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Using the density-matrix renormalization group, we determine the different topological phases and
low-energy excitations of a time-reversal invariant topological superconducting (TRITOPS) wire
with extended s-wave superconductivity, Rashba spin-orbit coupling (SOC) and on-site repulsion
U , under an externally applied Zeeman field J . For the case in which J is perpendicular to the
SOC, the model describes a chain of Shiba impurities on top of a superconductor with extended
superconductor pairing. We identify the different topological phases of the model at temperature
T = 0, and in particular study the stability of the TRITOPS phase against the Zeeman field J
and the chemical potential µ, for different values of U . In the case where the magnetic field J is
perpendicular to the SOC axis, the pair of Kramers-degenerate Majorana zero modes at the edges
of the system that exist for J = 0, remain degenerate until a critical value of the magnetic field is
reached. For J parallel to the SOC and up to moderate values of U , the fractional spin projection
⟨Sy⟩ = 1/4 at the ends, found for non-interacting wires at U = 0, is recovered. In addition, the
analytic expression that relates ⟨Sy⟩ with J for finite non-interacting chains is shown to be universal
up to moderate values of U .

I. INTRODUCTION

The quest for topological phases of matter and, in par-
ticular, topological superconductors (TOPS) has been a
major pursuit in condensed matter physics for the last 20
years [1]. TOPS phases hosting elusive Majorana zero-
modes (MZMs) have attracted a lot of interest both from
the fundamental point of view, as well as for potential
uses in fault-tolerant quantum computation due to their
exotic non-Abelian anyonic statistics [2].
Although much of the progress in this area has been

achieved within a framework of non-interacting electrons
(i.e., the topological classification of TOPS phases ac-
cording to their symmetries and the identification of pos-
sible topological invariants), the effects of interactions
still remains as a conceptually important open question.
Moreover, many of the technologically relevant applica-
tions might involve low-dimensional TOPS systems, for
which the effects of interactions are enhanced [3]. There-
fore, the study of interaction effects on TOPS is also
relevant from the technological perspective.
Up to now, a variety of different physical systems

have been proposed to realize TOPS phases host-
ing MZM states: ν = 5/2 fractional quantum Hall
state [4], superfluid He-3 [5], proximitized topological
insulator-superconductor structures [6], superconducting
heterostructures combining proximity-induced supercon-
ductivity, semiconductors with strong Rashba spin-orbit
interaction and Zeeman fields [7–9], etc. All these sys-
tems are potential realizations of TOPS phases which
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break time-reversal symmetry (“class D ”TOPS in the
Altland-Zirnbauer classification [10, 11]).

A different class, the time-reversal invariant TOPS
(TRITOPS) or DIII class TOPS originally proposed by
Qi et al [12, 13], has been predicted by Zhang, Kane and
Mele (ZKM) to arise in 1D or 2D geometries by combin-
ing semiconductors with strong Rashba spin-orbit cou-
pling (SOC) (i.e., nanowires or films) proximitized with
extended s-wave superconductors [14]. The TRITOPS
have been recently the subject of intense theoretical re-
search [12–27]. For 1D TRITOPS, a key feature is the
existence of Kramers pairs of MZMs at the edges of the
system. Another peculiar feature is that the spin pro-
jection at the ends in the direction of the SOC is ±1/4
[12, 21, 25]. For a TRITOPS wire of length L, MZMs
are well defined as long as L ≫ ξ, with ξ the MZM lo-
calization length. Under these conditions, an external
magnetic field applied to one half of the wire in the di-
rection of the SOC produces a Zeeman-split pair of low-
energy MZMs with total spin projection at the end equal
to 1/4 or -1/4, depending on the sign of the magnetic
field [21, 25].

The effect of repulsive interactions in 1D TOPS and
TRITOPS has been studied in previous works using
e.g., mean-field approaches [28], density-matrix renor-
malization group (DMRG) [29], the Abelian bosonization
framework [30], and numerical renormalization group for
two sites [31]. While for 1D TOPS interactions tend to
weaken the superconducting correlations, therefore weak-
ening the TOPS phase [32, 33], it was suggested that
repulsive interactions in a 1D system stabilizes the TRI-
TOPS phase. The basic stabilization mechanism con-
sists in local repulsive interactions which penalize the
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proximity-induced singlet pairing with respect to the
proximity-induced triplet pairing [30, 34]. In addition,
although it is not the scope of the present work, we men-
tion in passing that the effect of attractive interactions
on TRITOPS has also been studied [35].

