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The preparation of pure quantum states with high degrees of macroscopicity is a central goal of ongoing
experimental efforts to control quantum systems. We present a state preparation protocol which renders a me-
chanical oscillator with an arbitrarily large coherent amplitude in a manifestly nonclassical state. The protocol
relies on coherent state preparation followed by a projective measurement of a single Raman scattered photon,
making it particularly suitable for cavity optomechanics. The nonclassicality of the state is reflected by sub-
Poissonian phonon statistics, which can be accessed by measuring the statistics of subsequently emitted Raman
sideband photons. The proposed protocol would facilitate the observation of nonclassicality of a mechanical
oscillator that moves macroscopically relative to motion at the single-phonon level.

In the past few decades, experimentalists have made
tremendous progress moving the boundary of quantum the-
ory’s known validity to larger scales. This is motivated by
fundamental questions related to, e.g., unknown decoherence
mechanisms [1] and quantum gravity [2, 3], but also by the
prospect of new technologies taking advantage of quantum
effects. The degree of macroscopicity of a quantum system
can refer to physical characteristics such as mass or volume.
However, given a particular system, it can also be meaning-
ful to quantify how macroscopic its quantum state is, or how
macroscopically distinct the components of a quantum super-
position is [4]. While precisely defining macroscopic quan-
tumness is far from trivial, several attempts have been made
[5].

Recent experiments in quantum optics have reported the ob-
servation of micro-macro [6, 7] and macro-macro [8, 9] entan-
glement of light, exploiting coherent displacement operations
and heralded creation of single quanta (photons). The macro-
scopicity refers in this case to the fact that, for a bosonic mode,
a coherent state |β⟩ = D(β)|0⟩ and the displaced first ex-
cited state |β, 1⟩ = D(β)|1⟩, where D(β) is the displacement
operator and |β| is the coherent amplitude in units of zero
point fluctuations, can be distinguished by a course-grained
measurement, i.e., a measurement with macroscale resolution
[10]. This is possible since, even though the average Fock
state occupation number of the states |β⟩ and |β, 1⟩ only dif-
fer by 1, their number distributions differ significantly over a
number range that scales with the amplitude |β| [11].

Beyond purely optical systems, observing nonclassicality
in large-scale mechanical oscillators is also actively being
pursued. In cavity optomechanical systems [12], coherent
driving of optical or microwave resonators can force me-
chanical oscillators into pure Gaussian states, such as the
ground state [13, 14], the squeezed vacuum state [15–17],
and the coherent state [18]. Heralded single quanta (phonons)
[19–21] have also been realized in such systems by exploit-
ing single-photon detection on the mechanically induced Ra-
man sidebands of coherent optical drives, a technique demon-
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strated with phonons in diamond [21, 22], vibrational breath-
ing modes in silicon nanobeams [19, 20, 23, 24], flexural
modes of silicon nitride membranes [25], elastic whispering-
gallery waves in barium fluoride microresonators [26, 27], and
standing density waves in superfluid helium [28]. While her-
alded preparation of a single phonon relies on initializing the
oscillator in the ground state, other state preparation proposals
along these lines assumes an initial squeezed [29–31], coher-
ent [32], or general Gaussian [33] mechanical state. Given
the increased availability of both pure Gaussian state prepa-
ration and single phonon operations, it is worth investigating
how ideas on macroscopicity from quantum optics could be
applied to mechanical systems.

The proposal presented here is based on initializing the
mechanical oscillator in a coherent state, and subsequently
realizing a superposition of phonon-addition and phonon-
subtraction processes via detection of a single sideband pho-
ton, as discussed in Refs. [33, 34] and below. When start-
ing from a coherent state |β⟩, such a photon detection event
projects the mechanical oscillator into a superposition |ψ⟩ ∝
(kRb + kBb

†) |β⟩, where b is the phonon annihilation oper-
ator and kR and kB are complex coefficients. Some proper-
ties of this type of state have been explored in Refs. [35–37].
The case kR = 0, leading to a phonon-added coherent state
b†|β⟩, was discussed in the context of cavity optomechan-
ics in Ref. [32], where it was pointed out that nonclassical
features, e.g., sub-Poissonian phonon statistics, vanish in the
limit |β| → ∞.

Naively, one would also think that the state |ψ⟩ more gen-
erally is not of particular interest in the high-displacement
limit |β| → ∞, since the single-phonon operations should
only result in microscopic deviations from a coherent state.
However, this is not necessarily true. To see this, we define
r = β∗ + βkR/kB and write

|ψ⟩ = 1√
1 + |r|2

(r|β⟩+ |β, 1⟩) , (1)

which is a superposition of a coherent state and a displaced
single-phonon Fock state. By choosing the complex coeffi-
cients kR, kB appropriately, the state produced can be a dis-
placed number state (if r = 0) or a comparably weighted su-
perposition of macroscopically distinct states (if |r| ∼ 1). The
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displaced number state is manifestly nonclassical in the sense
that its Wigner distribution has a region of negativity which
in principle can be verified by full quantum state tomography
[24, 26]. Another, more accessible, signature of nonclassi-
cality is negativity of the Mandel Q parameter, which reflects
sub-Poissonian phonon statistics. This can be measured in the
proposed setup, as described below. We will show that, for
particular nonzero r, the Mandel Q parameter of the superpo-
sition (1) can be negative, also in the limit where the coherent
amplitude |β| → ∞. In this sense, the proposed protocol
prepares a macroscopically moving mechanical oscillator in a
manifestly nonclassical state. While motion is a relative con-
cept, it here refers to the lab frame or any other inertial frame.
We also investigate how robust the observable nonclassical-
ity is in the more realistic case where the initial state is not
exactly the ideal coherent state but has some residual thermal
fluctuations.

