
1

Geometrically-Shaped Constellation for Visible
Light Communications at Short Blocklength

Jia-Ning Guo, Ru-Han Chen*, Jian Zhang, Longguang Li, Xu Yang, and Jing Zhou

Abstract—In this paper, we present a general framework of
designing geometrically shaped constellations for short-packet
visible light communications with a peak- and an average-
intensity constraints. By leveraging tools from large deviation
theory, we first characterize the second-order asymptotics of
the optimal constellation shaping region under aforementioned
intensity constraints, which serves as a good performance mea-
sure for the best geometric shaping in finite blocklength. To
further incorporate a sufficiently large coding gain and a nearly-
maximum shaping gain, we construct multidimensional constella-
tions by the nested structure of Construction B lattices, where the
constellation shaping is implemented by controlling the boundary
of the embedded sublattice, i.e., a strategy called coarsely shaping
and finely coding. Fast algorithms for constellation mapping and
demodulation are presented as well. As an illustrative example,
we present an energy-efficient 24-dimensional constellation design
based on the Leech lattice, whose superiority over existing
constellation designs is verified by numerical results.

Index Terms—Constellation shaping, lattice codes, multidi-
mensional constellations, short-packet transmission, visible light
communication (VLC).

I. INTRODUCTION

AS a potential candidate for the next-generation wireless
communication technology, visible light communication

(VLC) has gained significant attention owing to integrated
usage of communication and illumination, license-free de-
ployment, inherent security, and absence of electromagnetic
interference. Especially for less complexity and lower cost,
intensity modulation and direct detection (IM/DD) are widely
used in the VLC [1]–[3], where the IM signal is required to
be real and nonnegative since the information is modulated
on the optical intensity emitted from light emitting diodes
(LEDs). Moreover, a peak- and/or an average-intensity con-
straint may be imposed on the channel input, e.g., imposing an
amplitude constraint usually for safety reason or suppressing
the transceiver nonlinearity [4], an average-intensity constraint
for dimming control [5], or individual average-intensity con-
straints on multi-color LEDs for color adjustment [6]. Those
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limitations lead to a fundamental difference between signaling
for the IM signal in the VLC and the conventional electrical
signal.

In indoor VLC scenarios, the main corruption brought by
the strong background radiation and the thermal noise at the
receiver photo diode (PD) can be modeled as the additive
white Gaussian noise (AWGN), with which the IM/DD VLC
channel is also known as the optical intensity channel [7]–
[12]. For this reason, at the birth of the VLC, the modulation
and coding schemes are simply modified versions of those
for radio-frequency (RF) or fiber communications. In recent
years, to improve the system throughput, extensive research
efforts have been conducted to advanced signaling designs
for the practical VLC systems under different constraints. In
[13], [14], two-dimensional continuous-time signal spaces as
well as constellation designs with respect to the corresponding
discrete-time signal model are developed for the bandlimited
VLC. For the VLC with a peak-intensity constraint, an ef-
ficient coded modem design is provided in [15], of which
the used constellation is a variant of lattice codes based on
Construction A [16, p. 29]. For the average-intensity limited
VLC, probabilistically-shaped code and geometrically-shaped
code are considered in [17] and [18] respectively. Signaling
under dual intensity constraints is more involved due to the
need of more complicated constellation shaping. In [19], a
capacity-approaching non-uniform optical intensity signaling
scheme under the dual intensity constraints is constructed
by numerically optimizing the input distribution, while the
channel coding is implemented by concatenating low density
parity check (LDPC) codes with multilevel coding.

However, the above schemes either have notable perfor-
mance loss due to lack of joint coding and shaping, or rely
on long blocklengths for a larger coding gain or distribution
mapping, and therefore, are not suitable for the short-packet
VLC, which has various promising applications in industrial
internet of things and vehicular communications [20]–[22].
Since short packets are utilized to carry critical control in-
formation for ultra-low latency (e.g., smaller than 0.1 ms
[23]), the blocklength of used channel codes is required to
be very short [24]. For the single-carrier VLC with a flat
single-side bandwidth B and using a strictly bandlimited and
nonnegative Nyquist pulse, the duration time of n successive
symbols can be roughly evaluated by n

B
1. Exemplified by a

commercial white LED with 5 MHz modulation bandwidth,
to ensure that the user plane latency is within 0.1 ms, it is

1In [25], it is proved that the maximum ISI-free symbol rate of strictly
bandlimited and nonnegative continuous-time waveforms is a half of that of
electrical signals.
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required that the maximum blocklength can not exceed 500.
Taking the packet overhead, the probability of packet loss, and
potential frequency multiplexing into consideration, the actual
blocklength used in the packet payload will be far less than
the above value.

Motivated by the above fact, in this paper we are devoted to
the signaling design for the short-packet VLC under a peak-
and an average-intensity constraints2. It is noted that there is
no such known signaling design that approaches the Shannon
limit (with respect to infinitely long blocklength) of the high
signal-to-noise ratio (SNR) VLC under dual constraints at an
acceptable cost, let alone characterizing the finite-blocklength
limit. The main challenges in signaling for the short-packet
VLC channel may come from two aspects:

• Shaping: For the high-SNR VLC channel, directly us-
ing the amplitude shift keying (ASK) constellation even
concatenated with the best channel code will remain
a constant gap to the channel capacity, for example,
1.33 dB optical SNR loss (asymptotically) in the VLC
channel with limited average intensity [17], which re-
veals the necessity of the constellation shaping. Recently,
geometric shaping has shown to be more efficient than
probabilistic shaping in the short-blocklength regime,
since the validity of distribution matching relies on a
fairly long blocklength [27], [28]. The main challenge
brought by the finite-dimensional geometric shaping is
to quantitatively measure the maximum shaping gain and
quickly calculate corresponding parameters in the finite-
blocklength regime.

• Coding: In [29], the authors construct an optimally-
shaped constellation based on the checkerboard lattice
Dn, which limits the nominal coding gain of the con-
structed constellation to only 1.5 dB. To further approach
the channel capacity, a more densely packing structure
of constellation points should be utilized. However, how
to uniquely map the message onto the signal uniformly
distributed within the optimal region, and efficiently
incorporate the nearly-maximum shaping gain brought
by an irregular region and a large coding gain by a
densely-packed lattice in a coded modulation scheme are
challenging.

