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Does the quantum equipartition theorem truly exist for any given system? If so, what is the
concrete form of such a theorem? The extension of the equipartition theorem, a fundamental
principle in classical statistical physics, to the quantum regime raises these two crucial questions.
In the present Letter, we focus on how to answer them for arbitray systems. For this propose, the
inverse problem of the quantum equipartition theorem has been successfully solved. This result,
termed as the inverse equipartition theorem, toghther with nonnegativity and normalizability of the
distribution function P(ω) serves as a criterion for determining whether a given system adheres to
quantum equipartition theorem. If yes, the concrete form of the theorem can be readily obtained.
Fermionic version of them is also discussed. Our results can be viewed as a general solution to the
topics of quantum equipartition theorem.

Introduction. — The energy equipartition theorem
(EET), a fundamental law in classical statistical physics,
plays a crucial role in understanding the distribution of
energy among the different degrees of freedom of a sys-
tem in thermal equilibrium. Proposed in the late 19th
century, the theorem provides a statistical basis for pre-
dicting the average energy associated with each degree of
freedom in a classical system [1, 2]. It forms a cornerstone
in the bridge between the microscopic world of particles
and the macroscopic observables of thermodynamics [3].
The EET states that, in thermal equilibrium, each de-
gree of freedom contributes equally to the total energy of
the system, and this contribution is on average kBT/2,
where kB is the Boltzmann constant and T the temper-
ature. This theorem proves invaluable in understanding
the behavior of gases, solids, and other classical systems,
forming a foundation for the development of statistical
mechanics [4–12]. Formally, we may recast the classical
EET as [β ≡ 1/(kBT )]

Ei(β) = Ei[E(ω, β)] :=
∫ ∞

0

dω Pi(ω)E(ω, β), (1)

where Ei, the mean energy contributed by the i-th degree
of freedom, is expressed as the expectation (Ei[...]) of the
energy density E(ω, β) with respect to the distribution
Pi(ω). In classical the scenario, E(ω, β) = 1/(2β), which
is independent of ω. This together with the normaliza-
tion condition,

∫∞
0

dω Pi(ω) = 1, recovers the classical
EET, Ei(β) = kBT/2.

Recently, many researches [13–22] try to extend the
classical EET to the quantum regime with several mod-
els, such as the electrical circuits [15], the Brownian oscil-
lators [16, 18, 19, 23], dissipative diamagnetism [19, 21].
The quantum EET also acquires the form of Eq. (1), but
with the energy density E(ω, β) generally depends on ω.
Though the energy of different degree of freedom i differs
from each other, the enenrgy density E(ω, β) is univeral.
This is the energy equipartition in quantum sense. In

FIG. 1: A illustration for quantum energy partition
theorem [cf. Equation (1)], where Pi(ω) is the
distribution and E(ω, β) is the energy density.

these researches, the systems are assumed to be quadratic
and E(ω, β) is set to be (ω/2) coth(βω/2), the energy
of the quantum harmonic oscillator in equilibrium ther-
mal state. The normalized distribution functions Pi(ω)
are obtained in these quadratic systems. Besides, the
fermionic version of quantum EET theorem is also in-
vestigated, which enlarges the applicable range of the
quantum EET [24]. They altogether provide novel in-
sights into the application to the quantum EET for the
accurate and convenient evaluations of thermodynamic
quantities [13, 17, 23]. However, for more general sys-
tems beyond above mentioned quadratic models, does
the quantum EET still hold? If so, how to obtain the
corresponding distribution function Pi(ω)? The answers
to these questions will serve as a promising methodology
for studying the quantum thermodynamics. This Let-
ter aims to provide a universal approach, the generalized
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EET, to answering these questions. The involved key
tool is the Möbius inversion formula. It originates from
the number theory [25], and has been used in various in-
verse problems in physics [26–28]. Based on the Möbius
inversion, we give a criterion to determine whether the
quantum EET holds for a given quantum system. Fur-
thermore, it tells us how to obtain the distribution Pi(ω)
in a systematic approach. We implement the proposed
formalism to some typical models, including the free pho-
ton gas [29, 30], the harmonic oscillator [31], the Riemann
gas [32, 33], and the Ising model [29, 34]. It is worth not-
ing that our formalism applies to both the bosonic and
fermionic scenarios.

