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Abstract

Various first order approaches have been proposed in the literature to solve Linear Program-
ming (LP) problems, recently leading to practically efficient solvers for large-scale LPs. From a
theoretical perspective, linear convergence rates have been established for first order LP algo-
rithms, despite the fact that the underlying formulations are not strongly convex. However, the
convergence rate typically depends on the Hoffman constant of a large matrix that contains the
constraint matrix, as well as the right hand side, cost, and capacity vectors.

We introduce a first order approach for LP optimization with a convergence rate depending
polynomially on the circuit imbalance measure, which is a geometric parameter of the constraint
matrix, and depending logarithmically on the right hand side, capacity, and cost vectors. This
provides much stronger convergence guarantees. For example, if the constraint matrix is totally
unimodular, we obtain polynomial-time algorithms, whereas the convergence guarantees for
approaches based on primal-dual formulations may have arbitrarily slow convergence rates for
this class. Our approach is based on a fast gradient method due to Necoara, Nesterov, and
Glineur (Math. Prog. 2019); this algorithm is called repeatedly in a framework that gradually
fixes variables to the boundary. This technique is based on a new approximate version of Tardos’s
method, that was used to obtain a strongly polynomial algorithm for combinatorial LPs (Oper.
Res. 1986).
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1 Introduction

In this paper, we develop new first order algorithms for approximately solving the linear program

min 〈c, x〉
Ax = b ,

0 ≤ x ≤ u ,

(LP(A, b, c, u))

where A ∈ Rm×n, b ∈ Rm, c, u ∈ Rn. We assume that m ≤ n. We use the notation [0, u] = {x ∈
Rn | 0 ≤ x ≤ u}, and denote the feasible region as PA,b,u := {x ∈ Rn | Ax = b , x ∈ [0, u]}.

Linear programming (LP) is one of the most fundamental optimization problems with an im-
mense range of applications in applied mathematics, operations research, computer science, and
more. While Dantzig’s Simplex method works well in practice, its running time may be exponential
in the worst case. Breakthrough results in the 1970s and 1980s led to the development of the first
polynomial time algorithms, the ellipsoid method [13] and interior point methods (IPMs) [12]. The
Simplex method was one of the earliest computations implemented on a computer, and there are
highly efficient LP solvers available, based on the Simplex and interior point methods.

Linear programming can also be seen as a special case of more general optimization models: it
can be captured by various convex programs, saddle point problems, and linear complementarity
problems. These connections led to the development of new LP algorithms being an important
driving force in the development of optimization theory.

In this paper, we focus on first order methods (FOMs) for LP. The benefit of FOMs is cheap
iteration complexity and efficient implementability for large-scale problems. In contrast to IPMs,
they do not require careful initialization. FOMs are prevalent in optimization and machine learn-
ing, but they are not an obvious choice for LP for two reasons. First, the standard formulation
has a complicated polyhedral feasible region, and therefore standard techniques are not directly
applicable. Second, FOMs usually do not lead to polynomial running time guarantees: this is in
contrast with IPMs that are polynomial and also efficient in practice.

Nevertheless, FOMs turn out to be practically efficient for large-scale LPs. In a recent paper
Applegate et al. [1] use a restarted primal-dual hybrid gradient (PDHG) method based on a saddle
point formulation. Their implementation outperforms the state-of-the art commercial Simplex
and IPM solvers on standard benchmark instances, and is able to find high accuracy solutions to
large-scale PageRank instances.

The number of iterations needed to find an ε-approximate solution in standard FOMs is typically
O(1/ε) or O(1/

√
ε). However, strong convexity properties can yield linear convergence, i.e., an

O(log(1/
√
ε)) dependence. No strongly convex formulation is known to capture LP. Despite this,

there is a long line of work on FOMs that achieve linear convergence guarantees for LP, starting
from Eckstein and Bertsekas’s alternating direction method from 1990 [5], followed by a variety of
other techniques, e.g., [1, 2, 9, 10, 14, 21, 22].

Before discussing these approaches, let us specify the notion of approximate solutions. By a
δ-feasible solution, we mean an x ∈ [0, u] with ‖Ax−b‖1 ≤ δ‖A‖1. If LP(A, b, c, u) is feasible, we let
Φ(A, b, c, u) denote the optimum value. A δ-optimal solution satisfies 〈c, x〉 ≤ Φ(A, b, c, u)+ δ‖c‖∞.
Our goal will be to find a δ-feasible and δ-optimal solution for a required accuracy δ > 0. Different
papers may use different norms and normalizations in their accuracy requirement, but these can
be easily translated to each other.

The above mentioned works are able to find δ-feasible and δ-optimal solutions in running times
that depend polynomially on log(1/δ), n, and C(A, b, c, u), a constant depending on the problem
input. In particular, Applegate, Hinder, Lu, and Lubin [2] give a running time bound O(C log(1/δ))
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for restarted PDHG, where C is the Hoffman-constant associated with the primal-dual embedding of
the LP. Recently, for the case when A is a totally unimodular matrix and there are no upper bounds
u, Hinder [10] bounded the running time of restarted PDHG as O(Hn2.5

√

nzz(A) log(Hm/δ)),
where nzz(A) is the number of nonzero entries of A, and b, c are integer vectors with ‖b‖∞, ‖c‖∞ ≤
H.

However, the constants involved in the running time bound are typically not polynomial in
the binary encoding length of the input. In this paper, we give the first FOM-based algorithm
with polynomial dependence on log(1/δ), n, a constant κ̄(XA), and log ‖b‖, log ‖c‖, and log ‖u‖, as
stated in Theorem 1.1 below. The constant κ̄(XA) is the max circuit imbalance measure defined
and discussed below. In particular, it is upper bounded by the maximal subdeterminant ∆(A), but
it is often much smaller than ∆(A). We have κ̄(XA) = 1 if A is a totally unimodular matrix. Note
that the running time depends polynomially on the logarithms of the capacity and cost vectors.
In contrast, the bound in [10] only applies for the totally unimodular case and the running time is
linear in ‖b‖∞ + ‖c‖∞.

We also note that one may always rescale the matrix A to have ‖A‖1 = 1; however, such a
rescaling may change κ̄(XA).

Theorem 1.1. There is an FOM-based algorithm for LP(A, b, c, u) that obtains a solution x that
is δ-feasible and δ-optimal, or concludes that no feasible solution exists, and whose runtime is dom-
inated by the cost of performing O

(

n1.5m2‖A‖21 · κ̄3(XA) log3 ((‖u‖1 + ‖b‖1)nm · κ(XA)‖A‖1/δ)
)

gradient descent updates, where we assume ‖A‖1 ≥ 1. Additionally, our algorithm returns a dual
solution certifying approximate optimality of the solution in O

(

m‖A‖2 · κ̄(XA) · log(n‖c‖1/δ)
)

gra-
dient descent updates.

Hoffman bounds and quadratic function growth. The main underlying tool for proving
linear convergence bounds is Hoffman-proximity theory, introduced by Hoffman in 1952 [11]. Let
A ∈ Rm×n, let ‖.‖α be a norm in Rm and ‖.‖β be a norm in Rn. Then there exists a constant
θα,β(A) such that for any x ∈ [0, u], and any b ∈ Rm, whenever PA,b,u is nonempty, there exists an
x̄ ∈ PA,b,u such that

‖x̄− x‖β ≤ θα,β(A)‖Ax− b‖α .
To see how such bounds can lead to linear convergence, let us first focus on finding a feasible
solution in PA,b,u. This can be formulated as a convex quadratic minimization problem:

min 1
2‖Ax− b‖2 s.t. x ∈ [0, u] . (1)

This is a smooth objective function, but not strongly convex. Nevertheless, Hoffman-proximity
guarantees that for any x ∈ [0, u] where f(x) := 1

2‖Ax − b‖2 is close to the optimum value, there
exists some optimal solution x̄ nearby. Nesterov, Necoara, and Glineur [14] introduce various
relaxations of strong convexity, including the notion of µf -quadratic growth (Definition 2.3), and
show that these weaker properties suffice for linear convergence.

Hence, [14] implies that a δ-feasible LP solution can be found by a Fast Gradient Method with
Restart (R-FGM) in O(‖A‖2 · θ2,2(A) log(m‖b‖1/δ)) iterations. If A is a totally unimodular (TU)
matrix, the dependence is given by θ2,2(A) ≤ m (see Lemma 3.5).

To solve LP(A, b, c, u), [14] in effect uses the standard reduction from optimization to feasibility
by writing the primal and dual systems together. By strong duality, if LP(A, b, c, u) is feasible and
bounded, then x is a primal and (π,w+, w−) is a dual optimal solution if and only if

Ax = b , A⊤π + w− − w+ = c , 〈c, x〉 − 〈b, π〉+
〈

u,w+
〉

= 0 , x, w−, w+ ≥ 0 . (2)
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We can use R-FGM for this larger feasibility problem. However, the constraint matrix M now also
includes the vectors c, b, and u. In particular, while θ2,2(A) is small for a TU matrix, θ2,2(M) may
be unbounded, as shown in Section 10.

Other previous works obtain linear convergence bounds using different approaches, but share
the above characteristics: their running time includes a constant term C(A, b, c, u). For example,
[5] and [21] use an alternating direction method based on an augmented Lagrangian, and [2] and
[10] use restart PDHG. The convergence bounds depend not only on the Hoffman-constant of the
system, but also linearly on the maximum possible norm of the primal and dual iterates seen during
the algorithm.

1.1 Our approach

We present an algorithm in the FOM family with polynomial dependence on log(1/δ), n, m, log ‖u‖,
log ‖b‖, log ‖c‖ and a constant C(A) only dependent on A. Our algorithm repeatedly calls R-FGM,
described in [14], on a potential function of the form

Fτ (x) :=
1

2
(max{0, 〈ĉ, x〉 − τ})2 + 1

2‖A‖21
‖Ax− b‖22 , (3)

for a suitably chosen parameter τ ∈ R, and a modified cost function ĉ. If we use ĉ = c/‖c‖∞, and
τ is slightly below the optimum value, then one can show that a near-minimizer x of Fτ (x) is a
near optimal primal solution to the original LP, and moreover, we can use the gradient ∇Fτ (x) to
construct a near-optimal dual solution to the problem.

Thus, one could find a δ-approximate and δ-optimal solution to LP(A, b, c, u) with log(1/δ)
dependence by doing a binary search over the possible values of τ , and running R-FGM for each
guess. This already improves on the parameter dependence, however, it still involves a constant
C(A, c). One can formulate the minimization of Fτ (x) in the form (1); the constraint matrix also
includes the vector ĉ. The resulting Hoffman constant can be arbitrarily worse than the one for
the original system.

To overcome this issue, we instead define ĉ as an ε-discretization of c/‖c‖∞. We show that the
Hoffman constant remains bounded in terms of the Hoffman constant of the feasibility system and
a suitably chosen ε > 0. Now, for the appropriate choice of τ , a near-minimizer of Fτ (x) only gives
a crude approximation to the original LP: the error depends on the discretization parameter ε,
and to keep the Hoffman constant under control we cannot choose ε very small. Nonetheless, the
dual solution obtained from the gradient contains valuable information. For certain indices i ∈ N ,
using primal-dual slackness, one can conclude x∗i ≈ 0 or x∗i ≈ ui for an optimal solution x∗ to the
original LP. We fix all such xi to 0 or ui, respectively, and recurse. Even if we not find any such xi,
we make progress by replacing our cost function by an equivalent reduced cost with the ℓ∞ norm
decreasing by at least a factor two.

To summarize: our overall algorithm has an outer loop that gradually fixes the variables to the
upper and lower bounds, and repeatedly replaces the cost by a reduced cost. In the inner loop, we
call R-FGM in a binary search framework that guesses the parameter τ . We note that while R-FGM
is run on a number of systems, the total number of these systems is logarithmically bounded in
1/δ and the input parameters. Moreover, besides the first order updates, we only perform simple
arithmetic operations: based on the gradient, we eliminate a subset of variables and shift the cost
function. On a high level, our algorithm is a repeatedly applied FOM, where after each run, we
‘zoom in’ to a ‘critical’ part of the problem based on what we learned from the previous iteration.

Circuit imbalance measures and proximity The key parameters for our algorithm are circuit
imbalance measures. For a linear space W ⊆ Rn, an elementary vector is a support minimal
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nonzero vector in W . The (fractional) circuit imbalance measure κ(W ) is the largest ratio between
the absolute values of two entries of an elementary vector. If W is a rational space, then every
elementary vector can be rescaled to have integer entries; and the max circuit imbalance measure
κ̄(W ) is the smallest integer k such that all elementary vectors can be scaled to have integer
entries between −k and k. For a matrix A, we also use κ(A) = κ(ker(A)) and κ̄(A) = κ̄(ker(A)).
We give a more detailed introduction to these measures in Section 3. We define the subspace
XA = ker(A| − Im); thus, (v,−Av) ∈ XA for any v ∈ Rn.

