
Unveiling Quasiparticle Berry Curvature Effects in the Spectroscopic Properties of a
Chiral p-wave Superconductor

Yunxiang Liao1, 2 and Yi-Ting Hsu3

1Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
2Condensed Matter Theory Center and Joint Quantum Institute,

Department of Physics, University of Maryland, College Park, MD 20742, USA.∗
3Department of Physics, University of Notre Dame, South Bend, IN 46556 USA†

(Dated: November 7, 2023)

The focus of experimental efforts on topological superconductivity (TSC) has predominantly
centered around the detection of Majorana boundary modes. On the contrary, the experimental
features in the bulk properties of TSC remain relatively unexplored, especially in 2D. Here, we
theoretically examine how spectroscopic properties away from the boundaries can be influenced
by the Berry curvatures (BCs) in two-dimensional chiral TSC, enabled by spin-orbit couplings
(SOC). Specifically, we analyze the semiclassical wavepacket dynamics for quasiparticles in p+ip
TSC achieved through Rashba SOC together with proximity to a ferromagnet and conventional
superconductor under an external magnetic field B. Beyond the more well-known momentum-space
and real-space BC effects, we unveil a new phase-space BC term that emerges exclusively when the
SOC and superconductivity coexist, resulting from a Rashba-induced quasiparticle charge dipole
moment that couples to B. Importantly, we demonstrate that this BC term grows linearly in |B|,
and can have a discernible impact on the energy- or momentum- resolved tunneling spectroscopy
by non-uniformly enhancing or suppressing peak intensities. This qualitative effect originates from
the BC-modified phase-space density of states, which can be experimentally probed through the
non-uniform changes in peak intensities compared to the spectrum at B = 0.

Introduction— Topological superconductors (TSCs)
are exotic quantum materials that exhibit non-trivial
band topology in the bulk as well as Majorana modes
on different dimensional boundaries1–8. The experimen-
tal detection of a TSC has remained one of the key
challenges in the fields of unconventional superconduc-
tivity and topological phases, despite intensive studies
in the past decade Currently, many TSC experiments
have focused on detecting Majorana boundary signatures
through local scanning probes4,9–19, although this ap-
proach often faces the challenge of distinguishing signals
originating from Majorana modes and from other more
mundane sources18–26. In contrast, experimental features
in the bulk of TSC associated with superconducting band
topology remain relatively unexplored.

Bands with non-trivial topology necessarily possess
non-trivial band geometry, which characterizes the
changes in eigenstates at neighboring momenta k and
could have significant influences on experimental observ-
ables in metals, insulators, and superconductors27–38.
For example, the Berry curvature (BC) Ωλλ′ , λ, λ′ = r, k,
is a geometric quantity expected in two-dimensional (2D)
chiral TSC, where the superconducting ground state fea-
tures a non-zero Chern number C =

∫
dkΩkk(k) along

with quantized thermal Hall conductivity, which results
from the quantized integral of the momentum-space BC
Ωkk

1. Besides having non-trivial Ωkk, 2D chiral TSCs
can also acquire generalized BCs defined in the real space
Ωrr and the phase space Ωkr. The former generally
exists in the presence of external perturbations, such
as a magnetic field or supercurrent, whereas the latter
can exist in superconductors when subjected to external
perturbations35. Away from the superconducting ground

state, these different BCs of Bogoliubov quasiparticles
were recently found to influence the density of states and
thermal Hall conductivity in spin-singlet superconduc-
tors with spin-degenerate normal states35.

Spin-orbit-coupled (SOC) normal states, on the other
hand, have been a crucial ingredient in strategies to
achieve TSC materials in 2D since manipulating Fermi
surface spin textures can facilitate the formation of effec-
tively spin-triplet Cooper pairs, and thus an odd-parity
TSC10,15,16,39–49. Candidate materials for 2D chiral TSC
that follow this strategy include the superconducting sur-
faces of proximitized Bi2Se3

39, proximitized semiconduc-
tors with SOC42, and hole-doped monolayer transition
metal dichalcogenides48, among other material systems.

Here, we will theoretically show how the quasiparti-
cle BC can impact spectroscopic properties in a p+ip
TSC, in particular the tunneling spectrum away from
the boundary and the spectral function. The latter can
in principle be probed using methods such as momentum-
and energy-resolved tunneling spectroscopy (MERTS)50.
Importantly, while the p+ip pairs here arise from a spin-
orbit coupled two-dimensional electron gas (2DEG), we
find new BC effects that are not inherited directly from
the normal state but exist only when the superconduct-
ing gap ∆ is non-zero. In the following, we will first
introduce the minimal model for the p+ip TSC and the
quasiparticle wavepacket approach30,35 we use to exam-
ine the BC effects. Then, we will identify the contribu-
tions to the equations of motion of wavepackets from the
momentum-, real-, and phase-space BCs of the quasipar-
ticles. Finally, we will examine the qualitative features of
quasiparticle BC in the tunneling conductance and spec-
tral function, tunable by an external magnetic field.

ar
X

iv
:2

31
1.

02
16

5v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  3
 N

ov
 2

02
3



2

! = #

$!
$"

!

S-wave SC
s-wave 

superconductor

FM insulator

Rashba
2DEG

!

FIG. 1. The left panel sketches the heterostructure we con-
sider under an applied magnetic field B = Bẑ. The right
panel shows the calculated dispersion of the normal state, i.e.
the dispersion of the Rashba 2DEG in the presence of an ef-
fective Zeeman field h that results predominantly from the
exchange coupling. The green plane represents the chemical
potential µ and the blue (yellow) arrows on the paraboloid
bands are the calculated spin directions at different momenta
for both bands.

Model— The specific model we consider is a Rashba
spin-orbit coupled two-dimensional electron gas sand-
wiched by an s-wave superconductor and a ferromagnetic
insulator, proposed by Sau et al.41,42 for an experimental
realization of a 2D p+ip TSC phase in condensed matter
systems (see Fig. 1). For this heterostructure, we in-
vestigate the quasiparticle dynamics driven by external
perturbations, such as an applied out-of-plane magnetic
field B = Bẑ. The 2DEG layer is described by the fol-
lowing mean-field superconducting model:

H =
∑

σ=↑,↓

∫
d2rc†σ(r)

(
1

2m
(−i∇−A(r))

2 − µ+ hσz

)
cσ(r)

+
∑

σ=↑,↓

∫
d2rc†σ(r)α(σ × (−i∇−A(r))) · ẑcσ(r)

+

∫
d2r

(
∆c†↑(r)c

†
↓(r) + ∆∗c↓(r)c↑(r)

