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Ground state preparation is classically intractable for general Hamiltonians. On quantum devices,
shallow parametrized circuits can be effectively trained to obtain short-range entangled states under
the paradigm of variational quantum eigensolver, while deep circuits are generally untrainable due
to the barren plateau phenomenon. In this Letter, we give a general lower bound on the variance of
circuit gradients for arbitrary quantum circuits composed of local 2-designs. Based on our unified
framework, we prove the absence of barren plateaus in training finite local-depth circuits (FLDC)
for the ground states of local Hamiltonians. FLDCs are allowed to be deep in the conventional
circuit depth to generate long-range entangled ground states, such as topologically ordered states,
but their local depths are finite, i.e., there is only a finite number of gates acting on individual
qubits. This characteristic sets FLDC apart from shallow circuits: FLDC in general cannot be
classically simulated to estimate local observables efficiently by existing tensor network methods in
two and higher dimensions. We validate our analytical results with extensive numerical simulations
and demonstrate the effectiveness of variational training using the generalized toric code model.

Introduction.— Predicting the ground state properties
of a quantum many-body system, as a central task in
modern quantum physics, generally requires exponential
resources for classical computers due to the curse of di-
mensionality: the number of parameters needed to de-
scribe a quantum system scales exponentially with the
system size. Although some successful classical algo-
rithms have been developed in past decades [1–5] such
as tensor networks [3–5], their respective limitations re-
strict the performance on general systems [5–8]. Quan-
tum computers bring new hope for this problem of quan-
tum nature [9]. Despite the limitation posed by noisy
intermediate-scale quantum (NISQ) devices [10], there
are many tentative quantum algorithms proposed. One
of the representatives is the variational quantum eigen-
solver (VQE) [11–17], which trains a parametrized quan-
tum circuit (PQC) using a classical optimizer to mini-
mize the energy. This hybrid quantum-classical paradigm
is expected as one of the most promising routes toward
practical quantum advantage [18, 19] in the NISQ era.

However, these variational quantum algorithms includ-
ing VQE still face great challenges for large-scale ap-
plications. One of the most notorious issues is the so-
called barren plateau phenomenon [20], which states that
the circuit gradient vanishes exponentially with the sys-
tem size under certain conditions, akin to the vanishing
gradient issue in classical neural networks. The expo-
nentially vanishing gradient will preclude the optimiza-
tion progress and lead to the exponential measurement
complexity. Extensive studies have been conducted to
investigate barren plateau problems and possible reme-
dies [21–49]. It is known that shallow circuits of finite
or logarithmic depth are free from barren plateaus and
can be trained efficiently for local Hamiltonians to ob-
tain short-range entangled (SRE) states, while deep cir-
cuits of linear depth and beyond are in general untrain-
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FIG. 1. (a) and (b) Typical examples of finite local-depth
circuits (FLDC) on 1D and 2D lattices, respectively. Darker
colors in (b) indicate later action orders. (c) Compares the
class of finite depth circuit (FDC), FLDC, and general linear
depth circuit (GLDC) in terms of whether they are in gen-
eral free from barren plateaus (BP), preserve entanglement
area law, generate long-range entanglement (LRE), and can
be simulated efficiently to compute local observable expecta-
tions by known classical methods (classicality). The inclusion
relation is FDC ⊂ FLDC ⊂ GLDC.

able [29, 30]. By contrast, many quantum states of physi-
cal interest exhibit long-range entanglement [50–54], such
as topologically ordered states, which cannot be prepared
by circuits of less than linear depth [55–58]. Neverthe-
less, some evidence suggests that circuits corresponding
to these long-range entangled (LRE) states possess char-
acteristic architectures, such as sequential structures [57–
64], for the sake of the entanglement area law. This ob-
servation motivates us to rigorously explore the general
relationship between barren plateaus, area law, and long-
range entanglement.

In this Letter, we identify the critical role of the lo-
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cal depth as a key circuit feature that determines the
trainability of PQCs. The local depth refers to the num-
ber of non-commuting gates acting on individual qubits,
as illustrated in Fig. 1(a), in contrast to the conven-
tional global depth defined by the minimum number of
layers. This finding is based on our rigorously proved
theorems, which establish a general lower bound on the
gradient variance for arbitrary circuits composed of local
2-designs. The lower bound decays exponentially with
the length and width of a certain set of paths on the
circuit. For finite (or logarithmic) local-depth circuits
and local Hamiltonians, the length and width can be up-
per bounded and hence give rise to the absence of bar-
ren plateaus. These finite local-depth circuits (FLDC)
have strong expressibility to generate LRE states lack-
ing in shallow circuits and are hard to simulate classi-
cally in two dimensions and above. This suggests that
FLDC holds promise to serve as an appropriate class of
ansatzes in VQE, as listed in Fig. 1(c). The absence of
barren plateaus in FLDC is verified by numerical eval-
uations. Using the generalized 2D toric code model, we
demonstrate that FLDC indeed has prominently better
performance than both finite depth circuits and general
linear depth circuits.

Basic setup.— We start from the basic setup of VQE.
The PQC can be written as U(θ) =

∏M
µ=1 Uµ(θµ), where

Uµ(θµ) = e−iΩµθµ is a rotation gate, Ωµ is a Pauli-string
generator and θµ is a trainable parameter. The index µ
follows the decreasing order from left to right in the prod-
uct (the same below). For a given Hamiltonian H, the
energy expectation C(θ) = ⟨H⟩ = tr(ρ0U

†HU) is taken
as the cost function, where ρ0 = |0⟩⟨0| and |0⟩ = |0⟩⊗N .
N is the number of qubits. We denote the Pauli decom-
position of the Hamiltonian as H =

∑
j λjhj and assume

the support of H is within that of U. The workflow of
VQE involves running the PQC, measuring the cost func-
tion, and updating the trainable parameters iteratively
using classical optimizers to minimize the cost function.
In particular, the parameters are usually initialized ran-
domly to thoroughly explore the parameter space in a
probabilistic sense, rendering the PQC a random quan-
tum circuit (RQC). A common assumption on RQCs is
that the circuit is composed of blocks forming indepen-
dent local 2-designs. Here a block refers to a grouped
continuous series of gates, which can be seen as the el-
ementary unit when we construct a PQC. Grouping the
M gates into M ′ blocks, the PQC can be rewritten as

U =
∏M ′

k=1Bk. The assumption of local 2-designs will
induce an ensemble of the entire circuit U, which we de-
note as U. Many statistical properties of RQCs can be
analytically estimated based on U, including the average
and variance of the cost derivative ∂µC = ∂C

∂θµ
. We pro-

vide preliminaries on unitary designs and the Weingarten
calculus and a detailed introduction to our basic setup in
Supplemental Material [65].
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FIG. 2. (a) A possible choice of path set Pj = {p1, p2} on a
general linear depth circuit. (b) Depicts a path set on a finite
local-depth circuit correspondingly. The length of the path
set in (a) grows linearly with the system size while that in (b)
is bounded by the constant local depth.

General lower bound.— We give an informal version of
our general lower bound in Theorem 1 and leave the rigor-
ous statement and proof to Supplemental Material [65].
The bound is closely related to a geometric concept of
“path,” i.e., a time-ordered sequence of connected blocks
on the circuit diagram as depicted in Fig. 2. For each
Hamiltonian subterm hj in the causal cone of the differ-
ential block Bk(µ) (the block containing the differential
parameter θµ), one can draw a collection of paths from
hj to ρ0, like {p1, p2} in Fig. 2, with the right end cov-
ering hj and at least one of the paths passing through
Bk(µ). We call it a chosen “path set” of hj . We define
two measures of the path set: length and head width. For
common circuits composed of 2-qubit blocks, the length
is just the number of edges in the path set diagram and
the head width is the number of blocks in the path set
that are directly connected to ρ0. Using these two mea-
sures, we can derive the following lower bound on the
gradient variance.

Theorem 1 (informal version) The gradient variance
VarU[∂µC] can be lower bounded by a summation of
contributions from each hj in the causal cone of Uµ,
where each contribution decays exponentially only with
the length and head width of the chosen path set of hj.

The lower bound in Theorem 1 holds for any possi-
ble choice of path sets. The path set with the minimum
length and head width gives rise to the tightest bound.
We remark that Theorem 1 holds for any RQCs composed
of local 2-designs regardless of circuit shapes, spatial di-
mensions, and gate locality. Further discussions on The-
orem 1 including its consistency with previous literature,
alternative initial states, gate generators, the location of
the differential gate Uµ in Bk(µ), and its extension to a
path-integral-like tighter form and application to other
space-time correlators, are elaborated in Supplemental
Material [65].

We provide an intuitive physical picture behind Theo-
rem 1. It is known that local quantum information will
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be scrambled [66–68] when passing through the random
gates in an RQC. The more gates it passes through, the
more severe the scrambling becomes. If we consider a
local term hj as a piece of information, finding a short
path through the RQC will allow effective information
transfer, so that adjusting parameters can make an ef-
fective difference in the expectation value, resulting in
non-vanishing gradients. Conversely, if such a short path
does not exist, local information will be scrambled glob-
ally, leaving no useful information for optimization.

Finite local-depth circuits.— Before presenting Theo-
rem 2, we first clarify some relevant quantities. The max-
imum interaction range of a Hamiltonian is the maximum
value of the support sizes of all hj . An r-local Hamilto-
nian means that the maximum interaction range is fixed
as r that does not scale with N . The maximum block size
β is the maximum value of the support sizes of all blocks
in the circuit. The local depth of a qubit is the number of
blocks (or gates) acting on the qubit. We use χ to denote
the maximum value of the local depths over all qubits,
distinguished from the global depth D which refers to
the minimum number of layers where blocks within each
layer commute with each other. An FLDC is defined as
a circuit whose χ does not scale with N , without any
other constraints such as circuit shapes, spatial dimen-
sions, and gate locality. Based on Theorem 1, we have
the following theorem.

Theorem 2 Suppose the maximum local depth of U is χ
and the maximum block size is β. Then for any r-local
Hamiltonian, the gradient variance is lower bounded by

VarU[∂µC] ≥ 4−rχβ
∑
j

2λ2j , (1)

where j runs over hj that is nontrivial on the support of
the differential block Bk(µ).

Proof. The detailed proof is left in Supplemental Ma-
terial [65]. The main idea is choosing the path sets in
Theorem 1 to be the straight wires on the support of
hj , and hence the length and head width can be upper
bounded in terms of r, χ and β. The contribution from
hj that is trivial on the support of Bk(µ) is just neglected.
□

Theorem 2 elegantly integrates the factors related to
barren plateaus in a concise manner, i.e., the block lo-
cality β [20], the Hamiltonian locality r [29, 30] and
the circuit deepness χ. It is vitally important to note
that the relevant quantity characterizing the circuit deep-
ness is the local depth χ, instead of the global depth
D. These two depths may coincide [29, 30], but they
are distinct in general and can differ significantly as in
Fig. 1. This implies that the circuit class free from bar-
ren plateaus can be enlarged to logarithmic local-depth
circuits (Log-LDC), which is a superclass of circuit ar-
chitectures proven previously, such as finite or logarith-

mic depth brickwall circuits [29, 30], quantum convo-
lutional neural networks (QCNN) [31, 41], multiscale
entanglement renormalization ansatzes (MERA) [41–
44], tree tensor networks [41–44], matrix product states
(MPS) [40–44], and high-dimensional isometric tensor
network states [47]. We focus on FLDC in this work.
Log-LDC class involves states beyond the area law, e.g.,
gapless topologically ordered states, which is also inter-
esting to study in the future.

A significant feature of FLDCs composed of spatially
local gates is that the generated quantum states sat-
isfy the entanglement area law (or say boundary law)
because the number of gates acting across any simple
partition boundary entangling the two sides can be up-
per bounded by the local depth times the size of the
boundary [65]. This feature makes them form a subclass
of the projected entangled paired states (PEPS) [3, 5]
of the corresponding spatial dimension, where the local
depth χ plays the role of bond dimension. Note that
PEPS can represent LRE states because the non-unitary
projectors in PEPS enable quantum teleportation, while
FLDC relies on large global depth. Previously proposed
circuits of tensor network states [41–44, 57, 61, 62, 64, 69–
72] including sequential quantum circuits [57], isometric
tensor network states [47, 61, 64, 73–75], and plaquette
PEPS [62], can all be seen as subclasses of FLDC. This
implies that FLDC covers a wide range of physical ground
states such as string-net states with anyons [64, 76] and
fracton-ordered states [57].

Non-classicality of FLDC.— A matter of recent con-
cern is the classical simulability of the tasks with the
provable absence of barren plateaus [77]. Previous results
that are proven free from barren plateaus mainly focus on
finite or logarithmic depth circuits [29–31, 41–44], which
can be efficiently simulated to compute local observable
expectations due to the existence of small causal cones
and small treewidths of the corresponding tensor net-
works [78]. Nevertheless, the causal cone in FLDC can
be extensive due to the large global depth, and the loop
structures in FLDC of two dimensions and above can
lead to polynomially large treewidth, rendering FLDC in
general hard to simulate classically for local observable
expectations (the 1D case has constant treewidth and can
be efficiently simulated via MPS methods). In fact, even
for the subclasses of 2D FLDC such as isometric tensor
network states [61, 64, 73] and plaquette PEPS [62], there
is no known efficient method to compute the expectation
values of arbitrary local observables with controllable er-
ror, not to mention non-local observables of interest such
as few-body long-distance correlators, non-local order pa-
rameters, dynamical correlations and so forth. In partic-
ular, a recent work [79] rigorously proves that computing
local expectation values in isometric tensor networks is
BQP-complete, i.e., is hard to simulate classically unless
BQP = BPP. The same naturally holds true for FLDC
because the states generated by FLDC form a superclass
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FIG. 3. (a) The variance of the derivative vs the system
size N in a 1D FLDC instance. The observable is chosen as
ZN . ∆k is the distance between the differential block and the
last block, proportional to the path length. (b) The variance
vs ∆k by fixing N = 16. Ryy, Ry1, and Ry2 represent the
different choices of the differential gate [65].

of isometric tensor network states.

Therefore, FLDC (or Log-LDC) is a circuit class that
is proven to be barren-plateau-free and at the same time
generally cannot be efficiently simulated to estimate lo-
cal observables by existing classical methods. On the
contrary, it can be accomplished within polynomial time
by running FLDCs on quantum devices and measuring
corresponding observables. This suggests that FLDC is
potentially relevant to quantum advantage in the ground
state preparation task. A detailed discussion and a nu-
merical demonstration of the computational overhead for
contracting tensor networks of FDLC are provided in
Supplemental Material [65].

Numerical experiments.— FLDC has stronger express-
ibility than its subclass finite depth circuits (FDC), e.g.,
brickwall circuits of constant depth [29, 30], because
FDC can only generate SRE states such as symmetry-
protected topological states [80]. FLDCs have less ex-
pressibility than its superclass general linear depth cir-
cuits (GLDC), e.g., brickwall circuits of linear depth, as
typical GLDCs lead to entanglement volume law [28].
But FLDC has better trainability than GLDC. We will
compare the variational performance of the three circuit
classes to see the advantages and the good trade off be-
tween trainability and expressibility brought by FLDC.

To demonstrate the absence of barren plateaus in
FLDC, we estimate the cost gradient in a 1D FLDC
ansatz with a ladder layout as in Fig. 1(a). The two-
qubit block template is chosen as the Cartan decomposi-
tion [65]. The Hamiltonian is chosen as a single Pauli Z
operator on the last qubit. All the numerical experiments
are implemented using TensorCircuit [81]. As depicted in
Fig. 3, the gradient variance is almost constant with the
system size, while it decays exponentially with the path
length ∆k. This resembles the phenomenon found in iso-
metric tensor networks recently [40, 43, 44, 47]. However,
we clarify that the exponential decay with ∆k does not
indicate poor trainability in practice, because as long as
the gradients of some circuit parameters do not vanish,
the optimization could still proceed successfully.
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FIG. 4. VQE performance comparison of the FDC, FLDC,
and GLDC ansatzes using the generalized toric code model
under the external field hz = hx = h with N = 12. The data
are averaged over the best half of the 100 training trajecto-
ries starting from different initializations. (a) The converged
energy E/N vs h. The inset depicts the energy training dy-
namics at h = 0.1. The dashed lines represent the exact
values obtained from ED. The (shaded) error bar represents
the standard deviation. (b) The topological entanglement en-
tropy Stopo correspondingly.