While we focus on cavity optomechanics below, we note
that the proposed protocol can apply to other degrees of free-
dom that cause Raman scattering of light, e.g., magnons
[38, 39].

Nonclassicality in the high-displacement limit.– The Man-
del Q-parameter [40] is defined as

Q =

〈
∆n2

〉
⟨n⟩ − 1, (2)

where n = b†b is the number operator and ⟨∆n2⟩ = ⟨(n −
⟨n⟩)2⟩ is the number variance. The Q-parameter is the frac-
tional deviation of the number variance from the Poisson vari-
ance ⟨n⟩, and thus related to the Fano factor F by Q = F −1.
In a classical description, n represents the square of the os-
cillator’s amplitude, which necessarily gives Q ≥ 0. Sub-
Poissonian statistics (Q < 0) is thus a clear signature of the
nonclassical nature of the oscillator.

For a bosonic mode in the superposition (1), we find that

lim
|β|→∞

Q = 2
1− |r|2 cos(2ϕ)

(1 + |r|2)2 (3)

in the high-displacement limit, when defining arg(βr) = ϕ.
In this limit, Q is minimized by the phase relation cos(2ϕ) =

1, with a minimal value of Qmin = −1/4 at |r| =
√
3. Con-

versely, Q is maximized by r = 0, i.e., when |ψ⟩ = |β, 1⟩ and
⟨∆n2⟩/⟨n⟩ = 3 [11], taking the value Qmax = 2.

Model.– We consider a standard optomechanical setup con-
sisting of an optical cavity mode with (angular) resonance fre-
quency ωopt coupled to a mechanical oscillator mode with
resonance frequency ωm via the radiation pressure interac-
tion. As shown in Figure 1, the cavity mode is coherently
driven by two lasers whose frequencies are, respectively, blue
and red detuned by ωm from their average frequency ωave =
ωopt + ∆c, where ideally ∆c = 0. We note that the pro-
posed protocol is not very sensitive to nonzero |∆c| ≪ κ, and
that the frequency spacing between the two drives can be con-
trolled with great accuracy when the two tones originate from
the same laser. In frames rotating at ωave for the cavity mode
and ωm for the mechanical mode, the system is described by

ΩR ΩB

ω−ωm 0 ωm

κ

W

Optomech.
cavity

Filter

Hanbury Brown &
Twiss interferometer

FIG. 1. Diagram of the Raman scattering processes in the system,
where ∆c = 0 and frequencies are relative to the cavity resonance
frequency. Anti-Stokes photons from the red (ΩR) drive and Stokes
photons from the blue (ΩB) drive pass through a filter with band-
width W ≪ ωm. The backaction from detecting a sideband photon
is ambiguous, i.e., it produces a superposition of a phonon-added and
a phonon-subtracted mechanical state.

the Hamiltonian

H(t) = −ℏ∆ca
†a+ ℏg0a†a(e−iωmtb+ eiωmtb†)

+ iℏ
∑

j={R,B}
(a†Ωj(t)e

−iωjt − aΩ∗
j (t)e

iωjt), (4)

where g0 is the single-photon optomechanical coupling rate,
ωR/B = ∓ωm are the drive frequencies in the rotating frame,
and ΩR/B(t) are the corresponding drive amplitudes propor-
tional to the square root of the power of the respective laser
drives. The operators a, a† and b, b† are the photon and
phonon ladder operators of the cavity and oscillator modes,
respectively.

We allow the drive amplitudes Ωj to be time dependent, as
the protocol presented below relies on the application of laser
pulses similarly as in previous relevant experiments [19, 20].
However, we emphasize that the experiment we propose can
also be adjusted to continuous-wave operation. We present de-
tails of such a steady-state scheme in Ref. [41], which is rele-
vant to experiments where optical absorption is not a concern,
such as with dielectric membranes [25] or superfluid helium
[18, 28].

The system’s coupling to the environment leads to dissi-
pation, and we denote the energy damping rates of the op-
tical and mechanical modes by κ and γ, respectively, where
typically γ ≪ κ. We also assume that the drive frequen-
cies obey |∆c| ≪ κ, which means that the “innermost” side-
bands, i.e., the upconverted (or anti-Stokes) mechanical side-
band from the red detuned laser drive and the downconverted
(or Stokes) sideband from the blue detuned drive depicted
in Figure 1, both fall well within the cavity linewidth. Dis-
sipation is associated with vacuum noise from the electro-
magnetic environment, assuming a temperature T such that
ℏωopt ≫ kBT , and vacuum and thermal noise from the
mechanical environment with associated thermal occupation
number nth = 1/[exp(ℏωm/kBT )− 1] in the Markovian ap-
proximation [12].
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We assume that light emitted from the cavity is sent through
a frequency filter with bandwidth W centered around the cav-
ity resonance frequency ωopt, where the bandwidth satisfies
|∆c| ≪ W ≪ ωm. This ensures that the frequency filter lets
the two innermost mechanical sidebands through, but rejects
light at the carrier frequencies of the blue and red detuned
drives as well as the “outermost” sidebands (i.e., the down-
converted (upconverted) sideband from the red (blue) detuned
drive). The filtered light eventually reaches single photon de-
tectors in a Hanbury Brown and Twiss interferometer, as in-
dicated in Figure 1 and implemented in several experimental
platforms [19, 20, 23–28].