In this article we explore the effects of on-site repul-
sive interaction U on the ZKM model in the presence
of a magnetic field J . For J perpendicular to the SOC,
the model describes hybrid magnet-superconductor sys-
tems with TOPS and TRITOPS phases, in particular
magnetic adatoms (i.e., Fe, Co, or Mn atoms) deposited
on top of a superconductor, a system usually known as
a “Shiba chain ”. Recent experimental progress in these
type of hybrid nanostructures have shown preliminary ev-
idence of MZMs in the dI/dV STM signal [36–42], draw-
ing a lot of interest. However, the small size of the parent
superconductor gap (typically Pb) imposes practical dif-
ficulties in all type of proximity-induced TOPS, such as
e.g., stringent low-temperature requirements and limited
spectral resolution of the experiments. For this reason,
recent theoretical proposals have put forward the possi-
bility to observe both TOPS and TRITOPS in nanos-
tructures made of magnetic impurities deposited at the
surface of unconventional high Tc superconductors, gen-
erating renewed interest on these hybrid structures [43].

In this work, using the density-matrix renormalization
group (DMRG) method, we study the topological phase
diagram of the system for finite magnetic field perpen-
dicular to the SOC and for different values of U . We also
explore the response of the MZMs to the presence of a
magnetic field applied to one half of the chain. Such a
magnetic probe can help to detect and identify the topo-
logical phase of the chain. In particular, we show that
the fractional spin 1/4 excitations at each end of the wire,
predicted to emerge in non-interacting models for mag-
netic field parallel to the SOC [12, 21, 25], are robust to
the presence of strong interactions.

The paper is organized as follows. In Section II we
explain our model. Section III contains the main results
and Section IV is a summary and discussion.

II. THEORETICAL MODEL AND METHODS

We consider the following discrete Hamiltonian encod-
ing the minimal ingredients leading to a TRITOPS phase
(in close analogy to the ZKM model in the continuum),
with additional Zeeman and an on-site repulsion terms:

H =
∑
j

[(
tc†jcj+1 −

(
µ

2
+

U

4

)
c†jcj +∆c†j,↑c

†
j+1,↓

+iαRc
†
jσycj+1 +H.c.

)
− Jc†jσβcj + Unj,↑nj,↓

]
(1)

where c†j = (c†j,↑, c
†
j,↓) is a spinor containing both

fermionic creation operators at site j with spin projec-
tions {↑, ↓}, σα (with α = {x, y, z}) are the 2 × 2 Pauli

matrices, t is the nearest-neighbor hopping amplitude, µ
is the chemical potential, αR is the Rashba SOC in the y
direction, ∆ is the extended s-wave amplitude of the su-
perconducting first-neighbor pairing correlations, and U
is the on-site electron-electron repulsion. This particular
form of Eq. (1) ensures that for any value of U , µ = 0
corresponds to the particle-hole symmetric point.

While the presence of a nearby bulk superconductor
usually screens the electron-electron interaction, in low-
dimensional nanostructures of reduced dimensions, local
repulsion terms of this type might be relevant, and in
fact (as we show below) this is the case for the ground-
state phase diagram of this system. In the above model,
the Zeeman parameter J can either represent the effect
of an external magnetic field (J = µBB) applied along
the β direction, or (in the case of atomic Shiba chains)
the effect of a local exchange field originated in a micro-
scopic s-d exchange interaction Isd (J = 2IsdS

j
z) between

the conduction states and the magnetic impurities Sj
z as-

sumed ferromagnetically aligned along z at each site j of
the chain. In this case, β = z and the effect is similar to
a magnetic field perpendicular to the SOC. We will also
consider the case when J is parallel to the SOC (β = y).
All the numerical results presented in this work have

been obtained by the means of DMRG computations,
implemented using the ITensor software library [44]. We
have implemented the necessary maximum bond dimen-
sion (400 in the worst case) which allowed us to keep the
truncation error cutoff of 10−10 throughout.