)
,

(1)

where c†σ(r) creates an electron at position r with spin
σ =↑, ↓ and mass m. µ is the chemical potential, σi are
the Pauli matrices in spin, andA(r) = B×r/2 represents
the vector potential of the applied magnetic field B. We
have set the reduced Planck’s constant ℏ = 1 and the
electric charge e = 1. The second and third lines in Eq. 1
describe respectively the Rashba SOC with strength α
and the proximity-induced superconducting pairing with
pairing potential ∆. For the first line, the chemical po-
tential µ is set to intersect with the lower normal band.
We consider the cases where the effective Zeeman split-
ting h is predominantly induced by the exchange coupling
from the ferromagnetic layer with out-of-plane magneti-
zation, and the contribution from the external magnetic
field B < ∆ is negligible. This allows the Rashba layer
to lie within the TSC regime driven by a relatively large
Zeeman splitting h >

√
|∆|2 + µ2 without destroying the

superconducting layer, which does not directly contact
the ferromagnetic layer. Moreover, we approximate h
and B as two independent variables assuming that the
orbital effect of the ferromagnetic insulator and the Zee-
man splitting caused by the weak magnetic field B are
negligible. Finally, we do not consider the orbital effect
from vortices, which is expected to be insignificant at po-
sitions far away from vortices or when the Rashba layer
has a large g factor.
Quasiparticle wavepacket— For this superconducting

model H, we examine the semiclassical dynamics of Bo-
goliubov quasiparticles using the wavepacket approach,
which has been successfully applied to metals27,51 (see
review Ref.30 and references therein) and spin-degenerate
superconductors35,52,53. We consider the case where
the external perturbation A(r) is time independent and
slowly varying in the real space r with a character-
istic length scale much larger than the spread of the
wavepacket. This allows us to examine the wavepacket
dynamics by neglecting the position dependence of the
vector potential A(r) in Eq. 1 and approximating A(r)
by its value at the wavepacket center r = rc.
The effective Hamiltonian H which governs the

wavepacket dynamics can then be diagonalized by in-
troducing the Bogoliubov-de Gennes (BdG) quasiparticle
annihilation operator γs(k) in the momentum space k:

γs(k) =Φ†
s(k)Ψ(k), s = ±,

Ψ(k) =
[
c↑(k) c↓(k) c†↓(−k) −c†↑(−k)

]T
,

Φs(k) =
[
u↑s(k) u↓s(k) v↓s(k) v↑s(k)

]T
,

(2)

where cσ(k) =
∫
d2re−i(k+A(rc))·rcσ(r) for spin σ =↑, ↓,

and the helicity s = ± labels the upper and lower BdG
bands. The explicit expression for the BdG eigenfunc-
tion Φs(k) can be found in the Supplementary Material
(SM)54. After the BdG transformation, the Hamiltonian
acquires the form

H =
∑

s=±1

∫

k

Es(k)γ
†
s(k)γs(k) + const.. (3)

Here
∫
k
is short for

∫
d2k/(2π)2, and the BdG quasipar-

ticle energy Es(k) is given by

Es(k) =

√
b2k + |∆|2 + h2 + ξ2k + 2s

√
ξ2k (b

2
k + h2) + |∆|2h2,

(4)

with ξk = k2

2m − µ and bk = αk.
To investigate the BC effects in the TSC phase, we

construct a wavepacket for the quasiparticles from the
lower BdG band with s = −, which originates from the
lower normal band on which the chemical potential µ
intersects,

|Ws⟩ =
∫

k

ws(k, t)γ
†
s(k) |G⟩ . (5)
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Here |G⟩ denotes the superconducting ground state. The
envelope function ws(k, t) obeys the normalization con-
dition

∫
k
|ws(k, t)|2 = 1, and is sharply peaked around

the center kc. The coordinates of the wavepacket centers
in the momentum and real spaces kc and rc are given
respectively by53

kc =

∫

k

|ws(k, t)|2k,

rc = i

∫

k

(ws(k, t)Φs(k))
†
∂k (ws(k, t)Φs(k)) .

(6)

For cases where the perturbation is strong, a treatment
involving both s = ± bands is required29,30,55, which falls
beyond the scope of our current study.

Wavepacket dynamics and quasiparticle BC— Next,
we investigate the semiclassical dynamics of this quasi-
particle wavepacket |Ws⟩ by studying the Lagrangian of
the wavepacket L, which is defined as the wavepacket
average56 of the operator L̂ = i d

dt − Ĥ30,35. It can be ex-
pressed in terms of the momentum-space and real-space
Berry connections Aks and Ãrs:

L = − Es(kc)− k̇c · rc + k̇c · Aks + ṙc · Ãrs. (7)

The momentum-space Berry connection Aks is defined
in terms of the BdG wavefunction Φs(k) as Aks =
iΦ†

s(kc)∂kc
Φs(kc), and can be further simplified to 54

Aks =− 1

2
ρ0s(kc)∂kcχ+

1

2
ρ1s(kc)∂kcϕkc . (8)

Here, χ ≡ arg(∆) denotes the phase of the order
parameter57, ϕk ≡ arctan(ky/kx) denotes the intrinsic
angle for the Rashba SOC. ρas(k) for a = 0, 1 is given by

ρas(k) =
∑

σ

(ζσ)
a
(
|uσs(k)|2 − |vσs(k)|2

)
, (9)

with ζ↑/↓ = ±1. Physically speaking, these two factors
ρ0s(k) and ρ1s(k) at the wavepacket center kc corre-
spond to the wavepacket average56 of the total charge
Q̂ =

∑
σ

∫
r
ĉ†σ(r)ĉσ(r) and two times the spin Ŝ =∑

σ

∫
r
ζσ ĉ

†
σ(r)ĉσ(r)/2, respectively.

The real-space Berry connection Ãrs in Eq. 7 consists
of three parts:

Ãrs =Ars + ρ0s(kc)A(rc) +
1

2
B× d. (10)

The first term Ars differs from the momentum-space
counterpart Aks in Eq. 8 by only the replacement ∂kc

→
∂rc . The second term describes the coupling between
total charge ρ0s(kc) and the external vector potential
A(rc). The last term describes the coupling between
the external magnetic field B and the wavepacket av-

erage56 d of the charge dipole moment operator d̂ =∑
σ

∫
d2r ĉ†σ(r)ĉσ(r)(r − rc). Note that the second and

last terms, which respectively originate from the total

charge and the dipole of the wavepacket, enter the La-
grangian Eq. 7 in the same way as the well-known La-
grangian of a charged object with a dipole moment in a
magnetic field58.
We find that the wavepacket average d consists of two

terms d = d1 + d2:

d1 =
1

2

(
ρ20s(kc)− 1

)
∂kc

χ,

d2 =
1

2
(ρ2s(kc)− ρ0s(kc)ρ1s(kc)) ∂kc

ϕkc
,

(11)

where ρ2s(kc) =
∑

σ ζσ
(
|uσs(kc)|2 + |vσs(kc)|2

)
54. Here

the first term d1 vanishes for our case of an s-wave or-
der parameter with ∂kχ = 0. Importantly, the sec-
ond term d2 arises from the winding of the Rashba
angle ϕkc

around the Fermi surface, but is not inher-
ited from the normal state. Instead, d2 originates from
the momentum-dependent mixtures of electron and hole
components in the quasiparticle eigenstates, which there-
fore exists only in the superconducting but not the nor-
mal state. To be explicit, both d1 and d2 become vanish-
ing in a normal state because the superconducting phase
χ does not exist and the prefactor ρ2s − ρ0sρ1s = 0. d1

becomes nonzero for nontrivial superconducting pairing
as discussed in Ref.35. The new component d2 in the
wavepacket charge dipole moment can be viewed as a
new feature of spin-orbit coupled superconductors that
is reported for the first time to our best knowledge.
From the Lagrangian L in Eq. 7, we obtain the equa-

tions of motion for the wavepacket center:

[
Ωij

rrs Ωij
rks − δij

Ωij
krs + δij Ωij

kks

] [
ṙjc
k̇j
c

]
=

[
∂ricEs(kc)
∂ki

c
Es(kc)

]
, (12)

where the sum of repeated Cartesian indices is implied.
The momentum-, real-, and phase-space BCs are defined
as the derivatives of the Berry connections Ãrs and Aks:

Ωij
kks ≡ ∂ki

c
Aj

ks − ∂kj
c
Ai

ks, Ωij
rrs ≡ ∂ricÃ

j

rs − ∂rjc Ã
i

rs,

Ωij
rks ≡ ∂ricA

j
ks − ∂kj

c
Ãi

rs.

(13)

Note that Eq. 12 is the generic equations of motion
for both the superconducting quasiparticles and Bloch
electrons under time-independent perturbations27,30,35.
However, the explicit expressions of BCs are model de-
pendent. For the p+ip TSC in Eq 1, we find that up
to the leading order in the real-space gradient expansion,
the real-, momentum-, and phase-space BCs are given by
(see the full expression in SM54)

Ωks = − 1

2
∂kcρ0s(kc)× ∂kcχ+

1

2
∂kcρ1s(kc)× ∂kcϕkc ,

Ωrs = ρ0s(kc)B,

Ωij
rks =(∂kj

c
ρ0s(kc))p

i
s −

1

2
∂kj

c
(B× d)i,

(14)
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where Ωks (Ωrs) denotes the vector form of Ωkks (Ωrrs)
and ps = −A(rc) is the supercurrent for an s-wave order
parameter. For our case of an s-wave order parameter
with ∂kχ = 0 and an absence of supercurrent ps = 0, we
find a non-zero momentum-space BC Ωks inherited from
the spin-orbit coupled normal metal and a real-space BC
Ωrs due to the applied magnetic fieldB. Importantly, the
phase-space BC Ωkrs receives a charge dipole moment
d-dependent contribution under B. Since the quasiparti-
cle charge dipole moment d in Eq. 11 only exists when
superconductivity and SOC coexist (when ∂kχ = 0), we
expect that this dipole-induced BC can induce detectable
features of Rashba superconductors in superconducting
properties.

BC-induced violation of Liouville theorem— The pres-
ence of BC in the equations of motion Eq. 12 leads
to a breakdown of Liouville theorem for the conserva-
tion of the phase-space volume ∆V = ∆k∆r. This is
because the change of volume in time δt is given by
∆V (t + δt) −∆V (t) = (∇rṙ +∇kk̇)∆V (t)δt. From the
equation of motion in Eq. 12, one can see that this vol-
ume change vanishes when Ωλλ′s = 0, λ, λ′ = r, k, but
acquires BC-induced terms when Ωλλ′s ̸= 028,30. There-
fore, to preserve the total number of states in volume
element ∆V , i.e. D(r,k)∆V , a correction to the phase-
space density of states (DOS) D(r,k) is required 28,30.
It is known that the modified phase-space DOS D as-
sociated with the equation of motion Eq. 12 up to an
inessential overall coefficient, is given by 30,35,59

D(r,k) =

√
det

[
Ωrrs Ωrks − I

Ωkrs + I Ωkks

]

≈1 + TrΩkrs −Ωrs ·Ωks,

(15)

where a spatial gradient expansion is applied in the sec-
ond line for slowly varying external fields.

Next, we investigate the BC effects in experimental
observables that arise from the BC-induced phase-space
DOS δD = D−1. To this end, we divide δD = δD1+δD2

into two portions, depending on whether the BC is driven
by an external magnetic field B or a supercurrent ps:

δD1 = −1

2
B · (∇k × d2)−

1

2
(ρ0s∇kρ1s ×∇kϕk) ·B

= −1

4
B · [(∇kρ2s + ρ0s∇kρ1s − ρ1s∇kρ0s)×∇kϕk] ,

(16a)

δD2 =−∇kρ0s · ps, (16b)

where we apply the expressions of BC in Eq. 14 and keep
only the leading terms in spatial gradient ∂r. Note that
the BC effect δD2 driven by a supercurrent is found to be
similar to that in spin-degenerate superconductors35 and
is not the focus of this work. On the contrary, the BC ef-
fects δD1 driven by a magnetic field B is proportional to
the winding of the Rashba angle ϕk, and therefore only
exists under SOC. More specifically, the first term in the
first equality of the expression for δD1 originates from

the coupling between the B field and the new compo-
nent in the quasiparticle charge dipole moment d2 which
only exists in the presence of a spin-orbit coupled super-
conductor, while the second term persists in a spin-orbit
coupled normal state. We note that the expression for
δD1 (Eq. 16a) remains valid even if ∂kχ ̸= 0. In the
following, we will focus on how the BC effects arising
from the B field-induced phase-space DOS δD1 influence
experimental observables.

BC effects in spectroscopic properties— Specifically,
the BC-modified phase-space DOS D = 1 + δD1 influ-
ence the normal metal-to-superconductor tunneling con-
ductance60 G(ω) and the spectral function A(k, ω) in the
following way:

G(r, ω) =
∑

σ

∫

k

D(r,k)
[
|uσs(k)|2δ (ω − Es(k))

+|vσs(k)|2δ (ω + Es(k))
]
,

(17a)

A(k, ω) =
∑

σ

∫

r

D(r,k)
[
|uσs(k)|2δ (ω − Es(k))

+|vσs(k)|2δ (ω + Es(k))
]
.