State preparation by projective measurement.– Let us now
consider that the optomechanical system at a time t = 0 is
in the initial state ρ(0) = |0⟩⟨0| ⊗ ρm, where |0⟩ is the vac-
uum of the cavity mode and where ρm is the inital reduced
density matrix of the mechanical mode, which is ideally the
coherent state |β⟩⟨β|. This can for example come about from
optical driving with an intensity beat note at the mechanical
frequency combined with sideband cooling [18, 32, 41, 42].

Starting at t = 0, we assume that both red and blue detuned
drive pulses are applied for a time τw, and we consider flat-
top pulses for simplicity. The cavity field is then displaced
according to a(t) → āRe

−iωRt + āBe
−iωBt + a(t), where

āR/B = ΩR/B/[κ/2 − i(∆c ∓ ωm)] and a(t) now describes
the cavity field beyond the coherent tones. We ignore the tran-
sient buildup of the cavity field amplitudes āj on the time
scale 1/κ ≪ τw, as the mechanical oscillator’s evolution is
approximately free over such short times. We apply the stan-
dard linearization procedure of only retaining terms of first
order in a(t) in the optomechanical interaction Hamiltonian
[12]. Linearization is a good approximation in the experimen-
tally relevant regime κ/g0 ≫ max(1,

√
⟨b†b⟩), i.e., when the

frequency modulation due to the motion of the mechanical os-
cillator is small compared to the cavity linewidth.

For short pulse times τw ≪ 1/[γ(nth +1)], we can neglect
the mechanical mode’s interaction with its intrinsic bath, and
its DC response to a shift in the average radiation pressure
force. We also assume that the system is in the resolved side-
band regime κ≪ ωm which allows the neglect of off-resonant
scattering to the outermost sidebands relative to resonant scat-
tering to the innermost sidebands. The equations of motion
during the pulse can then be approximated by

ȧ = −κ
2
a− i

(
GRb+GBb

†)+√
κain, (5)

ḃ = −i
(
G∗

Ra+GBa
†) , (6)

where GR/B = g0āR/B and ain is the quantum vacuum
noise entering the cavity from the electromagnetic environ-
ment. We define the phases of the drive amplitudes such that
Im (GRGB) = 0, without loss of generality. Using standard
input-output theory [43], we define the total output operator
as aout =

√
κa− ain. For a narrow bandwidth signal, aout is

proportional to the positive frequency part of the electric field
emitted from the cavity.

In the following, we consider the limit |GR/B | ≪ κ, mean-
ing that the cavity field adiabatically follows the mechanical
oscillator dynamics. We define the temporal input and output

modes [44]

Ain/out =

√
±2Gw

e±2Gwτw − 1

∫ τw

0

dt e±Gwtain/out(t), (7)

with Gw = (γR − γB)/2 and γi = 4|Gi|2/κ, which obey
[Ai, A

†
i ] = 1 and are well-defined also for Gw → 0. In terms

of these modes, the system’s time evolution during the pulse
can, in the adiabatic limit, be expressed as Aout = U†AinU ,
b(τw) = U†b(0)U , where the evolution operator is

U = exp
{
−i

[
A†

in(kRb(0) + kBb
†(0)) + h.c

]}
(8)

and we define the coefficients kR and kB by kR/kB =

GR/GB and cos
(√

|kR|2 − |kB |2
)

= e−Gwτw . Note that
this is well-defined for both signs of Gw. This means that, in
the Schrödinger picture, the state of the system at the end of
the pulse is ρ(τw) = Uρ(0)U† ≡ ∑

i,j |i⟩⟨j| ⊗ ρ
(i,j)
m . For

short pulses such that γiτw ≪ 1, the probability of detect-
ing more than one photon at the cavity resonance frequency
becomes negligible. In this limit, where |ki| ≈ √

γiτw, we
find that conditioned on a single photon detection event, the
mechanical state ρm,c = ρ

(1,1)
m at the end of the pulse is

ρm,c =
PρmP

†

Tr[P †Pρm]
(9)

with P = kRb + kBb
†. If the initial state is a coherent state,

i.e., ρm = |β⟩⟨β|, the conditional state (9) becomes ρm,c =
|ψ⟩⟨ψ|, which is the pure state defined by Equation (1).