In this paper, for the short-packet VLC with a peak- and an
average-intensity constraints, we characterize the second-order
asymptotics of the maximum shaping gain (i.e., analogous to
the channel dispersion [30], [31]), which touches upon the fol-
lowing important question in the short-packet VLC: How much
shaping gain can be attained by low-dimensional geometric
shaping? To incorporate the nearly-maximum shaping gain
and a significant coding gain, we propose a general framework
for signaling in finite dimensions based on Construction B
lattices. The main contributions are summarized as follows:

1) Second-Order Asymptotics of Optimal Shaping: Based
on the large deviation theory, we characterize the

2We would like to point out that another motivation for finite-blocklength
analysis of constellation shaping comes from the fact that significant coding
gains and shaping gains can be attained in relatively short blocklengths by
lattice codes [16], [26].

second-order asymptotic behavior of the optimal shaping
region, by which simple formulas for approximating the
maximum shaping gain and the shaping parameter in the
short-blocklength regime are therefore given. Numerical
simulation reveals a good match of our proposed ap-
proximation even at low dimensions.

2) A General Signaling Framework: Via exploiting the
algebraic structure of the Construction B lattice, we
propose a novel constellation design for the short-packet
VLC, which not only is compatible with a flexible
choice of blocklength, but also incorporates the nearly-
maximum shaping gain and a significantly larger coding
gain. We further present an illustrative example by using
24-dimensional Leech lattice, which shows a perfor-
mance gain of about 3 dB over the conventionally-used
ASK constellation.

The remainder of this paper is organized as follows. The
channel model is presented in Section II. Some preliminaries
are provided in Section III. In Section IV, we characterize the
second-order asymptotical properties of the optimal shaping
region for the VLC under dual intensity constraints. In Sec-
tion V, a general framework for the optimally-shaped constel-
lation construction is presented. An illustrative example and
relevant numerical results are given in Section VI. Section VII
concludes the whole paper.

II. CHANNEL MODEL

In this paper, we consider a single-input single-output
(SISO) VLC link whose channel output over n successive
channel uses can be modeled by

r = x+ z, (1)

where the n-dimensional real vector x = (x1, · · · , xn) denotes
the instaneously transmitted intensity signal equiprobably cho-
sen from some multidimensional constellation X , and the n-
dimensional vector z denotes the channel noise that modeled
as the AWGN with zero mean and variance σ2 [12].

Due to the high-SNR property of the indoor VLC chan-
nel [32] (also numerically verified in Section VI), in this paper
we mainly concern with the multidimensional constellation
design for intensity-modulated signals. Denote the cardinality
of the constellation X to be designed by M ∈ N+. Then the
normalize rate of the constellation X is β = log2 M/n bits
per channel use (bpcu).

Because of the nonnegativity of intensity-modulated signals,
the constellation X is required to satisfy

X ⊆ Rn
+,

where the set Rn
+ denotes the nonnegative orthant consisting

of all nonnegative vectors in Euclidean n-space. Moreover,
for the reasons of illumination control, device limitation and
safety requirement in VLCs, a peak- and an average-intensity
constraints are imposed on the constellation X as well3

max
x∈X

∥x∥∞ ≤ 1, (2a)

3Without loss of generality, the maximum allowed peak intensity and
the channel coefficient in the single-input single-output channel (1) can be
simultaneously normalized to unity by scaling the standard deviation σ of the
noise.
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∑
x∈X

n∑
i=1

xi ≤ α, (2b)

where the constant α ∈
(
0, 1

2

)
denotes the ratio of the

maximum allowed average intensity to the maximum allowed
peak intensity.

For invariance to scaling, in this paper we define the optical
signal-to-noise ratio (OSNR) as the ratio of the maximum
allowed peak intensity of the input signal to the standard
deviation σ of the noise, i.e.,

OSNR ≜
1

σ
. (3)

Throughout the paper, we assume that perfect knowledge of
channel state information is available at the receiver, which is
reasonable for the quasi-static VLC channel [19]. Under this
assumption, it is well-known that the error performance of the
constellation X at high SNR is primarily determined by the
MED of the constellation X as follows:

dmin(X ) = min
x1,x2∈X
x1 ̸=x2

∥x1 − x2∥2. (4)

Therefore, the main task of this paper is to design a multi-
dimensional constellation with a given normalized rate β and
a MED as large as possible under the constraints (2).

III. PRELIMINARIES

For both clarity and readability of our result, in this section
we first briefly introduce some concepts that are frequently
used throughout the paper.

A. Construction B Lattice

An n-dimensional lattice is a subgroup of the Euclidean
n-space with respect to the conventional vector addition oper-
ation. A Construction B lattice is defined as

Hn = 4Zn + 2(n, n− 1) + C,
= 2Dn + C (5)

where C represents an (n, kc, 8) binary linear block code and
the notation (n, n− 1) refers to an n-dimensional parity check
code, the checkerboard lattice Dn is the sublattice of Zn that
consists of all points with even sum, i.e.,

Dn = {(x1, · · · , xn) ∈ Zn : x1 + · · ·+ xn is even}.

As illustrated in [33], the MED of a Construction B lattice is
dmin(Hn) =

√
8.

B. Truncated Cubes

An n-dimensional truncated cube Tn(t), with the largest
coordinate t ∈ [0, n], is the intersection of a unit n-cube with
an n-simplex, i.e.,

Tn(t) ≜

{
x ∈ [0, 1]n :

n∑
i=1

xi ≤ t

}
, (6)

whose volume and average first moment are given by

Vn(t) =
1

n!

n∑
k=0

(
n

k

)
(−1)k(t− k)n1R+

(t− k), (7)

and

Pn(t) =
1

nVn(t)

∫
Tn(t)

∥x∥1 dx (8)

=
1

n

(
t−

∑n
k=0

(
n
k

)
(−1)k(t− k)n+11R+

(t− k)

Vn(t) · (n+ 1)!

)
,

(9)

respectively, where the indicator function 1R+(x) equals one
if x ≥ 0 and otherwise zero [29].

C. Geometric Shaping

For an n-dimensional constellation X chosen from the
lattice Λ, say the lattice code, its shaping region R is the
closed region enclosing X . In the following, we will present
an information-theoretic definition of the shaping gain for the
IM signal under a peak- and an average-intensity constraints,
which is slightly different from its counterpart in coherent
transmission [34].

1) Shaping Gain: Due to the amplitude constraint (2a), it
is required that the shaping region satisfies R ⊆ [0, 1]n for IM
signals. In line with [15], [35], the baseline shaping region is
given as the one-dimensional line segment L† = [0, 2α]. In
the high-SNR regime, we utilize the n-dimensional uniform
distribution Wn ∼ Unif (R) and one-dimensional uniform
distribution W † ∼ Unif

(
L†) as the channel input distribution

respectively. Then the difference between their achievable rates
can be approximated by

1

n
I(Wn;Wn + Z)− I

(
W †;W † + Z

)
≈ 1

n
log(vol(R))− log(2α), (10)

where vol(R) is the n-dimensional volume of R. Due to the
logarithm growth of the achievable rates for AWGN channels
at high SNRs, we define the shaping gain as

SGVLC(R) ≜ exp

(
1

n
log(vol(R))− log(2α)

)
=

n
√
vol(R)

2α
,

(11)

which is also compatible with another definition in [17], [29],
[35] that purely based on the high-dimensional geometry.

