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Abstract

Are asymptotic confidence sequences and anytime p-values uniformly valid for a nontrivial class
of distributions P? We give a positive answer to this question by deriving distribution-uniform
anytime-valid inference procedures. Historically, anytime-valid methods — including confidence
sequences, anytime p-values, and sequential hypothesis tests that enable inference at stopping
times — have been justified nonasymptotically. Nevertheless, asymptotic procedures such as
those based on the central limit theorem occupy an important part of statistical toolbox due to
their simplicity, universality, and weak assumptions. While recent work has derived asymptotic
analogues of anytime-valid methods with the aforementioned benefits, these were not shown to be
P-uniform, meaning that their asymptotics are not uniformly valid in a class of distributions P.
Indeed, the anytime-valid inference literature currently has no central limit theory to draw from
that is both uniform in P and in the sample size n. This paper fills that gap by deriving a novel
P-uniform strong Gaussian approximation theorem. We apply some of these results to obtain
an anytime-valid test of conditional independence without the Model-X assumption, as well as a
P-uniform law of the iterated logarithm.
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1 Introduction

Some of the simplest and most efficient statistical inference tools are asymptotic ones that rely on
large-sample theory such as the central limit theorem (CLT). However, there is a sharp distinction
between asymptotics that are only valid for a single distribution P and those that are uniformly valid
over a large collection of distributions P. To elaborate, consider the classical CLT which states that
for independent and identically distributed random variables X1, . . . , Xn „ P with mean µP and finite
variance σ2

P ă 8, their scaled partial sums pZn :“
řn

i“1pXi´µP q{pσP

?
nq are asymptotically standard

Gaussian, meaning for any real x, we have PP p pZn ď xq Ñ Φpxq where Φ is the cumulative distribution
function (CDF) of a standard Gaussian. However, this is a distribution-pointwise statement in the
sense that the limit holds for a single P P P. An unsettling consequence of P -pointwise statements is
that no matter how large n is, |PP 1 p pZn ď xq ´ Φpxq| can be far from zero for some P 1 P P — or more
informally, asymptotics may be “kicking in” arbitrarily late.

By contrast, distribution-uniformity (or more specifically P-uniformity) rules out the aforemen-
tioned unsettling scenario so that convergence occurs simultaneously for all P P P. Concretely, con-
sider the difference between P -pointwise versus P-uniform convergence in distribution when written
out side-by-side:

sup
PPP

lim
nÑ8

∣∣∣PP p pZn ď xq ´ Φpxq

∣∣∣ “ 0
loooooooooooooooooooooomoooooooooooooooooooooon

P -pointwise convergence in distribution

versus lim
nÑ8

sup
PPP

∣∣∣PP p pZn ď xq ´ Φpxq

∣∣∣ “ 0
loooooooooooooooooooooomoooooooooooooooooooooon

P-uniform convergence in distribution

, (1)

where the essential difference lies in the order of limits and suprema. The initial study of P-uniformity
is often attributed to Li [26] and many papers have emphasized its importance in recent years; see
Kasy [20], Rinaldo et al. [31], Tibshirani et al. [42], Shah and Peters [38], Kuchibhotla et al. [24], and
Lundborg et al. [28]. Note that this literature sometimes refers to distribution-uniformity as “honesty”
[26, 24] or simply “uniformity” [20, 31, 42, 38, 28]. We opt for the phrase “distribution-uniform” —
or “P-uniform” when we want to specify that uniformity is with respect to P — since there are
many other notions of uniformity throughout probability and statistics, including time-uniformity
and quantile-uniformity, both of which will become relevant throughout this paper. We do not use
the term “honesty” as it has also been used to refer to other properties of estimators in statistical
inference [45, 1] and is sometimes used in the sense of parameter-uniformity [35].

Simultaneously, there is a parallel literature on time-uniform (typically called “anytime-valid”)
inference where the goal is to derive confidence sequences (CSs) — sequences of confidence intervals
(CIs) that are uniformly valid for all sample sizes — as well as anytime p-values and sequential
hypothesis tests (to be defined more formally later) that can be continuously monitored and adaptively
stopped. This literature has historically taken a mostly nonasymptotic approach to inference so that
the type-I errors and coverage probabilities hold in finite samples; see the early work of Wald, Robbins,
and colleagues [46, 12, 32, 25], as well as the review paper of Ramdas, Grünwald, Vovk, and Shafer [30]
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which gives a broad overview of this literature. However, nonasymptotic approaches generally require
strong assumptions on the random variables such as lying in a parametric family, a priori known
bounds on their support, or on their moments. On the other hand, this paper takes an asymptotic
view of anytime-valid inference where type-I errors and coverage probabilities hold in the limit; see
Robbins and Siegmund [33], Waudby-Smith et al. [47], and Bibaut et al. [4]. An advantage of this
regime is that the resulting methods take simple, universal forms and allow for substantially weaker
conditions (for example, requiring only that absolute moments exist and are finite but for which a
priori bounds are not known).

To illustrate time-uniformity in the asymptotic regime, suppose that random variables X1, . . . , Xn

have finite mean µ and variance σ2 and we would like to derive a CI for µ. A classical asymptotic
CI 9Cn has the guarantee that lim supnÑ8 PP pµ R 9Cnq ď α, but its asymptotic validity hinges on
the sample size n being fixed and pre-specified in advance. By contrast, an asymptotically valid CS

p sC
pmq

k q8
k“m can elicit a much stronger property written in juxtaposition with the classical asymptotic

CI as follows:

lim sup
nÑ8

PP

´

µ R 9Cn

¯

ď α
looooooooooooooomooooooooooooooon

(Asymptotic) fixed-n CI

versus lim sup
mÑ8

PP

´

Dk ě m : µ R sC
pmq

k

¯

ď α
looooooooooooooooooooooomooooooooooooooooooooooon

(Asymptotic) anytime-valid CS

, (2)

where the main difference lies in the fact that the right-hand side probability holds uniformly in
k ě m for sufficiently large m. From a practical perspective, the right-hand side permits a researcher
to continuously monitor the outcome of an experiment, for example, updating their CIs as each new
data point is collected as long as the starting sample size m is sufficiently large. Importantly, these
anytime-valid procedures allow for the experiment to stop as soon as the researcher has sufficient

evidence to reject some null hypothesis (e.g. as soon as 0 R sC
pmq

k for a null effect of 0). Note that while
CSs and anytime p-values are typically studied from a nonasymptotic viewpoint, we will henceforth
omit the “asymptotic” phrasing when referring to asymptotic procedures such as those in (2) since
we are solely interested in asymptotics in this paper (and distribution-uniformity is always trivially
satisfied for nonasymptotics).

In this paper, our main goal is to define and derive distribution-uniform anytime-valid tests, p-
values, and confidence sequences. However, the time-uniform guarantee in the right-hand side of
(2) is a distribution-pointwise statement, and to the best of our knowledge, there currently exist no
distribution-uniform guarantees for time-uniform asymptotics. The reason for this is subtle and has
led us to identify a gap in the probability literature. To elaborate, while fixed-n asymptotics are
based on the CLT, Waudby-Smith et al. [47] analyzed asymptotic analogues of nonasymptotic CSs
using strong Gaussian approximations (sometimes called “strong invariance principles” or “strong
embeddings”) such as the seminal results of Strassen [40] and Komlós, Major, and Tusnády [22, 23]
— see also Chatterjee [8] and the references therein. Not only have strong approximations not yet
been studied from a distribution-uniform perspective, it is not even clear what the right definition of
“distribution-uniform strong Gaussian approximation” ought to be. We give both a definition and a
corresponding result satisfying it in Section 5, and this serves as a probabilistic foundation for the
rest of our statistical results.

1.1 Outline of the paper

Below we outline how the paper will proceed, highlighting our key contributions.

• We begin in Section 2 by defining P-uniform anytime-valid inference in the form of anytime
hypothesis tests, anytime p-values, and confidence sequences (Definition 2.1). This definition
serves as context for Section 2.1 where we state our main result in Proposition 2.1 (initially
without proof). The remaining sections are focused on providing the necessary machinery to
prove a stronger version of Proposition 2.1 which is ultimately given in Theorem 3.3.
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• Section 2.2 lays some foundations for distribution-, time-, and boundary-uniform central limit
theory for centered partial sums, culminating in Proposition 2.2. The results therein are new to
the literature even in the distribution-pointwise regime. However, Proposition 2.2 is stated in
terms of the true (rather than empirical) variance in standardizing the partial sums, motivating
the following section on distribution-uniform almost-sure consistency.

• Section 3 discusses what it means for a sequence of random variables to converge almost-surely
and uniformly in a class of distributions. The section culminates in a result showing that
the empirical variance is a distribution-uniform almost-surely consistent estimator for the true
variance and its convergence rate is polynomial in the sample size (Proposition 3.2), which, when
combined with Proposition 2.2 from Section 2 yields our main result in Theorem 3.3.

• Section 4 applies the content of the previous sections to the problem of anytime-valid conditional
independence testing. We first show that distribution-uniform anytime-valid tests of conditional
independence are impossible to derive without imposing structural assumptions, a fact that can
be viewed as a time-uniform analogue of the hardness result due to Shah and Peters [38, §2].
We then develop a sequential version of the Generalized Covariance Measure test due to Shah
and Peters [38, §3] and show that it distribution- and time-uniformly controls the type-I error
(and has nontrivial power) as long as certain regression functions are estimated at sufficiently
fast rates. To the best of our knowledge, this is the first anytime-valid test of conditional
independence that does not rely on Model-X assumptions.

• Section 5 highlights that all of the preceding results fundamentally rely on a distribution-uniform
strong Gaussian approximation (Theorem 5.1) that serves as a (purely probabilistic) founda-
tional piece of our main results and it is the first result of its kind in the literature (to the
best of our knowledge). This strong approximation is itself a consequence of a nonasymptotic
high-probability coupling inequality (Lemma 5.2). Finally, we illustrate how these couplings
and approximations give rise to a distribution-uniform law of the iterated logarithm. All three
of these results may be of independent interest.

1.2 Notation

Throughout, we will let Ω be a sample space, F the Borel sigma-algebra, and P a collection of
probability measures so that pΩ,F , P q is a probability space for each P P P. We will often write
pΩ,F ,Pq to refer to the collection of probability spaces pΩ,F , P qPPP . Note that P P P are defined
with respect to the same sample space Ω and sigma-algebra F but do not need to have a common
dominating measure (e.g. P can consist of infinitely many discrete and continuous distributions as
well as their mixtures).

Throughout, we will work with random variables that are defined on the collection of probability
spaces pΩ,F ,Pq (unless otherwise specified, as will be the case in Section 5). For any event A P F , we
use PP pAq to denote the probability of that event and EP p¨q to denote the expectation of a random
variable with respect to P P P, meaning for X defined on pΩ,F , P q,

µP ” EP pXq “

ż

x dP pxq. (3)

Similarly, σ2
P ” VarP pXq will be shorthand for EP pX ´ EP pXqq2, and so on.

2 What is distribution-uniform anytime-valid inference?

Recalling the P-uniform convergence in distribution guarantee provided in (1), a fixed-n p-value 9pn
defined on pΩ,F ,Pq is said to be P0-uniform for the null hypothesis P0 Ď P if

lim sup
nÑ8

sup
PPP0

PP p 9pn ď αq ď α, (4)
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and it is easy to see how such a p-value can be constructed given a statistic satisfying the right-hand
side of (1). Similarly, Waudby-Smith et al. [47, Definition 2.7] provide a definition of (P -pointwise)
time-uniform coverage of asymptotic CSs, which is also implicit in Robbins and Siegmund [33] and

Bibaut et al. [4]. Adapting their definition to anytime p-values, we say that psp
pmq

k q8
k“m has asymptotic

time-uniform type-I error control under the null P0 if

@P P P0, lim sup
mÑ8

PP pDk ě m : sp
pmq

k ď αq ď α. (5)

Juxtaposing (4) and (5), we can intuit the right definition of distribution- and time-uniform type-I
error control, where we simply place a supremum over P0 inside the limit in (5). We lay this definition
out formally alongside corresponding definitions for anytime hypothesis tests, confidence sequences,
and sharpness thereof below.

Definition 2.1 (P-uniform anytime-valid statistical inference). Let P be a collection of distributions

and let P0 Ď P be the null hypothesis. We say that psΓ
pmq

k q8
k“m is a P0-uniform anytime hypothesis

test if

lim sup
mÑ8

sup
PPP0

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

ď α (6)

and that psp
pmq

k q8
k“m is a P0-uniform anytime p-value if

lim sup
mÑ8

sup
PPP0

PP

´

Dk ě m : sp
pmq

k ď α
¯

ď α. (7)

Moreover, we say that p sC
pmq

k q8
k“m is a P-uniform p1 ´ αq-confidence sequence for θpP q if

lim sup
mÑ8

sup
PPP

PP

´

Dk ě m : θpP q R sC
pmq

k

¯

ď α. (8)

Finally, we say that all of these procedures are sharp if the limit suprema are limits and the inequalities
pď αq are equalities p“ αq.

As one may expect, any P-uniform anytime-valid test, p-value, or CS satisfying Definition 2.1
is also P-uniform for a fixed sample size n in the sense of (4) as well as P -pointwise anytime-valid
for any P P P in the sense of (5). With Definition 2.1 in mind, we will now derive distribution-
uniform anytime hypothesis tests, p-values, and confidence sequences for the mean of independent
and identically distributed random variables.