Quantum EET for quadratic systems.— As a pre-
lude, we first briefly review the quantum EET for
quadratic systems [13–22], followed by an illustrative ex-
ample. We will explain the relationship between the
quantum EET and its classical counterpart. The quan-
tum EET was discussed in the scenario of open system,
whose simplest quadratic model reads

HT = HS +
∑
j

[
p̂2j
2mj

+
1

2
mjω

2
j

(
x̂j −

cjQ̂

mjω2
j

)2
]

(2)

with

HS =
P̂ 2

2M
+

1

2
MΩ2Q̂2. (3)

This is the Calderia-Leggett model [35] of an har-
monic oscillator (Q̂, P̂ ) coupled to the heat bath
({x̂j , p̂j}). For the system oscillator, the kinetic en-

ergy Ek(β) := ⟨P̂ 2⟩/(2m) while the potential energy
Ep(β) := MΩ2⟨Q̂2⟩/2. The average is defined over the
total Gibbs state. It was shown that [14] both Ek(β) and
Ep(β) can be expressed in the form of Eq. (1), where

E(ω, β) = ω

4
coth

(
βω

2

)
(4)

and

Pk(ω) =
2Mω

π
Im J(ω), Pp(ω) =

2MΩ2

πω
Im J(ω). (5)

Here, J(ω) denotes the generalized susceptibility [23]. It
was verified that Pp,k(ω) satistifies the normalized con-
dition [14, 23]. In the classical limit ℏ → 0, E(ω, β) →
1/(2β), giving rise to the classical EET.
For the quadratic system [cf. Eq. (2)], the quantum

EET exhibits the energy distribution of each degree of
freedom with the energy density E(ω, β). The latter shall
be interpreted as the average potential or kinetic energy
of a harmonic oscillator with frequency ω in the canon-
ical ensemble. In the no coupling limit [23] [∀j, cj = 0
in Eq. (2)], Pp,k(ω) → δ(ω − Ω), where only the oscilla-
tion frequency Ω contributes. Besides, as explained in
Ref. [13, 17], the free energy F (β) is expressed in the

same form by simply switching E(ω, β) into F(ω, β) =
ln(2 sinhβω/2)/β, which is the average free energy of the
oscillator in the canonical ensemble.
Inverse Energy Equipartition Theorem (IEET).— To

explore the quantum EET for general systems, it is our
task to find a non-negative and normalizable P(ω) for
each degree of freedom, given the energy spectrum E(β).
For brevity, we omit the label of degree of freedom here
and below. It is shown in this work that for any given
energy specturm E(β) from theoretical calculation or ex-
perimental measurement, if the quantum EET is valid,
then

P(ω) =
2

ω

∞∑
n=1

µ(n)

n
Ě

(
ω

n

)
. (6)

Here, f̌(ω) ≡ L−1[f(β)] denotes the inverse Laplace
transform of function f(β), and µ(n) is the celebrated
Möbius function [25]. Looking at Eq. (6) from another
angle, to ensure the validity of the EET in the such sys-
tem with the spectrum E(β), we first obtain the P(ω)
from the right-hand-side of Eq. (6), it is the next task
to check its non-negativity. Furthermore, normalizability
requires

∫∞
0

dω P(ω) converge to a finite positive number.
This global constant, possibly dependent on the the size
of the system, shall be absorbed into P(ω) [13]. By sub-
stituding the normalized P(ω) into Eq. (1), we obtain the
quantum EET. Otherwise, if the obtained P (ω) via Equa-
tion (6) is without non-negativity and normalizablity, we
can claim there is no EET for such a system. In this
sense, Eq. (6), termed as the inverse energy equipartition
theorem (IEET) in this Letter, supplies a sufficient and
necessary condition to ascertain the presence of the EET.
If EET holds, IEET also gives the concrete expression of
P(ω).
Now we give a detailed derivation of the Eq. (6). First

notice the following expansion

E(ω, β) = ω

4

[
2

∞∑
n=1

e−nβω + 1

]
, (ω > 0). (7)

