K.

1.3. Main result. In order to convey the property of being reduced to the ideals of a number field,
we make the following definition.

Definition 1.2. Let K be a number field and a ⊂ OK be an ideal. If the only principal ideal
dividing a is OK , we call a inseverable.

With this in hand, we determine a way to uniquely choose a denominator for any reduced
fraction in a number field. Ordering elements of OK\{0}/O×

K by norm, we count a fraction as soon
as it “appears” for the first time and no later. The natural density of coprime fractions in the set
of reduced fractions may then be computed using well-known facts about Hecke L-functions.

Theorem 1.3. The natural density of coprime fractions in a number field K with respect to a set
of inseverable representatives RK of its class group equals 1∑

g∈RK

1
(Ng)2

.

Density theorems may be of interest in the study of Diophantine approximation in number fields,
where Palmer has recently proved number field analogues of classical results in metric number theory
[7, 8]. For a general reference, see [4].
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Notation

The letters N, Z, Q, R, and C have their usual meaning. We denote by

H := {τ = u+ iv ∈ C : u, v ∈ R, v > 0}
the complex upper half-plane. Furtheremore, the ring of integers of a number field K is denoted
by OK , its class group by ClK , and the absolute value of the norm of an algebraic integer α by Nα.
[a] represents the class of a fractional ideal a of K in ClK . We also abbreviate

⟨ω1, ω2, . . . , ωn⟩R := Rω1 +Rω2 + · · ·+Rωn

for any ring R and omit the index if R = OK .

2. Density theory

2.1. Density in ordered countable sets. Given A = {a1, a2, . . .} ⊃ {b1, b2, . . .} = B, one can
say that the natural density of B in A is δ if

lim
n→∞

|B ∩ {a1, . . . , an}|
n

= δ. (2.1)

More generally, within A, we assign an attribute n to each element via a mapping κ : A → N,
such as assigning to a coprime positive fraction the value of the denominator. The number of
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elements with attribute n then defines a sequence f(n). If this sequence has moderate growth, the
corresponding Dirichlet series

F (s) :=
∑
n≥1

f(n)

ns

converges on a right half-plane. Since A is infinite, by Landau’s theorem there exists a singular
point σA ≥ 0, such that the function F cannot be holomorphically continued to the left of the
half plane Re(s) > σA. In some applications this is a (multiple) pole, so at least a meromorphic
continuation is possible, which has some advantages.

Proposition 2.1 (see [9] on p. 350). Let F (s) :=
∑

n≥1
f(n)
ns be a Dirichlet series with nonnegative

coefficients, converging for R(s) > σ0 > 0, such that the function

H(s) := F (s)− A

s− σ0

with some real A has an analytic continuation to {s ∈ C : Re(s) ≥ σ0}. Then we have∑
1≤n≤x

f(n) ∼ Axσ0

σ0
, x→ ∞.

We now define two notions of density.

Definition 2.2. Let B ⊆ A. Define

g(n) := |{x ∈ B : κ(x) = n}|.

Note that 0 ≤ g(n) ≤ f(n). When the limit exists, we define a natural density,

δnat(B) := lim
x→∞

∑
n≤x g(n)∑
n≤x f(n)

= δ

and a Dirichlet density

δDir(B) := lim
s→σ+

A

∑
n≥1

g(n)
ns∑

n≥1
f(n)
ns

= δ.

Note that (2.1) is in some ways a more precise definition than the upper one, but requires a total
ordering <A on the set A that respects the attribute map κ : A → N, i.e., am <A an if and only
if κ(am) < κ(an). However, since in the above approach we do not order within element classes
with the same attribute, this is a significant refinement with respect to the upper requirements.
However, under mild conditions at A and κ, the two definitions can be merged, i.e., the sorting
of the elements within the original images κ−1({n})n∈N is therefore no longer important. Such a
condition is

f(n) = o

 ∑
1≤j≤n−1

f(j)

 ,

in other words, that there is a certain “uniformity” in the distribution.
As in the classical case, one can show that when the natural density exists, so does the Dirichlet

density and both are equal. The proof is a straightforward calculation using partial summation.
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Proposition 2.3. Let the notation be as above. Assume that the Dirichlet series
∑

n≥1 f(n)n
−s

has abscissa of convergence σA > 0 and that
∑

n≥1 f(n)n
−σA = ∞. Further assume that B ⊆ A

has a natural density, i.e.,

lim
x→∞

∑
n≤x g(n)∑
n≤x f(n)

= δ

for some δ ∈ [0, 1]. Then

lim
s→σ+

A

∑
n≥1

g(n)
ns∑

n≥1
f(n)
ns

= δ.