2.1 Our primary goal: Inference for the mean

While Definition 2.1 is a natural extension of distribution-uniform inference to the anytime-valid
setting, it is deceptively challenging to derive procedures satisfying Definition 2.1 even for the simplest
of statistical problems such as tests for the mean of independent and identically distributed random
variables and the main results of this section themselves rely on certain technical underpinnings such
as distribution-uniform almost-sure consistency and strong Gaussian approximations. Rather than
laboriously discuss these technical details here, let us instead articulate our main goal and result
— distribution-uniform anytime inference for the mean — and defer more in-depth discussions to
Sections 2.2, 3, and 5.

In many of the results that follow, we will rely on a monotonically increasing function Ψ : Rě0 Ñ

r0, 1s given by
Ψprq :“ 1 ´ 2

“

1 ´ Φp
?
rq `

?
rϕp

?
rq
‰

; r ě 0. (9)

This function happens to be the cumulative distribution function of a particular probability distribu-
tion that we have opted to call the Robbins-Siegmund distribution since it was implicitly computed
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by Robbins and Siegmund [33] in the context of boundary-crossing probabilities for Wiener processes.
For now, we will only rely on the fact that Ψ is invertible and leave more detailed discussions of its
properties to Appendix B.1. As we will see shortly, Ψ plays a role in asymptotic anytime-valid infer-
ence similar to that of the Gaussian cumulative distribution function in asymptotic fixed-n inference.

Indeed, define the process psp
pmq

k q8
k“m given by

sp
pmq

k :“ 1 ´ Ψ
`

kpµ2
k{pσ2

k ´ logpk{mq
˘

(10)

and the intervals p sC
pmq

k pαqq8
k“m given by

sC
pmq

k pαq :“ pµk ˘ pσk

a

rΨ´1p1 ´ αq ` logpk{mqs{k, (11)

where pσ2
k :“ 1

k

řk
i“1pXi ´ pµkq2 is the sample variance. The following result gives conditions under

which psp
pmq

k q8
k“m is a P0-uniform anytime p-value for the null of µP “ 0 and p sC

pmq

k pαqq8
k“m is a

P-uniform p1 ´ αq-CS for µP in the sense of Definition 2.1.

Proposition 2.1 (Distribution-uniform anytime-valid inference for the mean). Let X1, X2, . . . be
random variables defined on pΩ,F ,Pq, and suppose that for some δ ą 0, the p2 ` δqth moment is
P-uniformly upper-bounded and the variance is P-uniformly positive, i.e.

sup
PPP

EP |X ´ EP pXq|2`δ ă 8 and inf
PPP

VarP pXq ą 0. (12)

If P0 Ď P is a subcollection of distributions so that EP pXq “ 0 for each P P P0, then psp
pmq

k q8
k“m is a

sharp P0-uniform anytime p-value:

lim
mÑ8

sup
PPP0

PP

´

Dk ě m : sp
pmq

k ď α
¯

“ α, (13)

and p sC
pmq

k pαqq8
k“m is a sharp P-uniform CS for the mean:

lim
mÑ8

sup
PPP

PP

´

Dk ě m : µP R sC
pmq

k pαq

¯

“ α. (14)

Rather than prove Proposition 2.1 directly, we will spend the next few sections laying the ground-
work to prove a more general result, culminating in Theorem 3.3. Clearly, one can obtain a sharp

P0-uniform level-α anytime hypothesis test psΓ
pmq

k q8
k“m in the sense of Definition 2.1 from Proposi-

tion 2.1 by setting sΓ
pmq

k :“ 1tsp
pmq

k ď αu or sΓ
pmq

k :“ 1t0 R sC
pmq

k u. Notice that uniformly bounded
p2 ` δqth moment conditions are precisely what appear in several distribution-uniform central limit
theorems [38, 28].

2.2 Time- and P-uniform central limit theory for partial sums

Recall that in the batch (fixed-n, non-sequential) setting, the CLT is typically stated for a single
quantile, meaning that the survival function PP pSn{

?
n ě xq — equivalently, the CDF1 — of

?
n-

scaled normalized partial sums Sn :“ σ´1
řn

i“1rXi ´EP pXqs converge to that of a standard Gaussian:

@x P R, lim
nÑ8

∣∣PP pSn{
?
n ě xq ´ r1 ´ Φpxqs

∣∣ “ 0. (15)

Under no additional assumptions, however, the above holds quantile-uniformly [44, Lemma 2.11],
meaning

lim
nÑ8

sup
xPR

∣∣PP pSn{
?
n ě xq ´ r1 ´ Φpxqs

∣∣ “ 0. (16)

1This discussion is in terms of the survival function PP pSn{
?
n ě xq instead of the CDF PP pSn{

?
n ď xq to aid

transparent comparisons with boundary-crossing inequalities in Proposition 2.2.
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Clearly, (16) is strictly stronger than (15). Particularly relevant to this paper, distribution-uniform
fixed-n tests and CIs are also stated with quantile-uniformity and their proofs typically rely on this
property. Even in the P -pointwise case, however, there is no result showing that an analogous property
exists for time-uniform boundaries (and it is not clear in what sense such a statement should be
formulated). The following theorem provides such a result in both the P -pointwise and P-uniform
settings.

Proposition 2.2 (pP, n, xq-uniform boundaries for centered partial sums). Let X1, X2, . . . be ran-
dom variables defined on probability spaces pΩ,F ,P‹q with finite p2 ` δqth moments, i.e. EP |X ´

EP pXq|2`δ ă 8 for every P P P‹. Letting Sn :“
řn

i“1pXi ´ EP pXiqq{σP be their centered partial
sums, we have

@P P P‹, lim
mÑ8

sup
xě0

∣∣∣PP

´

Dk ě m : |Sk| {
?
k ě

a

x ` logpk{mq

¯

´ r1 ´ Ψpxqs

∣∣∣ “ 0. (17)

Furthermore, if P Ď P‹ is a sub-collection of distributions for which the p2 ` δqth moment is P-
uniformly upper-bounded and the variance is P-uniformly positive, then the above limit holds P-
uniformly:

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣PP

´

Dk ě m : |Sk| {
?
k ě

a

x ` logpk{mq

¯

´ r1 ´ Ψpxqs

∣∣∣ “ 0. (18)

The proof of Proposition 2.2 in Appendix A.1 relies on our novel distribution-uniform strong
Gaussian approximation discussed in Section 5. After some algebraic manipulations, one can see that
(18) is equivalent to saying that supkěmtS2

k{pσ2
P kq ´ logpk{mqu converges P-uniformly in distribution

to the Robbins-Siegmund distribution, i.e.

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣∣PP

ˆ

sup
kěm

"

S2
k

σ2
P k

´ logpk{mq

*

ď x

˙

´ Ψpxq

∣∣∣∣ “ 0, (19)

and similarly for the P -pointwise case in (17) but with the above limit over m and supremum over
P P P swapped.

Note that Proposition 2.2 does not quite yield Proposition 2.1 as a direct consequence since the
variance σ2

P used in the latter is the true (rather than empirical) variance. Moving to a fully empirical
version of Proposition 2.2 will require that the variance σ2

P is not only consistently estimated but
almost surely at a polynomial rate and for the P-uniform result in (18), we will require that this
consistency also holds uniformly in P. But what does it mean for a sequence of random variables
(such as a sequence of estimators) to converge to a limit almost surely and uniformly in P? The next
section provides an answer to this question alongside sufficient conditions for the sample variance to
be P-uniformly almost surely consistent.

3 Almost-sure consistency and time-uniform asymptotics

In Proposition 2.2, we stated a P-, time-, and boundary-uniform convergence result for centered partial
sums, but this depended on those partial sums SnpP q :“

řn
i“1pXi ´ µP q{σP being weighted by the

true standard deviation σP . The natural next step is to replace the true variance σ2
P by an empirical

variance pσ2
n so that the results of Proposition 2.2 still hold with pσ2

n in place of σ2
P , thereby providing

tools that can be used to derive P-uniform anytime-valid tests, p-values, and confidence sequences.
However, the conditions that must be placed on pσ2

n are different from what one may encounter in a
classical asymptotic inference analysis — indeed we will require pσ2

n to be P-uniformly almost-surely
consistent for σ2

P :“ EP pX ´ EPXq2 at a faster-than-logarithmic rate. However, the notion of P-
uniform almost-sure convergence is not commonly encountered in the statistical literature, so this
section is dedicated to reviewing this.
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3.1 What is P-uniform almost-sure consistency?

Recall the classical notion of convergence in P -probability for a single P P P and its natural extension
to P-uniform convergence in probability. That is, a sequence of random variables Y1, Y2, . . . defined
on a probability space pΩ,F , P q is said to converge in probability to 0 (or Yn “ 9oP p1q for short) if for
any ε ą 0,

sup
PPP

lim
nÑ8

PP p|Yn| ě εq “ 0, (20)

and that this convergence holds uniformly in P (or Yn “ 9oPp1q for short) if

lim
nÑ8

sup
PPP

PP p|Yn| ě εq “ 0. (21)

The extension of (20) to (21) is very natural, but at first glance, an analogous extension for almost-
sure convergence is less obvious. Indeed, recall that a sequence of random variables Y1, Y2, . . . is said
to converge P -almost surely to 0 for every P P P if

@P P P, PP

´

lim
nÑ8

|Yn| “ 0
¯

“ 1. (22)

It is not immediately obvious what the “right” notion of P-uniform almost-sure consistency ought to
be since taking an infimum over P P P of the above probabilities does not change the statement of
(22) whatsoever. Intuitively, it is not possible to simply swap limits and suprema in (22) as was done
when (20) was extended to (21). However, it is possible to make such a leap when using an equivalent
definition of almost-sure convergence using an idea attributable to Chung [11] and Beck and Giesy
[3]. To elaborate, it is a well-known fact that for any P P P,

PP

´

lim
nÑ8

|Yn| “ 0
¯

“ 1 if and only if @ε ą 0, lim
mÑ8

PP

ˆ

sup
kěm

|Yk| ě ε

˙

“ 0, 2 (23)

and for this reason, instead of writing Yn “ oa.s.p1q as a shorthand for P -almost-sure convergence,
we write Yn “ soP p1q with the overhead bar so to emphasize time-uniformity and the subscript oP to
emphasize the distribution P that this convergence is with respect to. As such, a natural notion of
P-uniform almost-sure convergence is one that places a supremum over P P P in the right-hand limit
of (23) which we make precise in the following definition.

Definition 3.1 (P-uniform almost-sure convergence [11, 48]). We say that a sequence of random
variables Y1, Y2, . . . defined on the probability spaces pΩ,F ,Pq converges P-uniformly and almost surely
to 0 if

@ε ą 0, lim
mÑ8

sup
PPP

PP

ˆ

sup
kěm

|Yk| ě ε

˙

“ 0, (24)

and we write Yn “ soPp1q for short, where the overhead bar so emphasizes time-uniformity and the sub-
script oP emphasizes P-uniformity. Finally, we write Yn “ soPprnq for a monotonically nonincreasing
sequence prnq8

n“1 if rn ¨ Yn “ soPp1q.

The expression in (24) initially appeared in a paper by Chung [11] in a proof of a P-uniform strong
law of large numbers, and later in a more explicit form by Beck and Giesy [3]. Table 1 summarizes
the four notions of convergence 9oP p¨q, soP p¨q, 9oPp¨q, and soPp¨q and the implications between them.

Adapting (24) to the discussion of consistency in parameter estimation, however, requires some
additional care since the parameter of interest may itself depend on the distribution P P P. That is,
let ppθnq8

n“1 be a sequence of estimators and for each P P P, let θpP q P R be a real-valued parameter.

We will consider pθn to be a P-uniformly consistent estimator for θ ” tθpP quPPP if

lim
mÑ8

sup
PPP

PP

ˆ

sup
kěm

|pθk ´ θpP q| ě ε

˙

“ 0, (25)

2For a short proof of this fact, see Waudby-Smith et al. [47, Section B.3]
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Table 1: Four notions of convergence with implications between them. Recall that soP p¨q is equivalent
to P -a.s. convergence. Clearly, if a sequence of random variables converges with respect to one of the
four cells below, it also does so with respect to the cell above and/or to the left of it. This section
is concerned with the strongest of the four, found in the bottom right cell with the bolded frame:
P-uniform almost-sure convergence.

P -pointwise P-uniform

In probability 9oP p¨q ðù 9oPp¨q

ò ò

Almost surely soP p¨q ðù soPp¨q

and as a shorthand, we will write pθn ´θ “ soPp1q. Similarly to Definition 3.1, we write pθn ´θ “ soPprnq

if rn ¨ ppθn ´ θq “ soPp1q.
Following the relationship between 9oP and 9OP notation in the fixed-n in-probability setting, we

now provide an analogous definition of time- and P-uniform stochastic boundedness. To the best of
our knowledge, this definition is new to the literature.

Definition 3.2. We say that a sequence of random variables Y1, Y2, . . . defined on pΩ,F ,Pq is time-
and P-uniformly stochastically bounded if for any δ ą 0, there exists some C ” Cpδq ą 0 and
M ” MpC, δq ą 1 so that for all m ě M ,

sup
PPP

PP pDk ě m : |Xk| ą Cq ă δ, (26)

and we write Yn “ sOPp1q as a shorthand for the above. Similar to Definition 3.1, we write Yn “
sOPprnq if rn ¨ Yn “ sOPp1q.