Circuit imbalances play two roles in our algorithm. First, they are used to bound the number
of iterations of R-FGM. The circuit imbalance measure of XA gives the Hoffman-proximity bound
θ1,∞(A) ≤ κ(XA) (see Lemma 3.5). To bound the number of iterations in R-FGM, we need a
Hoffman bound—equivalently, a circuit imbalance bound—for a matrix representation of (3); this
matrix B arises by adding an additional row containing ĉ to the matrix A. For this, we need to use
the max circuit imbalance measure κ̄(XA); we can show κ(XB) ≤ 2m · κ̄2(XA)/ε. Remember that
the ε comes from ĉ, which is an ε-discretization of c/‖c‖∞.

The second role of κ(XA) is for the variable fixing argument in the outer loop of the algorithm.
Recall that the inner loop returns a near optimal primal solution with respect to the rounded cost,
as well as a near optimal dual solution derived from the gradient of the potential function. We
would like to infer that variables with a large positive or negative dual slack can be rounded to the
lower or upper bounds. To make such an inference, the rounding accuracy ε needs to be calibrated
to κ(XA). The larger κ(XA) is, the more refined the rounding needed to obtain such guarantees.

Guessing the condition numbers. Our algorithm requires explicit bounds on the circuit imbal-
ance measures both in the inner and outer loops. However, the circuit imbalance measures cannot
be approximated even within an exponential factor unless P = NP (see Section 3.1). Similar issues
arise in several algorithms that rely on condition numbers. In particular, R-FGM in [14] explicitly
requires a bound on the Hoffman constant to determine the step-length; it does not address how
such a bound could be obtained.1

We circumvent this problem by using a simple doubling guessing procedure: starting with the
guess κ̂ = 1, we run the algorithm. Either it succeeds, or otherwise we restart after doubling the
guess κ̂. The asymptotic running time is the same as when the circuit imbalance value is known.
The only nontrivial issue is checking whether we succeeded; this can be done by running a final
dual feasibility algorithm.

We note that the algorithm may succeed even if κ̂ is much better than the actual κ̄(XA) value.
In fact, the guessing procedure is a natural heuristic. We initially start with a crude discretization
strategy to guess variable fixings from the outputs of R-FGM. In the event this leads to an infeasible
or suboptimal solution, we restart after increasing the accuracy.

1.2 Related work

We recall that an LP algorithm is strongly polynomial if it only uses basic arithmetic operations
(+,−,×, /) and comparisons, and the number of such operations is polynomial in the number of
variables and constraints. Further, the algorithm must be in PSPACE, that is, the size of the
numbers appearing in the computation must remain bounded in the input size. The existence
of a strongly polynomial algorithm for LP is on Smale’s list of main challenges for 21st century
mathematics [16].

The variable fixing idea in our algorithm traces its roots to Tardos’s strongly polynomial al-
gorithm for minimum-cost circulations. The same idea was extended by Tardos [18] to obtain a

1However, the same paper shows that standard projected gradient also converges linearly albeit at a slower rate,
and does not require knowing this constant.
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poly(n, log ∆(A)) time algorithm for finding an exact solution to LP(A, b, c, u) for an integer con-
straint matrix A ∈ Zm×n with largest subdeterminant ∆(A). This running time bound is strongly
polynomial for ‘combinatorial LPs’, that is, LPs with all entries being integers of absolute value
poly(n).

We note that κ(A) ≤ κ(XA) ≤ κ̄(XA) ≤ ∆(A) for an integer matrix A. Dadush et al. [4]
strengthened Tardos’ result by replacing ∆(A) by κ(A), and removing all integrality-based argu-
ments, and obtained a poly(n, log κ(A)) running time bound. The algorithm is of black-box nature,
and can use any LP solver; an exact optimal solution can be found by running nm LP-solvers to
accuracy δ = 1/poly(n, log κ(A)).

Our algorithm uses variable fixing in a different manner, giving a robust extension to the
approximate setting. Our end goal is not an exact optimal solution, but rather an approximate one
(that could serve as an input for the black-box algorithm [4]). The approximate solution obtained
from the FOM in the inner loop has weaker guarantees. Tardos [18] also uses subproblems with a
similarly rounded cost function, but requires exact feasibility, which cannot be obtained from an
FOM.

For this reason, we obtain weaker guarantees, and may fix to 0 variables that are small but
positive in all optimal solutions. However, this is acceptable if we are only aiming for an approximate
solution. On the positive side, we only need a logarithmic number of executions of the outer loop,
in contrast to nm in [4, 18]. This is because for us it is already sufficient progress to decrease the
norm of the reduced cost, even if we cannot fix any variables.

A poly(n, log κ(A)) running time for LP can also be achieved by a special class of ‘combinatorial’
interior point methods, called Layered Least Squares (LLS) IPMs. This class was introduced by
Vavasis and Ye [20]. The parameter dependence was on the Dikin–Stewart–Todd condition measure
χ̄(A), but [3] observed that the two condition numbers are close to each other. Further, they gave
a stronger LLS IPM with running time dependent on the optimal value κ∗(A) of κ(A) achievable
by column rescaling. We refer the reader to the survey [6] for further results related to circuit
imbalances and their uses in LP, including also diameter and circuit diameter bounds.

We also note that Fujishige et al. [7] recently gave a poly(n, κ(A)) algorithm for the minimum
norm point problem (1) by combining FOMs and active set methods. Their algorithm terminates
with an exact solution; on the other hand, it also uses projection steps that involve solving a system
of linear equations. Thus, it is not an FOM; moreover, it is not applicable for optimization LP.

Notation. We let [n] = {1, 2, . . . , n}. For a vector x ∈ Rn, let supp(x) = {i ∈ [n] | xi 6= 0}
denote its support. For A ∈ Rm×n, let Ai denote the i-th column of A. We use the norm ‖A‖1 =
maxj∈[n]

∑m
i=1 |aij |, and the spectral norm ‖A‖2. We normalize the input matrix so that ‖A‖1 ≥ 1.

For a linear subspace W ⊆ Rn, we let W⊥ ⊆ Rn denote the orthogonal complement.

Overview. The remainder of the paper is structured as follows. In Section 2, we discuss pre-
liminaries regarding the convergence guarantees of R-FGM [14]. In Section 3, we discuss further
preliminaries regarding circuit imbalances, proximity and how to use them algorithmically. In Sec-
tion 4, we provide a more detailed overview of our main ideas including formal statements, and
then, in Section 5, we present our algorithm in detailed pseudo-code and prove Theorem 1.1. Sec-
tion 6 contains proofs related to the crucial proximity results of Section 4. We prove the results
of Section 5 for the outer and inner routines in Sections 7 and 8, respectively. Proofs related to
certifying the success of our algorithm, which we need for guessing the circuit imbalances, are con-
tained in Section 9. Finally, in Section 10, we provide an example showing that a simple self-dual
embedding can blow up the Hoffman constant, serving as a motivation for our work.
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2 Linear convergence for functions with quadratic growth

Assume we are interested in finding a δ-feasible solution to LP(A, b, c, u) or concluding that the
system is infeasible. We can use the convex formulation

min 1
2‖Ax− b‖22
0 ≤ x ≤ u .

(4)

We now outline the running time bounds obtained by Neocara, Nesterov, and Glineur [14].

Definition 2.1. The function f : Rn → R is Lf -smooth or has Lf -Lipschitz continuous gradient
if ‖∇f(x)−∇f(y)‖2 ≤ Lf · ‖x− y‖2 for any x, y ∈ dom(f).

Lemma 2.2. The function f(x) = 1
2‖Ax− b‖22 is ‖A‖22-smooth.

Proof. This follows as ‖∇f(x)−∇f(y)‖2 = ‖A⊤A(x−y)‖2 ≤ ‖A⊤A‖2 ·‖x−y‖2 = ‖A‖22 ·‖x−y‖2.

Definition 2.3. Let f : Rn → R be continuously differentiable, let X ⊆ dom(f) be a closed convex
set, and f∗ = minx∈X f(x) the minimum value. Then f has µf -quadratic growth on X if, for any
x ∈ X, there exists an optimal solution x̄ (that is, f(x̄) = f∗) such that f(x)− f∗ ≥ µf

2 ‖x− x̄‖22.
Lemma 2.4 ([14, Theorem 8]). The function f(x) = 1

2‖Ax− b‖22 has 1/θ22,2(A)-quadratic growth.

The R-FGM method proposed in [14] optimizes a convex function by iteratively applying the
standard accelerated projected gradient descent algorithm. R-FGM starts with x0 as the initial
point and then performs hR iterations of accelerated projected gradient descent to obtain xhR , for
a suitable hR. R-FGM then uses xhR as the new starting point and repeats the process, performing
another hR iterations of accelerated projected gradient descent. This process is repeated multiple
times. For a convex function which is Lf -smooth and has µf -quadratic growth, [14] shows that, for
every hR iterations, the difference between the current function value and the optimum is reduced
by a factor of e2:

Theorem 2.5. Suppose function f is Lf -smooth and has µf -quadratic growth. Let hR = ⌈2e
√

Lf/µf⌉
and x0 is the starting point. Then, after k · hR iterations, the R-FGM method outputs x such that

f(x)− f∗ ≤ e−2k(f(x0)− f∗).

3 Circuit imbalances and proximity

For a linear space W ⊂ Rn, g ∈W is an elementary vector if g is a support minimal nonzero vector
in W , that is, no h ∈ W \ {0} exists such that supp(h) ( supp(g). A circuit in W is the support
of some elementary vector; these are precisely the circuits in the associated linear matroidM(W ).
We let F(W ) ⊆W denote the set of elementary vectors in the space W .

The subspaces W = {0} and W = RN are called trivial subspaces; all other subspaces are
nontrivial. We define the fractional circuit imbalance measure

κ(W ) := max

{∣

∣

∣

∣

gj
gi

∣

∣

∣

∣

: g ∈ F(W ), i, j ∈ supp(g)

}

for nontrivial subspaces, and κ(W ) := 1 for trivial subspaces.
Further, if W is a rational linear space, we let F̄(W ) ⊆ F(W ) denote the set of integer elemen-

tary vectors g ∈ Zn ∩F(W ) such that the largest common divisor of the entries is 1. We define the
max circuit imbalance measure as

κ̄(W ) := max
{

‖g‖∞ : g ∈ F̄(W )
}

.
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When using the term ‘circuit imbalance measure’ without any specification, it will refer to the
fractional version. Note that κ(W ) ≤ κ̄(W ) but they may not be equal. For example, if the single
elementary vector up to scaling is (4, 7, 8), then κ(W ) = 2 but κ̄(W ) = 8.

Let A ∈ Rm×n be a matrix, and let W = ker(A) be the kernel space of A. We let F(A), κ(A),
κ̄(A) denote F(W ), κ(W ), κ̄(W ), respectively, for the kernel space W = ker(A). We refer the
reader to the survey [6] for properties and applications of circuit imbalances. Below, we mention
some basic properties.

Recall that a matrix is totally unimodular (TU) if the determinant of every square submatrix
is 0, +1, or −1. We note that κ(W ) = 1 if and only if there exists a TU matrix A ∈ Rm×n such
that W = ker(A). This follows by a 1957 result of Cederbaum. Further, it is easy to verify that
for an integer matrix A ∈ Zm×n, the inequality κ̄(A) ≤ ∆(A) holds, where ∆(A) is the largest
absolute value of a subdeterminant of A. However, κ̄(A) can be arbitrarily smaller: κ̄(A) = 2 for
the node-edge incidence matrix of any undirected graph, whereas ∆(A) can be exponentially large.
See [6, Section 3.1] for the above results. We will also use the following important self-duality of κ:

Lemma 3.1 ([3]). Let W ⊆ R be a linear subspace. Then κ(W ) = κ(W⊥).

Conformal circuit decompositions We say that the vector y ∈ Rn conforms to x ∈ Rn if
xiyi > 0 whenever yi 6= 0. Given a subspace W ⊆ Rn, a conformal circuit decomposition of a vector
z ∈ W is a decomposition z =

∑h
k=1 g

k, where h ≤ n and g1, g2, . . . , gh ∈ F(W ) are elementary
vectors that conform to z. Further, for each i = 1, 2, . . . , h − 1, supp(gi) \ ∪hj=i+1supp(g

j) 6= ∅. A
fundamental result on elementary vectors asserts the existence of a conformal circuit decomposition,
see e.g. [8, 15]. Note that there may be multiple conformal circuit decompositions of a vector.

Lemma 3.2. For every subspace W ⊆ Rn, every z ∈W admits a conformal circuit decomposition.

Given A ∈ Rm×n, we define the extended subspace XA ⊂ Rn+m as XA := ker(A | −Im). Hence,
for every z ∈ Rn, (z,Az) ∈ XA. For z ∈ Rn, a generalized path-circuit decomposition of z with respect
to A is a decomposition z =

∑h
k=1 g

k, where h ≤ n +m, and for each k ∈ [h], (gk, Agk) ∈ Rn+m

is an elementary vector in XA that conforms to (z,Az). Note that this corresponds to a conformal
circuit decomposition of (z,Az) in XA. We say that gk is an inner vector in the decomposition if
Agk = 0 and an outer vector otherwise.