Defining λ = |GR/GB | and θ = arg(GRG
∗
Bβ

2), we can
now write |r|2 = |β|2[(1 − λ)2 + 2λ(1 + cos θ)], where r
is the coefficient in Equation (1). This shows that to real-
ize |r| ∼ 1 (or |r| = 0) for a large initial amplitude |β|,
we must tune the drive amplitudes such that their strength ra-
tio λ is close to unity and their phases (relative to the phase
of the coherent state) satisfy θ ≈ π. More specifically, for
cos(2ϕ) = 1 (where ϕ = arg(βr) as before) or |r| = 0,
we need to tune λ to the optimal value λ̄ = 1 ± |r|/|β| and
θ to the optimal θ̄ = π. Physically, these conditions reflect
that the coherent contributions to the two innermost sidebands
must interfere destructively (for |r| = 0) or almost destruc-
tively (for |r| ∼ 1) at the detectors in order for the quantum
backaction from the single-photon detection event to have a
large impact on the mechanical state. We note that the phase
matching requirement can most easily be met if the initial co-
herent state is also produced optically by the application of
an intensity beat note. Assuming two beams of equal am-
plitude, a small devation of λ from unity can simply be im-
plemented by slightly detuning both beams by a frequency
≈ ±(κ2/(4ωm) + ωm)

√
|r|/|β| from the mechanical side-

bands, as long as the beams are locked more accurately than
this to variations in the cavity resonance frequency.

An alternative method of preparing the state (1) is by dis-
placing the superposition (r|0⟩+ |1⟩) of number states by the
application of a coherently oscillating mechanical force with
negligible noise on a time scale much faster than the oscilla-
tor’s decoherence time. However, for r ̸= 0, this simply cor-
responds to a different order of the operations in the proposed
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protocol which is more sensitive to decoherence. It is also pos-
sible to prepare the state by replacing the phonon annihilation
term b|β⟩ by an identity operation, i.e., |ψ⟩ ∝ (µI + b†)|β⟩
with µ = r − β∗, which in principle can be implemented by
adding a weak coherent tone at the cavity resonance frequency
to the signal reaching the photodetectors [33]. This also has
no obvious advantage, as it would require the same level of
control over the relative power and the phases of pulses at dif-
ferent frequencies.

In a realistic experimental setting, the initial state will not
be the ideal coherent state, but more likely a displaced, ther-
mal state ρm = D(β)ρthD

†(β), where

ρth =

∞∑
n=0

nnm
(nm + 1)n+1

|n⟩⟨n| (10)

is a thermal state with average phonon occupation number
nm. Given this initial state, we denote the Mandel Q param-
eter of the mechanical mode in the conditional state (9) by
Qb,c, whose general expression can be found in the Ref. [41].
Here, we are interested in the high-displacement limit

lim
|β|→∞

Qb,c = 2

(
1 + 2nm − |r|2 cos(2ϕ)

(1 + 2nm + |r|2)2 + nm

)
. (11)

This shows that Qb,c is minimized by choosing parameters
such that cos(2ϕ) = 1 and |r| =

√
3(1 + 2nm), in which

case we find that Qb,c < 0 requires the initial thermal oc-
cupation nm < 0.10. Figure 2 shows the high-displacement
value of Qb,c in Equation (11) as a function of |r| and nm,
given the ideal phase relation cos(2ϕ) = 1. We see that Qb,c

can be negative also for nonideal values of |r|, but then with
stricter limits on the maximal thermal occupation nm. While
the proposed protocol has a very low tolerance for thermal
noise, we note that this type of experiment on high-frequency
silicon nanobeams in a cryogenic environment have reported
nm < 0.025 [19], albeit in the absence of coherent oscilla-
tions.

Experimental inaccuracies in the amplitude ratio or the rel-
ative phase of the two drives, i.e., in λ and θ, will lead to de-
viations from the optimal choices of |r| and ϕ that minimizes
Qb,c. To second order in ∆λ = λ − λ̄ and ∆θ = θ − θ̄, we
find that the Mandel Q parameter deviates from its minimal
value according to

∆Qb,c =
|β|2

4(1 + 2nm)2

(
3

4
∆λ2 +∆θ2

)
, (12)

again, in the limit |β| → ∞. The observation of
sub-Poissonian statistics thus requires that the amplitudes
and phases of the two beams can be controlled such that
∆λ,∆θ ≪ 1/|β|, becoming increasingly demanding for in-
creasing |β|. However, implementation of the protocol with
an initial average phonon number of |β|2 = 100 (as an ex-
ample) would only require control of relative amplitude and
phase (in radians) at the percent level. This seems well within
present capabilites if the two beams originate from the same
laser by acousto- or electrooptic modulation.
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FIG. 2. The Mandel Q parameter (11) for the conditional state (9)
when the inital state ρm is a displaced, thermal state, in the high
displacement limit |β| ≫ 1, as a function of |r| and the initial aver-
age phonon number nm. We have assumed the ideal phase relation
cos(2ϕ) = 1. The dotted line separates the regions of positive and
negative Q.

Characterization of the conditional state.– The phonon
statistics of the conditional state (9) can be accessed by apply-
ing another pulse, this time red detuned only, starting at time
tr and with duration τr, and detecting anti-Stokes photons up-
converted to the cavity resonance frequency [19, 20, 32]. Ac-
cording to the above discussion, the corresponding temporal
input and output modes will then be related by

Aout = e−GrτrAin − i
√
1− e−2Grτr b(tr), (13)

with Gr = 2|GR|2/κ. This shows that the number statistics
of resonant sideband photons generated by the pulse relate to
the phonon statistics, since the input vacuum noise Ain to the
cavity does not contribute to normal ordered correlation func-
tions ofAout. If the photodetector dead times exceed the pulse
duration, as in Refs. [19, 20], the pulse will give rise to either
n = 0, 1, or 2 detection events with respective probabilities
pn (nontrivially) related to the phonon number probability dis-
tribution. In the limit η(1 − e−2Grτr ) ≪ 1, where η is the
fraction of cavity sideband photons that are detected when ac-
counting for other cavity decay channels, transmission loss,
and nonunit detector efficiency, we then have the simplified
relation η(1 − e−2Grτr )Qb ≈ 4p2/p1 − p1 when assuming
a 50/50 beam splitter in the Hanbury Brown and Twiss inter-
ferometer. This relation holds more generally for τr → τbin
when pn is the probability of n events within a chosen bin
time τbin, as long as the probability of a photodetection event
within τbin is small.