(17b)

Note that we focus on the lower BdG band s = − and an
s-wave pairing potential ∆ with ∂kχ = 0, and we neglect
the small spatial variation in D(r,k) given the slowly
varying perturbation. The tunneling conductance can be
measured by STM or tunneling junctions, whereas the
spectral function can in principle be probed by methods
such as momentum- and energy-resolved tunneling spec-
troscopy (MERTS)50 even in the presence of a magnetic
field. For STM measurements to assess open surfaces, be-
sides Fig. 1, one can also consider bilayer structures con-
sisting of a Rashba superconductor with a ferromagnet16.
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FIG. 2. BC effects on the tunneling conductance G(ω) at an
effective Zeeman splitting of (a) h = 2 and (b) h = 5. The
blue curves G0 are the bare tunneling conductance calculated
from Eq. 17 with D(k) = 1. G0 can be obtained by the
tunneling conductance at B = 0, assuming that the Zeeman
splitting h is predominantly given by the exchange coupling.
The red curves δG/B are the corrections per unit magnetic
field B to G0 from the BC-induced change in the phase-space
DOS, calculated from Eq. 17 with D(k) replaced by δD1(k).
The chosen model parameters are (µ, m, α)=(0.2,0.5,1) in
the units of ∆ = 1, where the chemical potential µ intersects
with the lower normal band. This figure and Fig. 3 are gen-
erated by replacing the Dirac delta function in Eq. 17 with a

Lorentzian L(ω) = 1
π

η/2

ω2+(η/2)2
of width η = 0.05.
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FIG. 3. BC effect on the the spectral function A(k, ω).
(a) The bare energy- and momentum-resolved spectral func-
tion A0(k, ω), calculated using Eq. 17b with D(k) = 1, and
(b) the correction per unit magnetic field δA(k, ω)/B to the
bare spectral function A0(k, ω) from the BC-induced change
in the phase-space DOS, calculated with D(k) replaced with
δD1(k). The bare spectral function A0(k, ω) and the BC cor-
rection δA(k, ω)/B are shown in an intensity plot (left) and
momentum distribution curves (right). The chosen model pa-
rameters are (µ, m, α, h)=(0.2,0.5,1,2) in the units of ∆.

We now demonstrate the BC effects in the tunneling
conductance G(ω) = G0(ω) + δG(ω) in Fig. 2, where the
bare conductance G0 and the BC correction δG are plot-
ted using Eq. 17a by taking the phase-space DOS D(k)
to be 1 and δD1(k), respectively. The bare conductance
G0 shows four coherence peaks at energies ω labeled by
the dotted lines in Fig. 2(a). These peaks originate from
the band extrema of the lower BdG band. The num-
ber of peaks is in principle determined by the number of
extrema in the BdG band. Nonetheless, the number of
practically visible coherence peaks in experiments is fur-
ther determined by the actual material band structure,
thermal and impurity-caused smearing, as well as the fo-
cused frequency range. Moreover, due to the effective
p-wave pairing, we do not find the bare tunneling con-
ductance G0(ω) to be even in frequency ω, which is only
required for s-wave pairing60.

We now move onto the BC contribution δG that
arises solely from the BC-modified phase-space DOS δD1,
driven by an external magnetic field B. Under an inter-
mediate Zeeman field h = 2|∆|, we find that there is a
BC-induced considerable suppression δG to the strengths
of the two lower-energy coherence peaks but not the
higher-energy peaks (see Fig. 2(a)). As we vary the
strengths of the Zeeman splitting h or SOC α, we find
non-uniform suppression and/or enhancement across dif-
ferent coherence peaks (see Fig. 2(b) and SM54). Such
BC-induced alteration to the peak intensities can be lin-
early magnified by the magnetic field strength |B| since
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,E
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.)
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FIG. 4. The bare spectral function A0(k, ω) (blue) and the
BC contribution per unit magnetic field strength δA(k, ω)/B
(red) as functions of momentum k along the superconducting
band ω = Es(k). The inset shows the ratio δA/(BA0), identi-
cal to the Berry curvature correction to the phase-space DOS
δD1/B. The SOC strength is set to (a) α = 1 and (b) α = 4.
The remaining model parameters are (µ, m, h)=(0.2,0.5,2).
Note that the BC effect δA/A0 at k = 0 increases significantly
with α.

δD1 ∝ |B| (see Eq. 16a), although the field strength |B|
is capped by the local approximation that treats A(rc)
as a constant as well as the influence of vortices.
Experimentally, we expect that the quasiparticle BC

in a Rashba-driven p+ ip TSC can be detected by mea-
suring tunneling spectra in the following way: The un-
corrected tunneling spectrum G0 is in fact the tunnel-
ing conductance in the absence of the magnetic field B,
assuming that the Zeeman splitting h is predominantly
from the exchange coupling. When the magnetic field is
applied B ̸= 0, we propose that the linear-in-B changes
from G0 that are non-uniform across different coher-
ence peaks are signatures of the BC-modified phase-space
DOS D = 1 + δD1

61.
We now turn to the BC effects in the spectral function

A = A0+δA. The uncorrected spectral function A0(k, ω)
is defined with a bare phase-space DOS D(k) = 1, while
the BC contribution δA(k, ω) is obtained by replacing
D(k) with δD1(k) in Eq. 17b. The magnitude of A0

reaches its peaks at frequencies along the lower super-
conducting band ω = Es=−1(k) (see Figs. 3 (a)). Instead
of shifting the positions of these peaks, we find that the
BC contribution δA modulates the peak intensities in A0

in a momentum-dependent way (see Fig. 3(b)). Specifi-
cally, the peak intensities are substantially enhanced at
small momenta, but suppressed at large momenta for the
parameter space we investigate. As in the case of tunnel-
ing conductance, since δD1 ∝ B, this BC effect δA grows
linearly with the external magnetic field B until the local
approximation breaks down.
Furthermore, we find that this qualitative BC ef-

fect δA(k, ω) in the spectral function is sensitive to the
Rashba SOC strength α in a momentum-dependent way,
where the α-dependence implicitly enters δD1 through
the coherence factors in ρi’s in Eq. 16a. Specifically, we
find that at k = 0 the BC correction to the phase space
DOS δD1 ∝ α2. Such an enhancement in the magnitude
of δD1 is evident in Fig. 4, where we show the BC contri-
bution per unit magnetic field strength δA(k, ω)/B and
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the bare spectral function A0(k, ω) along the lower su-
perconducting band ω = Es=−(k) at different α’s. Their
ratio δA/A0 is exactly given by the phase-space DOS cor-
rection δD1 (see the insets in Fig. 4), which can be shown
using Eq. 17b. This explains the drastic enhancement in
the BC effect δA/A0 ∝ α2 at zero momentum as we in-
crease α. We thus expect that this consequence of BC in
the spectral function could be tuned to be large enough
for experimental detection by the magnetic field strength
B and the SOC strength α.
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I. MODEL

We study a Rashba spin-orbit coupled two-dimensional electron gas (2DEG) sandwiched by an s-wave supercon-
ductor and a ferromagnetic insulator [S1, S2], in the presence of an applied out-of-plane magnetic field B = Bẑ. It is
governed by the Hamiltonian:

H =
∑

σ=↑,↓

∫
d2rc†σ(r)

[
1

2m
(−i∇−A(r))

2 − µ+ ασ × (−i∇−A(r)) · ẑ + hσz

]
cσ(r)

+

∫
d2r∆c†↑(r)c

†
↓(r) +

∫
d2r∆∗c↓(r)c↑(r).