We say that z ∈ Rn is cycle-free with respect to A, if no y ∈ ker(A), y 6= 0 exists that conforms
z. Note that this is equivalent to the property that all generalized path-circuit decompositions of z
contain outer vectors only. The following lemma will play a key role in analyzing our algorithms.

Lemma 3.3. Let A ∈ Rm×n and let z ∈ Rn be cycle-free with respect to A. Then

‖z‖∞ ≤ κ(XA) · ‖Az‖1 and ‖z‖2 ≤ m · κ(XA) · ‖Az‖2 .

Proof. Consider a generalized path-circuit decomposition z =
∑h

k=1 g
k. Since z is cycle-free, for

each gk, Agk 6= 0, and therefore |gkj | ≤ κ(XA) · |(Agk)i| for any j ∈ supp(gk) and i ∈ supp(Agk).

By the conformity property, |zj | =
∑h

k=1 |gkj | for j ∈ [n] and |(Az)i| =
∑h

k=1 |(Agk)i| for i ∈ [m].
Thus, for any j ∈ [n],

|zj | =
h
∑

k=1

|gkj | ≤ κ(XA) ·
m
∑

i=1

h
∑

k=1

|(Agk)i| = κ(XA) ·
m
∑

i=1

|(Az)i| = κ(XA) · ‖Az‖1 .

For the second inequality, note that ‖gk‖2 ≤
√
m ·κ(XA)|(Agk)i| for any k ∈ [h] and i ∈ supp(Agk),

since for any elementary vector (gk, Agk) ∈ XA with supp(Agk) 6= 0, the columns in supp(gk) must

7



be linearly independent, and therefore |supp(gk)| ≤ m. This implies

‖z‖2 ≤
h
∑

k=1

‖gk‖2 ≤
√
m · κ(XA) · ‖Az‖1 ≤ m · κ(XA) · ‖Az‖2 .

The following lemma is trivial for the input matrix since we assume ‖A‖1 ≥ 1. However, we
also need this guarantee for its column submatrices in the recursive calls.

Corollary 3.4. For any non-zero matrix A ∈ Rm×n, n · κ(XA) · ‖A‖1 ≥ 1.

Proof. Pick a z ∈ Rn such that Az 6= 0. Let z̄ ∈ ker(A) with ‖z− z̄‖2 minimal. Then z− z̄ is cycle-
free and z−z̄ 6= 0. The result follows as ‖z−z̄‖∞ ≤ κ(XA)·‖A(z−z̄)‖1 ≤ n·κ(XA)·‖A‖1·‖z−z̄‖∞.

When A is clear from the context, we simply use κ = κ(XA). If A is a node-arc incidence matrix
of a directed graph, then A, and consequently also (A | −Im) is a TU matrix, implying κ̄(XA) = 1.
For undirected graph incidence matrices, one can show κ̄(XA) ≤ 2.

Lemma 3.5. Let A ∈ Rn×m. Then θ1,∞(A) ≤ κ(XA) and θ2,2(A) ≤ m · κ(XA).

Proof. We want to show for any x ∈ [0, u], and any b ∈ Rm, whenever PA,b,u is nonempty, there
exists an x̄ ∈ PA,b,u such that ‖x̄ − x‖∞ ≤ κ(XA)‖Ax − b‖1 and ‖x̄ − x‖2 ≤ m · κ(XA)‖Ax − b‖2.
We select x̄ as the nearest feasible point to x in ℓ2-norm. Thus, Ax̄ = b. We claim that x̄ − x is
cycle-free with respect to A. Indeed, if a generalized path-circuit decomposition of x̄− x contained
an inner vector gk, then x̄′ = x + gk would also be feasible, with ‖x̄′ − x‖2 < ‖x̄ − x‖2. Thus,
Lemma 3.3 can be applied with z = x− x̄ and the claim follows.

The first inequality may be tight. Assume there exists an elementary vector (g,Ag) in XA such
that |gi| = κ(XA) for all i ∈ supp(g), |supp(Ag)| = 1, and (Ag)i = 1 for the nonzero component.
Further, let b = 0, and let ui = 0 for all i /∈ supp(g). Since (g,Ag) is a support minimal nonzero
vector in XA, it follows that the only feasible solution to Ax̄ = 0, x̄ ∈ [0, u] is x̄ = 0. Thus, we get a
tight example with θ1,∞(A) = κ(XA). The same example shows tightness of the second inequality
up to a factor

√
m.

Our algorithm will also find dual certificates. The next lemma shows that the corresponding
dual systems have the same circuit imbalances.

Lemma 3.6. For any matrix A ∈ Rm×n, κ(A⊤|In) = κ(XA).

Proof. Recall that XA = ker(A| − Im). It is easy to verify that ker(In|A⊤) is the orthogonal
complement of XA. The statement then follows by Lemma 3.1, noting also that reordering the
columns does not change the circuit imbalances.

3.1 Guessing the circuit imbalances

Given a matrix A ∈ Rm×n, there is no hope of getting any reasonable approximation of the circuit
imbalance values. It is NP-hard to approximate κ(A) within a factor 2poly(m) for A ∈ Rm×n, see
[3], using a result of Tunçel [19] on the related condition number χ̄(A). However, our algorithms
make use of the values κ(A) and κ̄(A).

Nevertheless, one can use a guessing procedure that guarantees the same asymptotic running
times without knowing these values. First, note that upper bounds rather than exact values suffice
throughout. Algorithm 1 below makes recursive calls to column submatrices of the original input
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matrix A. If κ̄(A) ≤ κ̂ for the input matrix A, then κ̂ is an upper bound on all the circuit imbalance
values seen in the recursive calls.

As our initial estimate, we set κ̂ = 1. When run with a correct guess κ̂ ≥ κ̄(A), Algorithm 1
returns approximately optimal primal and dual solutions to LP(A, b, c, u). Running it with an
incorrect guess may lead to a failure while running the algorithm: either R-FGM does not find a
solution of the required accuracy within the given number of steps, or the final primal and dual
solutions do not satisfy the required approximate feasibility and complementarity properties. We
can easily detect both kind of failures. If no failure is detected, then the primal and dual solutions
certify approximate optimality for each other; this may happen even when κ̂ < κ̄(A). Each time
we detect a failure, we double the estimate κ̂ and restart the algorithm.

The overall running time bound in Theorem 1.1 is also the total running time of this process,
because at each call we have κ̂ ≤ 2κ̄(A), and the running time bound of the final run dominates
the running time bound of all previous runs.

4 Main ideas and key statements

Before describing the algorithm in Section 5, we highlight the key ideas and formulate the main
underlying proximity results. We gradually reduce LP(A, b, c, u) by fixing some variables to their
upper or lower bounds, and replacing the cost vector by an equivalent one of smaller norm. We
first start by describing the simpler feasibility algorithm. The optimization algorithm has two
components: the outer loop and the inner loop.

4.1 The feasibility algorithm

We first show how the R-FGM algorithm from [14] leads to a simple algorithm for finding a δ-feasible
solution. Here, we assume that the LP is feasible. In the proof of Theorem 1.1 in Section 5.3, we
explain how this assumption can be removed in general.

Theorem 4.1. There is an algorithm Feasible(A, b, u, δ), which, on input A ∈ Rm×n, ‖A‖1 ≥ 1,
b ∈ Rm, u ∈ Rn, supposing the system Ax = b, x ∈ [0, u] is feasible, finds a δ-feasible solution using
O
(

m‖A‖2 · κ(XA) · log(m‖b‖1/δ)
)

iterations of R-FGM.

Proof. Let f(x) = 1
2‖Ax − b‖2. We use the R-FGM algorithm from [14] to find an ε-approximate

minimizer of f(x) over x ∈ [0, u], i.e., the system (1), where ε := ‖A‖21 · δ2/(2m). We choose x = 0
as the starting point. By Theorem 2.5, O(‖A‖2 · θ2,2(A) · log(m‖b‖1/δ)) iterations suffice (using
‖A‖1 ≥ 1). The bound on the number of iterations follows, for by Lemma 3.5, θ2,2(A) ≤ m ·κ(XA).

By the assumption that the system is feasible, the optimum value is 0. Thus, an ε-approximate
solution has f(x) ≤ ε, which yields a δ-feasible solution.

4.2 The outer loop

In the outer loop, our goal is to find a δfeas-feasible and δopt-optimal solution to LP(A, b, c, u).
We distinguish these two accuracy parameters for the sake of the recursive algorithm, where the
required feasibility and optimality accuracies need to be changed differently in the recursive calls.

Primal-dual optimality and cost shifting. We use primal-dual arguments, making variable
fixing decisions based on approximate complementarity conditions. The dual to LP(A, b, c, u) can
be written as

max 〈b, π〉−
〈

u,w+
〉

A⊤π + w− − w+ = c

w−, w+ ≥ 0 .

(Dual(A, b, c, u))
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Note that given π ∈ Rm, the unique best choice of the variables w− and w+ is w− = max{c−A⊤π, 0}
and w+ = max{A⊤π − c, 0}. When we speak of a dual solution π ∈ Rm, we mean its extension
with these variables. Recall the primal-dual optimality conditions: x∗ ∈ PA,b,u and π ∈ Rm are
optimal respectively to LP(A, b, c, u) and to Dual(A, b, c, u) if and only if the following holds:

if A⊤
i π < ci then xi = 0, and if A⊤

i π > ci then xi = ui for every i ∈ [n]. (5)

Also note that we can naturally shift the cost function for any π ∈ Rm as stated in the next lemma.

Lemma 4.2. LP(A, b, c, u) has exactly the same solutions and the same optimum value as the
following linear program:

min
〈

c−A⊤π, x
〉

+ 〈b, π〉 s.t. Ax = b , x ∈ [0, u] . (6)

Approximate complementarity and proximity. Assume now that we have a pair of primal
and dual solutions x and π that do not satisfy complementarity, but we have a quantitative bound
on the violation. Namely, for a suitably chosen threshold σ ≥ 0, let

θ(x, π, σ) :=
∑

ci−A⊤

i π>σ

xi +
∑

ci−A⊤

i π<−σ

(ui − xi) , and

J(π, σ) :=
{

i ∈ [n] : |ci −A⊤
i π| > n · ⌈κ(XA)⌉ · σ

}

.

Note that if x and π are primal and dual optimal, then the primal-dual complementarity con-
straints (5) imply θ(x, π, 0) = 0. Let us assume that for some σ > 0, this quantity is still small.
Note also that J(π, σ) is the set of indices where the absolute value of the slack is much higher than
the threshold σ. In particular, min{xi, ui − xi} ≤ θ(x, π, σ) on these indices. Our key proximity
result asserts that there exists an optimal solution that is close to the current solution on these
indices. The proof is deferred to Section 6.

Lemma 4.3. Let x ∈ PA,b,u be a feasible solution. Then there exists an optimal solution x∗ for
LP(A, b, c, u) such that

|xi − x∗i | ≤ κ(XA) · θ(x, π, σ)
for all i ∈ J(π, σ).

Variable fixing. Assume that from the inner loop of the algorithm we get x ∈ [0, u] and π ∈ Rm

such that the feasibility violation ‖Ax− b‖1 and the complementarity violation θ(x, π, σ) are both
tiny for the choice σ := ‖c‖∞/(4n⌈κ(XA)⌉). Note that the for this choice, the threshold in the
definition of J(π, σ) becomes ‖c‖∞/4. We partition J(π, σ) into

J1 :=
{

i ∈ J(π, σ)
∣

∣ ci −A⊤
i π < −‖c‖∞

4

}

, and J2 :=
{

i ∈ J(π, σ)
∣

∣ ci −A⊤
i π > ‖c‖∞

4

}

,

We apply Lemma 4.3 to the problem with the modified right hand side b′ = Ax. By ensuring that
θ(x, π, σ) is sufficiently small, we will see that there is an optimal solution x∗ with x∗i ≈ 0 for i ∈ J1
and x∗i ≈ ui for i ∈ J2.

We fix these variables to the lower and upper bounds, respectively, and shift the cost function
according to π. Thus, we specify the following new LP. Let N := [n] \ (J1 ∪ J2) and b̄ := ANxN .

min
〈

cN −A⊤
N π, z

〉

ANz = b̄

0N ≤ z ≤ uN .

(LP(AN , b̄, cN −A⊤
N π, uN))
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We show the following result, which says the optimal solution of LP(AN , b̄, cN −A⊤
N
π, uN ) provides

an approximately feasible and optimal solution to LP(A, b, c, u). The approximation is in terms of
θ(x, π, σ) and ‖Ax− b‖1. Recall that Φ(A, b, c, u) denotes the optimal value, the value achieved by
the solution to LP(A, b, c, u). The proof is given in Section 6.