Concluding remarks.– We have presented a protocol for
preparing a mechanical oscillator with macroscopically large
coherent amplitude, compared to motion at the single-phonon
level, in a manifestly nonclassical state. The protocol based on
laser pulses is, for instance, relevant to optomechanical sys-
tems involving vibrational modes in silicon nanobeams with
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high frequencies (ωm/2π ∼ 5 GHz) and low thermal occu-
pation (nm ≪ 1), where detection of single Raman sideband
photons have already been used as a tool for observing non-
classicality [19, 20], provided that the vibrational mode can
be initialized close to a coherent state.

The proposed experiment can, however, also be performed
with steady-state laser driving in systems where optical ab-
sorption is not a concern. As an example, we consider fiber
cavity optomechanics with acoustic waves in superfluid he-
lium [18, 28]. A displaced, thermal state with amplitude
|β| ≈ 100 and thermal occupation nm ∼ 1 was recently re-
ported in this system [18], and sideband cooling to smaller nm
is expected in future implementations [18]. With a mechanical
resonance frequency ωm/2π ∼ 300 MHz, a cavity linewidth

κ ∼ 50 MHz, and a filter bandwidth W ∼ 1 MHz, it should
be feasible to separately detect the sideband photons used for
state preparation and those used for read-out. As shown in
Ref. [41], by applying five continuous drive tones simulta-
neously, the system can, on average, reside in a steady, dis-
placed, thermal state, while the phonon statistics conditioned
on the desired projective measurement is simultaneously col-
lected.

Finally, we note that the central idea of the protocol
can also be exploited in order to prepare micro-macro and
macro-macro entanglement of mechanical oscillators, follow-
ing ideas from quantum optics [9].

We acknowledge useful discussions with Jack Harris.

[1] M. Arndt and K. Hornberger, Testing the limits of quantum me-
chanical superpositions, Nat. Phys 10, 271 (2014).

[2] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toroš,
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Supplementary Material

I. A GENERAL MANDEL Q PARAMETER

Here we provide a full expression for the Mandel Q param-
eter for the projected state (9) in the main article, with r-, nm-
and β-dependence. Using b = β + bn, we can express it in
terms of noise correlators as

Qb,c =
1

|β|2 + ⟨b†nbn⟩c + 2Re{β∗ ⟨bn⟩c}

×
(
2|β|2

〈
b†nbn

〉
c
+ 2Re

{
β∗2 ⟨bnbn⟩c

}
+ 4Re

{
β∗ 〈b†nbnbn〉c}+

〈
b†nb

†
nbnbn

〉
c

−
(〈
b†nbn

〉
c
+ 2Re{β∗ ⟨bn⟩c}

)2 )
.

(14)
The conditioned expectation values

⟨O⟩c =
〈
(k∗Rb

† + k∗Bb)O(kRb+ kBb
†)
〉

⟨(k∗Rb† + k∗Bb)(kRb+ kBb†)⟩
(15)

can be expressed in terms of thermal noise correlators〈
b†nbn

〉
= nm. Using that kR = kB(r − β∗)/β we can write

them as

〈
b†nb

†
nbnbn

〉
c
= 2nm

3Dnm + |β|2(1 + 2nm(1− |r|2))
D

,

(16a)〈
b†nbnbn

〉
c
= 2nm

nmrβ(r
∗ − β) + r∗|β|2(1 + nm)

D
,

(16b)〈
b†nbn

〉
c
=

2Dnm + |β|2(1 + nm(1− |r|2))
D

, (16c)

⟨bnbn⟩c =
2nm(1 + nm)β(r∗ − β)

D
, (16d)

⟨bn⟩c =
nmrβ(r

∗ − β) + r∗|β|2(1 + nm)

D
, (16e)

where

D = |β|2(1+|r|2)+(2|β|2+|r|2−2|r||β| cos(ϕ))nm. (17)

In Fig. 3, Qb,c is plotted as a function of r and nm for |β| ∈
{5, 10, 20}.

II. OPTOMECHANICAL COHERENT STATE
PREPARATION

As shown in the main article, negativity of the Mandel Q
parameter in the high-displacement limit requires that the me-
chanical oscillator is initially in a displaced thermal state with
a low thermal occupation number nm < 0.10. Preparing
a mechanical oscillator in a near-coherent state is possible
by leveraging built-in optomechanical effects in the regime
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FIG. 3. The conditioned Mandel Q parameter (14) evaluated
for |β| = {5, 10, 20} (from the top) along the optimizing axis
cos(2ϕ) = 1, where negative values of r represent the cos(ϕ) = −1
part of the solution. The dotted lines delineate the negative (non-
classical) region boundaries. Note that for lower |β| the nonclassical
region stretches to higher nm when r < 0, and going as low as
Qb,c ∼ −0.3 when |β| = 5 and nm = 0.
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γ ≪ κ. This motivates a steady state solution of a linearized,
adiabatically coupled optomechanical system driven by sev-
eral drives of arbitrary frequencies.