Note that we do not refer to Definition 3.2 as P-uniform “almost sure” boundedness since even
in the P -pointwise case, almost-sure boundedness and time-uniform stochastic boundedness are not
equivalent despite the relationship in (23) for almost-sure and time-uniform convergence. A related
condition has also appeared in the context of conditional local independence testing as in Christgau
et al. [10]. As one may expect, there is a calculus of soPp¨q and sOPp¨q analogous to that for 9oPp¨q and
9OPp¨q. We lay this out formally in the following lemma, but the proofs are routine and can be found
in Appendix A.2.

Lemma 3.1 (Calculus of sOPp¨q and soPp¨q). Let Y1, Y2, . . . be random variables defined on pΩ,F ,Pq.
Let panq8

n“1 and pbnq8
n“1 be positive and monotonically nonincreasing sequences. Then we have the

following basic implications:

Yn “ soPpanq ùñ Yn “ sOPpanq (27)

Yn “ soPpanq sOPpbnq ùñ Yn “ soPpanbnq (28)

Yn “ sOPpanq sOPpbnq ùñ Yn “ sOPpanbnq (29)

Yn “ soPpanq ` sOPpanq ùñ Yn “ sOPpanq (30)

Yn “ soPpanq ` soPpbnq ùñ Yn “ soPpmaxtan, bnuq. (31)

Furthermore, (31) holds with soPp¨q replaced by sOPp¨q on both sides. Finally, if Yn “ sOPpanq and
an{bn Ñ 0, then Yn “ soPpbnq.

The calculus provided in Lemma 3.1 will appear frequently throughout the proofs of our main
results. In the next section, we discuss P-uniform, almost-sure, polynomial-rate variance estimation
and its implications for deriving an empirical version of Proposition 2.2.
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3.2 P-uniform almost-sure variance estimation

In Section 2.2, we alluded to the fact that arriving at a fully empirical version of Proposition 2.2
would require P-uniform almost-surely consistent estimation of the variance σ2 :“ EpX ´ EXq2 at
a faster-than-logarithmic rate. With Definition 3.1 and the expression (24) in mind, we now provide
sufficient conditions for this consistency.

Proposition 3.2 (P-uniform almost-surely consistent variance estimation). Consider the same setup
as in Proposition 2.2 where pXnq8

n“1 have P-uniformly upper-bounded p2 ` δqth moments and P-
uniformly positive variances. Then the sample variance pσ2

n :“ 1
n

řn
i“1pXi ´ pµnq2 is a P-uniformly

almost-surely consistent estimator of the variance σ2 at a polynomial rate, meaning there exists β ą 0
so that

pσ2
n “ σ2 ` soPpn´βq, (32)

or more formally, for all ε ą 0, we have

lim
mÑ8

PP

ˆ

sup
kěm

kβ |pσ2
k ´ σ2

P | ě ε

˙

“ 0. (33)

Proposition 3.2 is an immediate consequence of Waudby-Smith, Larsson, and Ramdas [48] com-
bined with the de la Vallée Poussin criterion for uniform integrability (see Chong [9] and Hu and
Rosalsky [19]).

3.3 The main result: pP , n, αq-uniform statistical inference

Pairing together Proposition 2.2 and Proposition 3.2, we obtain the following (P-uniform) anytime p-
values and CSs whose type-I errors converge to the nominal level α P p0, 1q uniformly in α. We present
this in the following result on distribution-, time-, and α-uniform — or pP, n, αq-uniform for short —
statistical inference. This is our main result and it implies both Proposition 2.1 and Proposition 2.2
as special cases.

Theorem 3.3 (pP, n, αq-uniform statistical inference). Let X1, X2, . . . be defined on pΩ,F ,Pq

and suppose that for some δ ą 0, the p2 ` δqth moment is P-uniformly upper-bounded and the

variance is P-uniformly positive. Recall the definitions of psp
pmq

k q8
k“m and p sC

pmq

k pαqq8
k“m from

Proposition 2.1:

sp
pmq

k :“ 1 ´ Ψ
`

kpµ2
k{pσ2

k ´ logpk{mq
˘

(34)

and sC
pmq

k pαq :“ pµk ˘ pσk

a

rΨ´1p1 ´ αq ` logpk{mqs{k. (35)

Let P0 Ď P be a subcollection of distributions so that EP pXq “ 0 for each P P P0. Then

the time-uniform type-I error of psp
pmq

k q8
k“m and the time-uniform miscoverage of p sC

pmq

k q8
k“m

converge to α P p0, 1q uniformly in α, meaning

lim
mÑ8

sup
PPP0

sup
αPp0,1q

∣∣∣PP

´

Dk ě m : sp
pmq

k ď α
¯

´ α
∣∣∣ “ 0, and (36)

lim
mÑ8

sup
PPP

sup
αPp0,1q

∣∣∣PP

´

Dk ě m : EP pXq R sC
pmq

k pαq

¯

´ α
∣∣∣ “ 0. (37)

The full proof of Theorem 3.3 can be found in Appendix A.3. As alluded to at the beginning
of Section 2, its proof relies on a P-uniform strong Gaussian approximation theorem discussed in
Section 5. Before that, we will discuss how the results derived thus far can be used to conduct
distribution-uniform anytime-valid tests of conditional independence.
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4 Illustration: Sequential conditional independence testing

In this section, we aim to derive anytime-valid tests for the null hypothesis, X KK Y | Z given
R ˆ R ˆ Rd-valued triplets pXn, Yn, Znq8

n“1 on probability spaces pΩ,F ,Pq. Several works on condi-
tional independence testing operate under the so-called “Model-X” assumption where the conditional
distribution of X | Z is known exactly [6]. We do not work under the Model-X assumption in this
illustration. It is well-known that testing for conditional independence is much simpler under Model-
X, and indeed the recent works of Duan et al. [13], Shaer et al. [37], and Grünwald et al. [17] derive
powerful anytime-valid tests in that paradigm. Borrowing a quote from the recent work of Grünwald
et al. [17], the authors write “it is an open question to us how to construct general sequential tests
of conditional independence without the [Model-X] assumption”. This section gives an answer to this
question, deriving tests that draw inspiration from the batch tests found in Shah and Peters [38] —
a pair of authors we will henceforth refer to as S&P. Before giving a brief refresher on batch condi-
tional independence testing and the main results of S&P, let us review some basic concepts in weak
regression consistency since nuisance function estimation will form key conditions for our results.

4.1 Prelude: weak regression consistency

An important part of conditional independence testing (in both batch and sequential settings as we
will see) is the ability to consistently estimate certain regression functions. Recall that the (potentially

random) squared L2pP q risk of a regression estimator pfn : Rd Ñ R for a function f : Rd Ñ R is given
by

} pfn ´ f}2L2pP q :“

ż

zPRd

´

pfnpzq ´ fpzq

¯2

dP pzq. (38)

Importantly, if sample splitting is used to construct pfn, the norm } ¨ }L2pP q is to be interpreted as
conditional on that “training” data. Recall from Györfi et al. [18, Definition 1.1] that a regression

estimator pfn : Rd Ñ R is P -weakly consistent for a function f : Rd Ñ R in L2pP q at a rate of rn if its
expected L2pP q risk vanishes at that rate, meaning

EP } pfn ´ f}L2pP q “ oprnq, (39)

and hence we will say that pfn is P-weakly consistent at the rate rn if the above convergence occurs
uniformly in the class of distributions P:

sup
PPP

EP } pfn ´ f}L2pP q “ oprnq. (40)

At times, we may omit L2pP q from the norm } ¨ }L2pP q in (39) and write } ¨ } when the norm is clear
from context.

4.2 A brief refresher on batch conditional independence testing

Given R ˆ R ˆ Rd-valued triplets pXi, Yi, Ziq
n
i“1 from some distribution in a class P, the problem of

conditional independence testing is concerned with the null

H0 : X KK Y | Z versus the alternative H1 : X ��KK Y | Z. (41)

As alluded to before, without the Model-X assumption, powerful tests for the conditional indepen-
dence null H0 in (41) are impossible to derive (even in the batch and asymptotic settings) unless
additional distributional or structural assumptions are imposed [S&P, §2]. Indeed, S&P show that
even in the bounded setting where pX,Y, Zq „ P P P‹ take values in r0, 1s ˆ r0, 1s ˆ r0, 1s, any test
with distribution-uniform type-I error control under H0 is powerless against any alternative in H1.
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Formally, if P0
‹

Ă P‹ is the subset of distributions satisfying H0 (and hence P‹
1 :“ P‹zP0

‹ satisfies
H1), then

sup
PPP‹

1

lim sup
nÑ8

PP

´

9Γn “ 1
¯

loooooooooooooooomoooooooooooooooon

Best-case P‹
1 -pointwise power

ď lim sup
nÑ8

sup
PPP‹

0

PP

´

9Γn “ 1
¯

.

loooooooooooooooomoooooooooooooooon

Worst-case P‹
0 -uniform type-I error

(42)

As a consequence of (42), one cannot derive a more powerful test than the trivial one that ignores all
of the data pXi, Yi, Ziq

n
i“1 and randomly outputs 1 with probability α.

Despite the rather pessimistic result in (42), S&P derive the Generalized Covariance Measure
(GCM) test which manages to achieve nontrivial power while still uniformly controlling the type-I
error. The caveat here is that they are controlling the type-I error in a restricted (but nevertheless rich
and nonparametric) class of nulls P0 Ď P‹

0 , and the restriction they impose is that certain nuisance
functions are sufficiently estimable, a requirement commonly appearing in other literatures including
semiparametric functional estimation [21, 2]. Let us now review the key aspects of their test. S&P
introduce the estimated residuals Ri,n for each i P rns:

Ri,n :“ tXi ´ pµx
npZiqu tYi ´ pµy

npZiqu (43)

where pµx
npzq and pµy

npzq are estimates of the regression functions µxpzq :“ EpX | Z “ zq and µypzq :“
EpY | Z “ zq. For the remainder of the discussion on batch conditional independence testing,
we will assume that pµx

npZiq and pµy
npZiq are constructed from an independent sample (e.g. through

sample-splitting or cross-fitting, in which case we may assume access to 2n triplets of pX,Y, Zq) for
mathematical simplicity, but S&P do not always suggest doing so. However, we will not dwell on
arguments for or against sample splitting here. From the residuals in (43), they construct the test
statistic 9GCMn taking the form

9GCMn :“
1

npσn

n
ÿ

i“1

Ri,n (44)

where pσ2
n :“ 1

n

řn
i“1 R

2
i,n ´

`

1
n

řn
i“1 Ri,n

˘2
and they show that if the regression functions pµy, µxq

are estimated sufficiently fast (and under some other mild regularity conditions) then
?
n 9GCMn

has a standard Gaussian limit, enabling asymptotic (fixed-n) inference. We formally recall a minor
simplification of their main result here. Consider the following three assumptions for a class of
distributions P0.

Assumption GCM-1 (Product regression error decay). The weak convergence rate of the average
of product residuals is faster than n´1{2, i.e.

sup
PPP0

}µx ´ pµx
n}L2pP q ¨ }µy ´ pµy

n}L2pP q “ opn´1{2q. (45)

Assumption GCM-2 (P0-uniform regularity of regression errors). Letting ξx :“ tX ´ µxpZqu and
ξy :“ tY ´µypZqu denote the true residuals, the variances of tpµx

npZq´µxpZquξy and tpµy
npZq´µypZquξx

are P0-uniformly vanishing, i.e.

sup
PPP0

VarP ptpµx
npZq ´ µxpZqu ¨ ξyq “ o p1q (46)

and sup
PPP0

VarP ptpµy
npZq ´ µypZqu ¨ ξxq “ o p1q . (47)

Assumption GCM-3 (P0-uniformly bounded moments). The true product residuals defined above
have P0-uniformly upper-bounded p2 ` δqth moments for some δ ą 0 and uniformly lower-bounded
second moments:

sup
PPP0

EP |ξxξy|2`δ
ă 8 (48)

and inf
PPP0

VarP pξxξyq ą 0. (49)
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With these three assumptions in mind, we are ready to recall a simplified version of Shah and
Peters [38, Theorem 6].

Theorem (S&P: P0-uniform validity of the GCM test). Suppose pXi, Yi, Ziq
n
i“1 are RˆRˆRd-valued

random variables on the probability spaces pΩ,F ,Pq and let P0 Ă P be the collection of distributions
in P satisfying the conditional independence null H0 and Assumptions GCM-1, GCM-2, and GCM-3.
Then,

lim
nÑ8

sup
PPP0

sup
xPR

∣∣∣PP p
?
n 9GCMn ď xq ´ Φpxq

∣∣∣ “ 0. (50)

and hence the function given by Γ
pmq

k :“ 1
!

|
?
n 9GCMn| ě Φ´1p1 ´ α{2q

)

is a P0-uniform level-α test.

We will now shift our focus to sequential conditional independence testing with anytime-valid
type-I error guarantees. Before deriving an explicit test, we first demonstrate in Proposition 4.1 that
the hardness of conditional independence testing highlighted in (42) has a similar analogue in the
anytime-valid regime.