Theorem 4.4. For A ∈ Rm×n, b ∈ Rm, and c, u ∈ Rn such that LP(A, b, c, u) is feasible, let
σ := ‖c‖∞/(4n · ⌈κ(XA)⌉), and let x ∈ [0, u] and π ∈ Rm be a pair of (not necessarily feasible)
primal and dual solutions. Then, LP(AN , b̄, cN −A⊤

N
π, uN ) is feasible and, in addition satisfies the

following:

• feasibility condition:

‖b− b̄−AJ2
uJ2‖1 ≤ θ(x, π, σ) · ‖A‖1 + ‖Ax− b‖1 , (7)

• optimality condition:
∣

∣Φ(AN , b̄, cN −A⊤
N π, uN ) +

〈

b̄, π
〉

+
〈

cJ2 , uJ2
〉

− Φ(A, b, c, u)
∣

∣

=
∣

∣Φ(AN , b̄, cN , uN ) +
〈

cJ2 , uJ2
〉

− Φ(A, b, c, u)
∣

∣

≤ κ(XA) · ‖c‖1 · ‖Ax− b‖1 + |J1 ∪ J2| · κ(XA) · ‖c‖1 ·
(

2 + κ(XA)‖A‖1
)

· θ(x, π, σ) , (8)

• cost reduction: ‖cN −A⊤
Nπ‖∞ ≤ ‖c‖∞/4.

With this theorem, if one can find a pair (x, π) such that the right hand sides of inequalities (7)
and (8) are tiny, then LP(A, b, c, u) can be reduced to LP(AN , b̄, cN −A⊤

N π, uN ) with a tiny loss on
feasibility and optimality. Moreover, each iteration reduces the ℓ∞-cost on the remaining variables
by a factor 4. One can repeat this procedure and ultimately reduce the original problem to one
with an extremely small objective function value and possibly with fewer variables. Solving this
problem will give a good enough solution to the original LP(A, b, c, u), after restoring any variables
fixed to the lower or upper bounds.

It is possible that both J1 and J2 are empty. This means that ‖c −A⊤π‖∞ ≤ ‖c‖∞/4; we can
simply recurse with the same b but improved cost function. Note that we could make progress more
agressively by a preprocessing step that projects c to the kernel of A; this gets a cost vector of the
form c′ = c−A⊤π with the smallest possible ℓ2-norm—such a preprocessing is used in the strongly
polynomial algorithms [17, 18, 4]. Setting a slightly smaller σ would then guarantee variable fixing
in every iteration. However, the projection amounts to solving a system of linear equations that
may be computationally more expensive. We instead proceed with lazier updates as above.

4.3 The inner loop

Next, we describe our approach for obtaining a pair (x, π) such that the right hand sides of inequal-
ities (7) and (8) are tiny, which is the purpose of the inner loop. For this, we need to guarantee
that θ(x, π, σ) and ‖Ax− b‖1 are sufficiently small. We use a potential function Fτ (x) of the form
(3) for a modified cost function ĉ.

As noted in the introduction, if ĉ = c/‖c‖∞, and τ is within δ/2 of the optimum value of
LP(A, b, c, u), then a δ′-approximate minimizer to Fτ (x) for a suitably chosen δ′ would immediately
give a δ-approximate and δ-feasible solution to LP(A, b, c, u). Thus, we would not need the outer
loops; a binary search on τ and using the feasibility algorithm on this system would already give
the desired solution, without the need for variable fixings in the outer loop.

However, the Hoffman-constant corresponding to the function (3) with ĉ = c/‖c‖∞ could be
unbounded in terms of κ̄(XA) if c can be arbitrary, as discussed in Section 10. To circumvent this
problem, we discretize c/‖c‖∞ into integer multiples of ε = 1/(8n · ⌈κ(XA)⌉) = σ/(2‖c‖∞).
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Using the discretized ĉ, for a suitable choice of τ , we can guarantee (7) and (8), that is, bound
‖Ax − b‖1 and θ(x, π, σ), where the dual solution π is defined based on the gradient of Fτ (x) as

π := ‖c‖∞
‖A‖21α

(b−Ax) for α := max{0, 〈ĉ, x〉 − τ}.
To bound the infeasibility ‖Ax − b‖1, we need to find a solution x where Fτ (x) is small, since

‖Ax− b‖1 ≤ (2n‖A‖1Fτ (x))
1/2. Therefore, τ should not be much smaller than the optimum value

Φ(A, b, c, u) of LP(A, b, c, u). The bound on θ(x, π, σ) can be shown by arguing that the improving
directions of the gradient are small at an approximately optimal solution x: xi ≈ 0 if ∇iFτ (x)≫ 0
and xi ≈ ui if ∇iFτ (x) ≪ 0, and that |ci − ĉi| · ‖c‖∞ ≤ ‖c‖∞ · ε = σ/2. We also need that
α > 0 and is not too small. Based on these requirements, we can establish a narrow (but not too
narrow) interval of τ where a sufficiently accurate approximate solution to Fτ (x) exists. Using that
F ⋆
τ := min{Fτ (x) | x ∈ [0, u]} is a Lipschitz-continuous and non-increasing continuous function

in τ , we can find a suitable τ by binary search.

4.4 Dual certificates

As discussed above, our goal is not just to find a δfeas-feasible and δopt-optimal solution, but also a
dual certificate for the latter property. This is important as it enables us to verify the correctness
of the solution, which is only guaranteed when using an estimate κ̂ ≥ κ̄.

Definition 4.5. Let A ∈ Rm×n, b ∈ Rm, c, u ∈ Rn and δ ≥ 0, and let x ∈ [0, u]. We say that
(π,w+, w−) ∈ Rm×n×n is a δ-certificate for x, if

(i) A⊤π + w− − w+ = c,

(ii) 0 ≤ w−
i ≤ 2δ‖c‖∞/xi, 0 ≤ w+

i ≤ 2δ‖c‖∞/(ui − xi) for all i ∈ [n], and

(iii) ‖π‖∞ ≤ 2δ‖c‖∞/‖Ax− b‖1.

Our next lemma shows that δ-certificates indeed certify approximate optimality, and conversely,
for every approximately optimal solution, such a certificate can be found. The proof is given in
Section 9.

Lemma 4.6. Let A ∈ Rm×n, b ∈ Rm, c, u ∈ Rn, and let x ∈ [0, u].

(i) If there is a δ-certificate for x for some δ ≥ 0, then x is (4n + 2)δ-optimal.

(ii) Suppose 0 ≤ δfeas · n · κ(XA) · ‖A‖1 ≤ δopt. If x is a δfeas-feasible and δopt-optimal solution,
then there exists a δopt-certificate for x.

Our next theorem justifies this concept and provides certificates efficiently. The proof is also
deferred to Section 9.

Theorem 4.7. Suppose A ∈ Rm×n, ‖A‖1 ≥ 1, b ∈ Rm, x, c, u ∈ Rn, 0 ≤ δfeas · n · κ(XA) ·
‖A‖1 ≤ δopt, and x ∈ [0, u] is both δfeas-feasible and δopt-optimal. Then there is an algorithm
Dual-Certificate(x,A, b, c, u, δfeas, δopt) which on such inputs finds a 2 · δopt-certificate for x in
O
(

m‖A‖2 · κ(XA) · log(n‖c‖1/δopt)
)

iterations of R-FGM.

5 The algorithm

We describe our algorithm under the simplifying assumption that the exact values of κ(A) and
κ̄(A) are known for the input matrix as well as all submatrices obtained by column deletions. As
discussed in Section 3.1, even though these quantities cannot be computed, one can obtain the
same asymptotic running time bounds by repeatedly guessing an estimate κ̂.
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5.1 The outer loop: variable fixing

Algorithm 1 takes as input (A, b, c, u) such that LP(A, b, c, u) is feasible, and accuracy parameters
δfeas and δopt such that 0 ≤ δfeas · 8n√m · κ(XA) · ‖A‖1 ≤ δopt.

Our overall goal in Theorem 1.1 is to find a δ-feasible and δ-optimal solution to LP(A, b, c, u),
without the feasibility assumption. We show in Section 5.3 how this can be derived by choosing the
accuracy parameters suitably. Algorithm 1 uses a subroutine GetPrimalDualPair(A, b, c, u, δfeas, δopt)
specified as follows.

Subroutine GetPrimalDualPair

Input: A ∈ Rm×n, b ∈ Rm, c, u ∈ Rn, δfeas, δopt > 0 such that
(A, b, c, u) is feasible, δopt ≤ ‖u‖1, and δfeas‖A‖1 ≤ δopt.
Output: (x, π), x ∈ [0, u], π ∈ Rm such that

• The right-hand side of the feasibility bound (7) in Theorem 4.4
is at most δfeas‖A‖1/n.

• The right-hand side of the optimality bound (8) in Theorem 4.4
is at most δopt‖c‖∞/n.

• ‖π‖∞ ≤ 4n
√
m · κ(XA) · ‖c‖∞.

Algorithm 1: SolveLP

Input : A ∈ Rm×n, b ∈ Rm, c, u ∈ Rn, 0 < δfeas(8n
√
m · κ(XA)‖A‖1) ≤ δopt.

Output: A δfeas-feasible and δopt-optimal solution to LP(A, b, c, u) along with a
2δopt-certificate

1 if δopt ≥ ‖u‖1 then
2 x̄← Feasible(A, b, c, u, δfeas) (See Theorem 4.1.) ;
3 return x̄

4 else
5 (x, π)← GetPrimalDualPair(A, b, c, u, δfeas, δopt) ;
6 Define J1, J2, N , b̄ as for Theorem 4.4 ;

7 cnew ← c−A⊤π ;

8 λ← ‖cN‖∞
2‖cnew

N
‖∞ ;

9 if J1 ∪ J2 = ∅ then
10 xout ← SolveLP(A, b, cnew, u, δfeas, λδopt)
11 else
12 xout

J1
← 0 ; xout

J2
← uJ2 ;

13 xoutN ← SolveLP(AN , b̄, c
new
N , uN , δ

feas · |N |/n, λδopt · |N |/n) ;
14 π̄ ← Dual-Certificate(x,A, b, c, u, δfeas , δopt) (See Theorem 4.7.) ;

15 return (xout, π̄)

The following theorem provides the analysis of the outer loop. The proof is deferred to Section 7.

Theorem 5.1. If LP(A, b, c, u) is feasible, then Algorithm 1 returns a δfeas-feasible solution that is
δopt-optimal along with a 2δopt-certificate. It makes at most log2(n‖u‖1/δopt) many recursive calls.
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5.2 The inner loop: fast gradient with binary search

We now describe GetPrimalDualPair(A, b, c, u, δfeas , δopt), introduced at the beginning of Sec-
tion 5.1. The subroutine needs to output primal and dual vectors (x, π) satisfying the feasi-
bility and optimality bounds in Theorem 4.4. In particular, we need to bound θ(x, π, σ) =
∑

i:ci+A⊤

i π>σ xi +
∑

i:ci+A⊤

i π<−σ(ui − xi) and ‖Ax − b‖1 for σ = ‖c‖∞/(4n · ⌈κ(XA)⌉). Let us
define the accuracy parameter

ε :=
1

8n · ⌈κ(XA)⌉
=

σ

2‖c‖∞
. (9)

Thus, 1/ε is integer. For some parameter τ ∈ R, we use the potential function

Fτ (x) :=
1

2
(max{0, 〈ĉ, x〉 − τ})2 + 1

2‖A‖21
‖Ax− b‖22 , (10)

where the rounded cost function ĉ is defined by taking the normalized vector c/‖c‖∞, and rounding
each entry to the nearest integer multiple of ε in the direction of the 0 value (i.e., rounding down
the positive entries and rounding up the negative entries). Recalling that 1/ε is an integer, we have
‖ĉ‖∞ = 1.

Let F ⋆
τ := min{Fτ (x) | x ∈ [0, u]} denote the optimum value. We say that x ∈ [0, u] is a

ζ-approximate minimizer of Fτ if F (x) ≤ F ⋆
τ + ζ. The following proposition is immediate.

Proposition 5.2. F ⋆
τ is a non-increasing continuous function of τ . If LP(A, b, ĉ, u) is feasible,

then Φ(A, b, ĉ, u) is the smallest value of τ such that F ⋆
τ = 0.

The main driver of our algorithm is Necoara, Nesterov, and Glineur’s R-FGM algorithm, applied
to Fτ . We specify this subroutine as follows.

Subroutine R-FGM

Input: A ∈ Rm×n, b ∈ Rm, c, u ∈ Rn, τ ∈ R, ζ > 0.
Output: A ζ-approximate minimizer x ∈ [0, u] of Fτ .

The purpose of GetPrimalDualPair is to identify a value τ by binary search that is slightly
below Φ(A, b, ĉ, u). We show that there is a suitable τ such that a sufficiently accurate approximate
minimizer of Fτ returns the required primal solution x. Moreover, we can also construct the dual
π from the gradient of Fτ at this point.

We define some further parameters to calibrate the accuracy used in the algorithm.