III. RESULTS

A. Topological phase diagram

We now focus on the ground-state properties of the sys-
tem and study the topological phase diagram as a func-
tion of the chemical potential µ and the Zeeman field
J perpendicular to the SOC, for different values of the
interaction parameter U (see Fig. 1). The other param-
eters of the model are fixed throughout the rest of the
paper to the values ∆ = 1.2, αR = 0.8 (here the hopping
amplitude t = 1 has been chosen as the unit of energy).
This particular parameter set has been chosen to coincide
with those used in Ref. [43].

We determine the topological nature of the ground
state by analyzing the degeneracy of the reduced density
matrix entanglement spectrum [45, 46]. Given a quan-
tum system which can be divided into two subsystems
A and B, the entanglement spectrum is the spectrum of
eigenvalues of the reduced density-matrix ρA (ρB), ob-
tained after tracing out the B (A) degrees of freedom.
The change of degeneracies in the entanglement spec-
trum is indicative of topological quantum phase transi-
tions occurring in the ground state of the whole system,
and is related to the degeneracy of the ground-state and
the number of MZMs per end of the chain [45, 46].

Generically speaking, starting from a parameter
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FIG. 1. (Color online) Topological phase diagram as a func-
tion of chemical potential and magnetic field perpendicular to
the SOC. Red (black) dots correspond to four-fold (two-fold)
degeneracy of the entanglement spectrum. Parameters are
∆ = 1.2 and α = 0.8, and the length of the chain is L = 400
sites.

FIG. 2. (Color online) Superconducting single-particle excita-
tion gap ∆s (defined in the main text) computed for several
values of U , and for µ = J = 0. Inset: Finite-size scaling
showing the first excitations in the odd-parity subspace for
U = 6.

-

regime which realizes a time-reversal symmetric super-
conductor [J = 0 in our model Eq. (1)] and for low
or moderate values of µ, we obtain a 4-fold degenerate
ground state indicative of a TRITOPS phase (red dots
in Fig. 1). Interestingly, we see that this phase is robust
against the effect of a uniform magnetic field perpendic-
ular to the SOC, and only for quite large values of J
beyond a critical line Jc(µ) the system becomes a DIII
TOPS with a two-fold degenerate ground state (see black
dots). Additionally, for extremely low (large) values of
µ, the bands can be completely depleted (filled) and the
system becomes a trivial insulator with a non-degenerate
ground state (white region in Fig. 1).

The aforementioned robustness of the 4-fold ground-
state multiplet is quite surprising given the fact that
time-reversal symmetry no longer protects the TRITOPS
phase. In the non-interacting case, this is related to
the presence of an additional chiral symmetry, imple-
mented by the operator S = σyτy (where the Pauli ma-
trices τα operate on the Nambu space) which anticom-
mutes with H. Indeed, for U = 0, and taking periodic
boundary conditions in Eq. (1) , the Hamiltonian ma-
trix of the system takes the compact form in k-space
Hk = (ϵk − µ)σ0τz + ασyτz + ∆kσ0τx + Jσβτ0, where

the Nambu basis Ψk = (ck↑, cc,↓, c
†
−k↓,−c†−k↑)

T has been

used, and where ϵk = 2t cos(k) and ∆k = ∆cos(k). It
is easy to see that when β = z the chiral operator S
anticommutes with Hk, and generates a chiral symme-
try which is additional to the time-reversal symmetry
occurring for J = 0. This additional symmetry allows
to compute a Z invariant which counts the number of
MZMs at each end of the wire [47].