4.3 On the hardness of anytime-valid conditional independence testing

As mentioned in Section 4.2, S&P illustrated the fundamental hardness of conditional independence
testing by showing that unless additional restrictions are placed on the null hypothesis P‹

0 , any P‹
0 -

uniformly valid (fixed-n) test is powerless against any alternative, i.e.

sup
PPP‹

1

lim sup
nÑ8

PP

´

9Γn “ 1
¯

loooooooooooooooomoooooooooooooooon

Best-case P‹
1 -pointwise power

ď lim sup
nÑ8

sup
PPP‹

0

PP

´

9Γn “ 1
¯

.

loooooooooooooooomoooooooooooooooon

Worst-case P‹
0 -uniform type-I error

(42 revisited)

Does an analogous result hold if 9Γn is replaced by an anytime-valid hypothesis test sΓ
pmq

k as in Defi-
nition 2.1? The following proposition gives an answer to this question, confirming that anytime-valid
conditional independence testing is fundamentally hard in a sense similar to (42).

Proposition 4.1 (Hardness of anytime-valid conditional independence testing). Suppose pXn, Yn, Znq8
n“1

are r0, 1s3-valued triplets on the probability spaces pΩ,F ,P‹q where P‹ consists of all distributions sup-
ported on r0, 1s3. Let P‹

0 Ď P‹ be the subset of distributions satisfying the conditional independence

null H0 and denote P‹
1 :“ P‹zP‹

0 . Then for any potentially randomized test psΓ
pmq

k q8
k“m,

sup
PPP‹

1

lim sup
mÑ8

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

ď lim sup
mÑ8

sup
PPP‹

0

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

. (51)

In other words, no P‹
0 -uniform anytime-valid test can have power against any alternative in P‹

1 at
any tm,m ` 1, . . . u-valued stopping time no matter how large m is.

The proof can be found in Appendix A.4. It should be noted that Proposition 4.1 is not an
immediate consequence of S&P’s fixed-n hardness result in (42) since while it is true that the time-
uniform type-I error in the right-hand side of (51) is always larger than its fixed-n counterpart, the
time-uniform power in the left-hand side of (51) is typically much larger than the fixed-n power.
Indeed, while an important facet of hypothesis testing is to find tests with power as close to 1 as
possible, the time-uniform power of anytime-valid tests is typically equal to 1, and such tests are
sometimes referred to explicitly as “tests of power 1” for this reason [34]. This should not be surprising
since the ability to reject at any stopping time (data-dependent sample size) larger than m introduces
a great deal of flexibility. The fact that this flexibility is insufficient to overcome P‹

0 -uniform control
of the time-uniform type-I error is what makes Proposition 4.1 nontrivial.

Using the techniques of Section 2, we will now derive an anytime-valid analogue of S&P’s GCM
test with similar distribution-uniform guarantees, allowing the tests and p-values to be continuously
monitored and adaptively stopped.
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4.4 SeqGCM: The sequential generalized covariance measure test

We will now lay out the assumptions required for our SeqGCM test to have distribution-uniform
anytime-validity. Similar to our discussion of the batch GCM test in the previous section, we will
assume that for each n, pµx

n and pµy
n are trained from an independent sample. This can be achieved easily

by supposing that at each time n, we observe pairs pX
pnq

1 , Y
pnq

1 , Z
pnq

1 q, pX
pnq

2 , Y
pnq

2 , Z
pnq

2 q where the first
is used for training ppµx

i , pµ
y
i q8

i“n and the second is used for evaluating tXn ´ pµx
npZnqu ¨ tYn ´ pµy

npZnqu.

Recall that in S&P’s GCM test, the test statistic 9GCMn :“ 1
n

řn
i“1 Ri,n{pσ2

n was built from the
product residuals Ri,n that were defined in (43) as

Ri,n :“ tXi ´ pµx
npZiqu tYi ´ pµy

npZiqu . (52)

In particular, note that the regression estimators pµx
n and pµy

n are trained once on a held-out sample of
size n and then evaluated on Z1, . . . , Zn, which is perfectly natural in the batch setting. By contrast,
we will evaluate the product residual

Rn :“ tXn ´ pµx
npZnqu tYn ´ pµy

npZnqu (53)

to arrive at the test statistic

ĞGCMn :“
1

npσn

n
ÿ

i“1

Ri, (54)

where we will abuse notation slightly and redefine pσ2
n :“ 1

n

řn
i“1 R

2
i ´

`

1
n

řn
i“1 Ri

˘2
. The main differ-

ence between (52) and (53) is that in the latter case, the index for regression estimators ppµx
n, pµ

y
nq is the

same as those on which these functions are evaluated. Notice that while ĞGCMn is more amenable to
online updates than 9GCMn, it does less to exploit the most up-to-date regression estimates. Neverthe-
less, as we will see shortly, it is still possible to control the distribution- and time-uniform asymptotic
behavior of ĞGCMn under weak regression consistency conditions on ppµx

n, pµ
y
nq. This is in contrast to

some earlier work of Waudby-Smith et al. [47, Section 3] that also considered asymptotic time-uniform
inference with nuisance estimation (focusing on the problem of average treatment effect estimation),
but relied on strong regression consistency conditions. It should be noted that the weak consistency
rates we impose here are polylogarithmically faster than those considered by Waudby-Smith et al.
[47]. The key technique that will allow us to derive strong convergence behavior of certain sample
averages of nuisances from weak consistency of regression functions is a distribution-uniform strong
law of large numbers due to Waudby-Smith, Larsson, and Ramdas [48, Theorem 2]. This will be
discussed further after the statement of Theorem 4.2.

Since the assumptions required for our SeqGCM test are similar in spirit to those of S&P’s batch
GCM test (Assumptions GCM-1, GCM-2, and GCM-3) we correspondingly name them “Assump-
tions SeqGCM-1 and SeqGCM-2” and underline certain keywords to highlight their differences (we
do not need to make additional moment assumptions beyond those found in Assumption GCM-3, and
thus there is no “SeqGCM-3” to introduce).

Assumption SeqGCM-1 (Product regression error decay). The weak convergence rate of the product
of average squared residuals is no slower than pn log2`δ nq´1{2 for some δ ą 0, i.e.

sup
PPP0

}pµx
n ´ µx}L2pP q ¨ }pµy

n ´ µy}L2pP q “ O

¨

˝

1
b

n log2`δ
pnq

˛

‚, (55)

Assumption SeqGCM-2 (P0-uniform regularity of regression errors). Both Var ptpµx
npZq ´ µxpZqu ¨ ξynq

and Var ptpµy
npZq ´ µypZqu ¨ ξxnq are P0-uniformly vanishing to 0 no slower than 1{plog nq2`δ for some

14



δ ą 0, i.e.

sup
PPP0

VarP ptpµx
npZq ´ µxpZqu ¨ ξyq “ O

ˆ

1

plog nq2`δ

˙

(56)

and sup
PPP0

VarP ptpµy
npZq ´ µypZqu ¨ ξxq “ O

ˆ

1

plog nq2`δ

˙

. (57)
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Figure 1: Empirical cumulative type-I error rates and power for the fixed-n GCM test of S&P versus
the sequential GCM test (SeqGCM) in Theorem 4.2 with a target type-I error of α “ 0.05 in a
simulated conditional independence testing problem. Notice that in the left-hand side plot, the type-I
error rate for the GCM starts at around α “ 0.05 but steadily grows as more samples are collected.
By contrast, the SeqGCM test remains below α “ 0.05 for all k ě m “ 300. In the right-hand side
plot, we see that the power of the GCM test is higher than that of SeqGCM. This is unsurprising
given that SeqGCM has a stronger (time-uniform) type-I error guarantee, but both have power near
1 after 10,000 samples.

With Assumptions SeqGCM-1, SeqGCM-2, and GCM-3 in mind, we are ready to state the P0-
uniform type-I error guarantees of the SeqGCM test.

Theorem 4.2 (P0-uniform type-I error control of the SeqGCM). Suppose pXi, Yi, Ziq
8
i“1 are RˆRˆ

Rd-valued triplets defined on the probability spaces pΩ,F ,Pq and let P0 Ď P be a collection of distri-
butions in P satisfying the conditional independence null H0 and Assumption SeqGCM-1, SeqGCM-2,
and GCM-3. Define

spGCM
k,m :“ 1 ´ Ψ

`

kpĞGCMkq2 ´ logpk{mq
˘

. (58)

Then pspGCM
k,m q8

k“m forms a P0-uniform anytime p-value for the conditional independence null:

lim
mÑ8

sup
PPP0

sup
αPp0,1q

∣∣PP

`

Dk ě m : spGCM
k,m ď α

˘

´ α
∣∣ “ 0. (59)

The proof can be found in Appendix A.5 and uses the results from the previous sections com-
bined with the distribution-uniform strong laws of large numbers (SLLNs) for independent but non-
identically distributed random variables due to Waudby-Smith, Larsson, and Ramdas [48, Theorem 2].
The latter is crucial to analyzing the (uniform) almost sure convergence properties of sample averages
with online regression estimators under weak consistency assumptions (SeqGCM-1 and SeqGCM-2).

To give some intuition as to when Assumption SeqGCM-1 may be satisfied, suppose that µx and
µy are d-dimensional and Hölder s-smooth [18, §3.2]. Note that the minimax rate for estimating such
functions in the resulting class of distributions Ppsq is given by

inf
pµx
n

sup
PPPpsq

EP }pµx
n ´ µx}2L2pP q — n´2s{p2s`dq, (60)
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and similarly for µy. In particular, if d ă 2s so that the dimension is not too large relative to
the smoothness, then minimax-optimal local polynomial estimators pµx

n and pµy
n for µx and µy can

be constructed and will be Ppsq-weakly consistent at rates of o
´

pn log2`δ nq´1{4
¯

. In this case,

Assumption SeqGCM-1 (and Assumption GCM-1) will be satisfied as long as P0 Ď Ppsq. More
broadly, any regression algorithms can be used to construct pµx

n and pµy
n (e.g. using random forests,

neural networks, nearest neighbors, etc.) and they can further be selected via cross-validation or
aggregated [5, 43].

The left-hand side plot of Fig. 1 demonstrates how the SeqGCM test controls the type-I error rate
under the null uniformly over time while the standard GCM test fails to. The right-hand side plot
compares their empirical power under one alternative.

5 Distribution-uniform strong Gaussian approximation

In this section, we both articulate what it means for a strong (almost-sure) coupling to be “P-uniform”
and then provide such a coupling in the form of a strong Gaussian approximation in Theorem 5.1.
Before that, however, let us give a brief historical overview of weak and strong Gaussian approxima-
tions in the P -pointwise setting to contextualize and motivate the result to come. Given iid random
variables pX1, . . . , Xnq with mean µ and finite variance σ2 on a probability space pΩ,F , P q, the CLT
states that standardized partial sums Sn :“

řn
i“1pXi ´ µq{σ converge in distribution to a standard

Gaussian with CDF Φpxq after
?
n-rescaling:

@x P R, lim
nÑ8

PP pSn{
?
n ď xq Ñ Φpxq. (61)

Note that (61) is only a statement about the distribution of Sn, but a stronger statement can be made
in terms of a coupling between Sn and a partial sum of iid Gaussians [16, Eq. (1.2)]. Concretely, one

can define a new probability space prΩ, rF , rP q containing random vectors pp rX1, Y1q, p rX2, Y2q, . . . , p rXn, Ynqq

where pY1, . . . , Ynq are marginally standard Gaussian and p rX1, . . . , rXnq have the same marginal dis-
tribution as pX1, . . . , Xnq so that

rSn ´ Gn “ 9o
rP p

?
nq, (62)

where rSn :“
řn

i“1
rXi andGn :“

řn
i“1 Yi and without loss of generality, we may simply write Sn´Gn “

9oP p
?
nq. Indeed, we could have simply started with a probability space prΩ, rF , rP q rich enough to

describe pX,Y q jointly and for this reason, some authors write “without loss of generality” to refer to
this probability space construction [41]. Crucially, Y1, . . . , Yn are independent of each other, but the
random variables Sn and Gn are highly dependent, and clearly (62) ùñ (61).

For the purposes of obtaining a time-uniform guarantee, however, neither (61) nor (62) are suffi-
cient since they only hold for a single sample size n, and naive union bounds over n P N are not sharp
enough to remedy the issue. Fortunately, there do exist analogues of (62) that hold almost-surely and
hence uniformly for all n simultaneously. The study of such results — strong Gaussian approximations
— began with the seminal results of Strassen [40] who used the Skorokhod embedding [39] to obtain
an almost-sure analogue of (62) but with an iterated logarithm rate:

Sn ´ Gn “ oa.s.p
a

n log log nq, (63)

where oa.s.p¨q denotes P -a.s. convergence. As noted in (23), the above is equivalent to saying that for
any ε ą 0, we have limmÑ8 PP pDk ě m : |Sk ´ Gk| ą εq “ 0, and we write this as

Sn ´ Gn “ ōP p
a

n log lognq, (64)

following the notation laid out in Section 3. Improvements to the iterated logarithm rate in (63) and
(64) were made by Strassen [41] under higher moment assumptions, with the optimal rates uncovered
in the famous papers by Komlós, Major, and Tusnády [22, 23] and Major [29].
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Here, we do not focus on attaining optimal coupling rates since error rates incurred from estimation
of nuisances (such as the variance) typically dominate them and optimal rates would not change our
main statistical results in any meaningful way (much like they do not “improve” CLT-based confidence
intervals). However, we do highlight the fact that the results of Strassen [40, 41], Komlós, Major, and
Tusnády [22, 23], Major [29], and every other work on strong approximation to our knowledge only
hold P -a.s. for a fixed P , and hence are not P-uniform in any sense. We will now define “distribution-
uniform strongly coupled processes” in Definition 5.1 and subsequently provide one such coupling in
Theorem 5.1.