Substitute it into Eq. (1) and we obtain

E(β) =

∞∑
n=1

∫ ∞

0

dω
ω

2
P(ω)e−nβω+

1

4

∫ ∞

0

dω ωP(ω),

(8a)

≃
∞∑

n=1

L[ω
2
P(ω)](nβ). (8b)

For the second term on the right-hand-side of Eq. (8a),
we note that limβ→∞ E(ω, β) = ω/4 and E(∞) =∫∞
0

dω ωP(ω)/4 [cf. Eq. (1)]. To deal with Eq. (8b), we
consult the modified Möbius inversion formula [36], i.e.,
for two functions f(x) and g(x)

f(x) =

∞∑
n=1

g(nx) ⇐⇒ g(x) =

∞∑
n=1

µ(n)f(nx). (9)
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By noticing the right-hand-side of Eq. (8b) is just a func-
tion with argument of nβ, the Möbius inversion gives

L[ω
2
P(ω)](β) =

∞∑
n=1

µ(n)E(nβ), (10)

or equivalently Equation (6), since L−1[E(nβ)](ω) =
n−1L−1[E(β)](ω/n). Equation (10) is equivalent to

P(ω) =
2

ω

∞∑
n=1

µ(n)

n
L−1[E(β)](

ω

n
). (11)

Here, the symbol L−1 denotes the inverse Laplace trans-
form and we used L−1[E(nβ)](ω) ≡ L−1[E(β)](ω/n)/n.
By introducing a simpler notation f̌(ω) ≡ L−1[f(β)](ω),
we arrive at Eq. (6).

Typical Examples.— Turn to several examples to il-
lustrate the procedures to utilize the IEET. Generally
speaking, the asymptotic behavior of the energy spec-
trum at infinite temperature (β = 0) play crucial roles.
Note E(ω, β) ∼ β−1 and P(ω) is normalized, we conclude
from Eq. (1) that E(β) ∼ β−1 for any degree of free-
dom and so is the total energy. As a result, quantum
EET does not hold in such as the Ising model [29, 34]
and the Riemann gas [32, 33], whose energy spectrum
converges to be finite when β → 0. The same criterion
also rules out the photon gas governed by the well-known
Stefan–Boltzmann law in two or three dimensions, whose
total energy spectrum diverges as β−3 and β−4, respec-
tively.

For generality we set Etot(β) =
∫∞
0

dk A(k)β−k with
A(k) being the undetermined function, whose inverse
Laplace transform reads Ětot(ω) =

∫∞
0

dk A(k)Γ(k)ωk−1.
The distribution function is evaluated to be [cf. Eq. (6)]
P(ω) =

∫∞
0

dk A(k)Γ(k)ωk−2/ζ(k). Here, we used the
property of the Möbius function [37],

∑∞
n=1 µ(n)/n

s =
1/ζ(s) for Re s > 1, where ζ(s) is the Riemann zeta
function. Therefore, the key point is to testify whether
this distribution function satisfies the nonnegativity and
normalizability, which totally depends on the concrete
form of A(k). For a simple example we choose A(k) =
Cδ(k − k0) with constant C ∈ R+, then P(ω) =
CΓ(k0)ω

k0−2/ζ(k0), which cannot be normalized for k0 =
3, 4. This conclusion aligns with our previous analysis.