2.2. Density in Q. Recall the set I from the introduction (see 1.1). Here, we take κ(m,n) := n
and f(n) = φ(n). Let B ⊂ I. We have a natural density

δnat(B) = lim
x→∞

∑
1≤n≤x

∑
1≤m≤n 1B(m,n)∑

1≤n≤x φ(n)
= lim

x→∞

π2

3x2

∑
1≤n≤x

∑
1≤m≤n

1B(m,n), (2.2)

and a Dirichlet density

δDir(B) := lim
s→2+

ζ(s)

ζ(s− 1)

∑
n≥1

1

ns

∑
1≤m≤n

1B(m,n)

= lim
s→2+

π2

6ζ(s− 1)

∑
n≥1

1

ns

∑
1≤m≤n

1B(m,n). (2.3)

Example. Let Bp := {(a, n) ∈ I : p | n} for a rational prime p ∈ P. Here,

g(n) = 1p|nφ(n).

Then

δnat(Bp) = lim
x→∞

π2

3x2

∑
1≤n≤x, p|n

φ(n)

= lim
x→∞

π2

3x2

 ∑
1≤n≤x

p
, p|n

pφ(n) +
∑

1≤n≤x
p
, p∤n

(p− 1)φ(n)


=

1

p2
lim
x→∞

π2

3
(
x
p

)2

 ∑
1≤n≤x

p
, p|n

φ(n) + (p− 1)
∑

1≤n≤x
p

φ(n)


=

1

p2
(δnat(Bp) + p− 1).

Thus, δnat(Bp) =
1

p+1 .

2.3. Density in a number field. Let K be a number field and recall the set IK from the intro-
duction (see (1.2)). Below, sums over b run as in (1.2), i.e. over OK\{0}/O×

K . Denote the number
of reduced fractions in IK with denominator b with respect to RK by ηK(b). Here, we take
κ(a, b) := Nb and

f(n) = η̃K(n) :=
∑
Nb=n

ηK(b).
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For a subset S ⊂ IK , we set S(b) := #{y ∈ S : y has denominator b}. We have a natural density

δnat,K(S) := lim
x→∞

∑
1≤n≤x

∑
Nb=n

∑
y (mod b) 1S(y, b)∑

1≤n≤x η̃K(n)
= lim

x→∞

∑
Nb≤x S(b)∑

1≤n≤x η̃K(n)
,

a Dirichlet density by

δDir,K(S) := lim
s→ση

∑
n≥1

∑
Nb=n

∑
y (mod b)

1S(y,b)
ns∑

n≥1
η̃K(n)
ns

= lim
s→ση

∑
b

S(b)
(Nb)s∑

b
ηK(b)
(Nb)s

where ση is the abscissa of convergence of
∑

b ηK(b)(Nb)−s.

In particular, when S = CK ⊂ IK is the set of coprime fractions, we have S(b) = φ(⟨b⟩), and

δDir,K(CK) = lim
s→ση

∑
b
φ(⟨b⟩)
(Nb)s∑

b
ηK(b)
(Nb)s

. (2.4)

3. Ideal theory and reduced fractions

Recall the sets IK and CK from the introduction (see (1.2) and (1.3)). In order to let the density
on K imitate what we intuitively expected from δnat and δDir, we require the elements of RK to be
inseverable. In particular, the only inseverable principal ideal is OK itself.

Lemma 3.1. The fraction a
b with b ̸= 0 is reduced if and only if ⟨a, b⟩ is an inseverable ideal.