Definition 5.1 (pP, nq-uniformly coupled stochastic processes). For each probability measure P in
a collection P, let pSnpP qq8

n“1 be a stochastic process defined on the probability space pΩ,F , P q. Let

prΩ, rF , rP pP qqPPP be a new collection of probability spaces containing stochastic processes prSnpP qq8
n“1

and pGnq8
n“1 so that prSnpP qq8

n“1 has the same distribution as pSnpP qq8
n“1 for each P P P. We say

that pSnpP qq8
n“1 and pGnq8

n“1 are pP, nq-uniformly coupled at a rate of rn if for every ε ą 0,

lim
mÑ8

sup
PPP

P
rP pP q

˜

Dk ě m :
|rSkpP q ´ Gk|

rk
ě ε

¸

“ 0, (65)

and we write Sn ´ Gn “ soPprnq as a shorthand for (65).

Since time-uniform convergence with high probability and almost-sure convergence — denoted by
oa.s.p¨q and soP p¨q respectively — are equivalent, observe that Definition 5.1 reduces to the standard no-
tion of P -a.s. strong approximation when P “ tP u is a singleton. To avoid repeating the technicalities

of constructing a new probability space prΩ, rF , rP pP qq with equidistributed random variables and so
on, some authors in the strong approximation literature refer to this procedure as “the construction”
[14, 15] and they will say that “there exists a construction such that Sn ´ Gn “ oa.s.prnq” as a short-
hand. We henceforth adopt and extend this convention to the P-uniform setting by writing “there
exists a construction such that Sn ´Gn “ soPprnq”. Let us now give a strong Gaussian approximation
for partial sums of random variables with finite p2 ` δqth finite absolute moments.

Theorem 5.1 (Distribution-uniform strong Gaussian approximation). Let pXnq8
n“1 be independent

and identically distributed random variables defined on the collection of probability spaces pΩ,F ,Pq

with means µP :“ EP pXq and variances σ2
P :“ EP pX´µP q2. If X has q ą 2 uniformly upper-bounded

moments, and a uniformly positive variance, i.e.

sup
PPP

EP |X ´ µP |q ă 8 and inf
PPP

σ2
P ą 0, (66)

then there exists a construction with independent standard Gaussians pYnq8
n“1 „ Np0, 1q so that∣∣∣∣∣ n

ÿ

i“1

Xi ´ µP

σP
´

n
ÿ

i“1

Yi

∣∣∣∣∣ “ soPpn1{q log2{q
pnqq. (67)

We remark that Theorem 5.1 is a purely probabilistic result that may be of interest outside
of statistical inference altogether. To the best of our knowledge, Theorem 5.1 serves as the first
distribution-uniform strong Gaussian approximation in the literature. Note that the rate (67) is

optimal up to a factor of log2{q
pnq compared to the best rate possible in the P -pointwise setting and

in fact log2{q
pnq can be replaced by any fpnq1{q as long as

ř8

n“1 pnfpnqq
´1

ă 8. As we alluded
to before, improvements to this rate would not advance the statistical inference goals of this paper.
The reason behind this is that strong approximation rates are often dominated by the rates of errors
incurred from estimating nuisance functions such as the variance (which is often of order

a

log log n{n
or slower). Nevertheless, in future work we will explore rate-optimal analogues of Theorem 5.1 in a
thorough study of distribution-uniform strong approximations but we keep the current version here
because it is sufficient for the current paper’s objectives.
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In fact, the strong approximation of Theorem 5.1 is a corollary of the following more general
nonasymptotic high-probability strong Gaussian coupling inequality for independent (but not neces-
sarily identically distributed) random variables that depends on features of the distribution of X in
transparent ways.

Lemma 5.2 (Strong Gaussian coupling inequality). Let pXnq8
n“1 be independent random variables

on the probability space pΩ,F , P q. Suppose that for some q ě 2, we have EP |Xk ´ EPXk|q ă 8 for
each k P N. Let fp¨q be a positive and increasing function so that

ř8

n“1pnfpnqq´1 ă 8 and

8
ÿ

k“1

EP |Xk ´ EPXk|q{σq
k

kfpkq
ă 8, (68)

where σ2
k :“ VarP pXkq. Then one can construct a probability space prΩ, rF , rP pP qq rich enough to define

p rXn, Ynq8
n“1 where rXn and Xn are equidistributed for each n and pYnq8

n“1 are marginally independent
standard Gaussians so that for any ε ą 0,

P
rP pP q

˜

Dk ě m :

∣∣∣∣∣
řk

i“1p rXi ´ Yiq

k1{qfpkq1{q

∣∣∣∣∣ ą ε

¸

ď
Cq,f

εq

#

8
ÿ

k“2m´1

EP |Xk ´ EPXk|q{σq
k

kfpkq
`

1

2m

2m´1
´1

ÿ

k“1

EP |Xk ´ EPXk|q{σq
k

kfpkq

+

, (69)

where Cq,f is a constant that depends only on q and f .

Instantiating Lemma 5.2 in the identically distributed case with q “ 2 ` δ for some δ ą 0 and
taking suprema over P P P on both sides of (69) yields Theorem 5.1. The proofs of Lemma 5.2 and
Theorem 5.1 can be found in Appendix A.7.

A straightforward consequence of Lemma 5.2 and Theorem 5.1 is that the law of the iterated
logarithm holds uniformly in a class of distributions with uniformly bounded p2 ` δqth moments.

Corollary 5.3 (A P-uniform law of the iterated logarithm). Suppose pXnq8
n“1 are defined on proba-

bility spaces pΩ,F ,Pq where P is a collection of distributions such that

sup
PPP

EP |X ´ EPX|2`δ ă 8 and inf
PPP

VarP pXq ą 0 (70)

for some δ ą 0. Then,

sup
kěn

|
řk

i“1pXi ´ EP pXqq|
a

2VarP pXqk log log k
“ 1 ` soPp1q. (71)

A proof of Corollary 5.3 is provided in Appendix A.6 and follows from Theorem 5.1 combined with
Kolmogorov’s P -pointwise law of the iterated logarithm.

6 Summary & discussion

We gave a definition of “distribution-uniform anytime-valid inference” as a time-uniform analogue of
distribution-uniform fixed-n inference and then derived explicit hypothesis tests, p-values, and con-
fidence sequences satisfying that definition. Our methods relied on a novel boundary for centered
partial sums that is uniformly valid in a class of distributions, in time, and in a family of boundaries.
Along the way, we discussed what it meant for a sequence of random variables to converge distribution-
uniformly almost-surely, and provided definitions for distribution- and time-uniform stochastic bound-
edness alongside a calculus for manipulating sequences with these types of asymptotics. At their core,
all of our results relied on a novel strong Gaussian approximation that allows a partial sum process to
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be tightly coupled with an implicit Gaussian process uniformly in time and in a class of distributions.
We believe this is the first result of its kind in the literature. Zooming out, we believe that this strong
Gaussian approximation forms the tip of the iceberg for distribution-uniform strong laws. In future
work, we plan to study these problems in depth.

Acknowledgments. IW-S thanks Tudor Manole and Rajen Shah for insightful discussions. The
authors acknowledge support from NSF grants IIS-2229881 and DMS-2310718.
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A Proofs of the main results

In the proofs to come, we will make extensive use of the notions of convergence in Table 1, especially
soPp¨q and sOPp¨q. However, some of our terms will be converging or asymptotically bounded with
respect to different indices — e.g. there may be two sequences pXnq8

n“1 and pYkq8
k“1 with indices n

and k that are diverging to 8 not necessarily together (e.g., imagine k “ n2). Writing Xn “ soPprnq

and Yk “ soPprkq is unambiguous, for example, but when no rate is specified, we will remove ambiguity

with respect to indices n or k by saying Xn “ so
pnq

P p1q and Yk “ so
pkq

P p1q.

A.1 Proof of Proposition 2.2

Proposition 2.2 (pP, n, xq-uniform boundaries for centered partial sums). Let X1, X2, . . . be ran-
dom variables defined on probability spaces pΩ,F ,P‹q with finite p2 ` δqth moments, i.e. EP |X ´

EP pXq|2`δ ă 8 for every P P P‹. Letting Sn :“
řn

i“1pXi ´ EP pXiqq{σP be their centered partial
sums, we have

@P P P‹, lim
mÑ8

sup
xě0

∣∣∣PP

´

Dk ě m : |Sk| {
?
k ě

a

x ` logpk{mq

¯

´ r1 ´ Ψpxqs

∣∣∣ “ 0. (17)

Furthermore, if P Ď P‹ is a sub-collection of distributions for which the p2 ` δqth moment is P-
uniformly upper-bounded and the variance is P-uniformly positive, then the above limit holds P-
uniformly:

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣PP

´

Dk ě m : |Sk| {
?
k ě

a

x ` logpk{mq

¯

´ r1 ´ Ψpxqs

∣∣∣ “ 0. (18)

Proof. Let
¯
σ2 ą 0 be a uniform lower bound on infPPP VarP pXq. Writing out supkěmtS2

k{σ2
P k ´

logpk{mqu and invoking the strong Gaussian coupling of Theorem 5.1, we have on a potentially enriched
probability space a partial sum Gn :“

řn
i“1 Yi of standard Gaussians Y1, . . . , Yn „ Np0, 1q so that for

some q “ 2 ` δ{2 (say),

sup
kěm

tS2
k{σ2

P k ´ logpk{mqu “ sup
kěm

"

´

σPGk ` soP

´

k1{q
¯¯2

{pσ2
P kq ´ logpk{mq

*

(72)

“ sup
kěm

"

σ2
PG

2
k ` sOPpk1{q

?
k log log kq ` soPpk2{qq

σ2
P k

´ logpk{mq

*

(73)

“ sup
kěm

#

G2
k

k
`

1

¯
σ2

sOP

˜

c

log log k

k1´2{q

¸

`
1

¯
σ2

soP

ˆ

k2{q

k

˙

´ logpk{mq

+

(74)

“ sup
kěm

"

G2
k

k
´ logpk{mq ` so

pkq

P p1q

*

, (75)

where (73) expands the square and applies the (P-uniform) law of the iterated logarithm (Corol-
lary 5.3) to pGnq8

n“1, (74) uses the P-uniform lower-boundedness of the variance, and (75) consolidates
the soPp¨q terms. Now, notice that supkěmtG2

k{k ´ logpk{mqu converges uniformly to the Robbins-
Siegmund distribution (Lemma B.2) since the distribution of the supremum does not depend on any
measure P . That is,

@x ě 0, lim
mÑ8

sup
PPP

∣∣∣∣PP

ˆ

sup
kěm

"

G2
k

k
´ logpk{mq

*

ď x

˙

´ Ψpxq

∣∣∣∣ “ 0. (76)

Applying van der Vaart [44, Lemma 2.11] and using the fact that Ψ is continuous, we have that the
above also holds uniformly in x ě 0:

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣∣PP

ˆ

sup
kěm

"

G2
k

k
´ logpk{mq

*

ď x

˙

´ Ψpxq

∣∣∣∣ “ 0. (77)
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Some algebraic manipulations will reveal that the above is equivalent to the desired result:

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣PP

´

Dk ě m : |Sk| {
?
k ě

a

x ` logpk{mq

¯

´ r1 ´ Ψpxqs

∣∣∣ “ 0, (78)

which completes the proof.

A.2 Proof of Lemma 3.1

Lemma 3.1 (Calculus of sOPp¨q and soPp¨q). Let Y1, Y2, . . . be random variables defined on pΩ,F ,Pq.
Let panq8

n“1 and pbnq8
n“1 be positive and monotonically nonincreasing sequences. Then we have the

following basic implications:

Yn “ soPpanq ùñ Yn “ sOPpanq (27)

Yn “ soPpanq sOPpbnq ùñ Yn “ soPpanbnq (28)

Yn “ sOPpanq sOPpbnq ùñ Yn “ sOPpanbnq (29)

Yn “ soPpanq ` sOPpanq ùñ Yn “ sOPpanq (30)

Yn “ soPpanq ` soPpbnq ùñ Yn “ soPpmaxtan, bnuq. (31)

Furthermore, (31) holds with soPp¨q replaced by sOPp¨q on both sides. Finally, if Yn “ sOPpanq and
an{bn Ñ 0, then Yn “ soPpbnq.

Proof of (27) Suppose that Yn “ soPpanq. We want to show that for any δ, there exists C ” Cpδq

and M ” Mpδq so that for all m ě M ,

Goal: sup
PPP

PP

ˆ

sup
kěm

|a´1
k Yk| ě C

˙

ă δ. (79)

Proof. This is immediate from the definition of soPpanq. Indeed, fix any ε ą 0 and choose M ” Mpεq

so that for any m ě M ,

sup
PPP

PP

ˆ

sup
kěm

|a´1
k Yk| ě ε

˙

ă δ. (80)

Identifying C with ε completes the proof.