A. Steady-state solution of the linearized quantum Langevin
equations

We consider a standard optomechanical setup consisting of
an optical cavity mode with resonant frequency ωopt coupled
to a mechanical oscillator mode with resonant frequency ωm

via the radiation pressure coupling g0. The system is driven by
some arbitrary number of coherent lasers {Ωj}. In the frame
corotating with the cavity resonance frequency this system is
described by the Hamiltonian

H = ℏωmb
†b+ ℏg0a†a(b+ b†) + iℏ

∑
j

a†Ωje
−iωjt + h.c.

(18)
where {ωj} are the frequencies of the drive lasers relative to
the cavity resonance, and a, a† and b, b† are the ladder opera-
tors of the optical and mechanical modes respectively. Includ-
ing coupling to optical and mechanical thermal baths, it obeys
open system dynamics governed by the quantum Langevin
equations

ȧ = −κ
2
a− ig0a(b+ b†) +

∑
j

Ωje
−iωjt +

√
κain, (19a)

ḃ = −
(γ
2
+ iωm

)
b− ig0a

†a+
√
γbin. (19b)

κ and γ are the optical and mechanical damping rates, and
ain(t) and bin(t) are the usual bosonic input noise operators
for the cavity and mechanical oscillator, satisfying

⟨ain(t)a
†
in(t

′)⟩ = δ(t− t′), (20)

⟨bin(t)b
†
in(t

′)⟩ = (nth + 1)δ(t− t′), (21)
⟨ain(t)ain(t

′)⟩ = ⟨bin(t)bin(t
′)⟩ = 0 (22)

and [ain(t), a
†
in(t

′)] = [bin(t), b
†
in(t

′)] = δ(t − t′). The bare
thermal occupation number nth = 1/[exp(ℏωm/kBT ) − 1]
is the average number of phonons of the mechanical oscillator
when in thermal equilibrium with its environment at temper-
ature T , not to be confused with the effective thermal occu-
pation number nm. The optical cavity’s thermal occupation
number is taken to be zero, as we assume ℏωopt ≫ kBT .

The usual linearization procedure is applied by splitting the
ladder operators into coherent amplitudes and quantum noise
terms a(t) → ā(t) + an(t), b(t) → b̄c + b̄(t) + bn(t), allow-
ing us to solve to each order in the operators independently. b̄c
represents a constant shift in the equilibrium displacement of
the mechanical oscillator under continuous driving. The op-
tical coherent terms can be solved perturbatively around the
non-interacting solution

ā0(t) =
∑
j

āj(t) =
∑
j

Ωje
−iωjt

κ
2 − iωj

(23)

to arrive at

ā(t) = ā0(t) + kR(t)b̄(t) + kB(t)b̄
∗(t), (24)

where we have used the adiabatic approximation∫ t

−∞
e

κ
2 τ ā0(τ)b(τ)dτ ≈ b(t)eiω̃mt

∫ t

−∞
e

κ
2 τ−iω̃mτ ā0(τ)dτ

(25)
to separate out the mechanical motion (note that the mechan-
ical oscillator is assumed to oscillate at the renormalized me-
chanical frequency ω̃m, which will be defined later). This ap-
proximation is valid when the optical cavity ”forgets” the me-
chanical oscillator’s previous states at a much faster rate than
it changes, which is the case when γ, g0 ≪ κ. The coefficients
in (24) are given by

kR(t) = −ig0
∑
j

āj(t)

κ/2− i(ωj + ω̃m)
, (26a)

kB(t) = −ig0
∑
j

āj(t)

κ/2− i(ωj − ω̃m)
, (26b)

representing the magnitudes of anti-Stokes and Stokes pro-
cesses respectively. The cavity frequency shift g0(b̄c + b̄∗c)
due to the shift in mechanical equilibrium is absorbed into
the bare optical frequency ωopt and consequently the rotating
frame, but note that changing the drive configurations may
also change this shift.

Expanding the coherent mechanical equation of motion
with (24) and neglecting second order terms in b̄c + b̄(t) as
well as counter-rotating terms ∝ b̄∗c + b̄∗(t) gives the solution

b̄(t) = −ig0
∑
j ̸=k

āj(t)ā
∗
k(t)

γ̃/2 + iω̃m − i(ωj − ωk)
, (27)

with the remaining terms giving the static displacement

b̄c = −ig0
∑
j

|āj(t)|2
γ̃/2 + iω̃m

, (28)

which can be neglected for the remainder of the discussion.
Similarly to the optical resonance shift, the mechanical renor-
malizations γ̃ − γ = −2 Im{Σ}, ω̃m − ωm = Re{Σ} are
given by the self-energy

Σ = g0 lim
T→∞

1

2T

∫ T

−T

(ā∗0(t)kR(t) + ā0(t)k
∗
B(t))dt (29)

where averaging cancels out the oscillating terms and leaves
only a constant contribution.

The remaining terms which are linear in the noise operators
form the linearized quantum optomechanical Langevin equa-
tions

ȧn ≈ −κ
2
an − ig0ā0(t)(bn + b†n) +

√
κain, (30a)

ḃn ≈ −
(γ
2
+ iωm

)
bn − ig0(ā

∗
0(t)an + ā0(t)a

†
n) +

√
γbin.