Proof. Suppose that ⟨a, b⟩ is not inseverable, i.e. there exists c ∈ OK \O×
K

such that ⟨a, b⟩ ⊂ ⟨c⟩ ⊊
OK . Then c | a and c | b so that a

b can be reduced to a
c/b

c
. Hence, a

b is not reduced.
We are left to show that ⟨a, b⟩ being inseverable is sufficient for a

b being reduced. So conversely,
suppose that ⟨a, b⟩ is an inseverable ideal of OK . Then this immediately implies that there exists
no c ∈ OK with c | a and c | b because, otherwise, ⟨c⟩ ⊃ ⟨a, b⟩ would hold. □

A useful sufficient criterion to the set RK to contain exclusively inseverable ideals is given by
the next lemma.

Proposition 3.2. Let RK be a system of representatives of the class group such that each repre-
sentative g ∈ RK is an integral ideal with minimal norm within its respective class. Then RK is a
set of inseverable ideals.

Proof. By means of contradiction, suppose g ∈ RK is not inseverable. Then there is an a ∈ OK
such that OK ⊋ ⟨a⟩ | g and g

⟨a⟩ is an integral ideal lying in the same ideal class as g but with lesser

norm. □

We will now collect the reduced fractions of a number field in equivalence classes and hence
determine how to ensure that each fraction is counted at most once.

Proposition 3.3. Suppose a1
b1

is a reduced fraction where b1 ̸∈ O×
K

∪ {0}. Suppose further that

⟨a1, b1⟩ = g1 is a non-principal inseverable ideal and b2 ̸= b1 is another given element of OK \ {0}.
Then a1

b1
= a2

b2
(for some a2 ∈ OK) is another reduced fraction if and only if there is an inseverable

ideal g2 ̸= g1 such that

⟨b1⟩
g1

=
⟨b2⟩
g2

.

In particular, [g1] = [g2].
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Proof. If a1
b1

= a2
b2
, then a2 = a1b2

b1
and by Lemma 3.1, there exists an inseverable ideal g2 | b2 such

that

g2 = ⟨a2, b2⟩ =
〈
a1b2
b1

, b2

〉
= ⟨b1⟩

−1⟨b2⟩⟨a1, b1⟩ = ⟨b1⟩
−1⟨b2⟩g1.

Conversely, given ⟨b1⟩
g1

= ⟨b2⟩
g2

, we again get

g2 = ⟨a2, b2⟩ =
〈
a1b2
b1

, b2

〉
,

and by taking a2 =
a1b2
b1

we get another fraction which is reduced because g2 is inseverable. □

Remark. If a
b is a reduced fraction, then ⟨ca, cb⟩ = ⟨c⟩⟨a, b⟩. Hence, the last sentence of the previous

proposition remains true for non-reduced fractions. Moreover, if ⟨a1, b1⟩ is a principal inseverable
ideal, then it equals OK and the statement becomes trivial.

Now we conversely prove that each fraction is counted at least once.

Proposition 3.4. Let a ⊂ OK be a non-zero ideal. Then there is a fraction a
b with a, b ∈ OK such

that ⟨a, b⟩ = a.

Proof. Take any a ∈ a \ {0}, so a ⊃ ⟨a⟩. As OK is a Dedekind ring, the ideal ⟨a⟩ has a unique ideal

factorization ⟨a⟩ = a
∏r

k=1
pek . Now take any ideal b ∈

[∏r

k=1
pek

]
being coprime to

∏r

k=1
pek , so

ab is a principal ideal whose generator we denote by b. Then ⟨a, b⟩ = a. □

Finally, we will see that our density depends on such a system of representatives.

Lemma 3.5. Let RK be a system of representatives of the class group such that each of its elements
is an inseverable ideal. Suppose further that b ∈ OK \ {0}. Then the number of reduced fractions
in IK with denominator b with respect to RK equals

ηK(b) :=
∑

g∈RK

φ

(
⟨b⟩
g

)
where φ is Euler’s totient function for number fields which vanishes on non-integral ideals.