As an example of training FLDCs for LRE ground
states, we use the generalized 2D toric code model under
the external field h = (hx, hy, hz) with open boundary
conditions. The ground state near the zero-field limit
is topologically ordered and then experiences a quan-
tum phase transition to an SRE state with increasing
h [82, 83]. The ground state at h = 0 can be constructed
by applying the Hadamard and CNOT gates sequen-
tially [56, 57], which belongs to the FLDC class. Possi-
ble generalization to hz ̸= 0 has also been proposed [58].
However, unlike in Ref. [58], we will not utilize any prior
information about the exact ground state except the en-
tanglement area law. Namely, we choose our ansatz to
be an FLDC similar to Fig. 1(b), with each two-qubit
block being the general Cartan decomposition. We also
conducted the same simulation using typical ansatzes in
FDC and GLDC for comparison. As shown in Fig. 4(a),
the energies of FLDC almost coincide with the exact val-
ues from the exact diagonalization (ED). By contrast, the
energies of GLDC severely deviate due to poor trainabil-
ity. On the other hand, although FDC does not suffer
from barren plateaus, it lacks the expressibility to repre-
sent LRE states faithfully, so FDC works well in the large
field limit but deviates near the zero-field limit. We also
show the results of the topological entanglement entropy
Stopo of these variational states in Fig. 4(b) correspond-
ingly. The technical details and additional numerical re-
sults can be found in Supplemental Material [65].

Discussion.— In this Letter, we prove a general lower
bound on the gradient variance for arbitrary quantum
circuits composed of local 2-designs, which unifies the
known gradient scaling behaviors of various architec-
tures. An intuitive physical picture emerges that relates
the non-vanishing gradients with the information scram-
bling in RQCs along certain path sets. We further prove
the absence of barren plateaus for local Hamiltonians
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in a new circuit class—finite local-depth circuits, which
can generate LRE states thanks to large global depths.
FLDCs composed of spatially local gates preserve the en-
tanglement area law, which makes it form a powerful and
accessible subclass of PEPS that covers a wide range of
physical ground states. Importantly, FLDC cannot be
classically simulated efficiently in two and higher dimen-
sions by the known tensor network methods. We remark
that the indication of local depth is also instructive in
developing quantum architecture search schemes [84–87].
Finally, we point out that the absence of barren plateaus
is a necessary but not sufficient condition for the effec-
tiveness of training. There are other challenging issues
such as the local minimum problem [88–90]. Enhancing
the VQE performance of FLDCs in more general systems
requires further exploration in future studies.
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N. C. Rubin, D. Sank, V. Shvarts, D. Strain, M. Sza-
lay, B. Villalonga, T. C. White, Z. Yao, P. Yeh, J. Yoo,

https://doi.org/10.1103/PhysRevResearch.2.043158
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/ 10.22331/q-2021-10-05-558
https://doi.org/ 10.1038/s41467-021-27045-6
https://doi.org/ 10.1038/s41467-021-27045-6
https://doi.org/10.1088/2058-9565/abf51a
https://doi.org/10.1088/2058-9565/abf51a
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1103/PRXQuantum.2.040316
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://iopscience.iop.org/article/10.1088/1751-8121/abfac7
https://iopscience.iop.org/article/10.1088/1751-8121/abfac7
https://doi.org/ 10.1103/PhysRevX.11.041011
https://doi.org/ 10.1103/PhysRevX.11.041011
https://doi.org/10.1088/2058-9565/ac7d06
https://doi.org/10.1088/2058-9565/ac7d06
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/10.1103/PRXQuantum.3.010313
https://doi.org/ 10.1103/PhysRevLett.126.190501
https://doi.org/ 10.1103/PhysRevLett.126.190501
https://doi.org/10.1103/PhysRevResearch.3.023203
https://doi.org/10.1103/PhysRevResearch.3.023203
http://arxiv.org/abs/2205.13539
https://doi.org/10.1088/2058-9565/abdbc9
https://doi.org/10.1088/2058-9565/abdbc9
http://arxiv.org/abs/2205.05056
https://www.nature.com/articles/s41534-023-00681-0
https://www.nature.com/articles/s41534-023-00681-0
https://doi.org/10.1103/PhysRevLett.129.270501
https://doi.org/10.1103/PhysRevLett.129.270501
https://doi.org/ 10.22331/q-2021-06-04-466
https://doi.org/10.22331/q-2023-04-13-974
http://arxiv.org/abs/2304.00161
http://arxiv.org/abs/2304.14320
https://doi.org/ 10.1103/PhysRevResearch.5.033141
https://doi.org/ 10.1103/PhysRevResearch.5.033141
http://arxiv.org/abs/2303.08910
https://arxiv.org/abs/2303.17452
https://doi.org/10.1007/JHEP01(2023)090
https://doi.org/10.1103/PhysRevResearch.5.L032040
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.90.016803
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevX.12.031007
https://doi.org/10.1103/PhysRevX.12.031007
https://doi.org/ 10.1103/PhysRevLett.97.050401
https://doi.org/ 10.1103/PhysRevLett.97.050401


7

A. Zalcman, H. Neven, S. Boixo, A. Megrant, Y. Chen,
J. Kelly, V. Smelyanskiy, A. Kitaev, M. Knap, F. Poll-
mann, and P. Roushan, Realizing topologically or-
dered states on a quantum processor, Science 374, 1237
(2021).

[57] X. Chen, A. Dua, M. Hermele, D. T. Stephen, N. Tanti-
vasadakarn, R. Vanhove, and J.-Y. Zhao, Sequential
Quantum Circuits as Maps between Gapped Phases,
arXiv:2307.01267 (2023).

[58] R.-Y. Sun, T. Shirakawa, and S. Yunoki, Parametrized
quantum circuit for weight-adjustable quantum loop
gas, Physical Review B 107, L041109 (2023).

[59] C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and
M. M. Wolf, Sequential Generation of Entangled Mul-
tiqubit States, Physical Review Letters 95, 110503
(2005).

[60] C. Schön, K. Hammerer, M. M. Wolf, J. I. Cirac,
and E. Solano, Sequential generation of matrix-product
states in cavity QED, Physical Review A 75, 032311
(2007).

[61] L. Slattery and B. K. Clark, Quantum Circuits
For Two-Dimensional Isometric Tensor Networks,
arXiv:2108.02792 (2021).

[62] Z.-Y. Wei, D. Malz, and J. I. Cirac, Sequential Gener-
ation of Projected Entangled-Pair States, Physical Re-
view Letters 128, 010607 (2022).

[63] Y. Zhang, S. Jahanbani, A. Riswadkar, S. Shankar,
and A. C. Potter, Sequential quantum simulation
of spin chains with a single circuit QED device,
arXiv:2308.16229 (2023).

[64] Y.-j. Liu, K. Shtengel, A. Smith, and F. Pollmann,
Methods for Simulating String-Net States and Anyons
on a Digital Quantum Computer, PRX Quantum 3,
040315 (2022).

[65] See Supplemental Material for preliminaries on unitary
designs and the Weingarten calculus, basic setup, the-
oretical derivations including rigorous definitions and
complete proofs, and additional numerical results with
technical details, which includes Refs. [91–125].

[66] Y. Sekino and L. Susskind, Fast scramblers, Journal of
High Energy Physics 2008, 065 (2008).

[67] N. Lashkari, D. Stanford, M. Hastings, T. Osborne,
and P. Hayden, Towards the fast scrambling conjecture,
Journal of High Energy Physics 2013, 22 (2013).

[68] X. Mi, P. Roushan, C. Quintana, S. Mandrà, J. Mar-
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[109] R. Orús, Tensor networks for complex quantum systems,
Nature Reviews Physics 1, 538 (2019).

[110] D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang,
S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara,
H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin,
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Supplemental Material for
“Absence of barren plateaus in finite local-depth circuits with long-range

entanglement”

In this supplemental material, we first introduce the Weingarten integration techniques together with other math-
ematical preliminaries. Then, we provide rigorous formulations and complete proofs of the theorems mentioned in
the main text. Next, we offer technical details and additional numerical results to further showcase our theorems and
conclusions. Finally, we provide further discussions on the classical simulability of finite local-depth circuits and the
relation with the measurement-assisted approach to prepare long-range entangled states.

I. Preliminaries

We start from the definition of unitary t-design. Consider a set V of unitaries V on a d-dimensional Hilbert space.
Denote Pt,t(V ) as a polynomial of degree at most t in the entries of V and V †. Then V is a unitary t-design if

1

|V|
∑
V ∈V

Pt,t(V ) =

∫
U(d)

dµ(V )Pt,t(V ), (S1)

for arbitrary Pt,t(V ), where |V| is the size of the set V. U(d) is the unitary group of degree d and dµ(V ) is the Haar
measure, or say the normalized uniform measure on U(d). That is to say, Pt,t(V ) averaging over V will yield exactly
the same result as averaging over the entire unitary group U(d). In other words, V can mimic the Haar distribution
up to the t-degree moment. We call a set an ensemble if there is a probability measure defined on it implicitly or
explicitly. For example, V in Eq. (S1) is an ensemble of unitaries since a uniform weight distribution is assigned
implicitly. If V is continuous, the summation on the left-hand side of Eq. (S1) is just replaced by the integral over V
representing the average. Throughout this paper, all calculations only involve integrals over unitaries up to the second
moment, e.g., the averages and variances of derivatives. Thus, as we will discuss below, the ensemble demanded by
our theorems is just a series of local unitary 2-designs, where “local” means that the unitaries just act on a few qubits
instead of all of them. By contrast, a global 2-design means that the unitaries act on all the qubits.

In order to calculate various integrals over unitaries, we introduce the notion of twirling channel. We focus on
an N -qubit system with local Hilbert space H = C2. The space of linear operators on H is denoted as L(H). The
N qubits are denoted as {q1, q2, · · · , qN}. A t-degree twirling channel, or simply a twirler, is a quantum channel

T (t)
s : L(H⊗t) → L(H⊗t) of the form

T (t)
s (·) =

∫
dµs(U) U†⊗t(·)U⊗t, (S2)

where s denotes a given subset of qubits. µs is a given measure over the unitary group U(2|s|). |s| denotes the number
of qubits in the subset s. U ∈ U(2|s|) is a unitary operator which acts on s. Namely, s is the support of U , which will
be denoted as s(U) for clarity if needed. In the following, we take µs as the Haar measure by default unless specially
claimed. By tensor network diagrams, an instance of a twirling channel can be represented as

T (t)
s

=

∫
dµs(U)

U†

U†

U

U

, (S3)

In this instance, we take t = 2, N = 4 and s = {q2, q3}. The grey block represents the input of T (t)
s (·). It is known

that if µs is the Haar measure, the integral in the definition of twirling channel can be analytically calculated and
expressed by the Weingarten function Wg(·) [91], i.e.,

T (t)
s (·) =

∑
σ,τ∈St

Wg(t)(στ−1, 2|s|) trts [S(τ)|ts(·)]⊗ S(σ)|ts, (S4)

where σ and τ are elements of the t-degree permutation group St. Wg(t)(στ−1, 2|s|) is the t-degree Weingarten
function of the permutation element στ−1 and the 2|s|-degree unitary group U(2|s|). ts denotes the t copies of support
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s. trts(·) denotes the partial tracing operation on all the t copies of support s. S(σ)|ts represents the generalized swap
operator which permutes the indices of the t copies of support s according to the permutation element σ. We use
a vertical bar “|” in front of the support notation ts to avoid confusion with other common subscripts. The tensor
product “⊗” appears because trts is generally a partial trace when |s| ̸= N . Note that Eq. (S4) can also be viewed
as a definition of unitary t-designs. That is to say, if the t-degree twirling channel of some ensemble V coincides with
that of the corresponding Haar ensemble, then the given ensemble V is a t-design. For the cases of t = 1 and 2,
Eq. (S4) becomes

T (1)
s (·) = 1

2|s|
trs(·)⊗ I|s, (S5)

T (2)
s (·) = 1

2|2s| − 1
[tr2s(·)⊗ I|2s + tr2s(S|2s·)⊗ S|2s]

− 1

2|s|(2|2s| − 1)
[tr2s(·)⊗ S|2s + tr2s(S|2s·)⊗ I|2s] ,

(S6)

where I|s is the identity on the Hilbert space of the support s. I|2s and S|2s are the identity and swap operators
on the doubled Hilbert space of the support s, respectively. By tensor network diagrams, Eqs. (S5) and (S6) can be
represented as

T (1)
s

=
1

2|s|
, (S7)

T (2)
s

=
1

2|2s| − 1

 +



− 1

2|s|(2|2s| − 1)

 +

 ,

(S8)

where again we take N = 4 and s = {q2, q3} for instance. Note that these formulas can be directly generalized to qudit
systems with local Hilbert space dimension d by replacing the base 2 with d. It is worth mentioning that Eqs. (S5)
and (S6) only hold for unitary 2-designs while twirling channels in Eq. (S2) can be defined for arbitrary ensembles.
As we will demonstrate below, utilizing Eqs. (S5) and (S6) repeatedly, one can estimate the average and variance of
a given observable with respect to a random quantum circuit composed of independent unitary 2-designs.

II. Theorems and Proofs

In this section, we present detailed statements and proofs of the theorems mentioned in the main text. We will first
introduce some basic facts and lemmas, based on which we shall further develop our theorems and proofs.

A typical setting of variational quantum eigensolver (VQE) regarding an N -qubit system consists of an initial state
ρ0 = |0⟩⟨0| with |0⟩ = |0⟩⊗N , a given Hamiltonian H and a parametrized quantum circuit (PQC, also known as
ansatz) U(θ) with M trainable parameters θ = {θµ}Mµ=1 of the form

U(θ) =

M∏
µ=1

Uµ(θµ) = UM (θM ) · · ·U2(θ2)U1(θ1), (S9)
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where Uµ(θµ) = e−iΩµθµ and {Ωµ}Mµ=1 is a set of Hermitian generators such as Pauli strings. Note that the quantum
gates without trainable parameters such as the CNOT gate can be obtained simply by fixing the corresponding
parameters in certain rotation gates. The energy expectation with respect to the output state C(θ) = ⟨0|U†HU|0⟩ is
usually taken as the cost function. To prepare the ground state of the given Hamiltonian, a standard workflow of VQE
involves running the PQC on a quantum device, measuring the cost function, and updating the trainable parameters
iteratively to minimize the cost function using classical optimizers such as gradient descent algorithms. In particular,
at the beginning of this workflow, the trainable parameters are often randomly initialized so that the whole parameter
space is explored probabilistically to search for the optimum. Equipped with the probability measure originated
from random initialization, the PQC U(θ) becomes a random quantum circuit, where some statistical quantities,
such as the average and variance of the cost derivative, can be evaluated analytically for certain probability measures.
Considering both computability and practicality, a common assumption on random quantum circuits is that the circuit
is composed of blocks forming independent local 2-designs. Here the term “block” refers to a grouped continuous
series of gates close to each other in the PQC, which also can be seen as the elementary unit when we construct a
PQC, as shown in the following example

U1

U2

U3

U4

U5

B1
. (S10)

In this example, B1 is a block composed of the gates U1, U2, · · · , U5. As thus, the PQC can be rewritten as

U =

M ′∏
k=1

Bk = BM ′ · · ·B2B1, (S11)

where the dependence on θ is omitted for simplicity. Namely, the M gates are grouped into M ′ blocks. For clarity,
we will use k(µ) to denote the index of the block Bk(µ) that contains the gate Uµ when needed. Since each block Bk

consists of multiple gates, its randomness is larger than a single parametrized gate Uµ = e−iΩµθµ with a randomly
assigned value of the parameter θµ. When the number of gates in one block is sufficiently large, the block together with
the induced probability measure from the initialization can be regarded as a local 2-design or approximate 2-design
on s(Bk). Remember that s(Bk) denotes the union set of qubits on which the gates in Bk are applied. A typical
template of two-qubit blocks is the Cartan decomposition of SU(4)

R3

R3

Rxx

R3

R3

Ryy Rzz
, (S12)

where Rxx, Ryy and Rzz are the two-qubit rotation gates with generators X⊗X, Y ⊗Y and Z⊗Z, respectively. R3 is
a universal single-qubit gate, e.g., RzRyRz where Ry and Rz represent the single-qubit rotation gates with generators
Y and Z. This block template from the Cartan decomposition can represent any two-qubit gate and approximate a
2-design when the parameters are randomized uniformly over [0, 2π) [30].