On the other hand, as can be seen in Fig. 1, the pres-
ence of a local on-site interaction Hubbard U term has an
important effect on the topological phase diagram, as it
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tends to weaken the TRITOPS phase with respect to the
magnetic field. This effect can be qualitatively under-
stood in terms of an effective non-interacting model with
a smaller renormalized superconducting bulk gap due to
the repulsive interaction. In the following we denote this
gap excluding the low-energy excitations related with the
MZMs as ∆s. This gap is calculated as follows. The one-
particle excitations energies are defined as the different
energies in the subspace with odd number of particles mi-
nus the ground-state energy (which lies in the subspace
with even number of particles)

En = E(odd)
n − E(even)

g , (2)

where the subscript g denotes the ground state. Among
these En, in the topologically non-trivial regions, there is
a low-lying subset which correspond to the MZMs, with
a small exponential splitting ∼ e−L/ξ for a finite chain,
due to the mixing of the MZMs between both ends. The
corresponding excitation energies of this subset behave
as En → 0 for L → ∞, and can be easily identified with
a finite-size scaling analysis. The next excitation energy
above this multiplet defines ∆s, which can be identified
with bulk excitations. In Fig. 2, we show ∆s as a func-
tion of on-site repulsion. One can clearly see that the
value of ∆s decreases by nearly a factor 2 as U increases
from 2 to 6. The detrimental effects of the repulsive in-
teractions on ∆s allows to qualitatively understand the
topological phase diagram on Fig. 1. In the inset of
Fig. 2, we show the aforementioned low-lying mulltiplet
of MZMs, and the bulk-excitation gap ∆s (for which no
appreciable dependence of ∆s ∼ 0.58 on the length of the
chain L is observed), computed for the particular value
U = 6.

This renormalization of ∆s due to the repulsion U
has detrimental effects on the stability of the TRITOPS
phase, in particular when J is increased (see Fig. 1).
Note however that increasing U also strengthens the TRI-
TOPS phase with respect to the chemical potential µ.
This effect might be actually beneficial for potential im-
plementations of TRITOPS in devices, as it expands the
parameter regime near the line J = 0 where this phase
is realized. Indeed, by changing the parameters of the
model, we can go from either a TRITOPS with 4-fold
degeneracy of the ground state, to a D-class topological
phase with 2-fold degeneracy, to a trivial superconduct-
ing phase with a non-degenerate ground state.

As a way to characterize the different phases of the
model, in the next sections we consider an inhomoge-
neous Zeeman term applied to one half of the system
(i.e., the left half). The introduction of a time-reversal
symmetry-breaking interaction to only one end of the
system allows to phenomenologically characterize the be-
haviour of the MZMs arising in TRITOPS.

FIG. 3. (Color online) Magnetization at the left side of the
non-interacting (U = 0) chain as a function of magnetic field
applied to the left half of the chain. The different data sets
represent different lengths L. The parameters set is t = 1,
∆ = 1.2, α = 0.8 and µ = U = 0.

B. Magnetic field at the end perpendicular to the
SOC

In this section we explore the fate of the MZMs in the
TRITOPS phase when a magnetic field perpendicular to
the SOC is applied to the left part of the chain [Eq. (1)

with a term −J
∑L/2

j=1 c
†
jσzcj ]. To that end we begin

with the study of the non-interacting case U = 0, where
exact calculations independent of the DMRG procedure
are available, and compute the magnetization of the left

half of the chain Sz
l =

∑L/2
j=1 S

z
i .

In the topological phases and for low values of J ,
one expects the magnetization to be dominated by the
MZMs, which are localized near both ends of the chain.
For this reason, the spatial extension of the magnetic field
is not important as long as it is longer than the MZM lo-
calization length ξ. However, rather surprisingly, for a
magnetic field perpendicular to the SOC, the Kramers-
degenerate MZMs of the TRITOPS are not mixed by the
magnetic field [21]. This is related to the additional chi-
ral symmetry S = σyτy mentioned above. The leading
correction to the ground-state energy becomes of second-
order in J (i.e., quasiparticles are excited into the bulk
and then return to the ground state), leading to a linear
dependence of ⟨Sz

l ⟩ with J . This is in fact the behavior
observed for small J , displayed in Fig. 3. The slope is a
fraction of J/∆s, where ∆s is the superconducting gap,
as expected for bulk excitations. For U = 0, the model
can be solved exactly without using DMRG and we used
these calculations to check our DMRG results. Note that
all the plots eventually saturate at the value 1/2, corre-
sponding to the completely polarized ground state, as is
physically expected for very large values of the magnetic
field.
In Fig. 4 we show the changes introduced by a vari-

ation of the chemical potential. For µ ≥ 2 the system
enters the trivial phase and the MZMs disappear. There-
fore, the effect of the magnetic field is much weaker for
small J . However, for large µ, increasing J the system
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FIG. 4. (Color online) Magnetization of the left half of the
chain for L = 32 sites and several values of µ. Other param-
eters as in Fig. 3.

enters the topological phase with one MZM at each end
(black dots in Fig. 1) and ⟨Sz

l ⟩ increases in that region
(for example for 2.6 < J/t < 9.4 for µ = 2.5) before
re-entering the trivial phase for large J , where ⟨Sz

l ⟩ sat-
urates at the value 1/2.