C := n
√
m·κ(XA)·‖A‖1 , C := 64nC·κ(XA) = 64n2√m·κ2(XA)·‖A‖1 , ζ :=

( δfeas

4κ2(XA)n4C√m
)2

.

(11)
These admit the following simple lower bounds.

Lemma 5.3. C ≥ √m, C ≥ 64
√
m, and C√ζ = δfeas

4n4
√
m·κ2(XA)

.

Proof. The first bound follows by Corollary 3.4, and the second bound from the first and using
κ(XA) ≥ 1. The third bound is immediate from the definition.

Algorithm GetPrimalDualPair is shown in Algorithm 2.

Theorem 5.4. Assume LP(A, b, c, u) is feasible. Algorithm 2 makes O
(

log
[

‖u‖1nm·κ(XA)/δ
feas

])

calls to R-FGM, and altogether these calls use O
(

n1.5m2‖A‖21 · κ̄3(XA) log
2
[

‖u‖1nm ·
|A‖1κ(XA)/δ

feas
])

iterations. On terminating, it outputs (x, π) satisfying:
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Algorithm 2: GetPrimalDualPair

Input : A ∈ Rm×n, b ∈ Rm, c, u ∈ Rn, and δfeas, δopt > 0 such that (A, b, c, u) is feasible,
and δfeas‖A‖1 ≤ δopt < ‖u‖1

1 . Output: x ∈ [0, u] and π ∈ Rn.

2 τ+ ← ‖u‖1 and τ− ← −‖u‖1 − 2C√ζ ;
3 Repeat

4 τ ← τ++τ−

2 ;
5 x← R-FGM(A, b, c, u, τ, ζ) ;

6 if Fτ (x) > 2C2ζ then τ− ← τ ;

7 if Fτ (x) < C2ζ then τ+ ← τ ;

8 if Fτ (x) ∈ [C2ζ, 2C2ζ] then
9 α← max{0, 〈ĉ, x〉 − τ} ;

10 π ← ‖c‖∞
‖A‖21α

(b−Ax) ;

11 w+ ← max{A⊤π − c, 0} ; w− ← max{c−A⊤π, 0} ;
12 return (x, π)

(i) θ(x, π, σ) · ‖A‖1 + ‖Ax− b‖1 ≤ δfeas‖A‖1/n.

(ii) κ(XA) · ‖c‖1 · ‖Ax− b‖1 + |J1 ∪ J2| · κ(XA) · ‖c‖1 ·
(

2 + κ(XA)‖A‖1
)

· θ(x, π, σ) ≤ δopt‖c‖∞/n.

(iii) ‖π‖∞ ≤ 4n
√
m · κ(XA) · ‖c‖∞.

5.3 Putting everything together

We now combine the above ingredients to prove Theorem 1.1.

Proof of Theorem 1.1. First, let us assume that LP(A, b, c, u) is feasible. We set δopt = δ/(8n + 4)
and start with the guess κ̂ = 1. Then, we set δfeas = δopt/(8n

√
mκ̂‖A‖1), and run the algorithm

SolveLP(A, b, c, u, δfeas , δopt). If it succeeds and outputs a primal solution x and a certificate π,
then we can check if the solution is a δfeas-feasible solution by checking the constraint ‖Ax− b‖1 ≤
δfeas · ‖A‖1; and check if π is a 2δopt-certificate by checking the constraints in Definition 4.5. If x
is a δfeas-feasible solution and π is a 2δopt-certificate, then we output the x. Otherwise, we double
the value of κ̂ and restart this procedure.

Assuming κ̂ ≥ κ̄(XA), SolveLP(A, b, c, u, δfeas , δopt) returns a δfeas-feasible and δopt-optimal
solution along with a 2δopt-certificate. These provide a δ-feasible and δ-optimal solution, along
with a dual certificate of δ-optimality, in accordance with Lemma 4.6(i).

For the running time, SolveLP(A, b, c, u, δfeas, δopt) makes at most log2(n‖u‖1/δopt) recursive
calls (Theorem 5.1), and, for each recursive call, GetPrimalDualPair uses at mostO

(

n1.5m2‖A‖21κ̂3
log2

(

‖u‖1nmκ̂/δfeas
))

iterations (Theorem 5.4). Note that κ̂ will stop doubling no later than
the first time κ̂ ≥ κ̄(XA). Therefore, the total number of iterations is at most O

(

n1.5m2‖A‖21 ·
κ̄(XA)

3 log3
(

‖u‖1nm‖A‖1 · κ̄(XA)/δ
))

as δfeas ≥ δfeas/n.

We now remove the feasibility assumption. We use a two-stage approach, similarly to Simplex.
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We consider the following extended system; 1 ∈ Rm denotes the all 1’s vector.

min
〈

1, s′
〉

+
〈

1, s′′
〉

Ax+ s′ − s′′ = b

0 ≤ x ≤ u

0 ≤ s′, s′′ ≤ ‖b‖∞

This system is trivially feasible with the solution s′i = max{bi, 0} and s′′i = max{−bi, 0}. Moreover,
denoting the constraint matrix as B = (A | Im | − Im), note that κ(XB) = κ(XA) and κ̄(XB) =
κ̄(XA).

We obtain a δ/4-feasible and δ/4-optimal solution (x̄, s′, s′′) for this system by applying SolveLP.
If the original system was feasible, then (x̄, s′, s′′) provides a solution to the new LP with objective
value of at most δ/4. As the new cost vector is the all ones vector, we see that ‖s′‖1+ ‖s′′‖1 < δ/4.
As we show next, this implies that the returned solution x̄ will be δ/2-feasible for the original
system:

‖Ax̄− b‖1 ≤ ‖Ax̄+ s′ − s′′ − b‖1 + ‖s′‖1 + ‖s′′‖1 ≤ (δ/4) · ‖A‖1 + δ/4 ≤ (δ/2) · ‖A‖1.

Both the second and third inequalities use ‖A‖1 ≥ 1. We now run the above algorithm with the
modified right hand side b̄ = Ax̄. Now, LP(A, b̄, c, u) is feasible, and a δfeas-feasible solution for this
system will also be δ-feasible for the original system, since δfeas + δ/2 < δ.

6 Proofs of the Proximity Statements

In this section, we prove Lemma 4.3 and Theorem 4.4.

Proof of Lemma 4.3. We define the following modified capacities. For i ∈ [n], let

ℓ̄i :=

{

0 if ci −A⊤
i π ≤ σ ,

xi if ci −A⊤
i π > σ .

ūi :=

{

ui if ci −A⊤
i π ≥ −σ ,

xi if ci −A⊤
i π < −σ .

We now consider the optimization problem

min 〈c, x〉
Ax = b

ℓ̄ ≤ x ≤ ū .

(12)

This problem is feasible since x is a feasible solution; let x̄ be an optimal solution.

Claim 6.1. x̄i = xi for every i ∈ J(π, σ).

Proof. Consider a generalized path-circuit decomposition x̄ − x =
∑h

k=1 g
k. Since A(x̄ − x) = 0,

any conformal circuit decomposition may contain only inner vectors: Agk = 0 for all k ≤ h. We
claim that supp(gk) ∩ J(π, σ) = ∅ for all k ∈ [h]; this implies the statement. For a contradiction,
assume there exists a j ∈ supp(gk) ∩ J(π, σ) for some k ∈ [h].

The optimality of x̄ implies that 0 ≥
〈

c, gk
〉

=
〈

c−A⊤π, gk
〉

, as Agk = 0. Also, as we argue
next, the definition of ℓ̄ implies that gki ≥ 0 for all i ∈ [n] with ci − A⊤

i π > σ; for in this case, for
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every such index i, by definition, ℓ̄i = xi, and thus x̄i − xi ≥ 0, that is, gki ≥ 0. Similarly, gki ≤ 0
for all i ∈ [n] with ci −A⊤

i π < −σ. Thus (ci −A⊤
i π)g

k
i ≥ 0 whenever |ci −A⊤

i π| > σ.
Let S ⊆ supp(gk) denote the set of indices i with (ci − A⊤

i π)g
k
i < 0, and let α := ‖gkS‖∞. By

the above, j /∈ S , and (ci −A⊤
i π)g

k
i ≥ −σα for all i ∈ S.

The definition of κ(A) ≤ κ(XA) implies that |gkj | ≥ α/κ(XA). Hence,

0 ≥
〈

c, gk
〉

=
〈

c−A⊤π, gk
〉

=
∑

i∈supp(gk)\S
(ci −A⊤

i π)g
k
i +

∑

i∈S
(ci −A⊤

i π)g
k
i

≥ (cj −A⊤
j π)g

k
j − (n− 1)σα

≥ n · κ(XA) · σ ·
α

κ(XA)
− (n− 1)σα > 0 ,

a contradiction.

The following claim completes the proof of Lemma 4.3.

Claim 6.2. Consider an optimal solution x∗ for LP(A, b, c, u) with ‖x̄ − x∗‖1 minimal. Then,
‖x̄− x∗‖∞ ≤ κ(XA) · θ(x, π, σ).

Proof. Consider a generalized path-circuit decomposition x∗− x̄ =
∑h

k=1 g
k. This may only contain

inner vectors, since A(x∗ − x̄) = 0. By the choice of x∗, we must have
〈

c, gk
〉

< 0 for every k.
Hence, x̄ + λgk is not feasible for (12) for any λ > 0, as otherwise we get a contradiction to the
optimality of x̄ for (12).

Therefore, for each k, there exists an i ∈ supp(gk) with ℓ̄i = x̄i > 0 or ūi = x̄i < ui. By
construction, for these i, x̄i = xi. Using the definition of κ(A) ≤ κ(XA) and the comformity of the
decomposition, we get

‖x̄− x∗‖∞ ≤ max
j

h
∑

k=1

|gkj | ≤
h

∑

k=1:
some ik∈supp(gk) s.t.

ℓ̄ik=xik
>0 or ūik

=xik
<uik

κ(A) · |gkik |

≤ κ(A)
[

∑

ci−A⊤

i π≥σ

xi +
∑

ci−A⊤

i π<−σ

(ui − xi)
]

≤ κ(XA) · θ(x, π, σ),

which is the claimed bound.

The lemma follows from combining the previous two claims.

The next lemma bounds the difference in the optimum value if the right hand side changes; we
will use it in the proof of Theorem 4.4.

Lemma 6.3. Let A ∈ Rm×n, c, u ∈ Rn, and b, b̄ ∈ Rm. If both LPs are feasible, then

∣

∣Φ(A, b, c, u) − Φ(A, b̄, c, u)
∣

∣ ≤ κ(XA) · ‖c‖1 · ‖b− b̄‖1 .
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Proof. Let x be an optimal solution to LP(A, b, c, u) and x̄ an optimal solution to LP(A, b̄, c, u) such
that ‖x− x̄‖1 is minimal, and consider a generalized path-circuit decomposition x̄− x =

∑h
k=1 g

k.
By the choice of x and x̄, the decomposition contains no inner circuits. Thus, by Lemma 3.3,
‖x− x̄‖∞ ≤ κ(XA) · ‖b− b̄‖1. Therefore,

∣

∣Φ(A, b, c, u) − Φ(A, b̄, c, u)
∣

∣ =
∣

∣ 〈c, x− x̄〉
∣

∣ ≤ ‖c‖1 · ‖x− x̄‖∞ ≤ κ(XA) · ‖c‖1 · ‖b− b̄‖1 ,

proving the claim.

Proof of Theorem 4.4. Feasibility is trivial, since xN is a feasible solution. By the definition of
θ(x, π, σ),

‖b− b̄−AJ2
uJ2‖1 ≤ ‖b−Ax‖1 + ‖Ax−ANxN −AJ2

uJ2‖1
= ‖b−Ax‖1 + ‖AJ1

xJ1 −AJ2
(uJ2 − xJ2)‖1

≤ θ(x, π, σ) · ‖A‖1 + ‖Ax− b‖1 ,
which finishes the proof of the feasibility condition.