In the following, we suppose that each block Bk in the circuit U forms a local 2-design independently. This will
induce an ensemble of the circuit U according to Eq. (S11), which we denote as U. We will estimate the average and
variance of the derivatives of the cost function with respect to this circuit ensemble U. Note that we do not assume
any configuration among these blocks, such as the block sizes and the relative locations. One of the most commonly
used block configurations is the alternating layered ansatz, also known as the brickwall ansatz or checkerboard ansatz,
which features a periodic layered structure and alternates the block pattern within one period. A typical 1D example
is shown as follows

. (S13)
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It is known that when the depth of this circuit reaches Ω(N), i.e., linear with the system size or beyond, the whole
circuit approximates a global 2-design and hence the training landscape would exhibit barren plateaus [20], i.e., the
variance of the cost derivative vanishing exponentially with the system size. Otherwise, if the circuit depth is only of
order O(logN) or even finite, i.e., does not scale with the qubit count N , the variance of the cost derivative would not
vanish exponentially in the case of local cost functions [29–31]. However, these circuits of finite depth have limited
expressibility and fail to capture long-range entanglement, which motivates us to explore other circuit structures, e.g.,
finite local-depth circuits as we will discuss below.

We start with the expression of the cost derivative. The derivative of the energy expectation with respect to the
parameter θµ can be expressed as

∂µC =
∂C

∂θµ
= tr

(
U(µ−1)←1ρ0U

†
(µ−1)←1

[
iΩµ, U

†
M←µHUM←µ

])
= tr

(
Uµ←1ρ0U

†
µ←1

[
iΩµ, U

†
M←(µ+1)HUM←(µ+1)

])
,

(S14)

where we have used the notation Uν′←ν =
∏ν′

ν′′=ν Uν′′ = Uν′ · · ·Uν+1Uν if ν′ ≥ ν. Otherwise if ν′ < ν, we just set
Uν′←ν as the identity. For clarity, we will use the term “derivative” to refer to a single component of the gradient
and use “gradient” to refer to the entire multi-component vector throughout the paper. Using twirling channels
corresponding to the 2-design blocks, the average and variance of the cost derivative can be written as

EU [∂µC] = tr
[
ρ0T (1)

s(B1)
◦ T (1)

s(B2)
◦ · · · ◦ Dµ ◦ · · · ◦ T (1)

s(BM′ )
(H)

]
, (S15)

VarU [∂µC] = tr
[
ρ⊗20 T (2)

s(B1)
◦ T (2)

s(B2)
◦ · · · ◦ D⊗2µ ◦ · · · ◦ T (2)

s(BM′ )
(H⊗2)

]
− (EU [∂µC])

2
, (S16)

where Dµ(·) = [iΩµ, (·)] is the quantum operation induced by the commutator. For convenience, we say that θµ is
the differential parameter, Uµ is the differential gate and the block Bk(µ) containing Uµ is the differential block. It
is worth emphasizing that there is a detail on the location of Uµ within Bk(µ). Denote the decomposition of Bk(µ)

regarding the gate Uµ as Bk(µ) = RkµUµLkµ, i.e.,

Uµ Bk(µ)Lkµ Rkµ
. (S17)

Then the neighboring channels of D⊗tµ in Eqs. (S15) and (S16) can be written as

· · · ◦ T (t)
s(Lkµ)

◦ D⊗tµ ◦ T (t)
s(UµRkµ)

◦ · · · or · · · ◦ T (t)
s(LkµUµ)

◦ D⊗tµ ◦ T (t)
s(Rkµ)

◦ · · · . (S18)

depending on the two different expressions in Eq. (S14). Although we assume that Bk(µ) forms a 2-design above, the
sub-blocks Lkµ and Rkµ do not necessarily form 2-designs, which prevents the use of Eqs. (S5) and (S6). To deal
with this detail, we will first focus on the case where Lkµ and Rkµ indeed form 2-designs on s(Bk(µ)) so that our
calculations could be performed clearly, and then discuss other cases on top of those calculations. Remember that
s(B) represents the support of the block B, i.e., the qubit subset which is acted non-trivially by B. We will call |s(B)|
as the block size of the block B.

To sum up, based on the assumptions that U is made up of local 2-designs and the differential gate Uµ is sandwiched
by two local 2-designs, now we are going to estimate the average and variance of the cost derivative. We first calculate
the average of the cost derivative.

Lemma S1 If there exist a block or sub-block B within either Uµ←1 or UM←µ forming a local 1-design with the
support s(B) covering s(Uµ), then the average of the cost derivative equals to zero, i.e., EU [∂µC] = 0.

Proof According to Eq. (S5), if the 1-design block B is within Uµ←1, the evolved state in Eq. (S14) becomes a
maximally mixed state on s(Uµ) after the integration with respect to B so that the trace of a commutator will give
rise to a zero. If B is within UM←µ, the backward evolved Hamiltonian in Eq. (S14) becomes an identity after the
integration with respect to B so that the commutator with an identity will also give rise to a zero. ■

Since every 2-design is also a 1-design by definition, the condition in Lemma S1 can be easily satisfied by our
assumptions above. Actually, the vanishing average of the cost derivative can also be obtained by considering the
periodicity of the parameter space. For completeness, we point out that 1-designs have the following property.
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Proposition S2 If each block Bk in the circuit U forms a local 1-design, then U forms a global 1-design.

Proof Be definition, the twirling channel of U with respect to the induced ensemble U is composed of twirling
channels of each block Bk, e.g.,

T (1)
s(U) = T (1)

s(BM′ )
◦ · · · ◦ T (1)

s(B2)
◦ T (1)

s(B1)
, (S19)

where s(U) =
⋃

k s(Bk). This means that the support of U is the union of the supports of all blocks. If U acts on all

qubits, then s(U) = N . We emphasize that the measure in the definition of T (1)
s(U) is determined by U instead of the

Haar measure. According to Eq. (S5), we have

T (1)
s(U)(·) = trs(BM′ )

[
· · · trs(B1) [·]⊗

I|s(B1)

2|s(B1)|
· · ·

]
⊗ I|s(BM′ )

2|s(BM′ )| = trs(U) [·]⊗
I|s(U)

2|s(U)| . (S20)

This is exactly the definition of global 1-design. Here “global” means the ensemble is defined on the support union
s(U). I|s is the identity on support s. The last equality means that the composition of a series of tracing and replacing
with maximally mixed states is equivalent to tracing all the indices first and then replacing with the maximally mixed
state on the support union. ■

We remark that Proposition S2 holds especially for 1-designs. That is to say, for example, the similar statement
is not true for 2-designs, i.e., the composition of local 2-designs is not necessarily a global 2-design. This is because
there are multiple terms in Eq. (S6) which hinders a similar proof as in Eq. (S20) for 2-designs. As the integration
progresses, the terms become exponentially numerous with both positive and negative contributions, making them
difficult to estimate. Hence, the estimation regarding the composition of local 2-designs, such as the variance of the
cost derivative, is much more complicated than those of 1-designs. This implies that we need an alternative method
instead of brute-force computation. As we will show below, our method estimates the variance of the cost derivative
in the Heisenberg picture, i.e., we track the backward evolution of Pauli strings instead of the forward evolution of
the quantum state, which shares the same start point with that in Ref. [30]. In the following lemma, we will first see
how one Pauli string h evolves by a single twirling channel. We use h|s to denote the sub-string of h on the qubit
subset s, e.g., (Z⊗ I ⊗X)|{q1,q2} = Z⊗ I. The support of h, i.e., the qubit subset which is acted by h non-trivially, is
denoted by s(h), e.g., s(Z ⊗ I ⊗X) = {q1, q3}. Here “non-trivial” means that the corresponding sub-string is not the
identity. We use P|s to denote the set of all Pauli strings defined on s, and P ′|s to denote the set of all non-trivial
Pauli strings on s, i.e., P ′|s = P|s − {I|s}.

Lemma S3 Suppose that h is a Pauli string on an N -qubit system and T (2)
s is the 2-degree twirling channel defined

on s. If the sub-string h|s is non-trivial, then the following equality holds

T (2)
s (h⊗2) =

1

2|2s| − 1

∑
σ∈P′|s

σ⊗2 ⊗ (h|s̄)⊗2, (S21)

where s̄ is the complement of s among the N qubits. Otherwise if h|s is trivial, then T (2)
s (h⊗ h) = h⊗ h.

Proof If h|s is non-trivial, then we have tr2s(h⊗h) = 0 and tr2s[(h⊗h)S|2s] = 2|s|(h|s̄)⊗2 in Eq. (S6) because Pauli
matrices are traceless and the squares of them equal to the identity. Thus, Eq. (S6) gives rise to

T (2)
s (h⊗2) =

2|s|(h|s̄)⊗2
2|2s| − 1

⊗
(
S|2s −

I|2s
2|s|

)
. (S22)

Substituting the Pauli decomposition of the swap operator

S|2s =
1

2|s|

∑
σ∈P|s

σ⊗2, (S23)

we arrive at Eq. (S21). If h|s is trivial, Eq. (S6) indicates that T (2)
s just keeps the input unchanged. ■

This lemma tells us that, a single step of backward evolution of two copies of a Pauli string by the twirling channel
on the qubit subset s will map the sub-string inside s to a uniformly weighted sum of two copies of all possible
non-trivial Pauli strings on s, while keep the part outside s unchanged. Note that the coefficients are summed to one.
We dub this transformation as the twirling channel “smearing” the sub-strings on s. From this point of view, one
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can regard a local 2-design as a “local scrambler”, which scrambles the information at s uniformly. Besides identical
copies of the form h⊗2, we also need to pay attention to the evolution of cross-terms like h1 ⊗ h2 with h1 ̸= h2 from
H⊗2 in Eq. (S16). That is to say, if the Pauli decomposition of the Hamiltonian is H =

∑
j λjhj where λj ∈ R and

hj ∈ P ′|s(H) represents a non-trivial Pauli string on the support of H, the copied Hamiltonian H⊗2 can be expressed
by H⊗2 =

∑
ij λiλjhi ⊗ hj , which contains the cross-terms hi ⊗ hj with hi ̸= hj .

Lemma S4 Suppose that h1 and h2 are two distinct Pauli strings and s′ is the qubit subset where h1 and h2 are

distinct, i.e., s′ = {qi | h1|qi ̸= h2|qi}. If s′ ∩ s ̸= ∅, then T (2)
s (h1 ⊗ h2) = 0. Otherwise if s′ ∩ s = ∅, i.e., h1 and h2

are identical on s, then Lemma S3 applies.

Proof Since h1|s and h2|s are distinct, we have tr2s(h1 ⊗ h2) = 0 and tr2s[(h1 ⊗ h2)S|2s] = 0 in Eq. (S6) because
Pauli matrices are traceless and the product of two distinct Pauli matrices is also traceless. According to Eq. (S6),

we have T (2)
s (h1 ⊗ h2) = 0. ■

That is to say, if two Pauli strings are not identical in the scope of the 2-degree twirling channel, the output
corresponding to the tensor product of these two Pauli strings is zero. Therefore, for the whole circuit U composed
of local 2-designs, we have the following corollary.

Corollary S5 Suppose that H is a Hamiltonian with the Pauli decomposition H =
∑

j λjhj and U is a random PQC
composed of local 2-designs. The differential gate Uµ within the block Bk(µ) is sandwiched by two local 2-designs on
s(Bk(µ)). If the support of U covers the support of H, i.e., s(U) ⊇ s(H), then the following equality holds

VarU[∂µ⟨H⟩] =
∑
j

λ2j VarU[∂µ⟨hj⟩], (S24)

where ⟨·⟩ = ⟨0|U†(·)U|0⟩ denotes the expectation value with respect to the output state U|0⟩.

Proof Lemma S1 ensures EU [∂µC] = 0. Thus, Eq. (S16) reduces to

VarU [∂µC] = tr
[
ρ⊗20 T (2)

s(B1)
◦ T (2)

s(B2)
◦ · · · ◦ D⊗2µ ◦ · · · ◦ T (2)

s(BM′ )
(H⊗2)

]
. (S25)

Since the maps above are all linear, the Pauli decomposition of H gives

VarU [∂µC] =
∑
ij

λiλj tr
[
ρ⊗20 T (2)

s(B1)
◦ T (2)

s(B2)
◦ · · · ◦ D⊗2µ ◦ · · · ◦ T (2)

s(BM′ )
(hi ⊗ hj)

]
. (S26)

If two Pauli strings hi and hj are distinct on s(U), there must exist a block Bk′ that first acts on one of the qubits on

which the two Pauli strings are distinct, resulting in T (2)
s(Bk′ )

(hi ⊗ hj) = 0 by Lemma S4. Lemma S3 ensures that the

distinction is preserved by preceding blocks acting elsewhere. Therefore, all the cross-terms are eliminated and hence
we arrive at Eq. (S24). Note that the differential channel D⊗2µ does affect the elimination since Uµ is sandwiched by
two local 2-designs so that the distinction will be acted by the right one before meeting D⊗2µ . ■
In fact, even if the sub-block on the right of the differential gate Uµ does not form a local 2-design, the cross-terms

are still expected to be very small. This is because Dµ can not map two distinct non-trivial Pauli strings to the same
one, e.g., [X,Y ] = 2iZ and [X,Z] = −2iY , so the distinction is preserved by D⊗2µ . The left and right sub-blocks
combine together reforming a 2-design.

Corollary S5 tells us that in order to give a lower bound on the variance of the cost derivative, one only needs to
bound the variance corresponding to each Pauli string in the Hamiltonian, because the coefficients in Eq. (S24) are all
non-negative, i.e., λ2j ≥ 0. To see the effect of the differential channel more clearly, we introduce the following lemma.

Lemma S6 Suppose that h and Ω are two Pauli strings and D(·) = [iΩ, (·)]. s is a qubit subset that covers s(Ω), i.e.,
s(Ω) ⊆ s. If h|s is non-trivial, then the following equality holds

T (2)
s ◦ D⊗2 ◦ T (2)

s (h⊗2) =
2|2s|+1

2|2s| − 1
T (2)
s (h⊗2). (S27)

Otherwise if h|s is trivial, T (2)
s ◦ D⊗2 ◦ T (2)

s (h⊗2) = 0.
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Proof If h|s = I|s, Lemma S3 gives T (2)
s (h⊗2) = h⊗2 and hence D⊗2 ◦ T (2)

s (h⊗2) = D⊗2(h⊗2) = 0 because the
identity commutes with any operator. If h|s ̸= I|s, Lemma S3 gives

T (2)
s (h⊗2) =

1

2|2s| − 1

∑
σ∈P′|s

σ⊗2 ⊗ (h|s̄)⊗2. (S28)

Since Ω is also a Pauli string, hence either Ω commutes with σ or anti-commutes with σ. If they commute, D(σ) = 0.
If they anti-commute, the commutation relation of Pauli matrices gives D(σ) = ±2σ′, where σ′ is some other non-
trivial Pauli string. The number of Pauli strings in P|s that anti-commute with Ω is just one-half of the total, i.e.,
4|s|/2. This is because one can easily establish a one-to-one correspondence between the subsets of Pauli strings that
commute and anti-commute with Ω by multiplying a new Pauli string Ω′ that is only non-trivial on one of the qubits
in s(Ω) and does not equal to Ω. For example, if Ω = Z ⊗ I, one can choose Ω′ = X ⊗ I and map the commuting
subset {I, Z} ⊗ P|q2 to the anti-commuting subset {X,Y } ⊗ P|q2 up to some phase factors. As a result, the final
output of the three composed channels is

T (2)
s ◦ D⊗2 ◦ T (2)

s (h⊗2) =
(±2)2 × 4|s|/2

(2|2s| − 1)2

∑
σ∈P′|s

σ⊗2 ⊗ (h|s̄)⊗2, (S29)

which is exactly Eq. (S27) after simplification. ■
Lemma S6 reveals that the effect of the differential channel is just to eliminate the Pauli strings that are trivial on

the support of the differential gate Uµ. For those Pauli strings that are non-trivial on s(Uµ), the differential channel
just contributes a constant on top of the two adjacent local 2-designs. Up to this point, we have introduced all the
lemmas we need to prove the theorems in the main text. Before presenting the theorems and proofs, we would like to
first clarify some concepts that are used in the formulation of the theorems.