FIG. 5. (Color online) Magnetization of the left half of the
chain for L = 20 sites and several values of U . Other param-
eters as in Fig. 3.

Finally, in Fig. 5 we explore the effect of a finite U .
As discussed in Section 1, the gap ∆s decreases with in-
creasing U and therefore the slope of ⟨Sz

l ⟩ for small J ,
which is expected to be inversely proportional to ∆s in-
creases. This behaviour confirms our interpretation of a
strongly interacting TRITOPS chain in terms of an ef-
fectively non-interacting TRITOPS with a renormalized
parameter ∆s.

C. Magnetic field at the end parallel to the SOC

For a very long chain in the regime L ≫ ξ, and
magnetic field parallel to the SOC, the system effec-
tively behaves as if free fractionalized spins 1/4 ex-
isted at each end. This picture is based on the fact
that an infinitesimally small J generates a magnetisa-

tion ⟨Sy
l ⟩ = 1/4, where Sy

l =
∑L/2

i=1 S
y
i under a mag-

netic field −J
∑L/2

j=1 c
†
jσycj applied to the left half of the

chain [12, 21, 25]. On the other hand, for a finite non-
interacting chain, due to the mixing of MZMs at the ends,
the lowest-lying Kramers-degenerate one-particle excita-
tions have a small but finite energy E(0) for J = 0, which
decays exponentially with the length of the chain. For a
finite Zeeman energy J , the Kramers degeneracy is bro-
ken and E(J), which corresponds to E1 in Eq. (2), de-
creases. E(J) has been calculated analytically in Ref.
21, and the expectation value of the spin projection is
described by the simple expression [21]

⟨Sy
l ⟩ =

2Jy

4
√

(2Jy)2 + 16E(0)2
. (3)

Therefore, the magnetization increases and saturates to
the value 1/4 with an applied field which is orders of
magnitude smaller than in the case of a magnetic field
perpendicular to the SOC discussed in Section III B.

FIG. 6. (Color online) Energy of the lowest one-particle ex-
citation as function of U for a chain of L = 20 sites. Other
parameters as in Fig. 3.

FIG. 7. (Color online) Expectation value of the spin projec-
tion as a function of site for a chain of 20 sites, Jy = 10E(0)
and different values of U . Other parameters as in Fig. 3.

In Fig. 6 we show the dependence of E(0) with U . The
curve follows an exponential behavior with very small
values for U → 0 and increases abruptly for U ∼ 4.
Again, this effect can be qualitatively explained in terms
of a longer localization length ξ ∼ ℏvF /∆s due to the
renormalization of ∆s to lower values by the effect of the
interaction. Presumably, at the value of U ≃ 4 the regime
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L ∼ ξ is reached, and the mixing of MZMs at different
ends becomes important. We illustrate this effect in Fig.
7, where we show the expectation value of the spin at each
site for a chain of L = 20 sites. Note that for U = 0 and
U = 2 the expectation values of ⟨Sy

i ⟩ are localized near
the ends and vanish exponentially fast near the middle
of the chain. However, for U = 5, the magnetization
is spread all over the system, indicating that the MZM
localization length ξ is of the order of L.

Finally, in Fig. 8 we show the expectation value of
the spin projection at the left end as a function of the
magnetic field applied parallel to the SOC, for several
values of U . Interestingly, note that despite the fact that
Eq. (3) was analytically obtained for a non-interacting
model, it remains valid even in the strongly-interacting
regime (i.e., up to U ≲ 3) and shows universal behavior.
Up to U ∼ 5 the expression is only qualitatively valid
and it eventually breaks down for U > 7. This deviation
and breakdown at extremely large values of U occurs
because the MZMs (and therefore, the magnetization) are
no longer localized at the ends, and the analytic approach
of Ref. 21, which assumes localized zero-energy modes at
the ends, is no longer valid.