2) Optimal Shaping Region: Due to the form of Eq. (11),
we refer the optimal shaping region to the closed region
R with the maximized volume and satisfying corresponding
constraints. For the IM signal under a peak- and an average-
intensity constraints (2), finding the optimal shaping region in
n-space can be formulated as the following problem:

max
n
√

vol(R)

2α
s.t. R ⊆ [0, 1]n

1

vol(R)

∫
R

∥x∥1 dx ≤ nα,

(12)

where the last inequality is a continuous version of the
average-intensity constraint (2b) (see [35] for a detailed in-
troduction of continuous approximation).
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In [29], the optimal shaping region for the VLC channel
under dual intensity constraints has been proved to be the
family of truncated cubes. For self-containment, this result is
reviewed in the following theorem.

Theorem 1. (Optimal Shaping [29]) The optimal solution to
the problem (12) is Tn(t

⋆
n) as defined in Eq. (6), where the

parameter t⋆n is determined by

t⋆n =

{
P−1
n (α) , if 1

n+1 ≤ α < 1
2 ,

(n+ 1)α , if α ≤ 1
n+1 ,

(13)

and Pn(·) is given by Eq. (8). Accordingly, the maximum
shaping gain in Euclidean-n space is given by

SGVLC(n;α) = SGVLC(Tn(t
⋆
n)) =

n
√
Vn(t⋆n)/2α. (14)

D. Dn Lattice Points in Truncated Cubes

Next, we review the definition of the Dn-based truncated
cube developed in [29]. Let H and L be two nonnegative
integers. The Dn-based truncated cube T Dn(H, 2L) with
parameters H and L is given by

T Dn(H, 2L) ≜

{
x ∈ Dn ∩ {0, 1, · · · , H}n :

n∑
i=1

xi ≤ 2L

}
,

i.e., the subset of the checkerboard lattice consisting of all
points with the ℓ1-norm no larger than 2L and amplitudes
between 0 and H . We further let T Dn(H, 2L,M) denote the
subset of T Dn(H, 2L), which contains M points with least
ℓ1-norm in T Dn(H, 2L).

IV. OPTIMAL SHAPING IN FINITE-BLOCKLENGTH
REGIMES

Commonly-used shaping methods include probabilistic
shaping and geometric shaping. The former one may not be
suitable for the high-SNR case due to the need of distribution
matching for an input set with a large cardinality [19]. Instead,
a classic coded modulation scheme, called the lattice codes,
is widely used for bandlimited channels. The lattice code
can be naturally combined with geometric shaping by the
intersection of a densely-packed lattice (or its translate) and
a well-chosen region in Euclidean space. In this section,
based on the large deviation theory, we strength the result
of geometric constellation shaping given in [29] (also see
Theorem 1) through the lens of finite-blocklength analysis.

A. Finite-Blocklength Analysis of Optimal Shaping Parameter

As shown in Theorem 1, the optimal shaping parameter
t⋆n should be numerically computed by the inverse of the
average first moment Pn(·) that is strictly increasing. Although
the bisection algorithm is applicable for solving (13), the
numerical method may become impractical as the blocklength
increases, due to the presence of factorials and polynomials
in (7) and (8). Additionally, lack of an analytical evaluation
for the optimal shaping parameter t⋆n may hinder a concrete
analysis of the maximum shaping gain. To overcome this
limitation, an asymptotical analysis of the optimal shaping

region based on the large deviation theory is carried out in
the following.

Without loss of generality, we let τ = t/n and accordingly
τ⋆n = t⋆n/n. Based on large-deviation result on the sum of in-
dependent and identically distributed (i.i.d.) random variables
uniformly distributed on [0, 1] (see Appendix A), we establish
the asymptotics of τ⋆n in what follows.

Theorem 2. For any given α ∈ (0, 1
2 ), the parameter of the

optimal shaping region satisfies

τ⋆n = α+
1

µ∗
1

n
+ o

(
1

n

)
, (15)

where µ∗ is the unique positive solution to the following
equation

α =
1

µ
− 1

exp(µ)− 1
. (16)

Proof: See Appendix B.
Theorem 2 shows that the optimal shaping parameter τ⋆n

converges to α at a rate of 1
µ∗

1
n , where µ∗ is also the

exponential decay rate of the following probability density
function:

p∗X(x) =
µ∗

1− exp(−µ∗)
exp(−µ∗x), 0 ≤ x ≤ 1, (17)

that maximizes the differential entropy of the input X under
the support constraint X ∈ [0, 1] and the average-intensity
constraint E[X] = α [36].

As a consequence of Theorem 2, we may approximate the
shaping parameter t⋆n by nα + 1/µ∗, which facilitates us to
determine the optimal shaping region in the application of
lattice codes, rather than numerical methods.

B. Finite-Blocklength Analysis of Maximum Shaping Gain

Relying on Theorem 2, a second-order expansion of the
maximum shaping gain can be obtained as follows.

Theorem 3. (Second-Order Asymptotics) For any given α ∈
(0, 1

2 ), the maximum shaping gain SGVLC(n;α) achieved in
the Euclidean-n space satisfies

log SGVLC(n;α) = hmax(α)− log(2α)− log(n)

2n
+

ωα

n
+ o

(
1

n

)
(18)

where hmax(α) is the differential entropy of p∗X(x) in Eq. (17),
and the constant ωα is given by

ωα = 1− 1

2
log
(
2π
(
−µ∗ + 2αµ∗ + (µ∗)

2
α(1− α)

))
.

(19)

Proof: See Appendix C.
It is straightforward that we can use the second-order

expansion in (18) to approximate the maximum shaping gain
in finite dimensions. To the authors’ best knowledge, this is
the first quantitative result on measuring how much shaping
gain can be obtained for the VLC in the regime of short
blocklengths, which may be helpful for system design in the
field. It is worth noting that the performance limit of lattice
codes in the finite-blocklength regimes can be further clarified
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by combining with Theorem 3 and the dispersion result of
unconstrained Gaussian channel [37].