Definition S1 The connecting support of two blocks Bk and Bk′ with k ≤ k′ in the circuit U is defined by
sc(Bk, Bk′) = s(Bk) ∩ s(Bk′) − ⋃

k<k′′<k′ s(Bk′′). If k ≥ k′, the connecting support is defined by sc(Bk, Bk′) =
sc(Bk′ , Bk). Non-empty connecting support means that there is at least a common edge between the two blocks in the
circuit graph. In this case, we call the two blocks are “connected” within the circuit.

Definition S2 The forward residual support sf (Bk) of a block Bk in the circuit U is defined by the qubits in s(Bk)
that are not acted by the blocks in U that act earlier than Bk, i.e., sf (Bk) = s(Bk)−

⋃
k′<k s(Bk′). Correspondingly,

the backward residual support sb(Bk) of Bk is defined by the qubits in s(Bk) that are not acted by the blocks in U that
act later than Bk, i.e., sb(Bk) = s(Bk) −

⋃
k′>k s(Bk′). If the forward (backward) residual support is not empty, we

say the block is a head (tail) block in the circuit, i.e., the block is the first (last) block in the entire circuit that acts
on some qubit.

Definition S3 A path p on the circuit U is defined as a time-ordered sequence of blocks p = {Bk1 , Bk2 , Bk3 , · · · }
with k1 < k2 < k3 < · · · where adjacent blocks are connected within the circuit. The head (tail) of a path p refers
to the first (last) block in the path, denoted as Head(p) and Tail(p). The forward (backward) residual support of a
path p is defined by the union of the forward (backward) residual supports of all the blocks in the path p, i.e., sf (p) =⋃

Bk∈p sf (Bk) and sb(p) =
⋃

Bk∈p sb(Bk). Every path is demanded to traverse the entire circuit, i.e., sf (Head(p)) ̸= ∅
and sb(Tail(p)) ̸= ∅. In other words, the head (tail) of the path is also a head (tail) block in the circuit.

The motivation for this path definition will be self-evident in the proof below. An example of a path is depicted as
the following

. (S30)

Some measures can be defined to quantify the properties of paths, such as the “length” below.
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Definition S4 An edge in a given path p refers to a pair of adjacent blocks (Bk, Bk′) in the path with k < k′. The
“length” of the edge is defined by

l(Bk, Bk′) = log4

[
4|s(Bk′ )| − 1

4|sc(Bk,Bk′ )| − 1

]
. (S31)

Specifically, we regard (ρ0, Bk1
) also as an edge in the path. Remember that ρ0 is the initial state. The length of this

edge is defined by replacing the connecting support with the forward residual support, i.e.,

l(ρ0, Bk1
) = log4

[
4|s(Bk1

)| − 1

4|sf (Bk1
)| − 1

]
, (S32)

In fact, the forward residual support of Bk1
can be naturally seen as the connecting support of ρ0 and Bk1

, namely
sf (Bk1

) = sc(ρ0, Bk1
), if ρ0 is identified as the “zeroth” block B0. The edge set corresponding to the path p is defined

by all edges in the path Edge(p) = {(ρ0, Bk1), (Bk1 , Bk2), (Bk2 , Bk3), · · · }. The “length” of the path is defined by the
sum of the lengths of all edges, i.e.,

l(p) =
∑

(Bk,Bk′ )∈Edge(p)

l(Bk, Bk′). (S33)

One can see that if the edge length is a constant for every edge in the path, like in the example above, then the length of
the path naturally reduces to the geometrical length |p| (the number of elements in p) times the constant. In the limit
of large |s(Bk′)| and |sc(Bk, Bk′)|, the edge length can be approximated as l(Bk, Bk′) ≈ |s(Bk′)− sc(Bk, Bk′)|, which
only depends on the part of Bk′ that is not connected with Bk. Actually, even in the minimal case of staggered two-
qubit gates with |s(Bk′)| = 2 and |sc(Bk, Bk′)| = 1, this approximation is good enough, i.e., l(Bk, Bk′) = log4 5 ≈ 1.16
which is close to |s(Bk′) − sc(Bk, Bk′)| = 1. As we will see, the edge length defined here signifies the information
leakage by the staggered adjacent blocks in the process of backward evolution. Note that l(Bk, Bk′) = 0 just means
that the two adjacent blocks are connected on the whole support and hence they can be combined into a single
2-design.

We will use s(p) to denote the qubit support union of all blocks in p, i.e., s(p) =
⋃

Bk∈p s(Bk). We will use the
notation p(Bk(µ), hj) to indicate that the path p goes through the differential block Bk(µ) and connects to hj , i.e.,
Bk(µ) ∈ p and sb(p) ∩ s(hj) ̸= ∅. Note that the existence of p(Bk(µ), hj) is equivalent to the condition that Bk(µ) is
within the causal cone of hj , which means that Bk(µ) would not be eliminated directly by unitary conjugation when
calculating the expectation value of hj . Moreover, p(Bk(µ), hj) may also be non-unique, i.e., there might exist multiple
possible paths through Bk(µ) to hj on the PQC. If so, we just choose one of the paths and denote it as p(Bk(µ), hj).

The concepts defined above will be useful when concerning the factor in the lower bound on the variance that is
related to the deepness of the circuit. On the other hand, when we are also concerned about the factor in the lower
bound that is related to the locality of the Hamiltonian, the following concepts will be helpful.

Definition S5 A path set P on a given PQC is defined by a collection of paths P = {p1, p2, · · · } on the PQC. The
node set of the path set P is defined by the union of the paths in P , i.e., Node(P ) =

⋃
pi∈P pi. The edge set of the

path set P is defined by the union of the edge sets corresponding to the paths in P , i.e., Edge(P ) =
⋃

pi∈P Edge(pi).
The length of the path set P is defined by the sum of all edges in P , i.e.,

l(P ) =
∑

(Bk,Bk′ )∈Edge(P )

l(Bk, Bk′). (S34)

Definition S6 The head (tail) of a path in a path set P is also called a head (tail) block of the path set. The head (tail)
set of the path set refers to the set of all the head (tail) blocks in the path set, i.e., Head(P ) = {Head(pi) | pi ∈ P}
and Tail(P ) = {Tail(pi) | pi ∈ P}. The forward (backward) residual support of a path set P is defined by the union of
the forward (backward) residual supports of all the paths in P , i.e., sf (P ) =

⋃
pi∈P sf (pi) and sb(P ) =

⋃
pi∈P sb(pi).

Definition S7 The forward width of a block Bk is defined by

w(Bk) = log2

[
4|sf (Bk)| − 1

2|sf (Bk)| − 1

]
. (S35)
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The head width of a path p is defined by the forward width of its head w(p) = w(Head(p)). The head width of a path
set P is defined by the sum of the forward widths of all the head blocks in the path set

w(P ) =
∑

Bk∈Head(P )

w(Bk). (S36)

Similar to the case of length, one can see that if the head width is a constant for every head block in the path set,
then the head width is just the geometrical width (the number of elements in the head set) times the constant. In
the limit of large |sf (Bk)|, the head width of the block Bk can be approximated as w(Bk) ≈ |sf (Bk)|, which is just
the size of the forward residual support, i.e., the part of s(Bk) that is connected to ρ0.

We will use the notation P (Bk(µ), hj) to indicate that there exists a path pi in P that goes through the block Bk(µ)

and the backward residual support of P covers the support of hj , i.e., ∃ pi ∈ P, s.t. Bk(µ) ∈ pi and sb(P ) ⊇ s(hj).
We will call P (Bk(µ), hj) a path set that goes through Bk(µ) and covers hj for short. An example of the path set
P (Bk(µ), hj) is depicted as the following

hj

Bk(µ)

ρ0
p1

p2

, where P = {p1, p2}. (S37)

We emphasize that the examples shown above which use the alternating layered ansatz, are merely to illustrate these
newly defined concepts. The applicability of the concepts together with the theorems below, are not limited to the
scenarios in the examples. So far, we have introduced all the prerequisites related to Theorem 1 in the main text.
Now we are prepared to prove Theorem 1.

Theorem 1 Suppose that H is a Hamiltonian on an N -qubit system with the Pauli decomposition H =
∑

j λjhj. U
is a PQC composed of blocks forming independent local 2-designs with s(U) ⊇ s(H). The energy expectation with
respect to the output state is taken as the cost function C(θ) = tr(ρ0U

†HU), where ρ0 = |0⟩⟨0|. Suppose that the
differential gate Uµ within the block Bk(µ) is sandwiched by two local 2-designs on s(Bk(µ)). The generator Ωµ of Uµ

is a Pauli string. For each hj whose causal cone contains Bk(µ), there exists at least a path set that goes through Bk(µ)

and covers hj, denoted as Pj. Then, the variance of the cost derivative is lower bounded by

VarU[∂µC] ≥
∑
j

λ2j · 21−2l(Pj)−w(Pj), (S38)

where j runs over the indices of hj whose causal cone contains Bk(µ). l(Pj) and w(Pj) denote the length and the head
width of the path set Pj, respectively. Note that this lower bound holds for arbitrary choice of Pj. The choice with the
minimum path length and head width gives rise to the tightest bound.

Proof According to Lemma S1, the average of the cost derivative equals to zero EU[∂µC] = 0. Thus we only need to
estimate the first term in Eq. (S16), which is exactly Eq. (S25). According to Corollary S5, we only need to estimate
the variances with respect to individual Pauli strings in the Hamiltonian

VarU [∂µ⟨hj⟩] = tr
[
ρ⊗20 T (2)

s(B1)
◦ T (2)

s(B2)
◦ · · · ◦ D⊗2µ ◦ · · · ◦ T (2)

s(BM′ )
(h⊗2j )

]
. (S39)

and finally add them up via Eq. (S24). An important observation from Lemma S3 is that a twirling channel just
maps a doubled Pauli string into a sum of doubled Pauli strings, with the coefficients summed to one. Namely, the
weight vector is normalized. Then, the subsequent twirling channels just map one sum of doubled Pauli strings to
another sum of doubled Pauli strings, including the differential block. In the end, among the final sum of doubled
Pauli strings, only those that contain only Z and I operators contribute to the expectation value with respect to the
initial state |0⟩ because ⟨0|X|0⟩ = ⟨0|Y |0⟩ = 0 while ⟨0|Z|0⟩ = ⟨0|I|0⟩ = 1. So the variance equals the sum of the
coefficients corresponding to all surviving doubled Pauli strings containing only Z and I in the output of the final
channel. Our goal is to give a lower bound on the sum of these coefficients. We will omit the term “doubled” below
without confusion.
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For clarity, before introducing our method of bounding, we first analyze the action of the first two channels T (2)
s(BM′ )

and T (2)
s(BM′−1)

in detail, which will be helpful for introducing our method of bounding later. We start from the action

of T (2)
s(BM′ )

. Lemma S3 tells us that

(i) If s(BM ′) ∩ s(hj) = ∅, i.e., the block BM ′ does not act on the support of the Pauli string hj at all, then the

output of the corresponding twirling channel keeps the same as the input T (2)
s(BM′ )

(h⊗2j ) = h⊗2j .

(ii) If s(BM ′) ∩ s(hj) ̸= ∅, then T (2)
s(BM′ )

keeps the sub-string (h|s̄(BM′ ))
⊗2 unchanged, but replaces the sub-string

(h|s(BM′ ))
⊗2 with a uniformly weighted sum of two copies of all non-trivial Pauli strings on s(BM ′), i.e., the

elements in the set P ′|s(BM′ ). This kind of replacement is dubbed as “smearing” below. One can see that the

qubit support union of the summed Pauli strings either grows or keeps the same after the action of T (2)
s(BM′ )

.

Next we consider the action of T (2)
s(BM′−1)

under the condition s(BM ′) ∩ s(hj) ̸= ∅.

(i) If s(BM ′−1) ∩ s(hj) = ∅ and s(BM ′−1) ∩ s(BM ′) = ∅, the output is the same as the input.

(ii) If s(BM ′−1) ⊇ s(BM ′), the sub-strings on s(BM ′−1) are smeared, while the remaining part keeps unchanged. In
this case, the effect of the block is BM ′ is invisible since it is fully covered by a 2-design BM ′ with larger support.

(iii) If s(BM ′−1)∩[s(hj)−s(BM ′)] = ∅ and s(BM ′−1)∩s(BM ′) ̸= ∅ and s(BM ′−1) ̸⊇ s(BM ′), the output might be not

a uniformly weighted sum anymore. This is because T (2)
s(BM′−1)

only smears the Pauli strings that are non-trivial on

s(BM ′−1), while not all summed Pauli strings in T (2)
s(BM′ )

(h⊗2j ) satisfy this condition due to s(BM ′−1) ̸⊇ s(BM ′).

For example, in the set of 2-qubit non-trivial Pauli strings, the subset {X⊗I, Y ⊗I, Z⊗I} would not be smeared
by the twirling channel only covering the second qubit. The part of Pauli strings that are trivial on s(BM ′−1) keep
their weights unchanged as 1/(4|s(BM′ )|−1), while the remaining part of strings that are non-trivial on s(BM ′−1)
will be involved in the twirling channel. The latter forms the subset P|s(BM′ )−s(BM′−1)

⊗ P ′|s(BM′ )∩s(BM′−1)
, in

which the number of elements is(
4|s(BM′ )∩s(BM′−1)| − 1

)
× 4|s(BM′ )−s(BM′−1)|. (S40)

Each string will be smeared into P ′|s(BM′−1)
. After collecting the repeated terms that have the same sub-string

on s(BM ′) − s(BM ′−1), we obtain a summation over the set P|s(BM′ )−s(BM′−1)
⊗ P ′|s(BM′−1)

with each term
having a new uniform weight

1

4|s(BM′ )| − 1
× 1

4|s(BM′−1)| − 1
×
(
4|s(BM′−1)∩s(BM′ )| − 1

)
, (S41)

where the last factor comes from collecting repeated terms. Plus those unchanged strings in P ′|s(BM′ )−s(BM′−1)
⊗

I|s(BM′−1)∩s(BM′ ) with the weight 1/(4|s(BM′ )| − 1) for each term, we obtain the final output from T (2)
s(BM′−1)

.

One can check that these weights are still summed to one. Therefore, if s(BM ′−1) ⊆ s(BM ′), then the weights
are still uniform since s(BM ′−1) ∩ s(BM ′) = s(BM ′−1). But if s(BM ′−1) ̸⊆ s(BM ′), namely the two blocks have
an overlap and also have their own exclusive supports, then the weights are indeed no more uniform.

(iv) If s(BM ′−1)∩ [s(hj)−s(BM ′)] ̸= ∅ and s(BM ′−1)∩s(BM ′) = ∅, the sub-strings are smeared uniformly with each
summed Pauli string non-trivial on s(BM ′−1) and s(BM ′) simultaneously, i.e., the set P ′|s(BM′−1)

⊗ P ′|s(BM′ ).

(v) If s(BM ′−1) ∩ [s(hj)− s(BM ′)] ̸= ∅ and s(BM ′−1) ∩ s(BM ′) ̸= ∅ and s(BM ′−1) ̸⊇ s(BM ′), the weights will also

deviate from a uniform distribution. Although all summed strings in T (2)
s(BM′ )

(h⊗2j ) will be involved in T (2)
s(BM′−1)

due to s(BM ′−1)∩ [s(hj)−s(BM ′)] ̸= ∅, the non-uniformity arises when collecting repeated terms. In the subset
P ′|s(BM′ )−s(BM′−1)

⊗P|s(BM′ )∩s(BM′−1)
, the strings that are the same on s(BM ′)−s(BM ′−1) contribute the same,

with a total number 4|s(BM′ )∩s(BM′−1)|, while in the subset I|s(BM′ )−s(BM′−1)
⊗ P ′|s(BM′ )∩s(BM′−1)

, the strings

that are the same on s(BM ′) − s(BM ′−1) contribute the same, with a total number
(
4|s(BM′ )∩s(BM′−1)| − 1

)
.