FIG. 8. (Color online) Magnetization at the left side of the
chain as a function of magnetic field applied to the left part
of the chain for 20 sites and several values of U . Other pa-
rameters as in Fig. 3.

IV. SUMMARY AND DISCUSSION

We have studied the strongly-interacting version of
the one-dimensional Zhang-Kane-Mele model for time-
reversal invariant topological superconductors. The
model contains extended s-wave superconductivity and
Rashba spin-orbit coupling (SOC) as key ingredients,
and we incorporate an on-site Coulomb repulsion U and
an external Zeeman field in order to study the stabil-
ity of the TRITOPS phase and the emerging MZMs
against the combined effects of the repulsive electron-
electron interaction and the external field which breaks
the time-reversal symmetry. The model is relevant to
understand the effect of repulsive interactions in differ-
ent one-dimensional systems predicted to host TRITOPS

phases, such Shiba chains on top of high-Tc superconduc-
tors [43].

Using the DMRG technique, we have determined the
different topological phases of the model as a function of
chemical potential and magnetic field perpendicular to
the SOC. Remarkably, the four-fold degeneracy charac-
teristic of the TRITOPS phase remains stable up to quite
large values of the external Zeeman field (i.e., comparable
to the bandwidth). For larger values of the magnetic field
only the two-fold degenerate topological D phase and the
trivial phase persist.

Concerning the effect of U , an important conclusion
of this work is that despite its effect on the topologi-
cal phase diagram (i.e., redefining the topological phase
boundaries), the presence of local repulsive interactions
has no other qualitative effects. In fact, our results sup-
port a phenomenological picture where electron-electron
interaction can be introduced in the renormalized pa-
rameters of an effectively non-interacting model. This
has been confirmed by the fact that all physical proper-
ties seem to depend on the renormalized single-particle
excitation gap ∆s (see Fig. 2). In few words, the interac-
tion U weakens the four-fold degenerate phase against a
perpendicular magnetic field, but it favors and stabilizes
this phase with respect to a varying chemical potential.
From a practical perspective, this last effect could be use-
ful in potential applications in order to enlarge the range
of chemical potential for which the topological phases ex-
ist.

We note that the persistence of the MZMs when the
interaction is turned on, is not a general result. For ex-
ample, in the interacting Su-Schrieffer-Heeger model, al-
though in presence of the on-site repulsion U , two dif-
ferent topological sectors can still be identified by many-
body topological invariants [48–50], the MZMs end states
disappear even in the topological phase for finite U [49].
The presence of zero-energy edge modes dictated by the
bulk-boundary correspondence is modified by the possi-
ble presence of zeros of the interacting Green’s function
at zero energy [48, 49, 51]. Interestingly, a zero of this
kind is responsible for a topological transition in a two-
channel spin-1 Kondo model with easy-plane anisotropy
[52], which explains several relevant experiments [52–54].

In order to characterize the different phases and the
effect of the on-site interaction, we have calculated the
magnetization at one end of the chain when a magnetic
field is applied to that end. While external magnetic
fields with atomic spatial resolution are not experimen-
tally feasible, in the case of Shiba chains spin-polarized
STM tips have allowed to study the spin response of
atomic chains near the ends [55]. In our work, we ob-
tain a highly anisotropic response depending on the ori-
entation of the externally applied field with respect to the
SOC axis. For a magnetic field J parallel to the SOC, the
spin projection at the end rapidly saturates (i.e., for field
strengths corresponding to the small energy scale E(0)
arising from mixing and energy-splitting of the MZMs
at different ends) to the unconventional value S = 1/4.
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This splitting decays exponentially with L, the length of
the chain. For moderate values of U , the magnetization
at the end follows a universal curve as a function of the
ratio between magnetic field and E(0) [see Eq. (3)].
For magnetic field perpendicular to the SOC, the mag-

netization at the end increases linearly with the applied
field with a slope inversely proportional to the supercon-
ducting gap ∆s.
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