(S1)

Here cσ(r) indicates the annihilation operator for an electron at position r with spin σ =↑, ↓ and mass m. µ denotes
the chemical potential, and α indicates the Rashba spin-orbit coupling strength. Pauli matrices σi act in the spin
space. A(r) = B× r/2 is the vector potential of the applied magnetic field B, and h is the Zeeman field results from
the proximity to the ferromagnetic insulator. We ignore the orbital effect of the magnetic field from the ferromagnetic
insulator [S2] as well as the Zeeman effect from the weak externally applied magnetic field, and therefore treat h
and B as independent. ∆ is the proximity-induced superconducting pairing potential. We work in units where the
reduced Planck’s constant ℏ = 1 and the electric charge e = 1.

The dynamics of superconducting quasiparticles in the current model driven by the applied magnetic field can be
investigated using the wave-packet approach. The vector potential A(r) in the Hamiltonian above is assumed to be
slowly varying in the spread of the wave packet. This allows us to study the wave packet dynamics by approximating
the vector potential A(r) by its value at the wave-packet center rc, i.e., A(rc). The resulting effective Hamiltonian,
which governs the wave packet dynamics, can be further simplified by transforming to the momentum space:

c†σ(k) =
∫

d2rei(k+A(rc))·rc†σ(r), (S2)

and introducing the Nambu spinor

Ψ(k) =
[
c↑(k) c↓(k) c†↓(−k) −c†↑(−k)

]T
. (S3)

After the transformation, the approximated Hamiltonian assumes the form

H =
1

2

∑

σ=↑,↓

∫
d2k

(2π)2
Ψ†(k)hBdG(k)Ψ(k),

hBdG(k) = [ξk + α(σxky − σykx)] τz + hσz +
1

2
∆(τx + iτy) +

1

2
∆∗(τx − iτy).

(S4)

Here ξk = k2/2m− µ and τi denotes the Pauli matrix acting in the Nambu space.
This Hamiltonian can be diagonalized by applying the Bogoliubov–de Gennes (BdG) transformation:

γs(k) = Φ†
s(k)Ψ(k), s = ±1. (S5)
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Here Φs(k) =
[
u↑s(k) u↓s(k) v↓s(k) v↑s(k)

]T
is the eigenfunction of hBdG(k) with positive eigenenergy Es(k) and

it satisfies

hBdG(k)Φs(k) = Es(k)Φs(k). (S6)

The transformed Hamiltonian assumes the form

H =
∑

s=±1

∫
d2k

(2π)2
Es(k)γ

†
s(k)γs(k) + const.. (S7)

Solving the BdG equation Eq. S5, we find the quasiparticle energy

Es(k) =

√
(αk)2 + |∆|2 + h2 + ξ2k + 2s

√
ξ2k ((αk)

2 + h2) + |∆|2h2. (S8)

For ξk ̸= h or s ̸= −1, the BdG eigenfunction Φs(k) is given by

u↑s(k) =Ds(k)

(
Es(k)hξk + s(Es(k) + h+ ξk)

√
(αk)2ξ2k + h2 (|∆|2 + ξ2k) + |∆|2h+ hξ2k + ξk(α

2k2 + h2)

)
ei(χ−ϕk+π/2)/2,

u↓s(k) =Ds(k)αk

(
ξk(ξk + Es(k)) + s

√
(αk)2ξ2k + h2 (|∆|2 + ξ2k)

)
ei(χ+ϕk−π/2)/2,

v↓s(k) =Ds(k)|∆|
(
h(h+ Es(k)) + s

√
(αk)2ξ2k + h2 (|∆|2 + ξ2k)

)
e−i(χ+ϕk−π/2)/2,

v↑s(k) =Ds(k)|∆|αk(ξk − h)e−i(χ−ϕk+π/2)/2.

(S9)

Here Ds(k) is the normalization constant, χ ≡ arg(∆) indicates the phase of the superconducting gap ∆, and
ϕk ≡ arctan(ky/kx) denotes the polar angle of the momentum k. When ξk = h and s = −1, the BdG eigenfunction
is no longer described by Eq. S9 and instead takes the form:

u↑,−1(k) = 0, u↓,−1(k) =D−1(k)|∆|ei(χ+ϕk−π/2)/2,

v↓,−1(k) = −D−1(k)αke
−i(χ+ϕk−π/2)/2, v↑,−1(k) =D−1(k)E−1(k)e

−i(χ−ϕk+π/2)/2.
(S10)

II. WAVE PACKET

We construct a quasiparticle wave packet |Ws⟩ by applying the quasiparticle creation operator γ†
s(k) to the ground

state |G⟩ [S3, S4]:

|Ws⟩ =
∫

d2k

(2π)2
ws(k, t)γ

†
s(k) |G⟩ . (S11)

Here the superconducting ground state |G⟩ satisfies γs′(k) |G⟩ = 0 for all k and s′. Note that we consider weak enough
perturbation and concentrate only on the contribution from the lower band s = −1 which intersects with the chemical
potential. The envelop function ws(k, t) satisfies the normalization condition

∫
d2k

(2π)2
|ws(k, t)|2 = 1, (S12)

and is sharply peaked around the wave-packet center kc defined by

kc =

∫
d2k

(2π)2
|ws(k, t)|2k. (S13)

The integral of any smooth function f(k) weighted by |ws(k, t)|2 can therefore be approximated by the value of f(k)
at k = kc:

∫
d2k

(2π)2
|ws(k, t)|2f(k) ≈ f(kc). (S14)
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The wave-packet center coordinate in the real space is defined as [S5]

rc = i

∫

k

(ws(k, t)Φs(k))
†
∂k (ws(k, t)Φs(k))

= ∂kcθw(kc, t) + i
∑

σ

(u∗
σs(kc)∂kcuσs(kc) + v∗σs(kc)∂kcvσs(kc)) .

(S15)

Here, θw stands for the phase of the envelope function θw(k, t) ≡ − argws(k, t).
We then introduce the moment-space Berry connection Aks for the BdG wavefunction Φs(kc):

Aks ≡ iΦ†
s(kc)∂kc

Φs(kc) = i
∑

σ

(u∗
σs(kc)∂kc

uσs(kc) + v∗σs(kc)∂kc
vσs(kc)) . (S16)

Using Eq. S9, we find that Aks can be rewritten as

Aks = − 1

2
ρ0s(kc)∂kc

χ+
1

2
ρ1s(kc)∂kc

ϕkc
. (S17)

Here ρ0s(k) and ρ1s(k) are defined as

ρ0s(k) ≡
∑

σ

(
|uσs(k)|2 − |vσs(k)|2

)
, ρ1s(k) ≡

∑

σ

ζσ
(
|uσs(k)|2 − |vσs(k)|2

)
, (S18)

with ζ↑ = −ζ↓ = 1. Their physical meanings will become apparent below. Making use of Eqs. S16 and S17, one can
express the real-space wave-packet center coordinate rc as

rc = ∂kcθw(kc, t) +Aks = ∂kcθw(kc, t)−
1

2
ρ0s(kc)∂kc

χ+
1

2
ρ1s(kc)∂kc

ϕkc
. (S19)

Let us now consider the wave-packet average of the total charge Q, total spin S, and the charge dipole moment d
defined as

O = ⟨Ws| Ô |Ws⟩ − ⟨Ω| Ô |Ω⟩ , O = Q,S,d,

Ô =
∑

σ

∫
drgO(r)c

†
σ(r)cσ(r), gO(r) =





1, O = Q,

ζσ/2, O = S,

r− rc, O = d.