Proof of (28). Suppose that Yn “ AnBn with An “ soPpanq and Bn “ soPpbnq. We want to show
that a´1

n b´1
n Yn “ soPp1q. More formally, our goal is to show that for arbitrary ε, δ ą 0, there exists

M ” Mpε, δq ě 1 so that for all m ě M ,

Goal: sup
PPP

PP

`

Dk ě m : |a´1
k b´1

k Yk| ě ε
˘

ă δ. (81)

Proof. Choose M sufficiently large so that for all m ě M ,

sup
PPP

PP

ˆ

sup
kěm

|a´1
k Ak| ě

a

ε{2

˙

ă δ and sup
PPP

PP

ˆ

sup
kěm

|b´1
k Bk| ě

a

ε{2

˙

ă δ. (82)
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Then, writing out the equation in (81), we have that

sup
PPP

PP

`

Dk ě m : |a´1
k b´1

k Yk| ě ε
˘

(83)

ď sup
PPP

PP

`

Dk ě m : |a´1
k Ak||b´1

k Bk| ě ε
˘

(84)

ď sup
PPP

PP

ˆ

Dk ě m : |a´1
k Ak||b´1

k Bk| ě ε
ˇ

ˇ sup
kěm

|a´1
k Ak| ă

a

ε{2 and sup
kěm

|b´1
k Bk| ă

a

ε{2

˙

` (85)

sup
PPP

PP

ˆ

sup
kěm

|a´1
k Ak| ă

a

ε{2 and sup
kěm

|b´1
k Bk| ă

a

ε{2

˙

(86)

ď sup
PPP

PP pDk ě m : ε{2 ě εq
loooooooooooooooomoooooooooooooooon

“0

` (87)

max

"

sup
PPP

PP

ˆ

sup
kěm

|a´1
k Ak| ă

a

ε{2

˙

, P
ˆ

sup
kěm

|b´1
k Bk| ă

a

ε{2

˙*

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

ăδ

(88)

ă δ, (89)

which completes the proof.

Proof of (29). Suppose that Yn “ AnBn with An “ sOPpanq and Bn “ sOPpbnq. Our goal is to
show that for any δ ą 0, there exists some C ” Cpδq and M ” MpC, δq so that

Goal: sup
PPP

PP

ˆ

sup
kěm

|a´1
n b´1

n Yn| ą C

˙

ă δ. (90)

Proof. Fix δ ą 0. Let Ca,Ma, Cb,Mb be sufficiently large so that for all m ě maxtMa,Mbu,

sup
PPP

PP

ˆ

sup
kěm

|a´1
k Ak| ě Ma

˙

ă δ and sup
PPP

PP

ˆ

sup
kěm

|b´1
k Bk| ě Mb

˙

ă δ. (91)

Now, set C “ CaCb ` 1. Then,

sup
PPP

PP

ˆ

sup
kěm

|a´1
k b´1

k Yk| ě C

˙

(92)

ď sup
PPP

PP

ˆ

sup
kěm

|a´1
k Ak||b´1

k Bk| ě C

˙

(93)

ď sup
PPP

PP

ˆ

sup
kěm

CaCb ě C

˙

` sup
PPP

PP

ˆ

sup
kěm

|a´1
k Ak| ą Ca and |b´1

k Bk| ą Cb

˙

(94)

ď sup
PPP

PP

ˆ

sup
kěm

CaCb ě CaCb ` 1

˙

looooooooooooooooooooomooooooooooooooooooooon

“0

` (95)

max

"

sup
PPP

PP

ˆ

sup
kěm

|a´1
k Ak| ą Ca

˙

, sup
PPP

PP

ˆ

sup
kěm

|b´1
k Bk| ą Cb

˙*

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

ăδ

, (96)

which completes the proof.

Proof of (30). Suppose Yn “ An ` A1
n with both An “ soPpanq and A1

n “ sOPpanq. The goal is to
show that for every δ ą 0, there exists C ą 0 and M ě 1 so that for all m ě M ,

Goal: sup
PPP

PP

ˆ

sup
kěm

a´1
k |Yk| ą C

˙

ă δ. (97)
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Proof. Fix δ ą 0. Let C 1 and M 1 be so that supPPP PP

`

supkěm a´1
k |A1

k| ą C 1
˘

ă δ{2. Fix any

ε P p0, C 1q and let M‹ be so that supPPP PP

`

supkěm a´1
k |Ak| ě ε

˘

ă δ{2 for all m ě M‹. Choose
M ą maxtM 1,M‹u. Then, for all m ě M ,

sup
PPP

P
ˆ

sup
kěm

a´1
k |Ak ` A1

k| ě C 1

˙

(98)

ď sup
PPP

P
ˆ

sup
kěm

a´1
k |Ak| ` ak|A1

k| ě C 1

˙

(99)

ď sup
PPP

P
ˆ

sup
kěm

a´1
k |Ak| ě C 1

˙

` sup
PPP

P
ˆ

sup
kěm

a´1
k |A1

k| ě C 1

˙

(100)

ď sup
PPP

P
ˆ

sup
kěm

a´1
k |Ak| ě ε

˙

` sup
PPP

P
ˆ

sup
kěm

a´1
k |A1

k| ě C 1

˙

(101)

ă δ, (102)

which completes the proof.

Proof of (31). Suppose Yn “ An ` Bn with An “ soPpanq and Bn “ soPpbnq. The goal is to show
that for every ε, δ ą 0, there exists M ě 1 so that for all m ě M ,

Goal: sup
PPP

PP

ˆ

sup
kěm

c´1
k |Yk| ě ε

˙

ă δ, (103)

where ck “ maxtak, bku.

Proof. Fix ε, δ ą 0. LetM be so that supPPP PP

`

supkěm ak|Ak| ą ε
˘

ă δ{2 and supPPP PP

`

supkěm bk|Bk| ą ε
˘

ă

δ{2 for all m ě M . Then, for all m ě M ,

sup
PPP

P
ˆ

sup
kěm

c´1
k |Ak ` Bk| ě ε

˙

(104)

ď sup
PPP

P
ˆ

sup
kěm

c´1
k |Ak| ` c´1

k |Bk| ě ε

˙

(105)

ď sup
PPP

P
ˆ

sup
kěm

a´1
k |Ak| ` b´1

k |Bk| ě ε

˙

(106)

ď sup
PPP

P
ˆ

sup
kěm

a´1
k |Ak| ě ε

˙

` sup
PPP

P
ˆ

sup
kěm

b´1
k |Bk| ě ε

˙

(107)

ă δ, (108)

which completes the proof.

Proof that if Yn “ sOPpanq and an{bn Ñ 0, then Yn “ soPpbnq. Let ε, δ ą 0. The goal is to show
that there exists M ” Mpε, δq ě 1 so that for all m ě M ,

Goal: sup
PPP

PP

ˆ

sup
kěm

b´1
k |Yk| ě ε

˙

ă δ. (109)

Proof. Let C ą 0 and M1 ě 1 be constants so that supPPP PP

`

supkěm a´1
k |Yk| ě C

˘

ă δ for all
m ě M1. Moreover, choose M2 ě 1 so that ak{bk ă ε{C for all k ě M2. Set M :“ maxtM1,M2u.
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Then, for all m ě M ,

sup
PPP

PP

ˆ

sup
kěm

b´1
k |Yk| ě ε

˙

(110)

“ sup
PPP

PP

`

Dk ě m : b´1
k |Yk| ě ε

˘

(111)

“ sup
PPP

PP

`

Dk ě m : a´1
k |Yk| ě pbk{akqε

˘

(112)

ď sup
PPP

PP

`

Dk ě m : a´1
k |Yk| ě pC{�εq ¨ �ε

˘

(113)

“ sup
PPP

PP

`

Dk ě m : a´1
k |Yk| ě C

˘

(114)

ă δ, (115)

which completes the proof.

A.3 Proof of Theorem 3.3

Theorem 3.3 (pP, n, αq-uniform statistical inference). Let X1, X2, . . . be defined on pΩ,F ,Pq and
suppose that for some δ ą 0, the p2 ` δqth moment is P-uniformly upper-bounded and the variance is

P-uniformly positive. Recall the definitions of psp
pmq

k q8
k“m and p sC

pmq

k pαqq8
k“m from Proposition 2.1:

sp
pmq

k :“ 1 ´ Ψ
`

kpµ2
k{pσ2

k ´ logpk{mq
˘

(34)

and sC
pmq

k pαq :“ pµk ˘ pσk

a

rΨ´1p1 ´ αq ` logpk{mqs{k. (35)

Let P0 Ď P be a subcollection of distributions so that EP pXq “ 0 for each P P P0. Then the

time-uniform type-I error of psp
pmq

k q8
k“m and the time-uniform miscoverage of p sC

pmq

k q8
k“m converge to

α P p0, 1q uniformly in α, meaning

lim
mÑ8

sup
PPP0

sup
αPp0,1q

∣∣∣PP

´

Dk ě m : sp
pmq

k ď α
¯

´ α
∣∣∣ “ 0, and (36)

lim
mÑ8

sup
PPP

sup
αPp0,1q

∣∣∣PP

´

Dk ě m : EP pXq R sC
pmq

k pαq

¯

´ α
∣∣∣ “ 0. (37)

Proof. Throughout, denote Sn :“
řn

k“1pXk ´ EP pXqq. The proof is broken up into two steps. The
first (and main) step of the proof shows that supkěmtS2

k{ppσ2
kkq´logpk{mqu converges pP, xq-uniformly

to the Robbins-Siegmund distribution Ψ. The second step of the proof uses the first to show how such

convergence is equivalent to sp
pmq

k and sC
pmq

k pαq forming distribution-uniform anytime-valid p-values
and confidence sequences, respectively, in the senses of Definition 2.1.

Step 1: Establishing the asymptotic distribution of supkěmtS2
k{ppσ2

kkq ´ logpk{mqu. First,
notice that by Proposition 3.2,

|pσ2
n ´ σ2| “ soP0

p1{ log nq. (116)

Letting
¯
σ2 ą 0 be the P-uniform lower-bound on the variance so that infPPP σ2

P ě
¯
σ2, we therefore

have

1

pσ2
n

“
1

σ2
P ` soPp1{ log nq

(117)

“
1

σ2
P p1 `

¯
σ´2 ¨ soPp1{ log nqq

(118)

“
1

σ2
P p1 ` soPp1{ log nqq

. (119)
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Now, let γn be the 1 ` soPp1{ log nq term in the above denominator so that pσ´2
n “ σ´2

P γ´1
n . Writing

out supkěmtS2
k{ppσ2

kkq ´ logpk{mqu and using the above, we then have

sup
kěm

tS2
k{pσ2

nk ´ logpk{mqu “ sup
kěm

"

S2
k

σ2
P γkk

´ logpk{mq

*

(120)

“ sup
kěm

"ˆ

S2
k

σ2
P k

´ γk logpk{mq

˙

1

γk

*

(121)

“ sup
kěm

"ˆ

S2
k

σ2
P k

´ logpk{mq ` logpk{mq ¨ soPp1{ log kq

˙

1

γk

*

(122)

“ sup
kěm

#

ˆ

S2
k

σ2
P k

´ logpk{mq ` so
pkq

P p1q

˙

1

1 ` so
pkq

P p1q

+

, (123)

where (123) uses the fact that k{m ď k for any m ě 1. We will now justify why the above converges
P- and quantile-uniformly to the Robbins-Siegmund distribution Ψp¨q. First, by Lemma B.1, we have
that supkěmtS2

k{σ2k´ logpk{mqu converges P- and quantile-uniformly in distribution to Ψ as m Ñ 8.
That is,

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣∣PP

ˆ

sup
kěm

"

S2
k

σ2
P k

´ logpk{mq

*

ď x

˙

´ Ψpxq

∣∣∣∣ “ 0. (124)

By the fact that pP, n, xq-uniform convergence to Lipschitz CDFs is preserved under additive soPp1q-
perturbations (Lemma B.4) and the fact that Ψp¨q is Lipschitz (Lemma B.3), we have that

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣∣PP

ˆ

sup
kěm

"

S2
k

σ2
P k

´ logpk{mq ` so
pkq

P p1q

*

ď x

˙

´ Ψpxq

∣∣∣∣ “ 0. (125)

Finally, using the fact that pP, n, xq-uniform convergence in distribution is preserved under multi-
plicative p1 ` soPp1qq´1-perturbations (Lemma B.5), we have that

lim
mÑ8

sup
PPP

sup
xě0

∣∣∣∣∣PP

˜

sup
kěm

#

ˆ

S2
k

σ2
P k

´ logpk{mq ` so
pkq

P p1q

˙

1

1 ` so
pkq

P p1q

+

ď x

¸

´ Ψpxq

∣∣∣∣∣ “ 0. (126)

Step 2: Establishing validity of sp
pmq

k and sC
pmq

k pαq. Writing out the definition of sp
pmq

k , we have
for any P P P0 and α P p0, 1q,

PP

´

Dk ě m : sp
pmq

k ď α
¯

(127)

“ PP

␣

Dk ě m : 1 ´ Ψ
`

kpµ2
k{pσ2

k ´ logpk{mq
˘

ď α
(

(128)

“ PP

␣

Dk ě m : Ψ
`

kpµ2
k{pσ2

k ´ logpk{mq
˘

ě 1 ´ α
(

(129)

“ PP

`

Dk ě m : kpµ2
k{pσ2

k ´ logpk{mq ě Ψ´1p1 ´ αq
˘

(130)

“ PP

ˆ

sup
kěm

␣

kpµ2
k{pσ2

k ´ logpk{mq
(

ě Ψ´1p1 ´ αq

˙

. (131)

Recalling that x ÞÑ Ψpxq is a bijection between Rě0 and r0, 1q and invoking Step 1, we have the
desired result:

lim
mÑ8

sup
PPP0

sup
αPp0,1q

∣∣∣PP

´

Dk ě m : sp
pmq

k ď α
¯

´ α
∣∣∣ “ 0, (132)
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completing the justification for sp
pmq

k . Moving on to sC
pmq

k pαq, we have for any P P P and any α P p0, 1q

that

PP

´

Dk ě m : EP pXq R sC
pmq

k pαq

¯

(133)

“ PP

´

Dk ě m : EP pXq R

´

pµk ˘ pσk

a

rΨ´1p1 ´ αq ` logpk{mqs{k
¯¯

(134)

“ PP

˜

Dk ě m :

∣∣∣∣∣ k
ÿ

i“1

pXi ´ EP pXqq

∣∣∣∣∣ ě pσk

a

krΨ´1p1 ´ αq ` logpk{mqs

¸

(135)

“ PP

`

Dk ě m : S2
k{pσ2

kk ´ logpk{mq ě Ψ´1p1 ´ αq
˘

(136)

“ PP

ˆ

sup
kěm

␣

S2
k{pσ2

kk ´ logpk{mq
(

ě Ψ´1p1 ´ αq

˙

, (137)

and thus we have that

lim
mÑ8

sup
PPP

sup
αPp0,1q

∣∣∣PP

´

Dk ě m : EP pXq R C
pmq

k pαq

¯

´ α
∣∣∣ “ 0 (138)

via the same reasoning as was used for the anytime p-value. This completes the proof.