Proof. By Lemma 3.1 as well as Propositions 3.3 and 3.4, we want to compute

#{a (mod b) : ⟨a, b⟩ = g}.

Let π ∈ pe \ pe+1 for primes p with pe || g and otherwise π /∈ p for primes with p | b and p ∤ g.
Consider the map

ψ :

{
a (mod

b

g
) :

〈
a,
b

g

〉
= OK

}
→ {a (mod b) : ⟨a, b⟩ = g},

defined by f(a) := πa (mod b).

We claim ψ is a bijection. To check that ψ is well-defined, let γ ∈ b
g . Then ψ(a+γ) = πa+πγ ≡ πa

(mod b) = ψ(a). For injectivity, suppose ⟨a1,
b
g⟩ = ⟨a2,

b
g⟩ = 1. Now if πa1 ≡ πa2 (mod b), then

b | π(a1 − a2) and by the choice of π, one has b
g | (a1 − a2), so a1 ≡ a2 (mod b

g). Finally, for

surjectivity, let a2 satisfy ⟨a2, b⟩ = 1. Then by the definition of π, we see that the fractional ideal
⟨a2π ⟩ contains no powers of primes dividing b in its prime factorization. Hence, there exists a1 ≡

a2
g

(mod b
g) with ⟨a1,

b
g⟩ = 1, which clearly gives ψ(a1) ≡ a2 (mod b). □
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Example. Let K = Q(
√
−5), so hK = 2 and we choose RK = {OK , p2} where p2 = ⟨2, 1 +

√
−5⟩.

Choose b = 2. Invoking Lemma 3.5 we get that

ηK(2) = φ(⟨2⟩) + φ

(
⟨2⟩
p2

)
= φ(p2

2
) + φ(p2) = 2 + 1 = 3.

Noting that N(2) = 4, we quickly see that a representative system of residues modulo ⟨2⟩ is given
by {0, 1,

√
−5, 1+

√
−5}. We check that among the corresponding ideals p2

2
= ⟨2⟩,OK ,OK , and p2

all but the first one are inseverable and hence are tied to reduced fractions. Furthermore, we see
that the coprime residues classes are exactly those tied to OK , so 1 and

√
−5, and the non-coprime

reduced fraction is 1+
√
−5

2 .

4. Proof of Theorem 1.3

In order to proceed with our considerations regarding density, we need explicit expressions of the
associated Dirichlet series. Using Euler product expansions, the following lemma is straightforward.

Lemma 4.1. Let χ : ClK → C× be a class group character. Then we have∑
a⊆OK

χ([a])φ(a)

(Na)s
=
L(s− 1;χ)

L(s;χ)
,

where φ is Euler’s totient for number fields and

L(s;χ) :=
∑

a⊆OK

χ([a])

(Na)s

is the L-function corresponding to the character χ.

It is well-known that the L-functions L(s;χ) in Lemma 4.1 have a holomorphic continuation to
C\{1} and a simple pole in s = 1 if and only if the character χ is trivial. Indeed, they correspond to
Hecke L-functions of the Hilbert class field H of K due to the isomorphism Gal(H/K) ∼= ClK . The
Euler product expansion further implies that L(s;χ) ̸= 0 if Re(s) > 1. We can use these Dirichlet
series to find the Dirichlet density of coprime fractions. Note first that we have by Lemma 4.1 and
Lemma 3.5

HK(s) :=
∑
n≥1

η̃K(n)

ns
:=

∑
b∈OK/O×

K

1

Nbs

 ∑
g∈RK

φ

(
⟨b⟩
g

) =
∑

g∈RK

1

(Ng)s

∑
b∈[g]−1

φ(b)

(Nb)s

=
1

hK

∑
g∈RK

χ∈ĈlK

χ([g])

(Ng)s
L(s− 1;χ)

L(s;χ)
. (4.1)

For the counting method to define the density, it is natural to choose only representatives for
RK so that they have minimal norm in their class. That is because we count a fraction as soon
as it “appears” for the first time and no later. In particular, it is always assumed that OK ∈ RK
in the following, since by Proposition 3.2 such a system of representatives consists of inseverable
ideals and OK is the only inseverable principal ideal.