To show the optimality condition, we will apply Lemmas 4.3 and 6.3 as follows. Consider the
linear program LP(A,Ax, c, u), for which x is a feasible solution. Let x∗ be the optimal solution to
this LP given by Lemma 4.3. Defining y∗ := x∗|N and b∗ := ANy

∗, we obtain that y∗ is an optimal
solution to LP(AN , b

∗, cN , uN ).
For convenience, let ρ := 2 · κ(XA) · θ(x, π, σ), J := J1 ∪ J2, and k := |J |. For each i ∈ J2, we

have that x∗i ≤ xi + κ(XA) · θ(x, π, σ) ≤ ρ, where the first inequality follows from Lemma 4.3 and
the second one by the definition of θ(x, π, σ). Similarly, for each i ∈ J1, we obtain x∗i ≥ ui − ρ.
This yields the bound

∣

∣Φ(AN , b
∗, cN , uN) +

〈

cJ2 , uJ2
〉

− Φ(A,Ax, c, u)
∣

∣ =
∣

∣ 〈cN , y∗〉+
〈

cJ2 , uJ2
〉

− 〈c, x∗〉
∣

∣ ≤ kρ‖c‖∞ . (13)

To finish the proof we need to bound the differences |Φ(AN , b̄, cN , uN ) − Φ(AN , b
∗, cN , uN)| and

|Φ(A, b, c, u) − Φ(A,Ax, c, u)|, which we will do by applying Lemma 6.3. This yields

∣

∣Φ(A, b, c, u) − Φ(A,Ax, c, u)
∣

∣ ≤ κ(XA) · ‖c‖1 · ‖Ax− b‖1 (14)

and

∣

∣Φ(AN , b̄, cN , uN )− Φ(AN , b
∗, cN , uN )

∣

∣ ≤ κ(XA) · ‖c‖1 · ‖b̄− b∗‖1. (15)

To use (15), we further bound ‖b̄− b∗‖1 as follows:

‖b̄− b∗‖1 = ‖ANxN −ANy
∗‖1

= ‖Ax−Ax∗ −AJ(xJ − x∗J )‖1
= ‖AJ(xJ − x∗J )‖1
≤ k · ‖A‖1 · κ(XA) · θ(x, π, σ), (16)

where the inequality in the last line follows by how we obtained x∗ from Lemma 4.3. Finally, we
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conclude by combining (13), (14), (15), and (16):
∣

∣Φ(AN , b̄, cN , uN) +
〈

cJ2 , uJ2
〉

− Φ(A, b, c, u)
∣

∣

≤
∣

∣Φ(AN , b
∗, cN , uN) +

〈

cJ2 , uJ2
〉

− Φ(A,Ax, c, u)
∣

∣ +
∣

∣Φ(A,Ax, c, u) − Φ(A, b, c, u)
∣

∣

+
∣

∣Φ(AN , b̄, cN , uN )− Φ(AN , b
∗, cN , uN)

∣

∣

≤ k · ρ · ‖c‖∞ + κ(XA) · ‖c‖1 · ‖Ax− b‖1 + κ(XA) · ‖c‖1 · ‖b̄− b∗‖1
≤ k · ρ · ‖c‖∞ + κ(XA) · ‖c‖1 · ‖Ax− b‖1 + k · κ(XA)

2 · ‖c‖1 · ‖A‖1 · θ(x, π, σ)
= κ(XA) · ‖c‖1 · ‖Ax− b‖1 +

[

2k · κ(XA) · ‖c‖∞ + k · κ(XA)
2 · ‖c‖1 · ‖A‖1

]

· θ(x, π, σ)
≤ κ(XA) · ‖c‖1 · ‖Ax− b‖1 + k · κ(XA) · ‖c‖1 ·

(

2 + κ(XA) · ‖A‖1
)

· θ(x, π, σ).

This proves the optimality condition. The third statement, that is, the cost reduction, directly
follows from the definitions of J1, J2, N and σ.

7 Analysis of the outer loop

Proof of Theorem 5.1. We first show that the algorithm terminates with recursion depth at most
log2(n‖u‖1/δopt). By the cost reduction condition in Theorem 4.4, λ ≥ 2 holds in each recursive
call in Algorithm 1. If δopt0 denotes the initial δopt and δoptj denotes the δopt of the j-th recursive

call, then it follows that δoptj ≥ 2jδopt0 /n. Thus, when j ≥ log2(n‖u‖1/δopt0 ), we have δoptj ≥ ‖u‖1
and the algorithm terminates.

Now we prove the correctness of the algorithm by induction on the recursion depth. For the
induction start, we assume that δopt ≥ ‖u‖1, in which case an arbitrary δfeas-feasible solution x
is returned. Let x∗ be an optimal solution to LP(A, b, c, u). Since 0 ≤ x, x∗ ≤ u, it follows that
〈c, x〉 − Φ(A, b, c, u) = 〈c, x− x∗〉 ≤ ‖u‖1‖c‖∞ ≤ δopt‖c‖∞, proving δopt-optimality.

For the inductive step, assume δopt < ‖u‖1. Then the algorithm invokes the subroutine
GetPrimalDualPair followed by a recursive call to itself. Recall that the subroutine GetPrimal-

DualPair returns (x, π) that satisfy the three bounds stated as part of the subroutine. We distin-
guish two cases depending on whether J1 ∪ J2 is empty or not.

If J1 ∪ J2 = ∅, then the induction hypothesis applied to the call in line 10 implies that xout is
δfeas-feasible for the original system. Moreover, it is a λδopt-optimal solution to LP(A, b, cnew, u),
with λ = ‖c‖∞/(2‖cnew‖∞) in this case. Note that Φ(A, b, cnew, u) = Φ(A, b, c, u) − 〈π, b〉. This
implies:

|
〈

c, xout
〉

− Φ(A, b, c, u)| ≤ |
〈

c− cnew, xout
〉

− 〈π, b〉|+ |
〈

cnew, xout
〉

− Φ(A, b, cnew, u)|
≤ |

〈

π,Axout − b
〉

|+ λδopt‖cnew‖∞ (as xout is λδopt-optimal)

≤ ‖π‖∞ · δfeas‖A‖1 + λδopt‖cnew‖∞ (as xout is δfeas-feasible)

≤ δopt‖c‖∞
2δfeas‖A‖1

· δfeas‖A‖1 + λδopt‖cnew‖∞

(using the upper bound on ‖π‖∞ in GetPrimalDualPair

and the lower bound on δopt/δfeas in SolveLP)

≤ δopt

2
‖c‖∞ +

δopt

2
‖c‖∞ = δopt‖c‖∞,

finishing the first case.
Otherwise, if J1 ∪ J2 6= ∅, note that LP(AN , b̄, c

new
N

, uN ) is feasible because xN is a feasible
solution. Thus we can apply the induction hypothesis to the recursive call and obtain that xoutN
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is (δfeas · |N |/n)-feasible and (λδopt · |N |/n)-optimal for LP(AN , b̄, c
new
N

, uN ). We combine this with
Theorem 4.4 and the properties of the subroutine to prove first the δfeas-feasiblity and then the
δopt-optimality of xout for the original system.

With respect to feasiblity, we obtain:

‖Axout − b‖1 ≤ ‖ANx
out
N
− b̄‖1 + ‖b̄+AJ2

uJ2 − b‖1 (as Axout = ANx
out
N

+AJ2
uJ2)

≤ (δfeas · |N |/n)‖AN‖1 + θ(x, π, σ) · ‖A‖1 + ‖Ax− b‖1 (explanation below)

≤ (δfeas · |N |/n)‖AN‖1 + δfeas‖A‖1/n (explanation below)

≤ δfeas‖A‖1.

The second inequality uses induction for the first term and Theorem 4.4 for the second term. The
third inequality follows because GetPrimalDualPair returns a solution bounding the second and
third terms in the second line, the RHS of (7), by the second term in the third line.

To prove approximate optimality, we first focus on the coordinates in N and obtain the following
bound. (See below for explanations.)

|
〈

cN , x
out
N

〉

−Φ(AN , b̄, c
new
N

, uN )−
〈

π, b̄
〉

|
≤ |

〈

cN − cnewN , xoutN

〉

−
〈

π, b̄
〉

|+ |
〈

cnewN , xoutN

〉

− Φ(AN , b̄, c
new
N , uN )|

≤ |
〈

π,ANx
out
N − b̄

〉

|+ (λδopt · |N |/n) · |cnew‖∞

≤ ‖π‖∞‖AN‖1δfeas ·
|N |
n

+
δopt|N |

2n
· ‖c‖∞

≤ δopt‖c‖∞
2δfeas‖A‖1

‖AN‖1δfeas ·
|N |
n

+
δopt|N |

2n
‖c‖∞

≤ (δopt · |N |/n)‖c‖∞. (17)

The bound ‖π‖∞‖AN‖1δfeas · |N |/n on the first term in the third line follows as xoutN is a δfeas|N |/n
feasible solution. In turn, the bound on this term follows because of the bound on ‖π‖∞ in
GetPrimalDualPair and 0 < δfeas(8n

√
m · κ(XA)‖A‖1) ≤ δopt ≤ ‖u‖1 (the second inequality is an

input constraint for SolveLP, and the final inequality arises due to computing N in SolveLP only
when δopt < ‖u‖1).

Finally, we obtain:

|
〈

c, xout
〉

− Φ(A, b, c, u)| ≤ |
〈

cN , x
out
N

〉

− Φ(AN , b̄, c
new
N , uN )−

〈

π, b̄
〉

|
+ |Φ(AN , b̄, c

new
N

, uN ) +
〈

π, b̄
〉

+
〈

cJ2 , uJ2
〉

−Φ(A, b, c, u)|
≤ (δopt · |N |/n)‖c‖∞ + δopt‖c‖∞/n

≤ δopt‖c‖∞.

To obtain the first inequality, recall that xout is a combination of xout
N

, xout
J1

= 0, and xout
J1

= uJ2 . For
the next inequality, note that the first term on line 2 is bounded by (δopt · |N |/n)‖c‖∞ using (17),
and the second term is bounded by the LHS of (8), which is bounded by δopt‖c‖∞/n according to
the second condition of GetPrimalDualPair. This concludes the second case.

8 Analysis of the inner loop

In this section, we prove Theorem 5.4 on the correctness and running time of the inner loop. The
proof uses three main lemmas. The first one bounds the number of iterations in R-FGM, using
Theorem 2.5. This lemma will be proved in Section 8.2. Recall that the approximation factor ε
was chosen to be ε = 1/(8n · ⌈κ(XA)⌉).
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Lemma 8.1. After O
(

k
√
nm2‖A‖21 · κ̄2(XA)/ε

)

iterations, R-FGM returns an e−2k‖b‖22/(2‖A‖21)-
approximate minimizer of Fτ .

The next lemma strengthens Proposition 5.2, by asserting a Lipschitz property of F ⋆
τ as a

function of τ .

Lemma 8.2. F ⋆
τ is a non-increasing and continuous function of τ . In addition, If F ⋆

τ ≤ C
2
ζ, then

F ⋆
τ−C

√
ζ/2
≤ (2C2 − 1)ζ.

Proof. The first part is simple and was already stated as Proposition 5.2. Let x∗ be the optimal
solution of F ⋆

τ , and let ∆ := C√ζ/2. The lemma follows by showing that

Fτ−∆(x
∗)− F ⋆

τ ≤ (C2 − 1)ζ (18)

Since F ⋆
τ ≤ C

2
ζ and F ⋆

τ ≥ (max{0, 〈ĉ, x∗〉 − τ})2/2, we have max{0, 〈ĉ, x∗〉 − τ} ≤ C√2ζ = 2
√
2∆.

Therefore,

Fτ−∆(x
∗)− F ⋆

τ = (max{0, 〈ĉ, x∗〉 − τ +∆})2/2− (max{0, 〈ĉ, x∗〉 − τ})2/2

≤ max{0, 〈ĉ, x∗〉 − τ} ·∆+
1

2
∆2

≤ 2
√
2∆ ·∆+

1

2
∆2.

Using the above bound, we get (18) from

Fτ−∆(x
∗)− F ⋆

τ ≤ 2
√
2∆2 +

1

2
∆2

= (1/
√
2 + 1/8)C2ζ ≤ (C2 − 1)ζ .

The last inequality follows by Lemma 5.3.

The third lemma shows that if Fτ (x) lies in the appropriate interval, then the output satisfies
the desired properties of the algorithm. The proof is given in Section 8.1.

Lemma 8.3. Let x be a ζ-approximate minimizer and π as defined in the algorithm. Assume that

Fτ (x) ∈ [C2ζ, 2C2ζ]. Then

(i) θ(x, π, σ) ≤ n
√
ζ/2,

(ii) ‖Ax− b‖1 ≤ 128n2m · κ2(XA) · ‖A‖21
√
ζ, and

(iii) ‖π‖∞ ≤ 4n
√
m · κ(XA) · ‖c‖∞.

We now give the proof of Theorem 5.4 using these three lemmas.

Proof of Theorem 5.4. First of all, we need to show that the algorithm eventually outputs a primal

dual pair (x, π), i.e., the condition Fτ (x) ∈ [C2ζ, 2C2ζ] will be met, and the claimed bound on the
number of calls to R-FGM is applicable. This follows by the next claim.

Claim 8.4. τ+ − τ− ≥ C√ζ/2 throughout Algorithm 2.
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Proof. We show the following invariant property of the algorithm:

F ∗
τ− > (2C2 − 1)ζ and F ∗

τ+ < C2ζ.

Initially, for any feasible x to LP(A, b, c, u), we have Fτ+(x) = 0, and therefore F ∗
τ+ = 0. Also, F ∗

τ− ≥
2C2ζ as Fτ− ≥ 1

2(max{0, 〈ĉ, x〉 − τ−})2 ≥ 1
2(2C
√
ζ)2 = 2C2ζ, noting that 〈ĉ, x〉 ≥ −‖ĉ‖∞‖u‖1 ≥

−‖u1‖. During the algorithm, each computed x is a ζ-approximate minimizer of Fτ , and therefore
the updating of τ− and τ+ in steps 5–8 maintains the invariant.