(S20)

In terms of the quasiparticle operator γs(k), Ô = Q̂, Ŝ, d̂ can be rewritten as

Ô =
∑

σ

∑

s1,s2

∫

r

∫

k1,k2

gO(r)e
−i(k1−k2)·r [u∗

σs1(k1)uσs2(k2)γ
†
s1(k1)γs2(k2) + vσs1(−k1)v

∗
σs2(−k2)γs1(−k1)γ

†
s2(−k2)

]
+ ...,

(S21)

where ... represents terms involving γγ or γ†γ† whose contribution vanishes after taking the expectation value. For
brevity, we have introduced the shorthand notation

∫
k
≡
∫
d2k/(2π)2.

We then make use of the following identities

⟨Ws| γ†
s1(k1)γs2(k2) |Ws⟩ =

∫

k′
1,k

′
2

w∗
s(k

′
1, t)ws(k

′
2, t) ⟨Ω| γs(k′

1)γ
†
s1(k1)γs2(k2)γ

†
s(k

′
2) |Ω⟩

=w∗
s(k1, t)ws(k2, t)δs,s2δs,s1 ,

⟨Ws| γs1(k1)γ
†
s2(k2) |Ws⟩ =

∫

k′
1,k

′
2

w∗
s(k

′
1, t)ws(k

′
2, t) ⟨Ω| γs(k′

1)γs1(k1)γ
†
s2(k2)γ

†
s(k

′
2) |Ω⟩

= δk1,k2δs1,s2 − δs,s1δs,s2w
∗
s(k2, t)ws(k1, t),

(S22)

where the normalization condition Eq. S12 has been used. This leads to

⟨Ws| Ô |Ws⟩ − ⟨G| Ô |G⟩ =
∑

σ

∫

r

∫

k1,k2

e−i(k1−k2)·rgO(r)

× [w∗
s(k1, t)ws(k2, t)u

∗
σs(k1)uσs(k2)− w∗

s(−k2, t)ws(−k1, t)vσs(−k1)v
∗
σs(−k2)] .

(S23)
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For Ô = Q̂ or Ŝ, it is easy to see that the above equation can be further simplified to

Q =

∫

k

|ws(k, t)|2ρ0s(k) = ρ0s(kc), S =
1

2

∫

k

|ws(k, t)|2ρ1s(k) =
1

2
ρ1s(kc), (S24)

where ρ0s and ρ1s have been defined in Eq. S18.
For the charge dipole moment d, one can express re−i(k1−k2)·r in the Eq. S23 as −i∂k2e

−i(k1−k2)·r, which leads to

⟨Ws| d̂ |Ws⟩ − ⟨Ω| d̂ |Ω⟩ =
∑

σ

∫

r

∫

k1,k2

(
−i∂k2e

−i(k1−k2)·r
)
w∗

s(k1, t)ws(k2, t) [u
∗
σs(k1)uσs(k2)− v∗σs(k1)vσs(k2)]− rcQ

= i
∑

σ

∫

k

w∗
s(k, t)(∂kws(k, t))

(
|uσs(k)|2 − |vσs(k)|2

)
+ i
∑

σ

∫

k

|ws(k, t)|2 (u∗
σs(k)∂kuσs(k)− v∗σs(k)∂kvσs(k))− rcQ

=

∫

k

|ws(k, t)|2 (ρ0s(k)∂kθw(k, t)− ∂kχ/2 + ρ2s(k)∂kϕk/2)− rcQ

+
i

2

∑

σ

∫

k

(∂k|ws(k, t)|2)
(
|uσs(k)|2 − |vσs(k)|2

)
+

i

2

∑

σ

∫

k

|ws(k, t)|2∂k
(
|uσs(k)|2 − |vσs(k)|2

)

= ρ0s(kc)∂kcθw(kc, t)− ∂kcχ/2 + ρ2s(kc)∂kcϕkc/2− rcρ0s(kc),

(S25)

where

ρ2s(k) ≡
∑

σ

ζσ
(
|uσs(k)|2 + |vσs(k)|2

)
. (S26)

Inserting the expression for rc in Eq. S19, we find the wave packet average of the charge dipole moment is given by

d =
1

2

(
ρ20s(kc)− 1

)
∂kc

χ+
1

2
(ρ2s(kc)− ρ0s(kc)ρ1s(kc)) ∂kcϕkc . (S27)

III. SEMICLASSICAL DYNAMICS

A. Lagrangian

To study the semiclassical dynamics of the wave packet, we first evaluate the Lagrangian

L = ⟨Ws|
(
i
d

dt
−H

)
|Ws⟩ − ⟨Ω|

(
i
d

dt
−H

)
|Ω⟩ . (S28)

The part which contains the Hamiltonian is given by

⟨Ws|H |Ws⟩ − ⟨Ω|H |Ω⟩ =
∫

k1,k2

w∗
s(k1, t)ws(k2, t) ⟨Ω| γs(k1)

(∫

k

∑

s′

Es′(k)γ
†
s′(k)γs′(k)

)
γ†
s(k2) |Ω⟩

=

∫

k

|ws(k, t)|2Es(k) = Es(kc),

(S29)

while the part which involves the time derivative reduces to

⟨Ws| i
d

dt
|Ws⟩ = i

∫

k

w∗
s(k, t)

∂

∂t
ws(k, t) + i

drc
dt

·
∫

k

w∗
s(k, t)

∂

∂rc
ws(k, t)

+ i
drc
dt

·
∫

k1,k2

w∗
s(k1, t)ws(k2, t) ⟨Ω| γs(k1)(

∂

∂rc
γ†
s(k2)) |Ω⟩ .

(S30)

Note that the time dependence of the quasiparticle creation operator γ†
s comes from the time dependence of the

wave-packet center rc.
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Using the BdG transformation Eq. S5, the term ⟨Ws| i d
dt |Ws⟩ can be further divided into three parts:

⟨Ws| i
d

dt
|Ws⟩ = L1 + L2 + L3,

L1 = i

∫

k

w∗
s(k, t)

∂

∂t
ws(k, t) + i

drc
dt

·
∫

k

w∗
s(k, t)

∂

∂rc
ws(k, t)

L2 = i
drc
dt

·
∫

k1,k2

w∗
s(k1, t)ws(k2, t)

× ⟨Ω| γs(k1)

[
(
∂

∂rc
u↑s(k2))c

†
↑(k2) + (

∂

∂rc
u↓s(k2))c

†
↓(k2) + (

∂

∂rc
v↓s(k2))c↓(−k2)− (

∂

∂rc
v↑s(k2))c↑(−k2)

]
|Ω⟩ ,

L3 = i
drc
dt

·
∫

k1,k2

w∗
s(k1, t)ws(k2, t)

× ⟨Ω| γs(k1)

[
u↑s(k2)(

∂

∂rc
c†↑(k2)) + u↓s(k2)(

∂

∂rc
c†↓(k2)) + v↓s(k2)(

∂

∂rc
c↓(−k2))− v↑s(k2)(

∂

∂rc
c↑(−k2))

]
|Ω⟩ .