Proof of Theorem 1.3. Recall (2.4), and consider the Dirichlet series

Φ(s) :=
∑
n≥1

φ̃(n)

ns
:=

∑
b∈OK\{0}/O×

K

φ(⟨b⟩)
Nbs

=
1

hK

∑
χ∈ĈlK

L(s− 1;χ)

L(s;χ)
.



8 WALTER BRIDGES, JOHANN FRANKE, AND JOHANN STUMPENHUSEN

By Proposition 2.1, we therefore have∑
n≤x

φ̃(n) ∼
Ress=2Φ(s)x

2

2
, x→ ∞.

On the other hand, a similar argument yields with (4.1)∑
n≤x

η̃K(n) ∼
Ress=2HK(s)x2

2
.

Now note that

Ress=2Φ(s) =
Ress=2L(s− 1;χ0)

hKL(2;χ0)
, Ress=2HK(s) =

∑
g∈RK

1

(Ng)2
Ress=2L(s− 1;χ0)

hKL(2;χ0)
.

Now the claim follows. □

By Proposition 2.3 the existence of the natural density implies a Dirichlet density with the same
value. For this reason we can simply speak about density without further specification.

Corollary 4.2. The density in Theorem 1.3 is at least 4
3+hK

where hK is the class number of K.

If there exists a B ∈ N such that there is no non-principal ideal a ⊂ OK with N(a) ≤ B, this bound

improves to (B+1)2

B2+2B+hK
. Moreover, if the elements of RK are of minimal norm within their ideal

class, an upper bound for the density is given by

1

1 + hK−1
|dK |

(
nnπr2

n!4r2

)2
where dK is the discriminant of K over Q, n = [K : Q], and r2 is the number of pairs of complex
embeddings of K.

Proof. Note that the existence of such a B implies Ng ≥ B+1 for all g ∈ RK \{OK}. By Theorem
1.3, we have

δnat,K(CK) =
1∑

g∈RK

1
(Ng)2

≥ 1

1 + (hK − 1) 1
(B+1)2

=
(B + 1)2

B2 + 2B + hK
,

as claimed. Replacing B by 1 yields the unconditional lower bound.
For the upper bound, we simply use Minkowski’s bound which can be found in [5] on p. 161.

That is, every ideal class contains an integral ideal of norm not exceeding√
|dK |

(
4

π

)r2 n!

nn
,

yielding the claim. □

Remark.

(1) The example K = Q(
√
−5) shows that this lower bound is sharp even if K does not have

class number 1. As hQ(
√
−5) = 2 and the ideal p2 := ⟨2, 1 +

√
−5⟩ is non-principal with

N(p2) = 2, we choose RK = {OK , p2}. This yields

δnat,Q(
√
−5)(CQ(

√
−5)) =

1
1
12

+ 1
22

=
4

5
.

We evaluate the coprimality for some b of small norm in Table 1. See Figure 1 for a plot of
the first 10 000 values.
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b N(b) φ(⟨b⟩) φ
(
⟨b⟩
p2

)
ηK(b) φ(⟨b⟩)

ηK(b)

∑
N(c)≤N(b) φ(⟨c⟩)∑
N(c)≤N(b) ηK(c) ≈

1 1 1 0 1 1 1 1
2 4 2 1 3 2/3 3/4 .75√
−5 5 4 0 4 1 7/8 .875

1 +
√
−5 6 2 2 4 1/2

1−
√
−5 6 2 2 4 1/2 11/16 .6875

3 9 4 0 4 1
2 +

√
−5 9 6 0 6 1

2−
√
−5 9 6 0 6 1 27/32 .8437

3 +
√
−5 14 6 6 12 1/2

3−
√
−5 14 6 6 12 1/2 39/56 .6964

4 16 8 4 12 2/3 47/68 .6911
2
√
−5 20 8 4 12 2/3 55/80 .6875

1 + 2
√
−5 21 12 0 12 1

1− 2
√
−5 21 12 0 12 1

4 +
√
−5 21 12 0 12 1

4−
√
−5 21 12 0 12 1 103/128 .8046

Table 1. Some numerical values for K = Q(
√
−5)

0 2000 4000 6000 8000 10000

0.75

0.80

0.85

0.90

Figure 1. The first 10 000 values of
∑

N(c)≤N(b) φ(⟨c⟩)∑
N(c)≤N(b) ηK(c)

Note that in the case of hK = 2, the function ηK is multiplicative which notably simplified
computations.