A.4 Proof of Proposition 4.1

Proposition 4.1 (Hardness of anytime-valid conditional independence testing). Suppose pXn, Yn, Znq8
n“1

are r0, 1s3-valued triplets on the probability spaces pΩ,F ,P‹q where P‹ consists of all distributions sup-
ported on r0, 1s3. Let P‹

0 Ď P‹ be the subset of distributions satisfying the conditional independence

null H0 and denote P‹
1 :“ P‹zP‹

0 . Then for any potentially randomized test psΓ
pmq

k q8
k“m,

sup
PPP‹

1

lim sup
mÑ8

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

ď lim sup
mÑ8

sup
PPP‹

0

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

. (51)

In other words, no P‹
0 -uniform anytime-valid test can have power against any alternative in P‹

1 at
any tm,m ` 1, . . . u-valued stopping time no matter how large m is.

Proof. Suppose for the sake of contradiction that there exists a potentially randomized test psΓ
pmq

k q8
k“m

so that for some α P p0, 1q, we have both

lim sup
mÑ8

sup
PPP‹

0

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

ď α (139)

and
sup
PPP‹

1

lim sup
mÑ8

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

ą α. (140)

Then there must exist ε ą 0 so that we can always find m1 arbitrarily large and nevertheless satisfy

sup
PPP‹

1

PP

´

Dk ě m1 : sΓ
pm1q

k “ 1
¯

ą α ` ε. (141)

Furthermore, by (139), there exists m0 ě 1 large enough so that for all m ě m0,

sup
PPP‹

0

PP

´

Dk ě m : sΓ
pmq

k “ 1
¯

ă α ` ε. (142)

In particular, choose some m1 ě m0 so that (141) holds. Notice that the events

AM :“ tsΓ
pm1q

k “ 1 for some m1 ď k ď Mu (143)
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are nested for M “ m1,m1 ` 1, . . . and that AM Ñ A :“ tDk ě m1 : sΓ
pm1q

k “ 1u as M Ñ 8.
Consequently, there must exist some M‹ such that

sup
PPP‹

1

PP

ˆ

max
m1ďkďM‹

sΓ
pm1q

k “ 1

˙

ą α ` ε. (144)

On the other hand, notice that by virtue of being a P‹
0 -uniform anytime valid test and the fact that

m1 ě m0, we have that maxm1ďkďM‹ sΓ
pm1q

k uniformly controls the type-I error under P‹
0 , i.e.

sup
PPP‹

0

PP

ˆ

max
m1ďkďM‹

sΓ
pm1q

k “ 1

˙

ď sup
PPP‹

0

PP

´

Dk ě m1 : sΓ
pm1q

k “ 1
¯

ă α ` ε. (145)

Combining the above with the hardness result of Shah and Peters [38, Theorem 2] applied to the test

maxm1ďkďM‹ sΓ
pm1q

k , we have that

sup
PPP‹

1

PP

ˆ

max
m1ďkďM‹

sΓ
pm1q

k “ 1

˙

ă α ` ε, (146)

contradicting (144), and thus completing the proof of Proposition 4.1.

A.5 Proof of Theorem 4.2

Theorem 4.2 (P0-uniform type-I error control of the SeqGCM). Suppose pXi, Yi, Ziq
8
i“1 are RˆRˆ

Rd-valued triplets defined on the probability spaces pΩ,F ,Pq and let P0 Ď P be a collection of distri-
butions in P satisfying the conditional independence null H0 and Assumption SeqGCM-1, SeqGCM-2,
and GCM-3. Define

spGCM
k,m :“ 1 ´ Ψ

`

kpĞGCMkq2 ´ logpk{mq
˘

. (58)

Then pspGCM
k,m q8

k“m forms a P0-uniform anytime p-value for the conditional independence null:

lim
mÑ8

sup
PPP0

sup
αPp0,1q

∣∣PP

`

Dk ě m : spGCM
k,m ď α

˘

´ α
∣∣ “ 0. (59)

Before proceeding with the proof, notice that the estimated residual Ri can be written as

Ri “ ξi ` bi ` νi (147)

where ξi :“ ξxi ¨ ξyi is a true product residual with

ξxi :“ tXi ´ µxpZiqu and ξyi :“ tYi ´ µypZiqu, (148)

bi is a product regression error term given by

bi :“ tpµx
i pZiq ´ µxpZiqu tpµy

i pZiq ´ µypZiqu , (149)

and νi :“ νx,yi ` νy,xi is a cross-term where

νx,yi :“ tpµx
i pZiq ´ µxpZiqu ξyi , and (150)

νy,xi :“ tpµy
i pZiq ´ µypZiqu ξxi . (151)

Furthermore, define their averages as sbn :“ 1
n

řn
i“1 bi and similarly for sνx,yn , sνy,xn , and sξn. We may at

times omit the argument pZiq from pµx
i pZiq ” pµx

i or µxpZiq ” µx etc. when it is clear from context.
With these shorthands in mind, we are ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Note that by some simple algebraic manipulations, it suffices to show that

supkěm

!

kĞGCM
2
k ´ logpk{mq

)

converges P0-uniformly to the Robbins-Siegmund distribution asm Ñ 8.

Begin by writing ĞGCMn as

ĞGCMn :“
1

npσ2
n

n
ÿ

i“1

Ri (152)

” pσ´1
n

`

sξn ` sνn `sbn
˘

(153)

and through a direct calculation, notice that our squared GCM statistic can be written as

ĞGCM
2
n “

sξ2n ` 2sξnpsνn `sbnq ` psνn `sbnq2

pσ2
n

(154)

“
sξ2n
pσ2
n

loomoon

piq

`
2sξnpsνn `sbnq

pσ2
n

looooooomooooooon

piiq

`
psνn `sbnq2

pσ2
n

looooomooooon

piiiq

. (155)

In the discussion to follow, we analyze these three terms separately (in Steps 1, 2, and 3, respectively)
and combine them to yield the desired result in Step 4.

Step 1: Analyzing piq. In Lemma A.1, we show that under the assumptions of Theorem 4.2, the
estimator pσ2

n :“ 1
n

řn
i“1 R

2
i is P0-uniformly consistent for Varpξq ” Epξ2q at a rate faster than 1{ log n,

meaning
pσ2
n ´ Varpξq “ soP0

p1{ log nq. (156)

Invoking Assumption GCM-3, let
¯
σ2 be a uniform lower bound on the variance. Then, for any P P P0,

piq ”
sξ2n
pσ2
n

(157)

“
sξ2n

σ2
P ` soP0

p1{ log nq
(158)

“
sξ2n

σ2
P ¨ p1 ` σ´2

P ¨ soP0
p1{ log nqq

(159)

“
sξ2n

σ2
P ¨ p1 `

¯
σ´2 ¨ soP0

p1{ log nqq
(160)

“
sξ2n

σ2
P ¨ p1 ` soP0

p1{ log nqq
. (161)

The final form of piq above will be used later in Step 4 of the proof.

Step 2: Analyzing piiq. In Lemmas A.2 and A.3, we show that under the assumptions of Theo-
rem 4.2, sbn “ soP0

p1{
?
n log log nq and sνn “ soP0

p1{
?
n log log nq, respectively. Recall that pσ2

n´Epξ2q “

soP0
p1{ log nq by Lemma A.1. Furthermore, we have by the uniform law of the iterated logarithm in

Corollary 5.3 that sξn “ sOP0p
a

log log n{nq. Combining these four convergence results together with
the calculus outlined in Lemma 3.1, we have

piiq “
2sξn ¨ psνn `sbnq

pσ2
n

(162)

“
sOP0p

a

log log n{nq ¨ soP0p1{
?
n log log nq

¯
σ2 ¨ p1 ` soP0

p1qq
(163)

“ soP0
p1{nq. (164)
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Step 3: Analyzing piiiq. Again by Lemmas A.2 and A.3 and the calculus of Lemma 3.1, we have
that

piiiq ď

∣∣∣∣ psνn `sbnq2

pσ2
n

∣∣∣∣ (165)

“

∣∣∣∣ soP0
p1{nq

¯
σ2 ¨ p1 ` soP0

p1qq

∣∣∣∣ (166)

“ soP0p1{nq. (167)

Step 4: Putting piq–piiiq together. Writing out ĞGCM
2
n and noting the forms of piq, piiq, and piiiq

displayed above, we have that for any P P P0,

ĞGCM
2
n “

sξ2n
pσ2
n

loomoon

piq

`
2sξnpsνn `sbnq

pσ2
n

looooooomooooooon

piiq

`
psνn `sbnq2

pσ2
n

looooomooooon

piiiq

(168)

“
sξ2n{σ2

P

1 ` soP0
p1{ log nq

` soP0p1{nq. (169)

Similar to the proof of Theorem 3.3, let γn be the 1 ` soP0
p1{ log nq denominator of the first term

above. Then for any P P P0 and any x ě 0,

PP

ˆ

sup
kěm

!

kĞGCM
2
k ´ logpk{mq

)

ď x

˙

(170)

“ PP

ˆ

sup
kěm

"

k

ˆ

sξ2k{σ2
P

γk
` so

pkq

P0
p1q

˙

´ logpk{mq

*

ď x

˙

(171)

“ PP

ˆ

sup
kěm

"

k

γk

´

sξ2k{σ2
P ` γk ¨ so

pkq

P0
p1q ´ γk logpk{mq

¯

*

ď x

˙

(172)

“ PP

˜

sup
kěm

#

k

1 ` so
pkq

P0
p1q

´

sξ2k{σ2
P ` so

pkq

P0
p1q ´ logpk{mq

¯

+

ď x

¸

, (173)

and hence similar to the proof of Theorem 3.3, we apply Proposition 2.1, Lemma B.4, and Lemma B.5
in succession to arrive at the desired result:

lim
mÑ8

sup
PPP0

sup
xě0

∣∣∣PP

´

Dk ě m : kĞGCM
2
k ´ logpk{mq ě x

¯

´ r1 ´ Ψpxqs

∣∣∣ “ 0, (174)

which completes the proof of Theorem 4.2.

Lemma A.1 (P0-uniformly strongly consistent variance estimation). Let pσ2
n be the sample variance

of Ri:

pσ2
n :“

1

n

n
ÿ

i“1

R2
i ´

˜

1

n

n
ÿ

i“1

Ri

¸2

. (175)

Then,

pσ2
n ´ Epξ2q “ soP0

ˆ

1

log n

˙

. (176)
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Proof of Lemma A.1. First, consider the following decomposition:

R2
i “ rξxi ξ

y
i ` ξxi tµy ´ pµy

i u ` ξyi tµx ´ pµx
i u ` ppµx

i ´ µxq ppµy
i ´ µyqs

2
(177)

“ ξ2i ` (178)

2pξxi q2ξyi tµy ´ pµy
i u ` 2pξyi q2ξxi tpµx

i ´ µxu
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Ii

` (179)

4ξi tµx ´ pµx
i u tµy ´ pµy

i u
loooooooooooooomoooooooooooooon

IIi

` (180)

2ξxi tµy ´ pµy
i u

2
tµx ´ pµx

i u ` 2ξyi tµx ´ pµx
i u

2
tµy ´ pµy

i u
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

IIIi

` (181)

tµx ´ pµx
i u

2
tµy ´ pµy

i u
2

looooooooooooomooooooooooooon

IVi

. (182)

Letting sIn :“ 1
n

řn
i“1 Ii and similarly for sIIn, ĎIIIn, and ĎIVn, we have that

pσ2
n “

1

n

n
ÿ

i“1

ξ2i `sIn ` sIIn ` ĎIIIn ` ĎIVn ´ p sRnq2 (183)

and we will separately show that sIn, sIIn, ĎIIIn, ĎIVn, and p sRnq2 are all soP0
p1{ log nq.