Thus the final output is a summation over P ′|s(BM′ )−s(BM′−1)
⊗P ′|s(BM′−1)

with each term having a new weight

1

4|s(BM′ )| − 1
× 1

4|s(BM′−1)| − 1
× 4|s(BM′−1)∩s(BM′ )|, (S42)

plus a summation over I|s(BM′ )−s(BM′−1)
⊗ P ′|s(BM′−1)

with each term having a new weight as in Eq. (S41).
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One can expect that the classified cases would proliferate exponentially with the number of twirling channels, and the
corresponding weights are in general nonuniform. Thus it is hard to track the exact backward evolution of the Pauli
string summation at each step in Eq. (S39). Instead, noticing the fact that the weights are always non-negative, it is
possible to track a part of these Pauli strings to give a lower bound in the end.

According to Lemma S6, only those hj whose causal cone contains the differential block Bk(µ) can have a non-zero
contribution to the variance VarU[∂µC]. So we only need to care about these Pauli strings in the Hamiltonian. For
every such hj , as supposed in the theorem, we have chosen a path set Pj that goes through Bk(µ) and covers hj . We
first focus on the simplest scenario where Pj only contains a single path p1. By definition, we have Bk(µ) ∈ p1 and
sb(p1) ⊇ s(hj). We first consider the case where sb(Tail(p1)) ⊇ s(hj). In this case, we aim to track the evolution of
the Pauli strings that are non-trivial only along this path. That is to say, we will manually insert a selection channel

S(2)
s(Bk)

just after the twirling channel T (2)
s(Bk)

of each block Bk in the path

· · · ◦ T (2)
s(Bk)

◦ · · · → · · · ◦ S(2)
s(Bk)

◦ T (2)
s(Bk)

◦ · · · . (S43)

A selection channel S(2)
s(Bk)

on s(Bk) is defined as a linear projection channel with the following action. For two adjacent

blocks (Bk′ , Bk) in the path p1, after acting T (2)
s(Bk)

, the Pauli strings whose sub-strings on s(Bk) are non-trivial only

on sc(Bk′ , Bk) will be mapped to themselves by the selection channel while other strings are directly mapped to zero,
i.e.,

S(2)
s(Bk)

(σ⊗2) =

{
σ⊗2 if s(σ|s(Bk)) ⊆ sc(Bk′ , Bk)

0 else
. (S44)

where σ is a Pauli string on the N qubits. By doing so, the calculation result after inserting selection channels is always
smaller than the original result since the contribution of the strings that are projected out is always non-negative.
This can be utilized to establish a lower bound. Moreover, the key benefit of such a selection rule is that the tracked
strings would not be influenced by the blocks outside the path since they are trivial outside, i.e., they are non-trivial
only on

sc(p1;Bk). (S45)

where we have used the notation sc(p1;Bk) = sc(Bk′ , Bk) to represent the connecting support of Bk and its predecessor
Bk′ within the path p1. This will be convenient below for the sake that we do not need to create a new symbol to
represent the predecessor of Bk. As a consequence, the twirling channel corresponding to any block outside the path
just reduces to the identity channel. Hence, the variance can be lower bounded by

VarU [∂µ⟨hj⟩] ≥ tr

ρ⊗20

∏
Bk∈p1

(
S(2)
s(Bk)

◦ T (2)
s(Bk)

)
(h⊗2j )

 , (S46)

where the product of channels follows the increasing order of indices from left to right, and the differential channel
in between is omitted for simplicity. At the first step of the backward evolution, h⊗2j is transformed into a uniform
weighted sum of two copies of Pauli strings that are non-trivial only on s(Tail(p1)). Then, for any two adjacent blocks

(Bk, Bk′) in the path p1, only a certain proportion of the summed strings in the output of T (2)
s(Bk′ )

satisfies our selection

rule. This proportion is just the number of elements in P ′|sc(Bk,Bk′ ) over that in P ′|s(Bk′ ), i.e.,

4|sc(Bk,Bk′ )| − 1

4|s(Bk′ )| − 1
. (S47)

Note that with our tracked strings as the input, the output of each twirling channel is still a uniform weighted
summation because the contribution from other parts has been neglected. Therefore, this process can be carried out
recursively. Normalizing the weights of the surviving Pauli strings will give rise to a factor not larger than 1, which
is just Eq. (S47). The normalized summation will enter the subsequent channels, while the normalization factor will
contribute to our final lower bound. The normalization factor will be accumulated along the path until meeting the
initial state, which contributes a total factor of∏

(Bk,Bk′ )∈p1

4|sc(Bk,Bk′ )| − 1

4|s(Bk′ )| − 1
= 4−l(p1). (S48)
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According to Lemma S6, the differential block just contributes a constant factor

2 · 4|s(Bk(µ))|

4|s(Bk(µ))| − 1
. (S49)

Finally, the tracked Pauli strings are non-trivial only on sf (Head(p1)). Among these strings, only those that contain
only the Pauli Z operator and the identity operator I will contribute to the variance by a base number of 1, whose
proportion is

2|sf (Head(p1))| − 1

4|sf (Head(p1))| − 1
= 2−w(p1). (S50)

To sum up, the final contribution of these selected Pauli strings to the variance is just

2 · 4|s(Bk(µ))|

4|s(Bk(µ))| − 1
× 4−l(p1) × 2−w(p1) > 2× 4−l(p1) × 2−w(p1), (S51)

where we have relaxed the first factor to 2 for simplicity.
Next, we consider the case where sb(Tail(p1)) ̸⊇ s(hj) but it still holds that sb(p1) ⊇ s(hj). In this case, the tracked

strings are no longer only non-trivial along the path as in Eq. (S45), but also on the residual support of hj , i.e.,

sc(p1;Bk) ∪

s(hj)− ⋃
k′≥k

sb(Bk′)

 , (S52)

because hj is not fully covered by the last block of p1. However, this does not make a difference since we still have
sb(p1) ⊇ s(hj), which means that sooner or later, the residual support of hj will be covered by subsequent blocks in
p1 before meeting the blocks outside the path. Thus, the inequality in Eq. (S46) still holds. The normalization factor
of the tracked strings will remain the same as in Eq. (S47) and hence the lower bound is the same as in Eq. (S51).

Then, we consider the case where s(hj) is not fully covered by sb(p1) so that more paths are needed to cover s(hj)
jointly. We focus on the case of two paths first, i.e., sb(Pj) ⊇ s(hj) with Pj = {p1, p2}. We first consider the following
three irreducible configurations of the two paths. The front and back segment of a path p regarding a block Bk is
denoted as Segf (p,Bk) = {Bk′ ∈ p | k′ ≤ k} and Segb(p,Bk) = {Bk′ ∈ p | k′ ≥ k}, respectively.

(i) If the two paths are separate from each other, i.e., p1 ∩ p2 = ∅, we can generalize the selection channel in
Eq. (S44) to

S(2)
s(Bk)

(σ⊗2) =

{
σ⊗2 if s(σ|s(Bk)) ⊆ sc(pi;Bk)

0 else
, (S53)

where pi is the path that contains Bk, and hence the inequality in Eq. (S46) can be generalized to

VarU [∂µ⟨hj⟩] ≥ tr

ρ⊗20

∏
Bk∈Node(Pj)

(
S(2)
s(Bk)

◦ T (2)
s(Bk)

)
(h⊗2j )

 . (S54)

Based on Eq. (S46), this inequality still holds because the selection regarding the two paths can proceed sepa-
rately. That is to say, the selected strings for the block Bk ∈ p1 by Eq. (S44) are non-trivial only on

sc(p1;Bk) ∪ sc(p2;Bk′) ∪

s(hj)− ⋃
k′′≥k

sb(Bk′′)

 . (S55)

where Bk′ = Head(Segb(p2, Bk)) represents the head block of the back segment of the path p2 regarding the block
Bk. The support of the selected strings for the block in p2 can be written in a symmetric manner. Thus, the
factor in Eq. (S47) is accumulated along the two paths independently because the tracked Pauli string summation
always keeps a tensor product structure. Therefore, the lower bound can be obtained just by counting the lengths
and head widths of the two paths separately, i.e., generalizing l(p1) and w(p1) in Eq. (S51) to l(Pj) and w(Pj).
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(ii) If the two paths merge together along the backward direction at some block Bk, i.e., p1 ∩ p2 = Segf (p1, Bk) =
Segf (p2, Bk) and Bk ∈ p1 ∩ p2, then at the merging node where (Bk, Bk′) ∈ Edge(p1) and (Bk, Bk′′) ∈ Edge(p2)

with k′ ̸= k′′, the input of T (2)
s(Bk)

in Eq. (S46) is just the tensor product of two normalized uniform weighted

summation of doubled Pauli strings over P ′|sc(Bk,Bk′ ) and P ′|sc(Bk,Bk′′ ). The normalization factor is

4|sc(Bk,Bk′ )| − 1

4|s(Bk′ )| − 1
× 4|sc(Bk,Bk′′ )| − 1

4|s(Bk′′ )| − 1
= 4−l(Bk,Bk′ )−l(Bk,Bk′′ ), (S56)

which is just the exponentiated sum of the lengths of the two edges. Moreover, the accumulated factor does not
need to be counted twice for the edges in p1 ∩ p2. This double-counting issue has already been considered in the
definition of the length and head width of the path set in Eqs. (S34) and (S36). Therefore, the lower bound can
be obtained again by generalizing l(p1) and w(p1) in Eq. (S51) to l(Pj) and w(Pj).

(iii) If the two paths first coincide and then split along the backward direction at some block Bk, i.e., p1 ∩ p2 =
Segb(p1, Bk) = Segb(p2, Bk) and Bk ∈ p1 ∩ p2, then at the splitting node where (Bk′ , Bk) ∈ Edge(p1) and
(Bk′′ , Bk) ∈ Edge(p2) with k′ ̸= k′′, the selection rule should be slightly modified since the Pauli strings in
P ′|sc(Bk′ ,Bk) and P ′|sc(Bk′′ ,Bk) should be selected simultaneously, i.e.,

S(2)
s(Bk)

(σ⊗2) =

{
σ⊗2 if s(σ|s(Bk)) ⊆ sc(p1;Bk) ∪ sc(p2;Bk)

0 else
. (S57)

The selected result is just the tensor product of two normalized uniform weighted summations of doubled Pauli
strings over P ′|sc(Bk′ ,Bk) and P ′|sc(Bk′′ ,Bk), respectively. The normalization factor is

(4|sc(Bk′ ,Bk)| − 1)× (4|sc(Bk′′ ,Bk)| − 1)

4|s(Bk)| − 1
≥ 4−l(Bk′ ,Bk)−l(Bk′′ ,Bk), (S58)

which is not equal to but can be lower bounded by the exponentiated sum of the length of the two edges.
Moreover, the accumulated factor again should be counted only once for the edges in p1 ∩ p2. Thus, the lower
bound again can have the same form as in Eq. (S51) after generalizing l(p1) and w(p1) to l(Pj) and w(Pj).

Other possible configurations of the two paths are just combinations of these three cases, i.e., separation, merger, and
split. Therefore, the bound 2× 4−l(Pj) × 2−w(Pj) holds generally for arbitrary configurations of the two paths. Note
that due to the tensor product structure inherited from hj and our selection rule, the two paths could start their
backward evolution independently without causing additional factors.

If Pj contains more than two paths, the lower bound can be obtained in a similar manner by updating the selection
rule in Eq. (S44) for the multi-split nodes as in Eq. (S57), i.e.,

S(2)
s(Bk)

(σ⊗2) =

{
σ⊗2 if s(σ|s(Bk)) ⊆

⋃
i sc(pi;Bk)

0 else
, (S59)

where pi runs over the paths that contain the block Bk. This will give rise to the same lower bound that counts all
the factors from the edges and head blocks together with the differential block, i.e., 2× 4−l(Pj) × 2−w(Pj). Adding the
lower bounds corresponding to the individual Pauli strings hj in the Hamiltonian via Eq. (S24), we eventually arrive
at the desired lower bound corresponding to the entire Hamiltonian. ■

For better comprehension, we summarize the proof process above as follows. The assumption of local 2-designs
directly implies the vanishing average and the separable contribution form VarU[∂µ⟨H⟩] = ∑

j λ
2
j VarU[∂µ⟨hj⟩]. The

contribution from hj can be expressed as the inner product between ρ⊗20 and h⊗2j after the backward evolution by
the twirling channels corresponding to each block together with the differential channel. The twirling channel just
maps a doubled Pauli string into a uniform weighted sum of strings. Hence, a lower bound can be obtained by only
selecting the part of the summation that is non-trivial along the paths, which gives rise to the accumulated factor
4−l(Pj). In the end, only the strings that contain only the Pauli Z and the identity I contribute, which leads to the
fraction 2−w(Pj). The differential channel restricts the path set must go through Bk(µ) and contributes the constant
factor 2.

We make several remarks on Theorem 1. Firstly, we emphasize that Theorem 1 holds for any random quantum
circuit composed of blocks forming independent local 2-designs. No assumption is made regarding the number, sizes,
or arrangement of these blocks, or the spatial dimension of the circuit. One can check that the lower bound in
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Theorem 1 is consistent with the previous literature on barren plateaus. For example, compared to the original work
on barren plateaus [20] which considers a global 2-design, the path set in Eq. (S38) is just this single global block and
hence the head width grows linearly with the system size, i.e., w(Pj) ∼ N , which leads to an exponential small lower
bound, consistent with the exponential small upper bound proposed by Ref. [20]. For the alternating layered ansatz
and local cost functions [29, 30], the head width could be constant but the path length Eq. (S38) grows linearly with
the system size, i.e., l(Pj) ∼ N , which means that linear or even larger depth (deep) circuits encounter barren plateaus
while finite or logarithmic depth (shallow) circuits do not, consistent with the lower bound in Ref. [29]. For global
cost functions, even a single layer of blocks would require both the path length and head width to increase linearly
with the system size, which leads to an exponentially small lower bound, again consistent with the exponentially
small upper bound in Ref. [29]. Furthermore, in the quantum convolutional neural network (QCNN) [31, 41] and the
multiscale entanglement renormalization ansatz (MERA) [41–44], the path length increases logarithmically with the
system size, which causes a polynomially vanishing lower bound, consistent with the lower bound proved in Ref. [31].
In summary, Theorem 1 unifies the known gradient scaling behaviors for all architectures of random quantum circuits
composed of blocks forming 2-designs. Two geometrical quantities play an important role in this lower bound, i.e., the
path length and head width of the path set on the circuit. For a given setup of the variational quantum eigensolver
with a certain circuit architecture, as long as there exists a term hj in H with λj ∈ Ω(1) accompanied by a path set
Pj satisfying l(Pj), w(Pj) ∈ O(logN), the variance of the cost derivative would vanish no faster than polynomially,
implying that the corresponding setup does not exhibit barren plateaus.

In particular, we compare Theorem 1 with the lower bound proposed in Ref. [30], which also utilizes the backward
evolution of Pauli strings in the proof. In the first place, Ref. [30] focuses on the alternating layered ansatz, while
our theorem can be applied to all ansatzes composed of local 2-designs. Moreover, even the form of the causal-cone-
width-dependent lower bound considered by Ref. [30] has its own limitation. One can consider the case when the
differential parameter is located at the last block in the finite local-depth circuit shown in Fig. 1 in the main text and
the Hamiltonian is a single Pauli Z operator on the support of the last block. In such a case, the width of the causal
cone equals N , and hence the causal-cone-dependent bound like in Ref. [30] would give a trivial exponential small
lower bound, while in Theorem 1 we can just choose a short path with the head width not scaling with the system
size, and provide a meaningful constant lower bound. The lower bound specific to finite local-depth circuits will be
introduced in detail in Theorem 2 below.

Secondly, Theorem 1 defaults the initial state to |0⟩, so that the variance of the cost derivative equals the sum of
weights of backward evolved doubled Pauli strings only containing Z and I. In fact, the theorem can be generalized
to the cases with the initial state being an arbitrary product state |ψ0⟩ =

⊗N
i=1 Vi|0⟩ because Vi can be absorbed

into the block whose forward residual support covers qi, based on the fact that a t-design times any unitary on the
same support is still a t-design. More generally, as long as the initial state can be reduced back to |0⟩ by such an
absorption procedure, Theorem 1 is applicable for the corresponding initial state.