Now we turn to the linear superposition property
of IEET. Assume that we have a set of energy spec-
trums {Ei(β)}, and all of which have quantum equipar-
tition theorem. We denote the corresponding distri-
bution function as {Pi(ω)}. Due to the linear prop-
erty of inverse Laplace transform and integral, the en-
ergy spectrum E(β) =

∑
i αiEi(β) also satisfies the

IEET with the distribution function P(ω) =
∑

i αiPi(ω),
as long as all the coefficients {αi} are non-negative.
This distribution function shall be further normalized
as P(ω) =

∑
i αiPi(ω)/

∑
i αi. This is immediately fol-

lowed the example, where the energy spectrum reads

El(β) = ω0e
−lβω0/

(
eβω0 − 1

)
with ω0 denoting a posi-

tive constant and l ∈ N. In this case, we have

Ěl(ω) = ω0L−1

[
e−(l+1)βω0

1− e−βω0

]
= ω0L−1

[ ∞∑
n=l+1

e−nβω0

]

= ω0

∞∑
n=l+1

δ(ω − nω0). (12)

From Eq. (12) and IEET, we obtain the corresponding
distribution function,

Pl(ω) =
2

ω

∞∑
n=l+1

µ(n)

n
ω0

∞∑
m=1

δ(ω/n−mω0)

= 2

∞∑
k=l+1

∑
n|k

µ(n)

k
δ(ω − kω0)

= 2

∞∑
k=l+1

δk,1
k

δ(ω − kω0). (13)

where n|k means the integer n divide k. To obtain the
last equality, we used the identity

∑
n|k µ(n) = δk,1. For

l ≤ 0, the distribution function (13) directly reduces to
2δ(ω − ω0). For l > 0, we have Pl(ω) = 0. Due to the
linear superposition property, we know that the spectrum

E(β) =
∑
l≤0

αlEl(β) (14)

is invertible with the distribution function

P(ω) = 2
∑
l≤0

αlδ(ω − ω0), (15)

up to a normalization. Specifically, if we set αl = 1/4 for
l = −1, 0 and αl = 0 otherwise, Eq. (14) is the spectrum
of the quantum harmonic oscillator system:

E(β) =
1

4
[E0(β) + E−1(β)] =

ω0

4
coth

βω0

2
, (16)

with P(ω) = δ(ω − ω0).
Fermionic IEET.— Here we present the fermionic

version of the quantum EET and its inverse via anal-
ogy. Note that in bosonic case, the quantum EET can
be recast as

E(β) =
1

2

∫ ∞

−∞
dω P(ω)

ω

eβω − 1

≡ 1

2

∫ ∞

−∞
dω P(ω)ωρB(ω), (17)

with the even extension P(−ω) = P(ω). The factor
ρB ≡ 1/(eβω − 1) is recoginzed as the expected num-
ber of bosonic particles with the energy ω. In fermionic
case, we just replace ρB(ω) by ρF(ω) = 1/(eβω +1). This
result is equivalent to that in [24].
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To obtain the inverse EET, we follow a similiar proce-
dures as in the bosonic case. Firstly, we substitute the
following series expansion,

EF(ω, β) = −ω

4

[
2

∞∑
n=1

(−1)ne−nβω + 1

]
, (18)

into the fermionic EET, obtaining

E(β) =

∞∑
n=1

∫ ∞

0

dω
ω

2
P(ω)(−1)n−1e−nβω

− 1

4

∫ ∞

0

dω ωP(ω). (19)

Since limβ→∞ EF(ω, β) = −ω/4, the second term in
Eq. (19) equals E(∞), which can also be absorbed into
E(β) to redefine the energy specturm. Applying the
modified Möbius inversion formula for alternating series
[40],

g(x) =

∞∑
n=1

(−1)n−1f(nx)

⇔ f(x) =

∞∑
n=1

µ(n)

[ ∞∑
m=1

2m−1g(2m−1nx)

]
, (20)

to Eq. (19), we finally obtain

P(ω) =
2

ω

∞∑
n=1

µ(n)

n

∞∑
m=1

Ě(
ω

2m−1n
), (21)

which is termed as the fermionic inverse EET.

Summary.— In conclusion, we have developed the in-
verse equipartition theorem to establish the existence of
a quantum equipartition theorem and derive the distri-
bution function P(ω) for a given system. Our theorem
is applied to various systems, and we have extended the
bosonic quantum equipartition theorem to fermions. Fu-
ture work includes exploring additional connections be-
tween number theory and statistical physics, investigat-
ing nontrivial energy spectra in open quantum systems,
and exploring links between the quantum EET and level
statistics or random matrix theory [32, 41, 42].
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