For a contradiction, assume τ+− τ− ≤ C√ζ/2 at some point. Then, F ∗
τ+ < C2ζ and Lemma 8.2

imply F ∗
τ− ≤ (2C2 − 1)ζ, a contradiction.

To bound the number of calls to R-FGM, note that initially τ+ − τ− = 2‖u‖1 + 2C√ζ ≤ 4‖u‖1
as ‖u‖1 ≥ δfeas, as required for the input of GetPrimalDualPair; and τ+ − τ− is halved in every
iteration. According to the above claim, it never goes below C√ζ/2, and applying Lemma 5.3 yields
the following bound on the number of calls:

O
(

log
(

‖u‖1/(C
√

ζ)
))

= O
(

log
(

‖u‖1nm · κ(XA)/δ
feas

))

.

In each R-FGM call, by Lemma 8.1, to obtain a ζ-approximate minimizer takes at mostO(k
√
nm2‖A‖21·

κ̄2(XA)/ε) steps, where k = O
(

log(‖b‖22/(‖A‖21ζ)
)

and ε = 1/[8n · κ(XA)]. The claimed bound fol-
lows as ‖b‖22 ≤ ‖b‖21 ≤ ‖A‖21 · ‖u‖21, which follows from the feasibility assumption.

The bounds on x and π asserted in the theorem follow by simple calculation from the bounds
in Lemma 8.3 and the definition of ζ in (11).

8.1 Optimality bounds from the potential function

Recall the parameters ε = 1/(8n · ⌈κ(XA)⌉), σ = ‖c‖∞/(4n · ⌈κ(XA)⌉) = 2ε‖c‖∞. Recall that in
Algorithm 2, we defined

α(x) := α = max{0, 〈ĉ, x〉 − τ} , and π(x) := π =
‖c‖∞
‖A‖21α

(b−Ax)

Let us further define

β(x) :=
‖Ax− b‖2
‖A‖1

. (19)

With this notation, we can write

Fτ (x) =
1

2
α(x)2 +

1

2
β(x)2 .

We will also often use the gradient, which can be expressed as

∇Fτ (x) = α(x)

(

ĉ− A⊤π(x)
‖c‖∞

)

. (20)

When x is clear from the context, we simply write α, β, and π. We will use a simple convexity
statement, formulated in the following general form.

Proposition 8.5. Let f : Rn → R be a continuously differentiable convex function with [0, u] ⊆
dom(f), such that for some M ≥ 1, f satisfies the following smoothness property: for every index
i ∈ [n], for every pair x, y ∈ Rn such that xj = yj for all j 6= i,

|∇if(x)−∇if(y)| ≤M |xi − yi| . (21)
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Also, suppose that for some η > 0, x is an η-approximate minimizer to the program

min f(x) s.t. x ∈ [0, u] .

Then, for any i ∈ [n], the following hold:

(i) If ∇if(x) ≥ 2M
√
η, then xi ≤ √η/M .

(ii) If ∇if(x) ≤ −2M
√
η, then xi ≥ ui −

√
η/M .

Proof. We only prove part (i); part (ii) follows analogously. For a contradiction, assume that for
some i ∈ [n], ∇if(x) ≥ 2M

√
η and xi >

√
η/M . Let us define z ∈ Rn with zi := xi −

√
η/M > 0

and zj := xj for j 6= i. Thus, z ∈ [0, u], and by the smoothness property, ∇if(z) ≥ ∇if(x)−
√
η ≥

(2M − 1)
√
η. By convexity,

f(x) ≥ f(z) + 〈∇f(z), x− z〉 = f(z) +∇if(z) ·
√
η

M
≥ f(z) + (2M − 1)

√
η ·
√
η

M
> f(z) + η ,

using M ≥ 1. This is a contradiction to the assumption that x is an η-approximate minimizer.

The next lemma is used to prove the first key ingredient of Lemma 8.3, an upper bound on
θ(x, π, σ), provided that α(x) is sufficiently large.

Lemma 8.6. Suppose x is a ζ-approximate minimizer of Fτ (x) satisfying ε · α(x) ≥ 4
√
ζ, and

π = π(x). Then θ(x, π, σ) ≤ n
√
ζ/2.

Proof. We use α = α(x), β = β(x), π = π(x) throughout. Recall that θ(x, π, σ) =
∑

i:ci−A⊤

i π>σ xi+
∑

i:ci−A⊤

i π<−σ(ui − xi), and that the vector ĉ was obtained by normalizing as c/‖c‖∞, and then
rounding down each positive entry to the nearest integer multiple of ε, and rounding up each
negative entry to the nearest integer multiple of ε. Also noting that σ = 2ε‖c‖∞, we obtain the
following upper bound in terms of ĉ.

θ(x, π, σ) ≤
∑

i:ĉi−A⊤

i π/‖c‖∞>ε

xi +
∑

i:ĉi−A⊤

i π/‖c‖∞<−ε

(ui − xi). (22)

We will show each of the terms xi and ui − xi in these two sums is bounded by
√
ζ
2 , and then the

result is immediate. Recall from (20) that

ĉi −A⊤
i π/‖c‖∞ = ∇iFτ (x)/α .

We apply Proposition 8.5 to Fτ (x) and η = ζ. From (20), a simple calculation shows that f(x) =
Fτ (x) satisfies the smoothness bound (21) with M = 2. Namely, for any i ∈ [n] and for any
x, y ∈ Rn such that xj = yj for i 6= j,

|∇iFτ (x)−∇iFτ (y)| ≤ ‖ĉ‖∞‖x− y‖1 + |A⊤
i Ai| · ‖(x− y)‖1/‖A‖21 ≤ 2|xi − yi| .

ĉi −A⊤
i π/‖c‖∞ > ε is equivalent to ∇iFτ (x) ≥ εα. By the assumption of the lemma, εα ≥ 4

√
ζ =

2M
√
ζ.

Thus, Proposition 8.5(i) implies that whenever ĉi − A⊤
i π/‖c‖∞ > ε, we must have xi ≤

√
ζ/2.

Similarly, Proposition 8.5(ii) implies that whenever ĉi−A⊤
i π/‖c‖∞ < −ε, we have ui−xi ≤

√
ζ/2.

This completes the proof.
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Note the previous lemma requires a lower bound on α. Our second lemma shows that this
requirement is satisfied if one get a good approximate minimizer with a sufficiently large function
value.

Lemma 8.7. Suppose x is a ζ-approximate minimizer of Fτ (x), satisfying Fτ (x) ≥ 10C2ζ. Then,
α(x) ≥ 1

2C
√

Fτ (x).

The proof relies on the following statement:

Proposition 8.8. Assume LP(A, b, c, u) is feasible, and let x ∈ [0, u] with β(x) > 0. Then,
for any 0 ≤ µ ≤ 1, there exists a solution x′ ∈ [0, u] such that α(x′) ≤ α(x) + µCβ(x)/n and
β(x′) ≤ (1− µ)β(x).

Proof. Let z ∈ Rn be chosen as

z := argmin{‖z − x‖2 | Az = b , z ∈ [0, u]} and set x′ := µz + (1− µ)x .

Clearly, β(x′) = (1 − µ)β(x). By Lemma 3.3, ‖z − x‖∞ ≤
√
m · κ(XA) · ‖Ax − b‖2. Therefore, α

increases by at most

〈ĉ, (µz + (1− µ)x)− x〉 ≤ µ‖ĉ‖1‖z − x‖∞ ≤ µ
√
m · κ(XA) · ‖Ax− b‖2

= µ
√
m · κ(XA) · ‖A‖1β(x) ≤ µCβ(x)/n ,

recalling the definition of C in (11).

Proof of Lemma 8.7. We distinguish two cases.

Case i: 2Cα(x) ≥ β(x). In this case,

Fτ (x) =
1

2
α(x)2 +

1

2
β(x)2 ≤ 4C2 + 1

2
α(x)2 .

Thus, the claimed α(x) ≥ 1
2C
√

Fτ (x) follows by recalling C ≥ 1 (Lemma 5.3).

Case ii: 2Cα(x) < β(x). Let us use Proposition 8.8 with

µ :=
β(x)− Cα(x)
(C2 + 1)β(x)

.

Clearly, µ ∈ [0, 1]. Thus, there exists x′ ∈ [0, u] such that α(x′) ≤ α(x) + µCβ(x) and β(x′) ≤
(1− µ)β(x). Therefore,

Fτ (x
′) =

1

2
α(x′)2 +

1

2
β(x′)2 ≤ 1

2
(α(x) + µCβ(x))2 + 1

2
(1− µ)2β(x)2.

Above, we picked µ to minimize this expression, and some calculation yields

Fτ (x
′) ≤ (α(x) + Cβ(x))2

2(C2 + 1)
.

Further calculation yields

Fτ (x)− Fτ (x
′) ≥ (Cα(x) − β(x))2

2(C2 + 1)
>

β(x)2

8(C2 + 1)
,
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where the last inequality uses the assumption 2Cα(x) < β(x). The same condition also implies that

Fτ (x) =
1
2α(x)

2+ 1
2β(x)

2 ≤ (4C2+1)β(x)2

8C2 . Using C ≥ 1, these two bounds in turn, and also the lower
bound on Fτ (x) assumed in the lemma, we obtain

Fτ (x)− Fτ (x
′) >

β2(x)

8(C2 + 1)
≥ C2

(4C2 + 1)(C2 + 1)
Fτ (x) ≥

1

10C2Fτ (x) ≥ ζ ,

a contradiction to the assumption that x is a ζ-approximate minimizer of Fτ (x).

We are now ready to prove Lemma 8.3.

Proof of Lemma 8.3. By Lemma 8.7, as Fτ (x) ≥ C2ζ ≥ 10C2ζ,

α ≥
√

Fτ (x)

2C ≥ C
√
ζ

2C · ≥ 32n · κ(XA) ·
√

ζ.

Thus,

εα =
α

8n · κ(XA)
≥ 4

√

ζ.

Lemma 8.6 now gives θ(x, π, σ) ≤ n
√
ζ/2, proving (i).

In addition, the definition of Fτ (x) implies that ‖Ax − b‖22 ≤ 2‖A‖21 · Fτ (x). The assumption

Fτ (x) ≤ 2C2ζ implies that

‖Ax− b‖1 ≤
√
m · ‖Ax− b‖2 ≤

√
2m‖A‖1 ·

√

Fτ (x) ≤ 2‖A‖1 · C
√

mζ ,

proving (ii).
Finally,

‖π‖∞ =
‖c‖∞
α‖A‖21

‖Ax− b‖∞ ≤
2C‖c‖∞
C√ζ‖A‖21

‖Ax− b‖2

≤ 4C‖c‖∞/‖A‖1 = 4n
√
m · κ(XA) · ‖c‖∞ ,

proving (iii).

8.2 Convergence speed of R-FGM

Let us define B ∈ R(m+1)×(n+1), ũ, b̃ ∈ Rm+1 as

B :=

(

A 0
‖A‖1ĉ⊤ ‖A‖1

)

, ũ :=

(

u
M

)

b̃ :=

(

b
‖A1‖τ

)

for sufficiently large M . With this notation, minimizing Fτ (x) over 0 ≤ x ≤ u can be written in
the form

min
1

2‖A‖21
·
∥

∥

∥

∥

B

(

x
t

)

− b̃

∥

∥

∥

∥

2

2

0 ≤
(

x
t

)

≤ ũ .

(23)

We let F̃τ (x, t) denote the objective function. We restate Lemma 8.1 for convenience.
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Lemma 8.1. After O
(

k
√
nm2‖A‖21 · κ̄2(XA)/ε

)

iterations, R-FGM returns an e−2k‖b‖22/(2‖A‖21)-
approximate minimizer of Fτ .

We use the starting point (x0, t0) = (0, τ). The bound follows from Theorem 2.5, with the
smoothness and quadratic growth bounds as below.

Lemma 8.9. The function F̃τ (x, t) is (2n + 2)-smooth.

Proof. We can bound the smoothness parameter as ‖B‖22/‖A‖21 ≤ (n + 1)‖B‖21/‖A‖21 ≤ (n +
1)(maxi(Ai + ‖A‖1ĉi))2/‖A‖21 ≤ 2(n+ 1).

Lemma 8.10 (Quadratic growth).

κ(XB) ≤ 2(m+ 1)‖A‖1 · κ̄2(XA) ·
1

ε
.

Consequently, the function F̃τ (x, t) has ε2
/[

64m4 · ‖A‖41 · κ̄4(XA)
]

-quadratic growth.

The proof is based on the following lemma.

Lemma 8.11. For a matrix A ∈ Rm×n and a vector d ∈ Rn, let K =

(

A
d⊤

)

. Then, every

elementary vector in F(K) is either an elementary vector in F(A), or the sum of two conformal
elementary vectors in F(A). Further, if d ∈ Zn, d 6= 0, then

κ(K) ≤ 2(m+ 1) · ‖d‖∞ · κ̄2(A) .