(30b)
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These can be solved similarly to the interacting coherent
terms. The cavity noise solution is solved adiabatically as

an(t) = kR(t)bn(t) + kB(t)b
†
n(t) + ζ(t) (31)

where we define the cavity noise operator

ζ(t) =
√
κ

∫ t

−∞
e−

κ
2 (t−τ)ain(τ)dτ. (32)

The mechanical noise equation of motion in the rotating wave
approximation becomes

ḃn = −
(
γ̃

2
+ iω̃m

)
bn − ig0(ā0(t)ζ

†(t)+ā∗0(t)ζ(t)) +
√
γbin,

(33)
with the solution

bn(t) =

∫ t

−∞
e−( γ̃

2 +iω̃m)(t−τ)√γbin(τ)dτ

− ig0

∫ t

−∞
e−( γ̃

2 +iω̃m)(t−τ)(ā0(τ)ζ
†(τ) + ā∗0(τ)ζ(τ))dτ.

(34)
(24), (31) and (32), (27) and (34) form the complete lin-
earized, adiabatic multi-tone solutions used in the remainder
of this material.

B. Optomechanical cooling and displacement

We can investigate combined sideband cooling and beat
note displacement using the multi-tone steady state solution
obtained above. In principle the drives can be applied to a
separate optical mode (of the same or a different cavity), or to
the same mode as the measurement drives if the detector filter
linewidthW is much smaller than ω̃m, such that the measured
sidebands can be isolated in the output signal. Sideband cool-
ing is as usual achieved via a red-detuned drive Ωcool favoring
anti-Stokes scattering which reduce the number of mechanical
quanta. Displacement is achieved by applying drives Ωd± to
the half-sideband frequencies ωd± = ±ω̃m/2. According to
(27), this induces a coherent mechanical oscillation

b̄(t) ≈ −i 8g0Ωd+Ω
∗
d−

γ̃(κ− iω̃m)2
e−iω̃mt ≡ βe−iω̃mt. (35)

If the temperature of the mechanical oscillator were approxi-
mately zero it would therefore occupy a coherent steady state
D(β) |0⟩. Note that any combination of drives such that
ωd+ − ωd− = ω̃m will produce this effect, but placing them
symmetrically about the optical resonance cancels their con-
tributions to the renormalization (29) when |Ωd−| = |Ωd+|.
This method can be applied continuously to produce a steady
state displaced thermal state, or switched off after the steady
state has been reached, with the displacement persisting for a
time of the order 1/γ̃.

In the following we establish the effective thermal proper-
ties of the mechanical oscillator under multi-tone driving, and

derive the maximal possible displacement |β| reachable while
staying below a given effective thermal occupation number

nm ≡
〈
b†nbn

〉
. (36)

The magnitude of the mechanical renormalizations is de-
termined by the self-energy (29). By discarding the mechani-
cally off-resonant terms we can express this as a sum of single-
tone contributions

Σ ≈ −ig20
∑
j

|Ωj |2
κ2

4 + ω2
j

×
(

1
κ
2 − i(ω̃m + ωj)

− 1
κ
2 − i(ω̃m − ωj)

)
.

(37)

The summand is antisymmetric in ωj , meaning that symmet-
ric drives of equal magnitude will cancel each other. Since
|ΩR| → |ΩB | in the high displacement limit and we can freely
pick displacement drives that satisfy |Ωd−| = |Ωd+|, only
the cooling drive contributes to the renormalization, by the
amount

Σcool ≈
−4ω̃mg

2
0 |Ωcool|2

κ(κ
2

4 + ω̃2
m)(κ2 − 2iω̃m)

. (38)

This gives an effective mechanical damping rate

γ̃ ≈ γ +
16ω̃2

mg
2
0 |Ωcool|2

κ(κ
2

4 + ω̃2
m)(κ

2

4 + 4ω̃2
m)

(39)

which may be much larger than γ, and an effective mechanical
frequency

ω̃m ≈ ωm − 2ω̃mg
2
0 |Ωcool|2

(κ
2

4 + ω̃2
m)(κ

2

4 + 4ω̃2
m)
. (40)

This shift can be neglected in our regime since |ω̃m − ωm| ∼
|γ̃ − γ| ≪ ωm, but the right hand side can otherwise be solved
perturbatively in ω̃m − ωm to higher orders.

The effective mechanical damping is not the only way by
which coherent driving alters the thermal properties of the op-
tomechanical system. From (34) we find, up to mechanical
resonance and using γ̃ ≪ κ, that the effective thermal occu-
pation number (36) can be written in terms of the bare occu-
pation number nth. as

nm =
γ

γ̃
nth. + no, (41a)

where we can write the purely optical contribution to the ther-
mal occupation number as

no ≈
∑
j

g20κ|āj(t)|2

γ̃(κ
2

4
+ (ω̃m + ωj)2)

. (41b)

Inserting (39) into this expression and taking the limit γ̃ ≫ γ,
ω̃m ≫ κ, we recover for a single red-detuned drive the known
resolved sideband cooling lower bound no → (κ/4ω̃m)2.
For two displacement drives of equal magnitude |Ωd| at
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{−ω̃m/2, ω̃m/2}, we obtain the effective thermal contribu-
tion

no ≈ 16g20κ|Ωd|2
γ̃(κ2 + ω̃2

m)

(
1

κ2 + ω̃2
m

+
1

κ2 + 9ω̃2
m

)
, (42)

assuming this is the dominant contribution to no. According
to (27), the threshold no < ϵ therefore limits the amplitude to

|β| < (κ2 + ω̃2
m)(κ2 + 9ω̃2

m)

4g0κ(κ2 + 5ω̃2
m)

ϵ, (43)

which in the resolved sideband limit becomes |β| <
9ω̃2

m/(20κg0)ϵ.