(S31)

Here L1 can be expressed in terms of the phase of the envelope function ws(k, t) at the wave packet center k = kc,
i.e., θw(kc, t),

L1 =

∫

k

|ws(k, t)|2(
∂

∂t
θw(k, t) +

drc
dt

· ∂

∂rc
θw(k, t)) =

∂

∂t
θw(kc, t) +

drc
dt

· ∂

∂rc
θw(kc, t), (S32)

Using the expression for the wave-packet center rc in Eq. S19, one can rewrite this equation as

L1 =
d

dt
θw(kc, t)−

dkc

dt
· ∂

∂kc
θw(kc, t) =

d

dt
θw(kc, t)− k̇c · (rc −Aks) . (S33)

Converting the electron operator cσ into the quasiparticle operator γs in L2, we obtain

L2 = i
drc
dt

·
∫

k1,k2

w∗
s(k1, t)ws(k2, t) ⟨Ω| γs(k1)




(
∂

∂rc
u↑s(k2)

)∑

s′

(
u∗
↑s′(k2)γ

†
s′(k2)− v↑s′(−k2)γs′(−k2)

)

+

(
∂

∂rc
u↓s(k2)

)∑

s′

(
u∗
↓s′(k2)γ

†
s′(k2) + v↓s′(−k2)γs′(−k2)

)

+

(
∂

∂rc
v↓s(k2)

)∑

s′

(
v∗↓s′(k2)γ

†
s′(k2) + u↓s′(−k2)γs′(−k2)

)

+

(
∂

∂rc
v↑s(k2)

)∑

s′

(
v∗↑s′(k2)γ

†
s′(k2)− u↑s′(−k2)γs′(−k2)

)




|Ω⟩

= i
drc
dt

·
∫

k

|ws(k, t)|2
∑

σ

(
u∗
σs(k)

∂

∂rc
uσs(k) + v∗σs(k)

∂

∂rc
vσs(k)

)

= ṙc · Ars.

(S34)

Here Ars represents the real-space Berry connection for the BdG wavefunction Φs(kc), and is defined analogous to
its momentum-space counterpart Aks:

Ars ≡ iΦ†
s(kc)∂rcΦs(kc) = i

∑

σ

(u∗
σs(kc)∂rcuσs(kc) + v∗σs(kc)∂rcvσs(kc)) . (S35)

It is straightforward to see from Eq. S17 that this equation can be rewritten as

Ars = − 1

2
ρ0s(kc)∂rcχ+

1

2
ρ1s(kc)∂rcϕkc . (S36)

For the evaluation of L3, note that

drc
dt

· ∂

∂rc
cσ(±k) =

drc
dt

· ∂

∂rc

(∫
d2re−i(±k+A(rc))·rcσ(r)

)
= −i

drc
dt

·
∫

r

∂A(rc) · r
∂rc

e−i(±k+A(rc))·rcσ(r)

=
dA(rc)

dt
·
∫

d2r

(
± ∂

∂k
e−i(±k+A(rc))·r

)
cσ(r) = ±dA(rc)

dt
· ∂

∂k
cσ(±k),

(S37)
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where we have used Eq. S2. This leads to

L3 = i
d

dt
A(rc) ·

∫

k1,k2

w∗
s(k1, t)ws(k2, t)

× ⟨Ω| γs(k1)

[
u↑s(k2)(

∂

∂k2
c†↑(k2)) + u↓s(k2)(

∂

∂k2
c†↓(k2))− v↓s(k2)(

∂

∂k2
c↓(−k2)) + v↑s(k2)(

∂

∂k2
c↑(−k2))

]
|Ω⟩

= − i
d

dt
A(rc) ·

∫

k

w∗
s(k, t) (∂kws(k, t))

(
|uσs(k)|2 − |vσs(k)|2

)

− i
d

dt
A(rc) ·

∫

k

|ws(k, t)|2 (u∗
σs(k)∂kuσs(k)− v∗σs(k)∂kvσs(k)) .

(S38)

Comparing this equation with the expression for the electric dipole moment d (See Eqs. S25 and S27), it is easy to
see that L3 can be expressed as

L3 = −Ȧ(rc) · (ρ0s(kc)rc + d). (S39)

Combining everything, we obtain

L = − Es(kc)− k̇c · (rc −Aks) + ṙc · Ars − Ȧ(rc) · (ρ0s(kc)rc + d). (S40)

Here we have dropped terms which can be expressed as total time derivatives and as a result do not enter the equation
of motion. Using A(rc) =

1
2B× rc, we find that the Lagrangian can rewritten as

L = − Es(kc)− k̇c · rc + k̇c · Aks + ṙc · Ãrs. (S41)

Here the new real-space Berry connection Ãrs is defined as

Ãrs ≡Ars + ρ0s(kc)A(rc) +
1

2
B× d. (S42)

B. Equation of motion

Inserting the expression for the Lagrangian in Eq. S41 into the Euler–Lagrange equation

∂L

∂ric
=

d

dt

∂L

∂ṙic
,

∂L

∂kic
=

d

dt

∂L

∂k̇ic
, i = x, y, (S43)

one can derive the equation of motion for the wave-packet center:

k̇ic = − ∂ricEs(kc) + Ωij
rksk̇

j
c +Ωij

rrsṙ
j
c ,

ṙic = ∂ki
c
Es(kc)− Ωij

kksk̇
j
c − Ωij

krsṙ
j
c .

(S44)

Here we have employed the notation that repeated indices implies summation. The Berry curvatures Ω are defined
as derivatives of the Berry connections Aks and Ãrs:

Ωij
kks ≡ ∂ki

c
Aj

ks − ∂kj
c
Ai

ks, Ωij
rrs ≡ ∂ricÃ

j

rs − ∂rjc Ã
i

rs,

Ωij
rks ≡ − Ωji

krs ≡ ∂ricA
j
ks − ∂kj

c
Ãi

rs.
(S45)

The equation of motion Eq. S44 can be rewritten in a vector form:

k̇c = −∇rcEs(kc) + ṙc ×Ωrs +∇rc

(
k̇c · Aks

)
−
(
k̇c · ∇kc

)
Ãrs,

ṙc =∇kc
Es(kc)− k̇c ×Ωks −∇kc

(
ṙc · Ãrs

)
+ (ṙc · ∇rc)Aks.