Theorem 3 also demonstrates an interesting connection
between the maximum-entropy distribution and the optimal
shaping region for our considered channel. It can be further
proved by Theorem 3 that any marginal probability density
function of the random vector uniformly distributed on Tn(t

⋆
n)

converges to the maximum-entropy distribution (17), which
reveals the superiority of the geometric shaping at high SNRs.

We end this subsection by relevant numerical results. In
Fig. 1, we plot the absolute approximation error t⋆n − nα −
1/µ∗ for blocklengths n from 2 to 32, which shows a good
approximation performance even at very short blocklengths.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Blocklength 

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t⋆n − nα, α = 0.2, 0.3

t⋆n − nα− 1
µ∗ , α = 0.2, 0.3

Fig. 1: The approximation error t⋆n−nα−1/µ∗ versus various
blocklengths n and constraint parameters α.

In Fig. 2, we plot the true maximum shaping gains and
the approximated shaping gains versus various dimensions n
and different intensity constraint parameters α. The results
show that the true maximum shaping gain can be effectively
approximated by its second-order expansion. When n ≥ 16,
the approximate error is no larger than 0.1 dB.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Blocklength

0.2

0.4

0.6

0.8

1

1.2

1.4

S
h

a
p

in
g
 g

a
in

 (
d

B
)

=0.3, true

=0.3, approximate

=0.2, true

=0.2, approximate

ultimate shaping gain:

(as n goes infinity)

=0.3

=0.2

Fig. 2: True shaping gain and the second-order approximation
with different constraint parameters.

Fig. 3 provides the relationship between the maximum
shaping gain SGVLC(n;α) and the constraint parameter α in

various dimensions. It can be seen from Fig. 3 that for any
α ∈

(
0, 1

2

)
, the gap between the ultimate shaping gain and the

maximum shaping gain obtained in the 32-dimensional space
is no larger than 0.2 dB, which indicates that most of the
shaping gain can be obtained at low dimensions.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

S
h

a
p

in
g
 g

a
in

 (
d

B
)

n=2

n=4

n=8

n=16

n=32

n=

 0.2 dB

Fig. 3: The relationship between the maximum shaping gain
SGVLC(n;α) and the constraint parameter α with different
dimensions.

C. Extension to APP-Limited Quadrature Gaussian Channel

Based on the above result, we also characterize the second-
order asymptotics of the maximum shaping gain for the
average- and peak-power-limited (APP-limited) quadrature
Gaussian channel [34], [38], whose channel output over n

2
channel uses is given by

rE = xE + zE, (20)

where the n
2 -dimensional complex-valued transmitted signal

xE =
(
x̃1, · · · , x̃n

2

)
is equiprobably selected from the con-

stellation X̃ ⊆ Cn/2 of size M . Due to the average and peak
power constraints, the transmitted constellation X̃ is required
to satisfy

|x̃k|2 ≤ 1,∀k ∈
{
1, · · · , n

2

}
(21a)

1
n
2M

∑
xE∈X̃

n/2∑
k=1

|x̃k|2 ≤ P. (21b)

For the APP-limited quadrature Gaussian channel, the shap-
ing gain of a given closed region R of the corresponding
Euclidean n-space is defined as

SGE(R) =
PAPR(R)

3
, (22)

where the quantity 3 is the peak-to-average-power ratio
(PAPR) of the n-cube [34]. For simplicity, the maximum
shaping gain within the blocklength n

2 of the APP-limited
quadrature Gaussian channel is denoted by SGE(

n
2 ;P), which

is achieved by the n-dimensional real-valued truncated poly-
disc (see [34] for a detailed description). Combining [34,
(9)] and Theorem 3, we can readily derive the second-order
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asymptotics of the maximum shaping gain for the APP-limited
quadrature Gaussian channel in the following corollary, which
may be of independent interests.

Corollary 1. The maximum shaping gain of the APP-limited
quadrature Gaussian channel satisfies

SGE(
n

2
;P)

=
π

3
SGVLC(n;P)

= 0.200 + hmax(P)− log(2P)− log(n)

2n

+
ωP

n
+ o

(
1

n

)
(in dB). (23)

We especially point out that, by letting P → 0 and n →
+∞, Corollary 1 coincides with the well-known results that
the ultimate shaping gain (with respect to OSNR) for the VLC
channel with only an average-intensity constraint is 1.33 dB
(see [17]), while that (with respect to electrical SNR) for the
AWGN channel with only an average-power constraint is 1.53
dB.

V. OPTIMALLY-SHAPED CONSTELLATION BASED ON
CONSTRUCTION B LATTICES

In Section IV, we derive the second-order asymptotics of
the optimal shaping parameter t⋆n and the maximum shaping
gain SGVLC(n;α) for the VLC channel under the dual inten-
sity constraints, which answers the question that how much
shaping gain can be achieved by finite-dimensional geometric
shaping. In order to improve the coding gain, one approach is
to employ an inequiprobable ASK constellation in conjunction
with powerful channel codes like LDPC codes. However, it
may not be suitable for indoor VLC scenarios due to the need
of distribution matching and time-consumed iterative decoding
algorithms.

Therefore, in this section, we propose a general signaling
framework by constructing geometrically-shaped constella-
tions, which has flexible normalized rates, low implementation
complexity, and a substantial OSNR gain as compared with
existing schemes.

A. Basic Idea of Constructing Geometrically-Shaped Constel-
lations

1) Denser Packing via Construction B Lattice: It is noted
that the most of the ultimate shaping gain SGVLC(+∞;α) can
be achieved in finite dimensions (as illustrated in Fig. 3), while
there is still much room for further improvement of the coding
gain. In [29], both the shaping and the coding of the truncated
cubic constellation (TCC) are carried out by the checkerboard
lattice Dn, of which a nominal coding gain of 1.5 dB (with
respect to the OSNR definition (3)) is attained as compared
with the ASK constellation.

To address the limitation of the Dn lattice on the coding
gain of the TCC, we leverage the densely-packing structure
of the Construction B lattice, or more generally, the union of
cosets of the Construction B lattice

Λn =
⋃
a∈A

(2Hn + a), (24)

where A is the union of coset representatives. It has been
found that many dense lattice packings in low dimensions can
be constructed by translating a Construction B lattice, such
as E8 lattice, BW16 lattice, and Leech lattice [33]. The good
choice of A varies greatly with the blocklength n, and hence,
is not specified here.

2) Coarsely Shaping and Finely Coding: To integrate the
coding gain of the finitely-shifted Construction B lattice
and the nearly-maximum shaping gain in the constellation
construction, a natural way is selecting M points from the
lattice Λn within the optimal shaping region Tn(t

⋆
n) (scaling

by an appropriate factor). However, directly enumerating M
points from the intersection of a delicately-constructed lattice
Λn with a nontrivial Voronoi cell and the optimal shaping
region is challenging, and a look-up table may lead to an
exponential growth of the computation complexity and the
storage complexity as the normalized rate β increases.