Thirdly, Theorem 1 has assumed that the differential gate Uµ is sandwiched by two local 2-designs on the support
of the differential block Bk(µ), which in practice means that the theorem holds for the case where the differential
parameter θµ is located in the middle of the differential block, as shown in Eq. (S17). For the parameters located at
the borders of blocks, it is indeed possible that the lower bound in Eq. (S38) fails. For example, if Uµ is a single-qubit
rotation gate Rz and is the first gate acting on some qubit initialized as |0⟩, then the derivative will always equal to
zero since Rz only contributes a global phase to |0⟩. Similar events occur also for the case where Uµ is the last gate
acting on some qubit and Uµ commutes with hj . However, taking these cases into consideration, the proof can still
proceed if either of the following two conditions holds.

• The left sub-block Lkµ forms a 2-design and Rkµ is the identity. s(Uµ) intersects with the connecting support
of Bk(µ) and its successor, or intersects with s(hj) ∩ sb(Bk(µ)) and Uµ does not commute with hj , so that there
must exist some selected Pauli strings surviving from the differential channel D⊗2µ and hence can be recovered
to a uniform weighted summation by the twirling channel of the left sub-block.

• The right sub-block Rkµ forms a 2-design and Lkµ is the identity. s(Uµ) intersects with the connecting support
of Bk(µ) and its predecessor, or intersects with sf (Bk(µ)) and Uµ does not commute with ρ0, so that there must
exist some surviving Pauli strings from D⊗2µ still satisfying the selection rule.

Thus, we expect that the asymptotic behavior of the lower bound would not change drastically when the differential
parameter is located at the borders of blocks. Taking a step back, this issue does not really matter in practice if we
consider all trainable parameters simultaneously. That is to say, as long as some of the gradient components do not
vanish, the optimization could still proceed successfully and no barren plateau really occurs.

In addition, Theorem 1 has assumed that the generator of the differential gate Ωµ is a Pauli string. This condition
can also be relaxed to the case where Ωµ is a general Hermitian generator by considering the Pauli decomposition
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of Ωµ. The new lower bound is just the linear combination of the lower bounds corresponding to the Pauli string
components in the generator, after the cross terms caused by D⊗2µ are eliminated by Lemma S4. In addition, if the

gate is commonly not parametrized as a rotation gate in the exponential form e−iΩµθµ , e.g., the controlled Ry gate,
then it can be seen as the composition of some basic rotation gates with correlating parameters, e.g., the controlled
Ry gate can be seen as the composition of two CNOT gates and two Ry gates with opposite rotation angles, and
hence the corresponding derivative can be obtained by the chain rule. This may cause the left and right sub-blocks
in Eq. (S17) to correlate with each other and be no longer independent 2-designs. However, since the differential
block only contributes a constant factor for non-trivial backward evolved Pauli strings in the proof, we expect the
asymptotic behavior contributed from the path length and head width would not be distorted.

Finally, Theorem 1 requires s(U) ⊇ s(H) so that Corollary S5 holds and one can only consider the support of the
head of the path set when counting the Pauli strings that only contains Z and I. As a counterexample, if hj contains
a Pauli X operator that is not covered by U, then the variance of the cost derivative would directly vanish due to
⟨0|X|0⟩ = 0. But this issue could be easily fixed by multiplying the lower bound corresponding to hj by an extra
factor, i.e., the expectation value of the sub-string of hj on s(hj)− s(U) with respect to the initial state.

It is worth mentioning that according to the strict equality Eq. (S39), the lower bound in Eq. (S54) can be improved
into a tighter path-integral-like form

VarU [∂µ⟨hj⟩] ≥
∑
Pj

tr

ρ⊗20

∏
Bk∈Node(Pj)

(
S(2)
s(Bk)

◦ T (2)
s(Bk)

)
(h⊗2j )

 . (S60)

where the summation is taken over all legal path sets Pj (i.e., with the right end covering hj , and at least one of the
paths passing through Bk(µ)). Hence the final lower bound can be tightened as

VarU [∂µC] ≥
∑
j

∑
Pj

λ2j · 21−2l(Pj)−w(Pj). (S61)

In other words, this improved lower bound can be roughly written in plain text as

VarU [∂µ⟨hj⟩] ≥
∑

[contribution from all possible path sets]

= [contribution from the chosen path set] + [contribution from other possible path sets],
(S62)

where the first term is just the lower bound in Eq. (S46). If we choose the shortest path set with the smallest head
width, the first term will be the term of the leading order. The second term represents the sub-leading contributions
from other possible path sets, which is directly discarded in our proof for clarity. The additivity of the contribu-
tions from different path sets without multiple counting is guaranteed by the orthogonality among different selection
channels.

The proof method in Theorem 1 can be extended to bounding other quantities besides the variance of the cost
derivative. For example, the variance of the primitive cost function could be lower bounded in a similar way by just
removing the differential channel D⊗2µ in Eqs. (S16) and (S46), which will lead to the same result as in Eq. (S38) except
that the path set does not have to go through the differential block. In general, this path-set approach is promising
to be used for estimating the average value of an arbitrary squared space-time correlator in random quantum circuits
since the cost derivative in Eq. (S14) itself can be seen as a two-point correlation function between the differential
gate and the measured observable.

Up to this point, we have introduced all the contents on Theorem 1 concerning a general lower bound for arbitrary
circuits composed of 2-designs. In the following, we will first make clear some concepts in order to present Theorem 2,
which focuses on finite local-depth circuits.

Definition S8 The maximum block size of the PQC U is defined by the maximum value of block sizes of all blocks
in the PQC, i.e., β = max{|s(B1)|, |s(B2)|, · · · , |s(BM ′)|}.

Definition S9 For a Hamiltonian H with the Pauli decomposition H =
∑

j λjhj, the maximum interaction
range r of the Hamiltonian is defined by the maximum value of the support sizes of all Pauli strings hj, i.e.,
r = max{|s(h1)|, |s(h2)|, |s(h3)|, · · · }. A r-local Hamiltonian refers to a Hamiltonian with the maximum interac-
tion range r. Note that here the r interacting qubits do not need to be close to each other spatially in the sense of the
lattice geometry associated with the Hamiltonian.
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Definition S10 The supported block set of the qubit qi in the PQC contains the block Bk acting on qi, denoted as
b(qi) = {Bk | qi ∈ s(Bk)}. The supported block set of a subset of qubits s is the union of the supported sets of the
qubits in s, i.e., b(s) =

⋃
qi∈s b(qi) = {Bk | s ∩ s(Bk) ̸= ∅}. In particular, the supported block set of all the N qubits

is just the set of all the blocks in U.

Definition S11 The local depth (qubit-wise depth) of the PQC at a qubit qi can be defined by the number of elements
in the supported block set b(qi), denoted as χi = |b(qi)|. The maximum local depth of the PQC is defined by the
maximum value of local depths of all qubits, i.e., χ = max{χ1, χ2, · · · , χN}. Here we use the symbol χ to distinguish
from the common circuit depth D, which is defined by the minimum number of layers where all blocks within each
layer commute with each other.

Definition S12 A finite local-depth circuit (FLDC) refers to a circuit whose maximum local depth χ does not scale
with the system size N .

The above definition of local depth regards blocks as the elementary units building the PQC. Alternatively, for
general quantum circuits taking elementary gates as units, the local depth at the qubit qi can be defined by the number
of non-commuting gates acting on qi, which might be more complex to estimate because the detailed commutation
relation of gates is involved. Given a block template like in Eq. (S10), these two definitions are supposed to differ
only by a constant coefficient in general. In addition, we emphasize that the support sizes of the blocks constituting
FLDCs are always finite, i.e., β should not scale with the system size by the definition of “circuit”. Correspondingly,
a finite depth circuit (FDC) refers to a circuit whose global depth does not scale with the system size, while a general
linear depth circuit (GLDC) refers to a circuit whose global depth scales linearly with the system size.

Note that as long as there is a finite local depth, regardless of how messy the gate configuration might be, the
circuit can be considered as an FLDC. It is not necessary to arrange the gates uniformly and regularly as shown in
Fig. 1 in the main text. Here we point out that FLDCs defined above are more general than the sequential quantum
circuits (SQC) defined in Ref. [57], especially the instances listed in Ref. [57] because we have not restricted the gates
in the circuit as local gates, which is assumed by Ref. [57]. In other words, we do not assume an underlying lattice or
connectivity to define the spatial locality of gates. But when it comes to the content of the entanglement area law, a
spatial lattice must be involved, and at that time, we will restrict our discussion on FLDCs to the circuits composed
of spatially local gates as shown in Fig. 1 in the main text. With the concepts defined above, we are prepared to
prove Theorem 2.

Theorem 2 Based on the assumptions in Theorem 1, suppose that the maximum local depth of U is χ and the
maximum block size of U is β. Then for any r-local Hamiltonian, the variance of the cost derivative is lower bounded
by

VarU[∂µC] ≥ 4−rχβ
∑
j

2λ2j , (S63)

where j runs over the indices of the Pauli string hj that is non-trivial on s(Bk(µ)).

Proof For each hj , if s(hj) ∩ s(Bk(µ)) = ∅, we just neglect the contribution of hj in Eq. (S38). Otherwise, we can
choose the path set Pj to be the straight wires on s(hj), i.e., Pj = {b(qi) | qi ∈ s(hj)}. Note that the forward residual
supports of the head blocks of the path set appear simultaneously in expressions for both length and head width in
Eqs. (S32) and (S35), we will extract them and combine together before relaxation to obtain a tighter bound. We use
l0 to denote the length of the edges between ρ0 and the head blocks of Pj . According to the definition in Eq. (S31),
the length of Pj apart from l0 is upper bounded by

l(Pj)− l0 ≤ r · (χ− 1) · log4
(
4β − 1

4− 1

)
≤ r(χ− 1)

(
β − 1

2
log2 3

)
≤ r(χ− 1)β, (S64)

where the sizes of the connecting supports are relaxed to one. Correspondingly, the head width of Pj together with
2l0 is upper bounded by

w(Pj) + 2l0 =
∑

Bk∈Head(Pj)

log2

(
4|sf (Bk)| − 1

2|sf (Bk)| − 1

)
+ log2

(
4|s(Bk)| − 1

4|sf (Bk)| − 1

)
≤ r × log2

(
4β − 1

2− 1

)
≤ r · 2β. (S65)
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According to Theorem 1, the variance of the cost derivative can be lower bounded by

VarU[∂µC] ≥
∑
j

λ2j · 21−2l(Pj)−w(Pj) ≥
∑
j

λ2j2
1−2r(χ−1)β−2rβ = 4−rχβ

∑
j

2λ2j , (S66)

where j runs over the indices of hj that is non-trivial on s(Bk(µ)). ■
Theorem 2 elegantly integrates the factors related to barren plateaus in an unexpectedly concise manner, i.e., the

block locality β [20], the Hamiltonian locality r [29, 30] and the circuit deepness χ. It is vitally important to note that
the relevant quantity characterizing the circuit deepness is the local depth χ, instead of the common circuit depth,
or say the global depth D. For the alternating layered ansatz, the local depth basically equals the global depth. But
for general circuit structures, the local depth and the global depth are not equivalent and can differ significantly in
specific scenarios, as illustrated in Fig. 1 in the main text. This implies that the class of circuit architectures that
do not exhibit barren plateaus is larger than finite (or logarithmic) depth circuits (FDC) [29, 30], which naturally
give rise to the class of finite (or logarithmic) local-depth circuits. In this work, we mainly focus on finite local-depth
circuits (FLDC), which have a clear physical correspondence to entanglement area-law states as we will introduce
below. Logarithmic local-depth circuits may involve states beyond the area law such as gapless states with topological
orders, which are also interesting to study in the future.

As a superclass, FLDCs have stronger expressibility than FDCs since they can generate long-range entanglement.
To be specific, FDCs can only generate short-range entangled (SRE) states such as symmetry-protected topological
(SPT) states like the Affleck-Kennedy-Lieb-Tasaki (AKLT) state. These SRE states are equivalent to the product
states in the sense of entanglement renormalization. Those long-range entangled (LRE) area-law states such as the
Greenberger–Horne–Zeilinger (GHZ) state and the topologically ordered states like the ground states of the toric code
model, can not be generated from FDCs, while they can be generated from FLDCs with explicit forms [56–58].

On the other hand, as a subclass, FLDCs have less expressibility than general linear depth circuits (GLDC), such
as the alternating layered ansatz of linear depth. Given a spatial lattice of qubits, if we restrict that each block can
act only on spatial adjacent qubits, then the output state of an FLDC should obey the entanglement area law, while
GLDCs generate much more entanglement so that the output states typically exhibit the volume law [28]. Here we
give a simple demonstration to show why an FLDC composed of spatially local blocks generates area-law output
states. Take β = 2 for an example. The number of blocks acting on two adjacent qubits hence should be not larger
than χ. Suppose that the lattice is partitioned into two continuous regions A and Ā. The number of lattice edges cut
by this bipartition is denoted by |∂A|, which can also be seen as a measure of the boundary between A and Ā. Thus,
the number of blocks acting across the boundary is not larger than |∂A| ·χ, so the Schmidt rank rA of the output state
with respect to this bipartition is not larger than 2|∂A|·χ. The entanglement entropy with respect to this bipartition
could be upper bounded by SA = − tr(ρA log ρA) ≤ log rA ≤ χ|∂A|, which means that for a fixed maximum local
depth χ, the entanglement entropy at most grows linearly with the size of the boundary, i.e., the output state satisfies
the entanglement area law. Here the term “area”, used by convention, refers to the boundary of a three-dimensional
system.

Considering the two aspects mentioned above, FLDC constitutes an intermediate class of quantum circuits between
FDC and GLDC, in the sense of both expressibility and trainability. FLDC possesses the favorable trainability of
FDC and at the same time, partially exhibits the expressibility of GLDC in generating long-range entanglement.
Under the condition that the target many-body Hamiltonian has a ground state with entanglement area law, FLDCs
hold promise to serve as an appropriate ansatz in variation quantum eigensolvers to prepare ground states of gapped
many-body systems on quantum devices. In other words, FLDCs composed of spatially local blocks can be regarded
as the quantum circuit implementation of tensor network states, such as matrix product states (MPS) and projected
entangled paired states (PEPS). Note that the ground states of gapped local Hamiltonians typically satisfy the entan-
glement area law, which is guaranteed by rigorous theorems in 1D systems [92] and testified by practical experience
in higher dimensions. Previously proposed quantum circuit implementation of tensor network states [71, 72] can be
seen as special cases of finite or logarithmic local-depth circuits.

The above discussion pertains to Hamiltonians with local interactions, i.e. r ∈ O(1), but in practice, it is possible
to encounter Hamiltonians involving non-local interactions. For example, in condensed matter or quantum chemistry
problems, fermionic statistics are usually encoded to qubit systems via the Jordan-Wigner transformation or the
Bravyi-Kitaev transformation, where the support sizes of the resulting Pauli strings can scale with the interaction
distance of fermions R as r ∈ O(R) or r ∈ O(logR), respectively. If R ∈ O(N), the Jordan-Wigner encoding
method would lead to an exponentially small lower bound in Eq. (S63) even with FLDCs due to r ∈ O(N), while
the Bravyi-Kitaev encoding method may still persist with a polynomially vanishing lower bound with FLDCs due to
r ∈ O(logN).
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In the end, we remark that one of the preconditions of the absence of barren plateaus from the lower bound in
Eq. (S63) is that, the sum of the coefficients

∑
j λ

2
j does not vanish. That is to say, there is at least a term hj in

the Hamiltonian that is non-trivial on the support of the differential block with λj ∼ O(1). This precondition can be
satisfied by common locally interacting quantum many-body systems, where the support of the Hamiltonian covers
the whole system, i.e., s(H) = s(U). However, if we do encounter cases where there is no term acting on s(Bk(µ)),
trivializing the lower bound in Theorem 2, we need to revert back to Theorem 1 to consider the contribution from
the terms acting elsewhere. For FLDCs composed of spatially local blocks, if there is a term in the Hamiltonian
acting near s(Bk(µ)), it is still possible to find a short path on the circuit connecting to Bk(µ), thereby obtaining a
non-vanishing lower bound. However, if every term in the Hamiltonian acts far from s(Bk(µ)), e.g., the distance grows
linearly with the system size, then the bound in Theorem 1 would be exponentially small because the path length
also grows linearly. To be specific, we can focus on the following “ladder ansatz”

. (S67)

and derive a tighter lower bound than Theorem 2 by considering the contribution from the Hamiltonian terms acting
elsewhere, which is elaborated in Corollary S9.