(2) Depending on the degree of the extension K/Q, the lower bound of Corollary 4.2 can easily
be improved. That is, if [K : Q] = n, then there are at most n prime ideals of a given norm
which also limits the number of ideals of any given norm. E.g., in the case of a quadratic
number field of class number 5, we have

δnat,K(CK) ≥ 1
1
12

+ 2 · 1
22

+ 2 · 1
32

=
18

31

instead of the bound 1
2 , as provided by the corollary.
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(3) Let d ≡ 5 (mod 8), so 2 is inert in Q(
√
d)/Q. In this case, the lower bound immediately

improves to 9
8+hQ(

√
d)
. Using that an odd rational is inert in Q(

√
d) if and only if

(
d
p

)
= −1

we can apply the Chinese Remainder Theorem to find a sequence (dn)n∈N such that the

density of coprime fractions in Q(
√
dn) approaches 1 as n → ∞ if we can bound hQ(

√
dn)

suitably. Whether this last condition is achievable has remained unknown to the authors.

5. Further results

5.1. Some more ideal theory. For a number field K, let IK be the set of inseverable ideals of
K. If K has class number 2, IK has a plain description. It holds

IK = {p ∈ Spec(OK) \ {⟨0⟩} : [p] ̸= [1]} ∪ {OK}
where Spec(OK) is the spectrum of OK . In the more general case, we can derive the set of
inseverable ideals by applying a greedy algorithm starting with the set above for arbitrary K and
taking products that are still inseverable.

Furthermore, we have the following key proposition.

Proposition 5.1. Let K be any number field and τ = a
b with a, b ∈ OK , b ̸= 0. Let further

M ∈ SL2(Z). Then ⟨a′, b′⟩ = ⟨a, b⟩ where a′

b′ =Mτ .

Proof. We only have to check the proposition for the well-known generators

T :=

(
1 1
0 1

)
, S :=

(
0 −1
1 0

)
of the full modular group. It is Tτ = a+b

b and ⟨a + b, b⟩ = ⟨a, b⟩ as well as Sτ = − b
a and

⟨−b, a⟩ = ⟨a, b⟩. □

Remark. Replacing SL2(Z) in Proposition 5.1 by SL2(OK) leads to the stronger statement

Cl(K) ∼= P1(K)/SL2(OK),

cf. [1, Lemma 1.3] for a proof in the case of a real quadratic field.

5.2. Quadratic fields. Recall the following definition which will be useful later on in this chapter.

Definition 5.2. Let K be a number field. An order O is a subring of K being finitely generated
over Z and containing a Q-basis of K.

Because of numerous additional structures, the case of quadratic extensions is of special interest.
We briefly recall some basic facts. Let K = Q(

√
N) be a quadratic field with N ∈ Z \ {0, 1}

square-free. Then the discriminant dK of K is given by

dK :=

{
N, if N ≡ 1 (mod 4),

4N, otherweise.

Of course we have K = Q(
√
dK). One can show that

OK =

Z
[√

N
]
, if N ̸≡ 1 (mod 4),

Z
[
1+

√
N

2

]
, if N ≡ 1 (mod 4).

Next, we want to focus on the case of imaginary quadratic fields, i.e., N < 0. To any τ ∈ K ∩ H
we can assign a unique quadratic form Qτ (x, y) := Ax2 +Bxy+Cy2 with gcd(A,B,C) = 1 (Qτ is

primitive) and A > 0 (Qτ is positive definite), such that Qτ (τ, 1) = Aτ2 +Bτ + C = 0. Note that

D(Qτ ) := B2 − 4AC is the discriminant of the quadratic form Qτ , and is therefore also called the
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discriminant D(τ) of τ . Moreover, any quadratic form Qτ can be mapped to an ideal class. In the
case that D(τ) = dK , this is especially simple.