To address this issue, resorting to the idea of coarsely
shaping and finely coding and the structure of Construction B
lattices, we construct the multidimensional constellation with
a near-optimal shape by assigning the task of constellation
shaping to a sublattice of the embedded Construction B lattice.

For better readability, here we briefly illustrate the basic idea
of coarsely shaping and finely coding by a two-dimensional
example in Fig. 4. Suppose we select M points from the D2

lattice, whose boundary is required to look like a given trun-
cated cube. Note that D2 can be represented in a Construction
A form

D2 = 2Z2 + C2, (25)

where the set C2 = {02,12}. Then a simple construction
method is first selecting M/2 2Z2 points from the desired
truncated cube (see blue small circles in Fig. 4) and then
translating those points by the vector 12 ∈ C2 (see magenta
small diamonds in Fig. 4). It can be seen that the overall
boundary almost maintains the desired shape, say coarsely
shaping, while simultaneously all points are selected from
D2 lattice which determines the MED of the constructed
constellation, say finely coding.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

translation

    vector (1,1)

Fig. 4: Coarsely shaping and finely coding for selecting D2

points from a truncated cube.
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B. Framework of Constellation Construction

Combining the construction (5) of Hn, and analogue to the
above two-dimensional example, our constellation construc-
tion is formally given in what follows:

Ln =
⋃
a∈A

4Dshape︸ ︷︷ ︸
shaping part

+ 2C + a︸ ︷︷ ︸
coding part

, (26)

where the shaping set Dshape is chosen from the Dn lattice
and used to control the overall shape of Ln. It is clear that
the so-constructed constellation Ln is obtained via translating
(at a small scale) Dshape by the quotient set [Λn/4Dn]. In the
following, three crucial issues in constructing Ln are clarified
in detail.

1) Choice of Dshape: Assume that there are 2ka elements in
the set A. Let the constants ks = nβ−kc−ka and Ms = 2ks .
Therefore, to get a near-maximum shaping gain, the shaping
set Dshape is required to contain Ms Dn lattice points within
the optimal shaping region Tn(t

⋆
n) (with appropriate scaling),

which is exactly the set Dn(H
∗, 2L∗,Ms), where the involved

parameters H∗ and L∗ can be uniquely determined by using
Algorithm 1 in [29] for constructing TCCs.

2) Fast Constellation Mapping: It is recognized that a con-
stellation addressing algorithm that quickly maps the message
onto the desired constellation point λ ∈ Ln is needed to
reduce the implementation complexity of geometric shaping.
According to the form of the construction (26), we shall
divide the message into three parts, which are mapped onto
the shape set Dshape, the component (n, kc, 8) code C, and
the set A of coset representatives, respectively. The last two
mappings are straightforward and very fast, while fortunately,
the mapping onto Dshape can be efficiently solved by the FFT-
assisted decomposable shell mapping (FDSM) in [29] at the
computational cost approximately linear with the blocklength.

For clarity, we summarize the detailed procedures that map
a binary sequence b onto the constellation point λ ∈ Ln in
the following.

• Step 1: Data partition. Let b ∈ Fk
2 be a length-k binary

sequence, where k = nβ. Then divide b into three parts
bs = (b1, · · · , bks), bc = (bks+1, · · · , bks+kc), and ba =
(bks+kc+1, · · · , bk).

• Step 2: Coarsely shaping. Map the length-ks binary
sequence bs onto some n-dimensional lattice point d =
(d1, · · · , dn) ∈ Dn(H

∗, 2L∗,Ms) by the FDSM algo-
rithm [29, Algorithm 2].

• Step 3: Block coding. Map the length-kc binary sequence
bc onto some codeword c = (c1, · · · , cn) ∈ C.

• Step 4: Coset mapping. Map the length-ka binary se-
quence ba onto some coset representative a ∈ A via
an enumeration approach. Then the desired constellation
point is obtained as λ = 4d+ 2c+ a.

3) Constellation Scaling: For simplicity, in the above we
construct the desired constellation based an unnormalized
Construction B lattice, which should be scaled to meet the
input constraints (2). Here we will briefly discuss how to
evaluate the scaling factor κ ∈ R+.

Note that the peak value of the proposed constellation Ln

is given by

max
λ∈Ln

∥λ∥∞ (27)

= max
d∈Dn(H∗,2L∗,Ms)

c∈C, a∈A

∥4d+ 2c+ a∥∞

=4H∗ + 2 +max
a∈A

∥a∥∞. (28)

Similarly, the average intensity of Ln is given by

1

nM

∑
x∈Ln

∥x∥1

=
1

nM

∑
d∈D24(H∗,2L∗,Ms)

c∈C, a∈A

∥4d+ 2c+ a∥1 (29)

=
4

Ms

∑
d∈Dn(H∗,2L∗,Ms)

∥d∥1 + 1 +

∑
a∈A∥a∥1
2ka

, (30)

where Eq. (30) follows from the fact that the uniformity of
any linear code.

Thus, to satisfy the intensity constraints (2), the scaling
factor κ should be set as

κ = 1/max

{
max
λ∈Ln

∥λ∥∞,
1

nM

∑
λ∈Ln

∥λ∥1/α

}
. (31)

We would like to point that, for simplicity of implementa-
tion, the maximum coordinate H∗ and the average ℓ1-norm
of Dn(H

∗, 2L∗,Ms) can be roughly estimated by using the
optimal shaping region Tn(t

⋆
n) via continuous approximation

(or say, the Minkowski-Hlawka theorem [39, Thm. 1]).

C. Demodulation Algorithm

With perfect CSI at the receiver, the maximum likelihood
(ML) demodulator performs the minimum-distance detection
as

λ̂ = argmin
λ∈Ln

∥ λ− r/κ ∥2 . (32)

For simplicity, we let y = r/κ. However, for the used constel-
lation Ln with a finite cardinality, an irregular boundary, and
a complicated multi-layer construction in Eq. (26), the ML
demodulation is not feasible in practice due to the complexity
limitation. For this reason, we resort to a bounded-distance
decoding algorithm for Construction B lattices, which was
proposed in [33] and shown to have near-optimal performance
with respect to the symbol error probability.