III. MEASURING IN STEADY STATE

Our protocol relies on two separate modes of measurement.
The first is to make a projective single photon measurement
on overlapping Stokes and anti-Stokes sidebands, producing
the mechanical state given by Equation (9) in the main ar-
ticle, and the other is to measure only the anti-Stokes side-
band to recover the phonon statistics of the mechanical os-
cillator. In the main article a conceptually simple realization
of these modes of measurement is proposed where they are
confined discretely to different times in a write- and read-
pulse formulation. However, sufficiently narrow optical fil-
ters can eliminate the need for sequential operation by resolv-
ing the processes in the frequency domain rather than in time.
The filtered measurements ideally only depend on the coeffi-
cients kR and kB , and the sidebands can therefore in princi-
ple be shifted an amount less than ∼ κ/2 off the cavity res-
onance without any loss of generality. Shifting the measure-
ment drives ΩR, ΩB by a frequency ∆proj. each, a separate
drive Ωcool can be added to the system at −ωm, which may
be used for combined phonon measurement and cooling. Two
optical filters centered at ∆proj. and optical resonance respec-
tively, with transmission linewidths W ≪ |∆proj.| can then
be used to alter the transmission spectra of each branch of a
beamsplitter, producing two output modes proportional to

aproj.(t) ≈ kR(t)b(t) + kB(t)b
†(t) + ζproj.(t), (44a)

acool(t) ≈ kcool(t)b(t) + ζcool(t) (44b)

with different sideband compositions. The filtered optical
noise terms

ζf (t) =
W

2

∫ ∞

−∞
e−iωt 1

W/2− i(ω −∆f )
ζ[ω]dω (45)

does not contribute to the correlation functions of interest.
The two output modes can be measured simultaneously by
independent detectors, as indicated in Fig. 4. A single pho-
ton detection from the signal aproj.(t) projects the mechanical
oscillator onto the target state, altering the phonon statistics
measured from acool(t) ∝ b(t).

Having established the possibility for cooling, displace-
ment and both modes of measurement in steady state, the sys-
tem can be driven continuously with up to five simultaneous
drives:

(a)

κ

Ωcool
Ωd− Ωd+

ΩR ΩB

ω−ωm 0 ωm

W1 W2

(b)

κ

Ωcool
Ωd− Ωd+

ΩB

ω−ωm 0 ωm

W1 W2

FIG. 4. Schematic of steady-state operation with multitone driv-
ing. Rather than varying the drive strengths sequentially (i.e., pulsed
operation), sufficiently narrow filters allow different Stokes and anti-
Stokes sideband compositions to be measured simultaneously in the
steady state. (a) shows a five-drive configuration with optomechan-
ical cooling and displacement. Isolating the overlapping projective
measurement sidebands from the cooling/readout sideband applies in
the limit W ≪ |∆proj.|. (b) shows an alternative four-drive configu-
ration where a strong cooling sideband may be used as an anti-Stokes
photon source for both read and write measurements simultaneously
by passing through both filters.

• Two displacement drives Ωd± tuned to ωd± = ±ωm/2.

• A combined readout and cooling drive Ωcool for phonon
statistics measurement tuned to ωcool = −ωm.

• Two measurement drives ΩR, ΩB for projective mea-
surement tuned to ωB/R = ±ωm +∆proj..

Although this should work in principle, with several drives
and their sidebands occupying the same cavity mode there
may arise issues in isolating each measurement channel. In
particular, a frequency separation between drives and side-
bands much larger than W is not necessarily sufficient to
isolate frequency bands when one or more drive magnitudes
are very large, e.g. with sideband cooling where |Ωcool| ≫
|ΩR/B |. The contribution of the on-resonance cooling side-
band to the projective output signal filtered around ∆proj. ≫
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W can be included as a modification to the anti-Stokes coef-
ficient,

kR → kR + ηkcoole
i∆proj.t, (46)

where

η =
1

1− i
2∆proj.

W

, (47)

such that |η| is the ratio of cooling sideband photons which
are let through the filter. If this contribution is non-negligible
such that the Stokes and anti-Stokes coefficients vary with
time, one could instead formulate the postselection criterion

in terms of an ideal projective measurement time tc such that

kR + ηkcoole
i∆proj.tc

kB
=
r − β∗

β
(48)

leads to the desired mechanical state.
Taking this principle to its extreme conclusion opens for

an alternative approach: Rather than applying separate red-
detuned drives ΩR, Ωcool for projective and readout measure-
ments respectively, the cooling drive could serve as the anti-
Stokes photon source for both measurements simultaneously.
This would mean setting kR = 0 in Equation (48). By tuning
the drive magnitude |ΩB |, one can then always find an ideal
projective measurement time tc leading to the desired com-
plex phase relationship, which is satisfied periodically with
period 2π/∆proj..
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