Proposition 5.3 (see [3], Theorem 5.30 on p. 101). Let K be an imaginary quadratic field of
discriminant dK . Then we have the following:

(1) If Q(x, y) = Ax2 + Bxy + Cy2 is a positive definite quadratic form of discriminant B2 −
4AC = dK , then ⟨A, −B+

√
dK

2 ⟩Z is an ideal of OK .

(2) The map ΞdK
sending Q(x, y) to ⟨A, −B+

√
dK

2 ⟩Z induces an isomorphism of the form class

group C(dK) and the ideal class group ClK .

With this proposition we can show that the assignment of an ideal class for τ is identical with
respect to quadratic forms or its reduction type in the case of the fundamental discriminant.

Proposition 5.4. Let τ = a
b ∈ K ∩H have discriminant dK . Then

[
ΞdK

(Qτ )
]
= [⟨a, b⟩].

Proof. By the remark after Proposition 3.3 the ideal class of interest does not depend on the choice
of a and b. We have

τ =
−B +

√
dK

2A

with dK = B2 − 4AC and Qτ (x, y) = Ax2 +Bxy + Cy2, so by the first item of Proposition 5.3〈
A,

−B +
√
dK

2

〉
=

〈
A,

−B +
√
dK

2

〉
Z

= ΞdK
(Qτ ),

yielding the claim. □

We now generalize this result to arbitrary discriminants D = f2dK , where f = [OK : O] is the
conductor of the order O of discriminant D.

Proposition 5.3 is in fact a special case of the statement for a general order O.

Proposition 5.5 (cf. [3], Theorem 7.7 on pp. 123–124). Let K be an imaginary quadratic field and

O be an order in K of discriminant D = f2dK , i.e., O = ⟨1, fωK⟩Z. Then we have the following:

(1) If Q(x, y) = Ax2 + Bxy + Cy2 is a positive definite quadratic form of discriminant B2 −
4AC = D, then ⟨A, −B+

√
D

2 ⟩Z is an invertible ideal of O. Also, we have O = ⟨1, −B+
√
D

2 ⟩Z.
(2) The map ΞD sending Q(x, y) to ⟨A, −B+

√
D

2 ⟩Z induces an isomorphism of the form class
group C(D) and the ideal class group

Cl(O) = {a⊂K:a is an invertible fractional O-ideal}/{a⊂K:a is an invertible principal fractional O-ideal}

of O.

Further details about orders in quadratic imaginary fields may be found in [3, §7]. Most impor-
tantly, we may still assign a specific class in ClK to a quadratic form via the next proposition.

Proposition 5.6 (see [3], proof of Theorem 7.24 on pp. 132–134). Let K be a number field and O
an order in K of discriminant D. The projection

prD : Cl(O) −→ ClK , [a] 7→ [aOK ]

is well-defined.

Proof. Let a1, a2 be two invertible O-ideals lying in the same class of Cl(O). Then there is an
invertible principal fractional O-ideal b such that a1b = a2. Since O ⊂ OK , bOK is a principal
fractional ideal of K, so [a1OK ] = [a2OK ] in ClK . □
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We now provide the following generalization of Proposition 5.4.

Proposition 5.7. Let τ = a
b ∈ K∩H have discriminant D = f2dK , then prD ([ΞD(Qτ )]) = [⟨a, b⟩].

Proof. Generalizing Proposition 3.3 to arbitrary orders and using a similar argument as in Propo-
sition 5.4 due to Proposition 5.5 (1), it follows that

prD ([ΞD(Qτ )]) = prD ([⟨a, b⟩O]) = [⟨a, b⟩]
yielding the claim. □

In summary, we have seen that the map referred to in the remark after Proposition 5.1 harmonizes
with the correspondence of quadratic forms with ideals.
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