Corollary S9 Based on the assumptions in Theorem 1, suppose that H is a r-local 1-dimensional Hamiltonian and
U is a ladder ansatz as in Eq. (S67) with block size β. Denote the block which last acts on s(hj) as Bk′(j). The
variance of the cost derivative is lower bounded by

VarU[∂µC] ≥
∑
j

λ2j · 21−2β(∆µj+r). (S68)

where j runs over the indices of hj satisfying k′(j) ≥ k(µ) and ∆µj = k′(j)− k(µ).

Proof If k′(j) < k(µ), then the differential block is outside the causal cone of hj and hence the contribution to the
variance equals zero. If k′(j) ≥ k(µ), we can choose the path set containing a single path from Bk(µ) to Bk′(j) and
other r− 1 path covering other qubits acted by hj . The path length apart from the length l0 of the edges between ρ0
and the head blocks is upper bounded by

l(Pj)− l0 ≤ ∆µj · log4
(
4β − 1

4− 1

)
≤ ∆µjβ. (S69)

The head width of Pj together with 2l0 is upper bounded by

w(Pj) + 2l0 ≤ r · log2
(
4β − 1

2− 1

)
≤ rβ. (S70)

According to Theorem 1, the variance of the cost derivative can be lower bounded by

VarU[∂µC] ≥
∑
j

λ2j · 21−2l(Pj)−w(Pj) ≥
∑
j

2λ2j · 4−β(∆µj+r), (S71)

where j runs over the indices of hj that is non-trivial on s(Bk(µ)). ■
In Corollary S9, one can explicitly see that the contribution in the lower bound indeed decays exponentially with

the “distance” ∆µj between the differential block Bk(µ) and the observable hj . Similar conclusions can be drawn with
respect to the circuit structures depicted in Fig. 1 in the main text, which can be seen as the circuit implementation
of MPS and PEPS. This coincides with the results found in unitary embedding tensor network states recently [40].
Again, taking a step back, this issue does not really matter in practice if all trainable parameters are considered
simultaneously. Since there are always blocks on s(hj) due to s(U) ⊇ s(H), as long as some of the gradient components
do not vanish, the optimization could still proceed successfully and no barren plateau really occurs.

It is worth mentioning that the information spreading in the ladder ansatz shown in Eq. (S67) is somewhat one-way
because the blocks acting on the qubits with larger indices than qi are outside the causal cone of qi. This disadvantage
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could be easily fixed by the following two-way ladder ansatz which still falls in FLDC class

. (S72)

III. Additional Numerical Results and Technical Details

In this section, we provide additional numerical results and technical details in the numerical experiments. In the
experiment of gradient evaluation shown in Fig. 3 in the main text, we utilize the ladder ansatz like in Eq. (S67) with
β = 2. Each two-qubit block is parametrized by the Cartan decomposition as in Eq. (S12). The distance ∆k is just
the difference between the indices of the differential block and the last block, i.e., ∆µj in Eq. (S68). The legend in
Fig. 3(b) of Ry1, Ryy, and Ry2 refers to the following three red gates in the Cartan decomposition respectively.

Rz

Rz

Rxx

Rz

Rz

Ryy Rzz

RyRz

RyRz RzRy

RzRy

. (S73)

In Fig. 3(a), we just fix the location of the differential gate within the differential block as the red block of Ryy above.
Recall that Rxx, Ryy and Rzz denote the two-qubit rotation gates with the generators X ⊗ X, Y ⊗ Y and Z ⊗ Z
respectively as mentioned around Eq. (S12). Ry and Rz denote the single-qubit rotation gates with the generators Y
and Z respectively.

In the experiment of VQE on the 2D toric code model shown in Fig. 4 in the main text, the model Hamiltonian
reads

H = (1− h)Ĥ0 −
N∑
j=1

(hxXj + hyYj + hzZj) . (S74)

The additional factor (1 − h) arises for the sake of properly approaching the infinite large field limit. In the two
cases on which we focus below, we set either (hx, hy, hz) = (h, 0, h) or (hx, hy, hz) = (0, 0, h). Please do not confuse
(hx, hy, hz) with the notation hj representing the Hamiltonian sub-terms above. The bare toric code Hamiltonian H0

reads

H0 = −
∑
v

Av −
∑
p

Bp, (S75)

where v and p runs over all the vertices and plaquettes of the 2D square lattice. The operators Av and Bp are defined
as the products of four Pauli operators depicted below

Z

Z

Z

Z

X

X

X

X

Bp

Av

Z

Z

Av′

. (S76)

Note that under open boundary conditions, the vertex operator Av′ at the boundary should be slightly modified to
the products of two or three Pauli operators as depicted above. The numerical experiments are conducted on a 3× 3
lattice with N = 12 qubits defined on the edges. The ground state of H0 can be exactly solved and is topologically
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ordered, which is signified by the non-vanishing topological entanglement entropy, or say tripartite mutual information
Stopo(A : B : C) defined by

Stopo(A : B : C) = SA + SB + SC − SAB − SBC − SCA + SABC . (S77)

where SA = − tr(ρA ln ρA) represents the entanglement entropy of the subsystem A with ρA being the reduced
density matrix on A. The sub-regions A, B and C used in our experiment are chosen as the following colored qubits
respectively

A

B
C

. (S78)

For the exact ground state at h = 0, we have Stopo = − ln 2. The FLDC ansatz used in our experiments is similar
to the one shown in Fig. 1(b). Namely, the blocks are applied plaquette-by-plaquette sequentially from left to right
and then from top to bottom. Within each plaquette, the blocks are applied by the following “claw-shape” in our
experiments corresponding to Fig. 4

, (S79)

where darker colors indicate later action orders. Thus, the entire circuit can be depicted as

. (S80)

The two-qubit block is parametrized as the Cartan decomposition as in Eq. (S12). As a comparison, we also conduct
the same simulations with the instances from the FDC and GLDC classes. To compare fairly, we set the number of
blocks in the FDC ansatz as the same as that in the FLDC ansatz above but arrange the blocks differently. To be
specific, we apply the blocks located at the same position within the plaquette simultaneously for all plaquettes, as
depicted below

. (S81)

The GLDC ansatz is just repeating the FDC ansatz above by N = 12 times. In the process of training, we use the
Adam optimizer with a learning rate of 0.01. For each ansatz, there are 100 independent VQE trials with different
initialized parameters with each parameter randomly chosen from the uniform distribution over [0, 2π).
Besides the numerical results shown in the main text, we also investigate the case of (hx, hy, hz) = (0, 0, h) and

other FLDC ansatzes, where the conclusion remains the same as in the main text, i.e., the FLDCs offers the best
performance. The numerical results for the case of (hx, hy, hz) = (0, 0, h) are shown in Fig. S1. The numerical results
corresponding to a different FLDC ansatz where the blocks are applied by the following “U-shape” as follows

. (S82)



30

0.00 0.25 0.50 0.75 1.00
h 

1.0

0.8

0.6

0.4

E
/N

 

(a)

101 103

Steps 

0.0

0.5

1.0

(E
−
E

E
D
)/
N

 

FDC
GLDC

FLDC
ED

0.00 0.25 0.50 0.75 1.00
h 

0.6

0.4

0.2

0.0

S
to

p
o
 

(b)

101 103

Steps 

0.0

0.5

1.0

S
to

p
o
/(
−

ln
2)

 

FDC
GLDC
FLDC
ED

FIG. S1. VQE performance comparison of the “claw-shape” FDC, FLDC, and GLDC ansatzes using the toric code model
under the external field (hx, hy, hz) = (0, 0, h) with N = 12. The data is averaged over the best half of the 100 training
trajectories starting from different initializations. (a) shows the converged energy E/N vs h. The inset depicts the energy
training dynamics at h = 0. The dashed lines represent the exact values obtained from ED. The (shaded) error bar represents
the standard deviation. (b) shows the topological entanglement entropy Stopo correspondingly.
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FIG. S2. VQE performance comparison of the “U-shape” FDC, FLDC, and GLDC ansatzes using the toric code model under
the external field (hx, hy, hz) = (0, 0, h) with N = 12. The data is averaged over the best half of the 100 training trajectories
starting from different initializations. (a) shows the converged energy E/N vs h. The inset depicts the energy training
dynamics at h = 0. The dashed lines represent the exact values obtained from ED. The (shaded) error bar represents the
standard deviation. (b) shows the topological entanglement entropy Stopo correspondingly.

within each plaquatte are shown in Fig. S2 and Fig. S3. The notations are the same as in Fig. 4 in the main text. The
error bar represents the standard deviation over all trials and the shaded error bar in the inset is the standard deviation
over all trajectories from different random initializations. Finally, we point out that the practical performance of the
FLDC ansatzes may depend on the specific sequence of the blocks in each plaquette. For example, if the two-qubit
blocks are applied clockwise in the “U-shape” instead of anticlockwise as in Eq. (S82), the energy would not converge
well to the exact value because the exact ground state of the bare toric code model is not in the space of this FLDC
ansatz at all. Therefore, in practice, it is also important to determine the specific structures of FLDC ansatzes
appropriate for the target ground state.

IV. Classical Simulability of Finite Local-Depth Circuits

Previous results on the absence of barren plateaus in certain circuit architectures [29–31, 40–44, 47] mainly focus on
constant or logarithmic depth circuits, which can be efficiently simulated classically to estimate local observables using
the known methods due to the small causal cone and the small treewidths [78]. This is a matter of recent concern [77],
i.e., the classical simulability of the tasks with the provable absence of barren plateaus (BP). In the following, we
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FIG. S3. VQE performance comparison of the “U-shape” FDC, FLDC, and GLDC ansatzes using the toric code model under
the external field (hx, hy, hz) = (h, 0, h) with N = 12. The data is averaged over the best half of the 100 training trajectories
starting from different initializations. (a) shows the converged energy E/N vs h. The inset depicts the energy training dynamics
at h = 0.1. The dashed lines represent the exact values obtained from ED. The (shaded) error bar represents the standard
deviation. (b) shows the topological entanglement entropy Stopo correspondingly.

will show that the known related classical methods in tensor networks [69, 73–76, 93, 94] cannot efficiently simulate
finite local-depth circuits (FLDC) in general for the ground state preparation task (FLDC in 2 dimensions and above
specifically). In other words, to the best of our knowledge, FLDC is the first circuit class that is proven to be BP-
free and at the same time cannot be efficiently simulated by existing classical methods. We will provide a detailed
discussion in this section and explain why the FDLC class contains a path to quantum advantage.

First of all, we would like to clarify a fact to facilitate subsequent discussions. The task of ground state preparation
is closely tied to the estimation of observables. Merely storing the ground state wavefunction in a classical or quantum
memory cannot be considered as accomplishing a meaningful task completely. This is attributed to three reasons: (a)
The classical and quantum outputs of ground state preparation take different forms and are not directly comparable.
To establish comparability, it is necessary to designate the final output as a measurement result, such as the ground
state energy. (b) In practical physical or chemical applications, the ground state wavefunction and even the ground
state energy are often considered just as intermediate results. The ultimate concern is to know the properties of the
ground state by measuring other observables on the ground state, such as order parameters, correlation functions,
entanglement entropy, and so forth [64, 76, 95–97]. (c) In practice, the process of optimizing a variational ansatz to
obtain the ground state inherently involves the estimation of observables. For instance, in VQE, the optimization is
based on estimating the energy of the ansatz state, i.e., the expectation value of the Hamiltonian, which is usually
obtained by measuring each summed term in the Hamiltonian. Therefore, to discuss the classical simulability clearly,
we will investigate the following two cases respectively:

(i) Preparing the ground state and estimating the ground state energy (or say the cost function in variational
quantum algorithms). Here we focus on spatially local Hamiltonians so that only local observables need to be
estimated.

(ii) Preparing the ground state and estimating various quantities of interest, including the ground state energy, order
parameters, correlation functions, and so on. Note that in this case, the observables that need to be estimated
can be spatially local, or spatially non-local but still few-body, or even many-body, etc. These features will
further increase the difficulty of classical simulation.

We first consider the case (i). We will categorize the discussion in terms of circuit depth. In advance, we clarify
that when mentioning the spatial dimension of a quantum circuit, we actually assume the existence of gate locality.
In other words, we assume that there is a qubit connectivity graph such that the gates in the circuit only act on a few
neighboring qubits. We refer to the circuits with gate locality as “local circuits” [57]. If the connectivity graph is a
D-dimensional lattice (or say grid), we say the circuit has a spatial dimension of D. The local observables mentioned
in case (i) mean that the support of the observables only involves a few neighboring qubits in the connectivity graph.
Please note the distinction between the concepts of “local” and “few-body”. Local naturally implies few-body (the
support of the operator does not scale with the system size), together with the condition that the corresponding
few qubits must be neighboring, while few-body does not necessarily imply local, which means that the involved few



32

qubits can be far apart in the connectivity graph. In the subsequent discussions, we assume that quantum gates are
all few-body, and when talking about circuits with spatial dimensions, gates are all local, unless otherwise stated.

• For shallow circuits of constant or logarithmic depth [29–31, 41–44] such as the shallow brickwall circuits [29, 30],
the quantum convolutional neural networks (QCNN) [31], and the multi-scale entanglement renormalization
ansatzes (MERA) [41–44, 98], local observables are easy to estimate [77] even regardless of gate locality. This
can be easily understood by the fact that the backward causal cone of the local observable in the circuit can
either be truncated by the constant depth like (the orange square indicate the location of the local observable
and the orange shaded area indicate the causal cone)

, (S83)

or only have a small treewidth in log-depth circuits [77, 78]. Note that the treewidth characterizes how close
a graph is to a tree [78], and tree tensor networks can be efficiently contracted because the degrees of the
tensors would not increase when contracting from the leaves to the root. It is known that the computational
overhead for contracting a tensor network (TN) grows exponentially with the treewidth in the worst case [78].
Thus, estimating local observables in shallow circuits can be simulated classically within polynomial time by
determining the causal cone and contracting the corresponding tensor networks. However, we also point out
that in some practical cases, due to potential large constant factors and power exponents in the complexity
scaling, classical computers may still require very long times to contract the corresponding tensor networks,
such as MERA in higher spatial dimensions.

• For FLDCs, the spatial dimension is of great importance and needs to be handled carefully. We will categorize
and discuss them. We remark that a significant feature of local FLDCs is that the generated quantum states
satisfy the entanglement area law (or say boundary law) because the number of gates acting across any simple
partition boundary entangling the two sides can be upper bounded by the local depth times the size of the
boundary. This feature makes them form a subclass of the projected entangled paired states (PEPS) [3, 5] of
the corresponding spatial dimension. 1D PEPS is just the class of matrix product states (MPS) [5].

◦ 1D FLDCs are classically easy to simulate using MPS. The technical reason is that 1D FLDCs have chain-
like structures and hence have constant treewidths. To be specific, unlike in shallow circuits, the causal
cone can be large in a 1D FLDC, especially for the local observable near the gates that act later in the
sequence, as depicted below

. (S84)

Nonetheless, a chain-like circuit structure arises thanks to the 1D geometry and the constant local-depth.
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This chain-like circuit further gives rise to a chain-like TN structure for the expectation value ⟨ψ|O|ψ⟩

, (S85)

which has a constant treewidth and hence can be efficiently contracted [78]. The underlying physical
reason is that the 1D entanglement boundary law is trivial, i.e., the entanglement entropy for any simple
partition can be upper bounded by a constant (i.e., the boundaries of lines are just points). The variational
optimization and observable estimation in MPS, also known as the famed density-matrix renormalization
group (DMRG) algorithm [2], can be accomplished within linear time. Even certain FLDCs of linear depth
with ancilla qubits can be exactly seen as MPS of the canonical form [40, 43, 44, 59, 99]. 1D ground
states that violate the entanglement area law, such as in gapless critical systems, can still be effectively
simulated classically by MPS with polynomially large bond dimension or 1D MERA [4, 78]. To sum up,
for 1D ground states, classical simulations have already provided efficient solutions [100]. In fact, it has
been proven that there is no topological order in 1D qubit systems [101–104] and log-depth circuits are
enough to generate MPS [99], which implies that 1D systems cannot be the suitable domain to showcase
the advantage of FLDC in principle. This is also why the numerical experiments in this work use a 2D
model.