1) Bounded-Distance Decoding: For any given vector y ∈
Rn and a Construction B lattice Hn, the bounded-distance
decoding algorithm [33, Algorithm 2] outputs the point h from
Hn (i.e., infinite constellation) that is closest to y if ∥h− y∥ ≤
dmin(Hn)/2 =

√
2, i.e., performs as optimal algorithms within

a ball of certain radius. For self-containment, we shall review
the main idea of this algorithm in what follows.

It is clear that

Hn ⊆ Un = 2Zn + C, (33)

where Un is a Construction A lattice which is obtained by
replacing the single-parity code in constructing Hn to {0, 1}n,
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where the quotient set [Un/Hn] = {0n, (0m, 2,0n−m−1)}
with an arbitrary integer m ranging from 0 to n − 1. The
aforementioned algorithm first searches the closest point from
Un, which can be quickly solved by combining integer forcing
and soft decoding of the binary linear block code C due to the
property of Construction A lattices [40]. Then the algorithm
translates such the closest point from Un in some way to
ensure that the final output point is selected from the sublattice
Hn.

2) Demodulation Procedure: Motivated by the above fact,
the demodulation of our proposed constellation Ln can be
implemented via a lattice decoding approach. The detailed
procedures are summarized in the following.

• Step 1: Closest point search in Un [40]. For any a ∈ A,
let w(a) = (y− a)/2. Let û(a) = 2ẑ+ ĉ be the closest
point in Un to w(a), where the integer component ẑ and
the binary linear block codeword ĉ are computed by using
the decoding algorithm for Construction A lattices [40,
p. 450], along with the soft decoding algorithm for the
binary linear block code C.

• Step 2: Bounded-distance decoding in Hn [33]. Let
ĥ(a) = û(a). If the integer component ẑ has an even
sum, we directly output ĥ(a) as the bounded-distance
decoding result for Hn. Otherwise, search the smallest
index i satisfying

i = argmax
j∈{1,2,··· ,n}

| wj(a)− ûj(a) |, (34)

translate ĥ(a) by

ĥi(a) =

{
ûi(a) + 2, if wi(a) ≥ ûi(a);

ûi(a)− 2, if wi(a) < ûi(a).
(35)

and then output the modified ĥ(a).
• Step 3: Bounded-distance decoding in Λn [33]. For each

a ∈ A, compute Euclidean distances between 2ĥ(a) + a
and y, and then select the closest one to y as the
demodulator output λ̂.

Note that the constellation demapping of the demodulator
output λ̂ onto the binary sequence is a simple inverse trans-
form of the constellation mapping, and therefore omitted.

VI. DESIGN EXAMPLES AND NUMERICAL RESULTS

In this section, we present an illustrative example of our pro-
posed constellation design framework, and then numerically
verify its superiority as compared with the existing schemes.

A. Optimally-Shaped Leech Constellation

In this subsection, we show a concrete implementation
of our proposed constellation design, by which an energy-
efficient 24-dimensional constellation for our considered chan-
nel is designed. Note that the densest packing in 24-
dimensional Euclidean space has been proved to be the Leech
lattice Λ24 [41], by which an extra nominal coding gain of
3 dB (effective coding gain of 2 dB) may be attained. A
method of constructing the Leech lattice via Construction B
is introduced in the following.

1) Leech Lattice via Construction B: Denote the Leech
half-lattice by H24, which can be constructed via Construction
B as follows:

H24 ≜ 4Z24 + 2(24, 23) +G24 = 2D24 +G24, (36)

where the notation (24, 23) refers to the 24-dimensional parity
check codes, and G24 is the (24, 12, 8) Golay code. In [40],
[42], [43], a method of constructing the Leech lattice Λ24 is
presented by translating H24 as

Λ24 = 2H24 ∪ (2H24 + ξ), (37)

where the 24-dimensional translation vector ξ = (−3,123) ∈
R24.

2) Construction Procedures: In line with Section V-B, an
optimally-shaped Leech constellation (OSLC) can be con-
structed in what follows.

Combining Eqs. (26) and (36), we define

H24 = 2Dshape +G24, (38)

where the shaping set Dshape = D24

(
H∗, 2L∗, 224β−13

)
⊆

D24 is obtained as described in Section V-B1. To ensure the
nonnegativity of the constructed constellation, a slight modifi-
cation to the next translation operation is needed. Concretely
speaking, we construct the OSLC as

L24 =
⋃

h∈H24

⋃
b∈{024,ξ̃(h)}

2h+ b, (39)

where the modified translation vector ξ̃(h) is given by

ξ̃(h) =

{
(5,123) , 2h1 mod 8 < 3,

(−3,123) , 2h1 mod 8 > 3,
(40)

and the quantity h1 denotes the first coordinate of h ∈ H24. It
can be easily verified that, after the above modified translation,
so-constructed constellation still lies in the nonnegative orthant
and has a cardinality of M . For a clearer illustration, we plot
procedures of constellation mapping of the OSLC L24 in Fig.
5.

B. Error Performance of L24

In this subsection, to verify the advantages of our proposed
OSLC, we present numerical results on its symbol error rates
(SERs). As benchmark schemes, the cubic constellation (i.e.,
the 24-times Cartesian product of an ASK constellation) and
the D24-based TCC proposed in [29] are considered as well.

1) AWGN Channels: We first consider the SER perfor-
mance of the above three constellations over the AWGN
channel. By varying the normalized rate β from 2 bpcu to 5
bpcu, Fig. 6 plots their SER curves with α = 0.2, while Fig.
7 plots those curves in the case of α = 0.3. It can be seen that
the OSLC significantly outperforms two benchmark schemes
when the normalized rate β = 4 and 5. In the case of α = 0.2
and β = 5, the OSLC has OSNR gains of 3 dB and 0.9 dB
at a target SER 10−5, as compared to the cubic constellation
and the TCC, respectively, while OSNR gains of 2.8 dB and
0.9 dB can be observed when α = 0.3. It is noted that there
is a 0.2 dB difference in the OSNR gains compared with the
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FFT-assisted decomposable 

shell mapping

(24,12,8) Golay encoder +

Coarsely Shaping

Fig. 5: Constellation mapping for the OSLC.

(a) The SER curves of the OSLC scheme and the benchmarks with
α = 0.2 when β = 2 bpcu and 3 bpcu.

(b) The SER curves of the OSLC scheme and the benchmarks with
α = 0.2 when β = 4 bpcu and 5 bpcu.

Fig. 6: The SER curves of the OSLC scheme and the benchmarks with α = 0.2.

(a) The SER curves of the OSLC scheme and the benchmarks with
α = 0.3 when β = 2 bpcu and 3 bpcu.

(b) The SER curves of the OSLC scheme and the benchmarks with
α = 0.3 when β = 4 bpcu and 5 bpcu.