(S46)

Here the vector forms of the Berry curvatures Ωrs and Ωks are defined as

Ωks = ∇kc ×Aks, Ωrs = ∇rc × Ãrs, (S47)
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and they are related to their tensor counterparts Ωrrs and Ωkks by:

Ωl
rs/ks =

1

2
ϵlijΩ

ij
rrs/kks, Ωij

rrs/kks = ϵijlΩ
l
rs/ks, (S48)

with ϵijl being the Levi-Civita symbol. Note that in the present paper, we consider a 2D system, and therefore only
the z component of the vector Berry curvature Ω is nonvanishing.

Using Eqs. S17, S36, and S42, we obtain

Ωks = −1

2
∇kc

ρ0s(kc)×∇kc
χ+

1

2
∇kc

ρ1s(kc)×∇kc
ϕkc

,

Ωrs = −∇rcρ0s(kc)× (∇rcχ/2−A(rc)) + ρ0s(kc)B+
1

2
∇rc × (B× d) +

1

2
∇rcρ1s(kc)×∇rcϕkc .

(S49)

The tensor-form of the phase-space Berry curvature Ωrk is given by,

Ωij
rks = − 1

2

(
∂ricρ0s(kc)∂kj

c
χ− ∂kj

c
ρ0s(kc)∂ricχ

)
+

1

2

(
∂ricρ1s(kc)∂kj

c
ϕkc

− ∂kj
c
ρ1s(kc)∂ricϕkc

)

− ∂kj
c
ρ0s(kc)A

i(rc)−
1

2
∂kj

c
(B× d)i.

(S50)

Inserting Eq. S49 into Eq. S46 leads to the following equation of motion

k̇c = −∇rcEs(kc) + ṙc ×
[
−∇rcρ0s(kc)×

(
1

2
∇rcχ−A(rc)

)
+ ρ0s(kc)B+

1

2
∇rc × (B× d) +

1

2
∇rcρ1s(kc)×∇rcϕkc

]

− 1

2
∇rc

[
k̇c · (ρ0s(kc)∇kcχ− ρ1s(kc)∇kcϕkc)

]
+
(
k̇c · ∇kc

)(
ρ0s(kc)

(
1

2
∇rcχ−A(rc)

)
− 1

2
B× d− 1

2
ρ1s(kc)∇rcϕkc

)
,

ṙc =∇kc
Es(kc)− k̇c ×

(
−1

2
∇kc

ρ0s(kc)×∇kc
χ+

1

2
∇kc

ρ1s(kc)×∇kc
ϕkc

)

+∇kc

[
ṙc ·

(
ρ0s(kc)

(
1

2
∇rcχ−A(rc)

)
− 1

2
B× d− 1

2
ρ1s(kc)∇rcϕkc

)]
− 1

2
(ṙc · ∇rc) (ρ0s(kc)∇kc

χ− ρ1s(kc)∇kc
ϕkc

) .

(S51)

IV. BERRY CURVATURE CORRECTION TO THE PHASE-SPACE DENSITY OF STATES

Due to the presence of the Berry curvatures, the equation of motion Eq. S44 exhibits a noncanonical structure.
This leads to the breakdown of the conservation of the phase-space volume. In particular, the phase-space volume
element ∆V = ∆k∆r is no longer constant in time and instead evolves according to [S6]

1

∆V

d∆V

dt
= ∇r · ṙ+∇k · k̇. (S52)

One therefore needs to introduce a modified phase-space density of states D(r,k) such that the number of states
in volume element ∆V , i.e., D(r,k)∆V , remains constant over time. In terms of the Berry curvatures, up to an
inessential coefficient, the modified phase-space density of states D(r,k) acquires a form [S4, S7]

D =

√
det

[
Ωrrs Ωrks − I

Ωkrs + I Ωkks

]
. (S53)

Since the external perturbation is assumed to be slowly varying in real space, one can perform an expansion in terms
of the spatial gradient and keep only the leading order terms [S8]:

D(r,k) = 1 + TrΩkrs −Ωrs ·Ωks. (S54)

Making use of Eqs. S45, S36, S42, S17 and S49, we obtain the Berry curvature correction to the phase-space density
of states δD ≡ D − 1

δD =−∇kρ0s · ps −
1

2
B · (∇k × d) +

1

2
∇rρ0s · ∇kχ+

1

2
∇kρ1s · ∇rϕk − 1

2
∇rρ1s · ∇kϕk

− 1

2
(∇kρ0s ×∇kχ−∇kρ1s ×∇kϕk) ·

(
∇rρ0s(k)× ps − ρ0sB− 1

2
∇r × (B× d)− 1

2
∇rρ1s(k)×∇rϕk

)
.

(S55)
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where ps denotes the supercurrent

ps ≡
1

2
∇rχ−A. (S56)

We now separate δD into three different components: the external magnetic field B dependent part δD1, the
supercurrent ps dependent part δD2, and the remaining part δD3:

δD1(r,k) = −1

2
B · (∇k × d) +

1

2
(∇kρ0s ×∇kχ−∇kρ1s ×∇kϕk) ·

[
ρ0sB+

1

2
∇r × (B× d)

]
,

δD2(r,k) = −∇kρ0s · ps −
1

2
(∇kρ0s ×∇kχ−∇kρ1s ×∇kϕk) · (∇rρ0s × ps) ,

δD3(r,k) =
1

2
(∇rρ0s · ∇kχ+∇kρ1s · ∇rϕk −∇rρ1s · ∇kϕk) +

1

4
(∇kρ0s ×∇kχ−∇kρ1s ×∇kϕk) · (∇rρ1s ×∇rϕk) .

(S57)

We then drop the higher order terms in the spatial gradient ∇r in the equation above, which leads to

δD1(r,k) = −1

2
B · (∇k × d) +

1

2
ρ0s (∇kρ0s ×∇kχ−∇kρ1s ×∇kϕk) ·B,

δD2(r,k) = −∇kρ0s · ps,

δD3(r,k) = 0.

(S58)

Inserting the expression for d in Eq. S27, δD1 can be further simplified to

δD1(r,k) = −1

4
B · [(∇kρ2s + ρ0s∇kρ1s − ρ1s∇kρ0s)×∇kϕk] . (S59)

V. SUPPLEMENTARY FIGURES

In this section, we provide two additional figures to demonstrate the effect of Berry curvature on the normal metal-
to-superconductor tunneling conductance G(ω) and the spectral function A(k, ω). Specifically, in Fig. S2, we plot
the BC contribution to the tunneling conductance per unit magnetic field strength δG(ω)/B together with the bare
signal G0(ω). This plot is generated in the same way as Fig. 2 in the main text but with a different Zeeman field
strength h = 1.5. Fig. S2 compares the uncorrected spectral function A0(k, ω) with the Berry curvature contribution
per unit magnetic field strength δA(k, ω)/B, and is the same to Fig. 3 in the main text but with a larger spin-orbit
coupling α = 4.

-0.5-1-1.5 0 0.5 1 1.5

0

10

20

ω

G
(ω

)
(a
.u
.)

G0
δG/B

h=1.5

FIG. S1: Same as the two panels in Fig. 2 in the main text but for h = 1.5.
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FIG. S2: Same as Fig. 3 in the main text but for α = 4.
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