◦ 2D FLDCs do not have the chain-like structures as in 1D anymore (i.e., strings can form loops in 2D
and above). The TNs for the expectation values in 2D FLDCs may have very large treewidth that grows
polynomially with the system size. A toy example of 2 × 2 qubits with 2-qubit blocks is depicted below
(darker colors indicate later action orders)

, (S86)

which has a treewidth larger than that of the strict 1D case in Eq. (S85) due to an additional loop structure.
While this is just an example of minimal size (even topologically equivalent to a 1D ring), it reveals a simple
fact: a loop on the block pattern within the causal cone [the left-hand side of Eq. (S86)] can correspond
to a loop structure in the TN of the expectation value of the observable [the right-hand side of Eq. (S86)].
Hence, every time the 2-qubit block pattern within the causal cone on the qubit connectivity graph forms
a closed loop, the corresponding TN is expected to deviate further from being a tree, resulting in a larger
treewidth. In addition, a β-qubit block with β > 2 can be considered as containing loops of 2-qubit blocks
in itself. If there are extensive loop configurations on the block pattern within the causal cone like

, (S87)

or like in Fig. 1(b) of the manuscript, such that the treewidth scales polynomially with the system size
[A strict result in graph theory is that the treewidth of a 1D grid is 1, while that of a 2D grid of size
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FIG. S4. (a) and (b) depict the time and space cost, respectively, for contracting the TN of the expectation value of a single-
qubit Pauli operator regarding the 2D FLDC in Eq. (S80) versus the side length of the L× L 2D grid. Here the term “flops”
represents the total number of scalar operations during the tensor contraction, and “size” represents the size of the largest
intermediate tensor during the tensor contraction. See the documentation of cotengra [105] for more information.

L × L is L, and that of a 3D grid of size L × L × L is Ω(L2)], the time complexity of contracting TNs of
2D FLDCs is expected to scale exponentially with the system size in the worst case [78]. We numerically
verify this by conducting classical simulations for a 2D FLDC leveraging the optimized TN contraction
library cotengra [105]. The circuit used here is exactly the same as that in our numerical experiment on
the generalized toric code model, i.e., sequentially applying the “claw-shape” block on each plaquette of
the L × L 2D lattice. The local observable is chosen as a single Pauli operator within the support of the
last gate (so that the causal cone can cover the whole system). For clarity, we depict the circuit together
with the location of the local observable below

L

. (S88)

One can see there are loops of 2-qubit gates formed among plaquettes. The data in Figs. S4 shows an
exponential growth in both time and space complexity with the side length. This indicates that even
with state-of-the-art optimized contraction strategies [105], general 2D FLDCs still cannot be simulated
efficiently via contracting TNs to estimate local observables. To further corroborate this point, we review
the subclasses of 2D PEPS that have been studied previously [69, 73–76, 93, 94], and explain why some
of them can be efficiently simulated. Here, we start with cases that have theoretical guarantees and do not
delve into ambiguous situations, such as heuristic algorithms without controllable errors [106–109].

∗ Sequential generated states (SGS) [69] refer to those states generated by acting 2-qubit gates sequen-
tially on a series of parallel MPS along the direction perpendicular to the MPS. Alternatively, SGS
can be seen as generated by FLDC under the condition that the 2-qubit gates along the ŷ-direction
are all applied first, and then those along the x̂-direction start to be applied. Thus, local observables
can be efficiently estimated classically [69]. This can be understood by the fact that the causal cone
only involves few x̂-slices, which prevents from forming many loops mentioned above, making the
corresponding TN tree-like.

∗ Isometric PEPS (isoPEPS) [61, 73, 76] restricts each local tensor in PEPS as isometries. Only the local

https://cotengra.readthedocs.io/en/latest/advanced.html#objective
https://cotengra.readthedocs.io/en/latest/advanced.html#objective
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observables close to the so-called orthogonality hypersurface can be computed efficiently (where the
“causal cone” is tree-like), and those not close can only be computed by uncontrollable approximation
techniques [73].

∗ Plaquette PEPS (P-PEPS) [62] applies a linear number of unitaries acting on plaquettes of overlapping
regions sequentially. Only the local observables at special locations (near the gates that act earlier in
the sequence) whose causal cone is small can be efficiently estimated. No efficient method is known
for estimating local observables in P-PEPS for general cases [62].

One can see that the classical simulability of these subclasses is consistent with the “loop argument”
mentioned below Eq. (S86), i.e., the classically simulable cases always have a tree-like causal cone. That
is to say, after canceling the trivial unitaries or isometries with their Hemitian conjugates, the remaining
TN structure has a treewidth that does not scale with the system size. Moreover, it has been proved [62]
that these circuit subclasses form a hierarchy SGS ⊂ isoPEPS ⊂ P-PEPS with the increasing complexity
of classical simulation. In addition, P-PEPS has a finite local depth by definition and hence we have
P-PEPS ⊂ FLDC (note that compared to P-PEPS, FLDC has the freedom to include non-local but few-
qubit gates). Physical ground states in iso-PEPS include string-net states [64, 74] and those in P-PEPS
include certain fracton-ordered states [57]. For the sake of the ability of FLDC to apply non-local gates
(which could be experimentally relevant with the reconfigurable neutral atom platform [110, 111]), FLDC
may include chiral topologically ordered states [51, 112] and the ground states (code space) for the quantum
low-density parity-check (qLDPC) code stabilizer Hamiltonians which contain few-body but non-local Pauli
string terms [113–115]. However, determining precisely which physical states belong to which classes and
which do not remains an open problem. Up to this point, we see that for iso-PEPS and especially P-PEPS,
estimating local observables generally has no known efficient method with controllable error [62]. As a
superset of P-PEPS, FLDC naturally does not either. Therefore, we conclude that to the best of our
knowledge, in general, the existing classical TN methods [69, 73–76, 93, 94] cannot efficiently simulate 2D
FLDCs even in case (i).

◦ For 3D FLDCs and those of higher dimensions and even the scenarios without gate locality (i.e., arbitrary
connectivity graphs such as in big chemical molecules), TN contraction can only be more challenging than
2D. Meanwhile, our proof of the absence of barren plateaus still holds for these higher-dimensional and
non-local FLDCs.

To sum up, in case (i), 1D FLDCs can be efficiently simulated by TN methods classically while 2D FLDCs and
beyond in general can not. On top of that, our theorem also indicates that a superclass of FLDC, i.e., logarithmic
local-depth circuits (Log-LDC) which are beyond entanglement-area-law states, is also BP-free. Log-LDC can
be included by generalized PEPS with polynomially increasing bond dimensions. Hence, the corresponding
classical simulation can only be more challenging.

• For general linear depth circuits (GLDC) or polynomial depth circuits beyond FLDC and Log-LDC, barren
plateaus are proven starting to occur [20]. At the same time, it comes to the regime of general quantum
simulation [9, 116, 117], which is not solvable on a classical computer in polynomial time in general unless
BQP = BPP. It is worth noting that the difficulty in simulating general quantum circuits through contraction
TNs also arises from extensive loops [78], albeit not in the pure spatial domains but rather in the space-time
domains.

To conclude, among the hierarchy listed above, the critical point for BP lies between FDLC and GLDC, while the
critical point of confirmed classical simulability lies between 1D FDLC and 2D FDLC. Hence, there exists a region
that is BP-free and not efficiently classically simulable with known methods, i.e., FDLC in 2D and above, as depicted
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below.

Finite/Log Depth Finite/Log Local-Depth General Linear Depth

1D 2D, 3D, ..., non-local

Barren-Plateau-free Barren Plateaus

Classically Simulable
(Local Observable)

Not Classically Simulable in General
with Known Methods

(S89)

In particular, it is worth mentioning that the fact that running FLDC is in BQP has no contradiction with the fact
that contracting PEPS is #P-complete [7] which is believed not in BQP, because the states generated by local FLDCs
just form a subclass of all PEPS.

After we complete this work, we notice that a very recent paper [79] rigorously proves that computing expectation
values of local observables in isoPEPS (referred to as isometric tensor network states in Ref. [79]) is BQP-complete,
i.e., is hard to simulate classically unless BQP = BPP. Since isoPEPS is a subclass of FLDC, this result directly proves
that FLDC is also hard to simulate classically in general unless BQP = BPP. That is to say, FLDC can be seen as a
typical counterexample of the strong version of the conjecture in Ref. [77]. In other words, our results demonstrate
that the provable absence of barren plateaus does not necessarily imply classical simulability in the full parameter
space. Nevertheless, we also remark that demonstrating the quantum advantage of barren-plateau-free circuits in
practical problems of interest still requires further research.

Next, we consider case (ii), which arises from the need to solve practical problems in quantum physics. In this
case, we not only need to measure local observables in the Hamiltonian during the training process but also need to
measure other observables of interest on the ground state after training, which can involve non-local and many-body
observables. Similar to case (i), we categorize the discussion in terms of circuit depth. (One may think that the
measurements after training can be separated from the training process, i.e., classically simulating the training and
then loading the circuit on quantum devices, so that the quantum advantage in subsequent measurements has nothing
to do with the training. However, we remark that the classical simulation of the training process can also be affected
by barren plateaus [29, 40, 47]. Thus, whether the training process is classical or quantum, a ground state ansatz of
circuit form without barren plateaus is always a necessary condition for achieving quantum advantage in subsequent
measurements.)

• For few-body but non-local observables, shallow circuits can be efficiently simulated due to the same reason for
local observables mentioned above. For many-body observables, Ref. [94] has proved that 2D finite-depth circuits
(FDC) can be efficiently simulated to estimate tensor-product observables, which is realized by leveraging the
fact that the individual small causal cones allow for reducing the corresponding 2D TN into a series of quasi-1D
structures, enabling efficient simulations. Of course, it is also true for 1D FDC due to the efficiency of MPS.
However, no efficient method is known for 3D and beyond [94]. For logarithmic depth circuits, it has been
known that the 1D case can be classically simulated within polynomial time even for many-body observables
because the treewidth of the 1D local circuit can be upper bounded by the logarithmic depth [78].

• For 1D FLDCs, many-body observables can be estimated efficiently again due to the efficiency of MPS. For
the subclasses in 2D FLDCs, it is known that few-body observables can be estimated efficiently in SGS [69],
but generally not in iso-PEPS [73] and P-PEPS [62]. When it comes to many-body observables, none of these
subclasses is known to be classically simulable [62, 69, 73]. For general 2D FLDCs and those of higher dimensions
and the scenarios without gate locality, the simulation can only be more challenging.

• For general linear or polynomial depth circuits, classical simulation estimating non-local observables can only
be more difficult than estimating local observables.

In particular, we consider an extreme task in case (ii): estimating the so-called “dynamical correlation” at zero
temperature (i.e., on the ground state) [97, 118], which is particularly of physical interest as it encodes the important
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information of elementary excitations in the system. The expression of the dynamical correlation, or say propagator
/ non-equal-time correlation is of the form

C(t) = ⟨G|O2(t)O1(0)|G⟩ = ⟨G|eiHtO2e
−iHtO1|G⟩, (S90)

where |G⟩ is the ground state of the Hamiltonian H. O1 and O2 are two given observables separated by a period
of time evolution e−iHt. Oj(t) = eiHtOje

−iHt represents the time-evolved operator under the Heisenberg picture.
One can see that estimating C(t) involves both the ground state preparation and the Hamiltonian simulation as its
subroutines. The Hamiltonian simulation [9] is hard not only for TN contractions but also for quantum Monte Carlo
techniques, which in general cannot be classically simulated unless BQP = BPP. To enable the quantum advantage in
estimating C(t), a trainable and expressive ground state ansatz of quantum circuit form, especially those expressive
enough to contain quantum states of physical interest such as topologically ordered states (i.e., FLDC), becomes a
necessary condition. This further underscores the significance of the results in our manuscript.

To conclude, in case (ii), the scope of efficient classical simulation becomes even smaller than that in case (i).
Especially, FLDCs of 2D and above are not classically simulable and the simulable special cases within them become
fewer than those in case (i). In other words, if one considers measuring non-local observables of interest as a part
of the task, the possibility that the FLDC class contains a path to quantum advantage becomes larger than merely
preparing the ground states of spatially local Hamiltonians.

V. Measurement-assisted Approach to Generate Long-Range Entanglement

Apart from purely unitary quantum circuits, we notice that if assisted by intermediate measurement and non-local
classical feedback, constant depth circuits can also generate long-range entanglement, which is one of the recent hot
topics in the field of quantum many-body physics [119–125]. We will give a brief discussion on this measurement-
assisted approach for comparison.

To discuss more concretely in the following, we take the pure toric code model H = −∑
v Av − ∑

pBp for an

example [124]. Starting from the initial state |0⟩⊗N which is already the eigenstate state of Av, we can obtain one
of the eigenstates of the Hamiltonian by just simply measuring all Bp terms (note that reducing the measurements
of Bp to single-qubit measurements requires a constant depth circuit composed of CNOTs) so that the state will be
projected into one of the eigenstates. The measurement results of Bp can be +1 or −1 randomly, where the plaquettes
with −1 can be regarded as the positions of anyon excitations. The ground state can be obtained by annihilating
these anyon excitations in pairs via a single classical feedback layer of commuting string operators [124], analogous
to what one does in quantum error correction. Through this approach, one can see that certain quantum states with
long-range entanglement can indeed be prepared by constant depth circuits assisted by constant depth measurements
and classical feedback, which circumvents the linear bounds [55] thanks to the non-unitarity of measurement. Below,
we further discuss the classical simulability of FLDC and long-range entangled (LRE) states regarding the context of
this measurement-assisted approach.

• Classically simulating constant depth circuits assisted with measurement and classical feedback, is not as easy as
simulating only constant depth circuits. The efficiency in circuit depth of this measurement-assisted approach
comes from the non-unitarity of measurement, but precisely because of the non-unitarity, the difficulty of
classical simulation is significantly increased. To be specific, as discussed above, estimating local observables
for constant depth circuits is easy to simulate classically for the sake of the small causal cone [77, 94], i.e., the
unitaries outside the causal cone are eliminated by their Hermitian conjugations so that they do not need to be
computed at all. Nevertheless, when there are non-unitary operators within the circuit (such as the projectors in
projective measurements), especially when there are many of them covering the whole system (such as the pure
toric code example above), the small causal cone does not exist anymore in general, so that one must contract
all operators in the circuit to obtain the final result, which will make classical simulation extremely hard in 2D
and above. In addition, it is worth mentioning that PEPS, short for “Projected Entangled Paired State” [3],
itself can be viewed as obtained by projections onto states from constant depth circuits, which further highlights
the difficulties of classical simulation introduced by the non-unitary factors like projections.

• There exist some long-range entangled ground states thought to be beyond the reach of this measurement-
assisted approach of constant depth, such as the famous Fibonacci topologically ordered states [125] which
plays an important role in topological quantum computing, while these states are still within the reach of the
subclasses of FLDC [57, 64].
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• At the current stage, this measurement-assisted approach seems to strongly rely on our complete knowledge of
the quantum state to be prepared, or say the exact solution of the given model, which makes the approach hard
to incorporate into the framework of VQE. To be specific, in the common case of VQE with unitary circuits,
in each iteration, we need to prepare the ansatz state many times to measure the energy expectation value for
subsequent optimization. In terms of the measurement-assisted approach, for the exactly solvable models like
the pure toric code model, we can also prepare the same state as many times as we want because we know exactly
how to perform classical feedback for the different measurement outcomes (e.g., annihilating anyon excitations
in pairs) to correct the resulting state. Nevertheless, for an arbitrary state, especially for the ground states
of the non-exactly solvable models like the GTC model we used in the manuscript, one cannot even prepare
the same state each time because one does not know what classical feedback to apply such that the different
resulting states after the measurement can be corrected to the same state. Therefore, when considering it as
a VQE ansatz, implementing this measurement-assisted approach poses extra challenges compared to directly
running unitary quantum circuits like FLDC.
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