Fig. 7: The SER curves of the OSLC scheme and the benchmarks with α = 0.3.

cubic constellation (i.e., without constellation shaping), which
is consistent with our result on the second-order asymptotics
of the maximum shaping gain (see Fig. 3). As the normalized

rate β decreases, the performance advantage of the OSLC over
the TCC diminishes. From Fig. 6(a) and Fig. 7(a), it can be
observed that the SERs of the TCC are close to those of the
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OSLC at β = 3, and at β = 2 the TCC slightly outperforms
the OSLC. The main reasons for this reduction in OSNR gains
may come from three aspects: 1) by using the coarsely shaping
and finely coding strategy, only a small part of the message
sequence is used for geometrically shaping the OSLC when
β is small, which results to a shaping region of L24 that may
be far less like the optimal shaping region; 2) the densely-
packed structure (39) of the OSLC L24 may be broken in the
regime of a small cardinality; 3) the lattice decoding algorithm
leads to performance loss as compared with the ML decoding,
especially when the cardinality of the lattice code is relatively
small.

It is also seen that the SERs of the OSLC can be well
evaluated by

Pe,UB = NAQ(κdmin/2σ), (41)

i.e., the union bound (UB) on the error probability for the
ML decoding of the Leech lattice Λ24, where Q(u) ≜
1√
2π

∫∞
u

e−y2/2dy is the Gaussian Q-function, and NA =

196560 and dmin = 4
√
2 represent the kissing number and

the MED of the Leech lattice Λ24, respectively [40]. This
observation shows that the error performance of the bounded-
distance algorithm used in our demodulator is very close
to that of the best lattice decoding algorithm. In practical
implementation, the UB (41) can be used for predicting the
error performance of the OSLC.

We also evaluate the performance gap between the OSLC
and the Shannon limit. Note that there is no closed-form
formula for the exact channel capacity of our considered VLC
channel. Hence, we use the capacity upper and lower bounds
given in [19], [36] and plot those bounds in Figs. 6 and 7 by
semi-transparent strips. From Figs. 6(b) and 7(b), it can be
seen that, the gap between the OSLC and the ultimate limit
are within 2.5 dB in the high-SNR regimes, which is mainly
caused by the fundamental backoff due to finite blocklength.

C. Indoor VLC Scenario

We particularly provide a glimpse of the error performance
of the OSLC in an indoor VLC scenario, where a 4 m×4 m×3
m room with 4 LED lamps of the same specification and a
single receiver PD is considered. We assume that the LED
lamps are installed on the ceiling and equipped with 7×7 LED
array, and one receiver PD is located on the plane at height of
0.6m. Other parameters of the LED transmitters and the PD
receiver are listed in Tables I and II, respectively. As pointed
in [44], if those LED lamps are required to have identical
brightness, the considered MISO VLC channel is equivalent
to a scalar VLC channel via spatial repetition coding, and our
proposed constellation can be readily used.

Denote the drive current of all LED chips by I . After
removing the DC component and spatial repetition coding,
the equivalent scalar VLC channel is given by

R =

4∑
q=1

49∑
j=1

s · hqj · γ · (I − Imin) + Z, (42)

where the channel coefficients hqj are computed by Lamber-
tian’s model as in [32]. With the same treatment in [45], the
variance of the AWGN σ2 is approximated by

σ2 = 2qeB

 4∑
q=1

49∑
j=1

s · hqj · γ · E[I] + IbgI2

, (43)

where the quantity qe denotes the electronic charge. It
is straightforward that I ∈ [0.4, 0.6]. Let X = (I −
Imin)/(Imax − Imin) and the dimming factor α = (E[I] −
Imin)/(Imax − Imin), and then, after an appropriate linear
transform, the model (42) can be rewritten as

R = X + σ2/

0.2s · γ ·

 4∑
q=1

49∑
j=1

hqj

, (44)

where the block code X with blocklength n for the new input
X is subject to the constraints (2).

We first plot the simulated OSNR for the considered sce-
nario in Fig. 8, from which it can be seen that the received
OSNRs are about 25− 26 dB. In the last subsection, numer-
ical results for the AWGN channel have indicated that high
normalized rates can be achieved at those high SNRs. Table
III lists the average SER of our proposed scheme and the
benchmarks with the normalized rate β = 5 for the considered
indoor channel, where the receiver PD is randomly located
at (XP , YP ) with two coordinates XP and YP independently
and uniformly distributed on the interval [−4, 4]. Numerical
results also verify the performance advantage of our schemes
over others in the indoor VLC application.

TABLE I: Transmitter Parameters

LED lamp coordinates (±1.6,±1.6, 3) [m]

Minimum drive current Imin 0.4 [A]

Maximum drive current Imax 0.6 [A]

Semi-angle at half power 60◦

Interval of the LED array 1 [cm]

O/E conversion efficiency of LED γ 0.45 [W/A]

TABLE II: Receiver Parameters

Physical area of PD 1 [cm2]

Gain of optical filter 1

Refractive index of the lens at PD 1.5

Responsitivity of PD s 0.4 [A/W]

Field of view (FOV) 60◦

System bandwidth B 10 [MHz]

Noise bandwidth factor I2 0.562

Background current Ibg 100 [µA]

VII. CONCLUSION

In this paper, a general framework for signaling over the
short-packet VLC channel with a peak- and an average-
intensity constraints is proposed. It mainly consists of fi-
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TABLE III: Average SER for the indoor VLC system.

Scheme
Average SER Parameter α

0.2 0.3

Cubic constellation 0.3004 0.0196
TCC 0.0241 3.727× 10−6

OSLC 7.501× 10−4 ≪ 10−6

Fig. 8: The simulation of OSNR for the 4m×4m×3m room.

nite blocklength analysis of geometric shaping and an elab-
orated method of constructing geometrically-shaped multi-
dimensional constellations. Additionally, we present a 24-
dimensional constellation design based on the Leech lattice
as an illustrative example, which shows a significant OSNR
gain as compared with existing schemes.
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APPENDIX A
LARGE DEVIATION OF SUM OF INDEPENDENT RANDOM

VARIABLES UNIFORMLY DISTRIBUTED ON [0, 1]

Let the random variable U be uniformly distributed on [0, 1].
For s > 0, the moment-generating function of U is

M(s) ≜ E[exp(sU)] =
exp(s)− 1

s
,

and we define

K(s) ≜
M ′(s)

M(s)
=

exp(s)

exp(s)− 1
− 1

s
.