Proof. Let z be an elementary vector in F(K), and consider a generalized circuit-path decomposi-
tion of z w.r.t. A,

z =

h
∑

k=1

gk ,

where h ≤ n and g1, g2, . . . , gh ∈ F(A) are elementary vectors that conform to z. Further, for each
i = 1, 2, . . . , h− 1, supp(gi) \ ∪hj=i+1supp(g

j) 6= ∅.
The first statement follows by showing h ≤ 2. The proof is by contradiction: suppose h > 2,

and consider g2 and g3.
First, we observe that supp(g2) ∪ supp(g3) ( supp(z), because supp(g1) \ ∪hj=2supp(g

j) 6= ∅.
Next, we show that

〈

c, g2
〉

6= 0 and
〈

c, g3
〉

6= 0. For if one of them equals 0, for example,
〈

c, g2
〉

= 0,
then as g2 is elementary, Ag2 = 0 also, which implies z is not an elementary vector of F(K), as g2
has a strictly smaller support than z.

To obtain a contradiction, we consider g23 =
〈

c, g2
〉

g3−
〈

c, g3
〉

g2, which is non-zero as supp(g2)\
∪hj=3supp(g

j) 6= ∅ and
〈

c, g3
〉

6= 0. g23 also has a strictly smaller support than z, as supp(g2) ∪
supp(g3) ( supp(z). In addition,

〈

c, g23
〉

= 0 and Ag23 = 0. This implies z is not an elementary
vector of F(K), which provides a contradiction.

Let us now turn to the second statement: assume that d ∈ Zn. Take an elementary vector z in
F(K) such that κ(K) = |zi/zj | for some i, j ∈ supp(z). If z ∈ F(A), then κ(K) ≤ κ(A), and hence
the bound follows.

Otherwise, z is the sum of two elementary vectors in F(A). After appropriately scaling z, it
can be written in the form z = λ1g

1 + λ2g
2 with g1, g2 ∈ F̄(A), i.e., they are integer vectors such

that the largest common divisor of their entries is 1. Also, λ1, λ2 6= 0. Further, we must have
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0 = 〈d, z〉 = λ1

〈

d, g1
〉

+ λ2

〈

d, g2
〉

. After possibly another scaling of z, we get λ1 =
〈

d, g2
〉

and
λ2 = −

〈

d, g1
〉

, that is,
z =

〈

d, g2
〉

g1 −
〈

d, g1
〉

g2 .

By the definition of κ̄(A), ‖g1‖∞, ‖g2‖∞ ≤ κ̄(A). By the integrality of g1 and g2,

1 ≤ |
〈

d, g2
〉

|, |
〈

d, g1
〉

| ≤ (m+ 1) · ‖d‖∞ · κ̄(A) .

Thus, all nonzero entries of z have 1 ≤ |zi| ≤ 2(m + 1) · ‖d‖∞ · κ̄(A) · κ(A) , implying the claim
since κ(A) ≤ κ̄(A).

Proof of Lemma 8.10. The bound on the quadratic growth parameter follows from the circuit im-
balance bound: By Lemma 2.4, F̃τ (x, t) has 1/θ22,2(B)-quadratic growth, and, by Lemma 3.5,
θ2,2(B) ≤ (m+ 1) · κ(XB).

Let us now show the circuit imbalance bound. Recall that XA = ker
(

A −Im
)

. Since arbi-
trarily scaling the rows of a matrix does not change the kernel and thus does not affect the circuit
imbalances, we can write XB = ker

(

B −Im
)

= ker(H) for

H :=

(

A 0 −Im 0
1
ε ĉ

⊤ 1
ε 0 − 1

‖A‖1·ε

)

.

Let H ′ be the matrix arising from H by deleting the last column, and let us also define D =
(

A 0 −Im
)

.
Clearly, κ̄(XA) = κ̄(D). Recall from (9) that 1/ε is defined to be an integer. Hence, Lemma 8.11

is applicable to the matrix H ′. Note that the last row of this matrix has ℓ∞ norm 1/ε, since
‖ĉ‖∞ = 1. Therefore, κ(H ′) ≤ 2(m+ 1) · κ̄(XA) · 1ε .

We show that κ(H) ≤ ‖A‖1 · κ(H ′); this implies the statement. Indeed, H arises from H ′ by
duplicating one of its columns and scaling it by 1/‖A‖1. Duplicating columns does not affect the
circuit imbalance, whereas multiplying a column by any constant 1/α may increase it by at most
a factor α. This completes the proof.

9 Analysis of dual certificates

We now present the proof of Lemma 4.6 and Theorem 4.7 on δ-certificates.

Proof of Lemma 4.6. Part (i) Let (π,w−, w+) denote the δ-certificate. This is a feasible solution
to Dual(A, b, c, u), and therefore Φ(A, b, c, u) ≥ 〈b, π〉 − 〈u,w+〉. Thus, using the properties of
δ-certificates, we get the bound

〈c, x〉 − Φ(A, b, c, u) ≤ 〈c, x〉 − 〈b, π〉+
〈

u,w+
〉

=
〈

c−A⊤π + w+, x
〉

+ 〈Ax− b, π〉+
〈

u− x,w+
〉

=
〈

w−, x
〉

+
〈

w+, u− x
〉

+ 〈Ax− b, π〉
≤ (4n + 2)δ‖c‖∞ .

Part (ii) Let b̄ = Ax. By Lemma 6.3, and the assumption on δfeas, it follows that

|Φ(A, b, c, u) − Φ(A, b̄, c, u)| ≤ κ(XA) · ‖c‖1 · ‖b− b̄‖1 ≤ n · κ(XA) · ‖c‖∞ · ‖A‖1 · δfeas ≤ δopt · ‖c‖∞ ,
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Thus, x is 2δopt-optimal for LP(A, b̄, c, u). Let us select an optimal dual solution (π̄, w̄−, w̄+)
to Dual(A, b̄, c, u). Thus,

〈

b̄, π̄
〉

− 〈u, w̄+〉 = Φ(A, b̄, c, u). As in part (i), we get

2δopt‖c‖∞ ≥ 〈c, x〉 − Φ(A, b̄, c, u) = 〈c, x〉 −
〈

b̄, π̄
〉

+
〈

u, w̄+
〉

=
〈

w̄−, x
〉

+
〈

w̄+, u− x
〉

+
〈

Ax− b̄, π̄
〉

.

Since all terms here are nonnegative, we get that (π̄, w̄−, w̄+) is a feasible solution to the LP

A⊤π + w− − w+ = c

0 ≤ w−
i ≤

2δopt‖c‖∞
xi

, ∀i ∈ [n]

0 ≤ w+
i ≤

2δopt‖c‖∞
ui − xi

, ∀i ∈ [n] .

(24)

We now show that (24) has a feasible solution (π,w−, w+) with

‖π‖∞ ≤ κ(XA) · ‖c‖1 . (25)

This implies that (π,w−, w+) also satisfies requirement (iii) in the definition of δopt-certificates
(Definition 4.5), since

κ(XA) · ‖c‖1 ≤ ‖c‖1 · δopt/[δfeas · n · ‖A‖1] ≤ (‖c‖1/n) · δopt/‖Ax − b‖1 ≤ δopt‖c‖∞/‖Ax− b‖1,

where the first inequality uses the assumption that δfeas · n · κ(XA) · ‖A‖1 ≤ δopt, and the second
inequality uses the fact that x is δfeas.

We now show the existence of such a solution to (24). Let c′ := max{0, c} and c′′ := max{0,−c}.
Thus, (0, c′, c′′) satisfies all inequalities in (24) except the upper bounds. Now, let (π,w−, w+) be
a feasible solution to (24) such that the distance ‖(0, c′, c′′)− (π,w−, w+)‖2 is minimal.

Let Y := ker(A⊤|In|− In). By Lemma 3.6, and noting that duplicating columns does not affect
the circuit imbalances, we see that κ(Y) = κ(XA).

Note that (0, c′, c′′) − (π,w−, w+) ∈ Y. Let
∑h

k=1 g
k be a conformal circuit decomposition of

the difference of these vectors, where gk ∈ Rm×n×n. By the choice of (π,w−, w+), the support of

each gk must contain at least one coordinate in the second block with c′i >
2δopt‖c‖∞

xi
, or in the third

block with c′′j > 2δopt‖c‖∞
uj−xj

, and the corresponding component of gk must be negative.

By the conformity of the circuit decomposition, and the definition of κ(Y), it follows that
‖π‖∞ ≤ κ(Y) · (‖c′‖1 + ‖c′′‖1) = κ(XA) · ‖c‖1; thus, (25) holds. Therefore, (π,w−, w+) is a δopt-
certificate for x.

Proof of Theorem 4.7. Similarly to the feasibility algorithm in Theorem 4.1, we use R-FGM on a
convex quadratic minimization problem. Namely, we consider the problem

min
1

2

∥

∥

∥
A⊤π + w− − w+ − c

∥

∥

∥

2

0 ≤ w−
i ≤

2δopt‖c‖∞
xi

, ∀i ∈ [n] ,

0 ≤ w+
i ≤

2δopt‖c‖∞
ui − xi

, ∀i ∈ [n] ,

−2δopt‖c‖∞
‖Ax− b‖1

≤ πi ≤
2δopt‖c‖∞
‖Ax− b‖1

, ∀i ∈ [n] .
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Lemma 4.6(ii) guarantees the existence of a δopt-certificate, and using Definition 4.5(i), we can
deduce that the optimal value for this program is 0.

We run R-FGM, starting from the all zero solution to find an ε-approximate solution, where

ε := 1
2 ·

(

2δopt‖c‖∞
‖u‖1

)2
. Note that µ :=

√
2ε is smaller than any of the bounds in the box constraints

above. Hence, we can modify the solution to (π, w̃−, w̃+) such that A⊤π + w̃− − w̃+ = c, and this
solution violates the box constraints by at most a factor 2. Thus, (π, w̃−, w̃+) is a 2δopt-certificate.

By Lemma 2.4, the quadratic growth parameter is 1/θ22,2(A
⊤|In| − In), which is larger than

1/m2κ2(XA). This bound follows by Lemma 3.6 and the fact that duplicating columns does not
affect the circuit imbalances. In addition, by Lemma 2.2, the smoothness parameter is (‖A‖2 +1)2

as

‖(A⊤|In| − In)‖2 = max
p,q,r

√

‖A⊤p‖22 + ‖q‖22 + ‖r‖22
√

‖p‖22 + ‖q‖22 + ‖r‖22
≤ max

p,q,r

√

‖A⊤p‖22
√

‖p‖22
+

√

‖q‖22 + ‖r‖22
√

‖q‖22 + ‖r‖22
≤ ‖A‖2 + 1.

Given this, by Theorem 2.5, the total number of iterations of R-FGM is at most O
(

m‖A‖2 · κ(XA) ·
log(n‖u‖1/δopt)

)

.

10 Hoffman constant example for the self-dual embedding

We show that for the self-dual embedding (2), the Hoffman constant of the corresponding matrix
can be unbounded.

Lemma 10.1. Let A ∈ Rm×n, b ∈ Rm, u ∈ Rn with PA,b,u 6= ∅ being at least 2-dimensional. Then,
the Hoffman constant θ2,2 corresponding to the system

Sc =
{

(x, π,w−, w+)
∣

∣

∣
x ∈ PA,b,u ;A

⊤π + w− − w+ = c ; 〈c, x〉 − 〈b, π〉+
〈

u,w+
〉

= 0 ;w−, w+ ≥ 0
}

can be arbitrarily large.

Proof. Let us denote P = PA,b,u, and pick any ε > 0. We show that the Hoffman-constant can be
at least 1/ε.

Consider any facet F of PA,b, corresponding to the linear equation 〈r, x〉+v = 0 for some r ∈ Rn

and v ∈ R. We define c ≈ r as a perturbation of rwith ‖c− r‖2 ≤ ε, such that max 〈c, x〉 s.t. x ∈ P
has a unique optimal solution x̄ ∈ F . Let x′ ∈ F \ {x′} be another extreme point. Let (π,w+, w−)
be an optimal solution to the dual of max 〈c, x〉 s.t. x ∈ P. Then, for the primal-dual pair
(x′, π, w+, w−),

1. x′ ∈ P ;

2. (π,w+, w−) is feasible: A⊤π + w− − w+ = c and w+, w− ≥ 0;

3. the optimality gap is tiny but strictly positive, 〈c, x′〉 − 〈b, π〉 + 〈u,w+〉 ≤ 〈c, x′ − x̄〉 ≤
‖c− r‖2 · ‖x′ − x̄‖2 ≤ ε‖x′ − x̄‖2 and 〈c, x′〉 − 〈b, π〉+ 〈u,w+〉 > 0;

4. the distance to the nearest point in Sc is ‖x′ − x̄‖2.

In this case, the Hoffman constant θ2,2 is at least the distance to the nearest point in Sc divided by
the optimality gap, which is at least 1/ε.
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