It is clear that K(s) is monotone increasing and satisfies
K(0+) = 1

2 and K(+∞) = 1. Then, we let sx denote the
unique solution to the equation

K(sx) = x, (45)

where x ∈ [ 12 , 1]. Specially, an immediate consequence of (16)
is

µ∗ = s1−α. (46)

Clearly, the solution sx increases with x. Then, for x ∈[
1
2 , 1
]
, we define

L(x) ≜ log(M(sx))− xsx,

and

D(x) ≜ sx
√

K ′(sx) =

√
−s2x · exp(sx)
(exp(sx)− 1)

2 + 1.

It can be easily verified both L(x) and D(x) are smooth. Then,
by computing high-order derivatives of D(x), we can show
that D(x) is bounded and non-decreasing with x. Also, we
note that

L′(x) =

(
M ′(sx)

M(sx)
− x

)
· dsx
dx

− sx (47)

= (K(sx)− x) · dsx
dx

− sx (48)

= −sx. (49)

Since sx is increasing as x increases, the function L(x) is
concave and thus satisfies

L(x) ≤ L(1− τ)− s1−τ (x− (1− τ)). (50)

for any x and τ in [ 12 , 1].
Denote the tail probability of the sample mean Ūn =

1
n

∑n
i=1 Ui by Gn(x) = P

{
Ūn ≥ x

}
. Based on Theorem 1

in [46], the sequence of functions

Gn(x) =
exp(nL(x))√
2πnD(x)

(1 + o(1)) (51)

as n → ∞ uniformly in x in the closed interval
[
1
2 + ϵ, 1− ϵ

]
,

where ϵ is an arbitrarily positive constant.

APPENDIX B
PROOF OF THEOREM 2

The average first moment of Tn(nτ) can be alternatively
expressed by the conditional expectation of the Irwin-Hall
distribution as follows

Pn(nτ) =
1

n

n∑
i=1

E

[
Ui

∣∣∣∣ n∑
i=1

Ui ≤ nτ

]
(52)

= E
[
Ūn

∣∣∣Ūn ≤ τ
]

(53)

= 1− E
[
Ūn

∣∣∣Ūn ≥ 1− τ
]
. (54)

(55)

Remind that the tail probability Gn(x) = P
{
Ūn ≥ x

}
. Then,

it is straightforward that

Pn(nτ) = 1 +

∫ 1

1−τ
xdGn

Gn(1− τ)
(56)

= τ −
∫ 1

1−τ

Gn(x)

Gn(1− τ)
dx. (57)

The first-moment condition (13) immediately shows that

α = τ⋆n −
∫ 1

1−τ⋆
n

Gn(x)

Gn(1− τ⋆n)
dx. (58)
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It is clear that τ⋆n ≥ α for any n. Next, we will prove that

lim
n→∞

n(τ⋆n − α) =
1

s1−α
. (59)

Note that τ ≥ α and Pn(1) =
1
2 . For any τ ∈ (0, 1), there

exists a positive (and possibly arbitrarily small) constant ϵ such
that 1− τ + 2ϵ ≤ 1. Then we note that

0 ≤
∫ 1

1−τ

Gn(x)

Gn(1− τ)
dx ≤ 2ϵ+

∫ 1−ϵ

1−τ+ϵ

Gn(x)

Gn(1− τ)
dx.

(60)

Due to the uniform convergence of Gn(x), we can rewrite∫ 1−ϵ

1−τ+ϵ

Gn(x) dx (61)

=

∫ 1−ϵ

1−τ+ϵ

exp(nL(x))√
2πnD(x)

(1 + o(1)) dx

≤
∫ 1−ϵ

1−τ+ϵ

exp(n(L(1− τ)− s1−τ (x− (1− τ))))√
2πnD(1− τ)

(1 + o(1)) dx

≤ 1

s1−τ
Gn(1− τ)

(
1

n
+ o

(
1

n

))
Immediately, we have τ⋆n = α+ o(1). Note that

n(τ⋆n − α) (62)

=n

∫ 1

1−τ⋆
n

Gn(x)

Gn(1− τ⋆n)
dx

≤n

(∫ 1−ϵ

1−τ⋆
n

Gn(x)

Gn(1− τ⋆n)
dx+ ϵ

Gn(1− ϵ)

Gn(1− τ⋆n)

)
(63)

=
1

s1−α
+ o(1) (64)

On the one hand, for any finite k ∈ N, we have

n

∫ 1

1−τ⋆
n

Gn(x)

Gn(1− τ⋆n)
dx (65)

≥n

∫ 1−τ⋆
n+

k
n

1−τ⋆
n

Gn(x)

Gn(1− τ⋆n)
dx

=n

∫ k
n

0

exp
(
−ns1−τ⋆

n
x
)
dx · (1 + o(1)) (66)

=
1− exp

(
−ks1−τ⋆

n

)
s1−α

(1 + o(1)). (67)

(46), (64) and (67) complete the proof of Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

It should be noted that:

log
(
SGVLC(n;α)

)
+ log(2α)

=
1

n
log(vol(Tn(t

⋆
n)))

=
1

n
log(Gn(1− τ⋆n))

=
1

n
log

(
exp(nL(1− τ⋆n))√
2πnD(1− τ⋆n)

(1 + o(1))

)
(68)

=L

(
1− α− 1

µ∗
1

n
+ o

(
1

n

))
+ o

(
1

n

)
− 1

n
log

(√
2πnD

(
1− α− 1

µ∗
1

n
+ o

(
1

n

)))
(69)

=L(1− α)− log(2πn)

2n
+

1

n
(1− log(D(1− α))) + o

(
1

n

)
(70)

=hmax(α)−
log(n)

2n
+ o

(
1

n

)
+

1

n

(
1− 1

2
log
(
2π
(
−µ∗ + 2αµ∗ + (µ∗)

2
α(1− α)

)))
(71)

=hmax(α)− log(2α)− log(n)

2n
+

ωα

n
+ o

(
1

n

)
(72)

where Eq. (68) is obtained by Eq. (51), Eq. (69) is derived
from Theorem 2 Eq. (70) is calculated by

L

(
1− α− 1

µ∗
1

n
+ o

(
1

n

))
=L(1− α) + L′(1− α)

(
− 1

µ∗
1

n
+ o

(
1

n

))
+ o

(
1

n

)
=L(1− α)− s1−α

(
− 1

µ∗
1

n

)
+ o

(
1

n

)
=L(1− α) +

1

n
+ o

(
1

n

)
, (73)

and D
(
1− α− 1

µ∗
1
n + o

(
1
n

))
= D(1− α) + o(1), and Eq.

(71) can be obtained by substitute the value into L(1− α) and
D(1− α).
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