Step 1: Convergence of sIn. By the Cauchy-Schwarz inequality, we have that

1

n

n
ÿ

i“1

pξxi q2ξyi tµy ´ pµy
i u ď

g

f

f

e

1

n

n
ÿ

i“1

pξxi ξ
y
i q2

loooooooomoooooooon

p‹q

¨

g

f

f

e

1

n

n
ÿ

i“1

pξxi q2 tµy ´ pµy
i u

2

loooooooooooooomoooooooooooooon

p:q

. (184)

Now, writing ξi :“ ξxi ξ
y
i , notice that

p‹q ”
1

n

n
ÿ

i“1

ξ2i (185)

ď

˜

1

n

n
ÿ

i“1

ξ2i ´ Epξ2i q

¸

` Epξ2i q (186)

“ soP0
p1q ` E

”

`

|ξi|
2`δ

˘

2
2`δ

ı

(187)

ď soP0
p1q `

`

E|ξi|
2`δ

˘

2
2`δ (188)

ď sOP0p1q, (189)

where the last line follows from Assumption GCM-3. Moreover, by Lemma A.4, we have that p:q “

soP0p1{ log nq, and hence by Lemma 3.1, sIn ď p‹q ¨ p:q “ soP0p1{ log nq.

Step 2: Convergence of sIIn. Again by Cauchy-Schwarz, we have

1

n

n
ÿ

i“1

ξxi ξ
y
i tµx ´ pµx

i utµy ´ pµy
i u ď

g

f

f

e

1

n

n
ÿ

i“1

pξxi q2tµy ´ pµy
i u2 ¨

g

f

f

e

1

n

n
ÿ

i“1

pξyi q2tµx ´ pµx
i u2, (190)

and hence again by Lemma A.4, we have sIIn “ soP0
p1{ log nq.
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Step 3: Convergence of ĎIIIn. Following Shah and Peters [38, Section D.1] and using the inequality
2|ab| ď a2 ` b2 for any a, b P R, we have

2

n

n
ÿ

i“1

ξxi tµy ´ pµy
i u2tµx ´ pµx

i u (191)

ď
1

n

n
ÿ

i“1

pξxi q2tµy ´ pµy
i u2 `

1

n

n
ÿ

i“1

tµy ´ pµy
i u2tµx ´ pµx

i u2, (192)

and hence by Lemmas A.4 and A.2, we have ĎIIIn “ soP0p1{ log nq.

Step 4: Convergence of ĎIVn. First, notice that

ĎIVn :“
1

n

n
ÿ

i“1

tµx ´ pµx
i u

2
¨ tµy ´ pµy

i u
2

(193)

ď n ¨
1

n

n
ÿ

i“1

tµx ´ pµx
i u

2
¨
1

n

n
ÿ

i“1

tµy ´ pµy
i u

2
. (194)

Applying Lemmas A.2 and 3.1, we have that ĎIVn “ soP0p1{ log nq.

Step 5: Convergence of p sRnq2 to 0. We will show that p sRnq2 “ soP0p1{ log nq. Using the decom-
position in (147) at the outset of the proof of Theorem 4.2, we have that

sRn :“ sξn `sbn ` sνn. (195)

Therefore, we can write its square as

p sRnq2 “ psξnq2 ` 2sξn ¨
`

sbn ` sνn
˘

` psbn ` sνnq2. (196)

By Assumption GCM-3, we have that there exists a δ ą 0 so that supPPP0
EP |ξ|2`δ ă 8. By the de

la Vallée-Poussin criterion for uniform integrability [9, 19, 7], we have that the p1 ` δqth moment of ξ
is uniformly integrable:

lim
mÑ8

sup
PPP0

EP

`

|ξ|1`δ1t|ξ|1`δ ě mu
˘

“ 0. (197)

By Waudby-Smith et al. [48, Theorem 1], we have that sξn “ soP0

`

n1{p1`δq´1
˘

, and in particular,

sξn “ soP0

´

1{
a

log n
¯

. (198)

Using Lemma 3.1, we observe that
psξnq2 “ soP0

p1{ log nq , (199)

and hence it now suffices to show that sbn ` sνn “ soP0
p1{ log nq. Indeed, by Lemmas A.2 and A.3, we

have that sbn “ soP0
p1{

?
n log log nq and sνn “ soP0

p1{
?
n log log nq, respectively. Putting these together,

we have
p sRnq2 “ psξnq2 ` 2sξn ¨

`

sbn ` sνn
˘

` psbn ` sνnq2 “ soP0
p1{ log nq, (200)

completing the argument for Step 5.
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Step 6: Convergence of pσ2
n to Epξ2q. Putting Steps 1–5 together, notice that

pσ2
n ´ Epξ2q “

1

n

n
ÿ

i“1

ξ2i ´ Epξ2q `sIn ` sIIn ` ĎIIIn ` ĎIVn ´ p sRnq2 (201)

“
1

n

n
ÿ

i“1

ξ2i ´ Epξ2q ` soP0p1{ log nq. (202)

Now, since supPPP EP |ξ2|1`δ{2 ă 8, ξ2 we have by the de la Vallée criterion for uniform integrability
that ξ2 has a P0-uniformly integrable p1 ` δ{4qth moment meaning that

lim
mÑ8

sup
PPP0

EP

”

pξ2q1`δ{41
!

pξ2q1`δ{4 ą m
)ı

“ 0, (203)

and hence by Waudby-Smith et al. [48, Theorem 1(a)], we have that

1

n

n
ÿ

i“1

ξ2i ´ Epξ2q “ soP

´

n1{p1`δ{4q´1
¯

, (204)

and in particular, 1
n

řn
i“1 ξ

2
i ´Epξ2q “ soPp1{ log nq, so that pσ2

n ´Epξ2q “ soPp1{ log nq, completing the
proof.

Lemma A.2 (Convergence of the average bias term). Under Assumption SeqGCM-1, we have that

sbn ”
1

n

n
ÿ

i“1

bi “ soP

´

1{
a

n log logn
¯

. (205)

Proof. Under Assumption SeqGCM-1, we have that

sup
PPP0

}pµx
n ´ µx}L2pP q ¨ }pµy

n ´ µy}L2pP q “ O

¨

˝

1
b

n log2`δ
pnq

˛

‚, (206)

and hence let CP0
ą 0 be a constant depending only on P0 so that

sup
PPP0

}pµx
n ´ µx}L2pP q ¨ }pµy

n ´ µy}L2pP q ď
CP0

b

pn ` 1q log2`δ{2
pn ` 1q log logpn ` 1q

(207)

for all n sufficiently large. Consider the following series for all k ě m for any m ě 3

sup
PPP0

8
ÿ

k“m

EP

∣∣␣
pµx
k´1pZkq ´ µxpZkq

(

¨
␣

pµy
k´1pZkq ´ µypZkq

(
∣∣

a

k{ log log k
(208)

ď sup
PPP0

8
ÿ

k“m

›

›

pµx
k´1 ´ µx

›

›

L2pP q
¨
›

›

pµy
k´1 ´ µy

›

›

L2pP q
a

k{ log log k
(209)

“

8
ÿ

k“m

CP0
b

k log2`δ{2
pkq����log log k ¨

a

k{����log log k
(210)

“

8
ÿ

k“m

CP0

k log1`δ{4
pkq

, (211)

and since pk log1`δ{4
pkqq´1 is summable for any δ ą 0, we have that the above vanishes as m Ñ 8,

hence

lim
mÑ8

sup
PPP0

8
ÿ

k“m

EP

∣∣␣
pµx
k´1pZkq ´ µxpZkq

(

¨
␣

pµy
k´1pZkq ´ µypZkq

(
∣∣

a

k{ log log k
“ 0. (212)
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Applying Waudby-Smith et al. [48, Theorem 2], we have that

sbn ”
1

n

n
ÿ

k“1

␣

pµx
k´1pZkq ´ µxpZkq

(

¨
␣

pµy
k´1pZkq ´ µypZkq

(

“ soP0

ˆ

1
?
n log log n

˙

, (213)

which completes the proof.

Lemma A.3 (Convergence of average cross-terms). Suppose that for some δ ą 0, and some indepen-
dent Z with the same distribution as Zn,

sup
PPP0

EP

”

ptpµx
npZnq ´ µxpZnquξynq

2
ı

“ O

ˆ

1

plog nq2`δ

˙

. (214)

Then,
1

n

n
ÿ

i“1

νx,yi “ soP0p1{
a

n log log nq, (215)

with an analogous statement holding when x and y are swapped in the above condition and conclusion.

Proof. We will only prove the result for νx,yi but the same argument goes through for νy,xi . Appealing
to (214), let CP0

be a constant so that

sup
PPP

EP

”

ptpµx
npZnq ´ µxpZnquξynq

2
ı

ď
CP0

plog nq2`δ
. (216)

Then notice that for all m sufficiently large

sup
PPP

8
ÿ

k“m

EP

”

ptpµx
kpZkq ´ µxpZkquξykq

2
ı

k{ log log k
(217)

ď sup
PPP

8
ÿ

k“m

CP0

kplog kq2`δ{ log log k
(218)

ď sup
PPP

8
ÿ

k“m

CP0

kplog kq1`δ
(219)

“ 0, (220)

and hence

lim
mÑ8

sup
PPP

8
ÿ

k“m

EP

”

`

tpµx
k´1pZkq ´ µxpZkquξyk

˘2
ı

k{ log log k
“ 0. (221)

By Waudby-Smith et al. [48, Theorem 2], we have that

1

n

n
ÿ

i“1

νx,yi “ soPp1{
a

n log log nq, (222)

completing the proof.

Lemma A.4 (Convergence of average squared cross-terms). Under Assumption SeqGCM-2, we have
that

1

n

n
ÿ

i“1

pνx,yi q2 ”
1

n

n
ÿ

i“1

pξxi q2tµy ´ pµy
i u2 “ soP0

p1{ log nq . (223)

An analogous statement holds with ξxn replaced by ξyn and tµypZnq ´ pµy
npZnqu replaced by tµxpZnq ´

pµx
npZnqu.
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Proof. Using Assumption SeqGCM-2, let CP0
ą 0 be a constant so that

sup
PPP

EP

“

pξxnq2tµypZnq ´ pµy
n´1pZnqu2

‰

ď
CP0

plog nq2`δ
. (224)

Therefore, we have that

lim
mÑ8

sup
PPP0

8
ÿ

k“m

EP

“

pξxk q2tµypZkq ´ pµy
k´1pZkqu2

‰

kplog kq´1
(225)

ď lim
mÑ8

8
ÿ

k“m

CP0

kplog kq2`δ´1
(226)

“ lim
mÑ8

8
ÿ

k“m

CP0

kplog kq1`δ
(227)

“ 0. (228)

Combining the above with Waudby-Smith et al. [48, Theorem 2], we have that

1

n

n
ÿ

i“1

pξxi q2tµy ´ pµy
i pZiqu2 “ soP0

p1{ log nq , (229)

completing the proof.

A.6 Proof of Corollary 5.3

Corollary 5.3 (A P-uniform law of the iterated logarithm). Suppose pXnq8
n“1 are defined on proba-

bility spaces pΩ,F ,Pq where P is a collection of distributions such that

sup
PPP

EP |X ´ EPX|2`δ ă 8 and inf
PPP

VarP pXq ą 0 (70)

for some δ ą 0. Then,

sup
kěn

|
řk

i“1pXi ´ EP pXqq|
a

2VarP pXqk log log k
“ 1 ` soPp1q. (71)

Proof. This is a consequence of our distribution-uniform strong Gaussian coupling given in The-
orem 5.1. Letting µP :“ EP pXq and σP :“

a

VarP pXq to reduce notational clutter, note that by
Theorem 5.1, we have that there exists a construction with a sequence of standard Gaussians Y1, Y2, . . .
such that

n
ÿ

i“1

pXi ´ µP q{σP “

n
ÿ

i“1

Yi ` soPpn1{qplog nq2{qq, (230)

where q :“ 2 ` δ, or more formally that for any ε ą 0,

lim
nÑ8

sup
PPP

PP

˜

Dk ě n :
|
řk

i“1pXi ´ µP q{σP ´
řk

i“1 Yi|

k1{qplog kq2{q
ą ε

¸

“ 0. (231)

Now, by the law of the iterated logarithm, we also have that

sup
ℓěn

|
řℓ

i“1 Yi|
?
2ℓ log log ℓ

“ 1 ` soP p1q, (232)
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for each P P P, and since Y has the same distribution on every element of P P P, the above also
holds with soP p1q replaced by soPp1q. Now, to prove the final result, we have that

lim
nÑ8

sup
PPP

PP

˜

Dk ě n :

∣∣∣∣∣supℓěk

|
řℓ

i“1pXi ´ µP q|
a

2σ2
P ℓ log log ℓ

´ 1

∣∣∣∣∣ ą ε

¸

(233)

ď lim
nÑ8

sup
PPP

PP

˜

Dk ě n :

∣∣∣∣∣supℓěk

#

|
řℓ

i“1pXi ´ µP q{σP ´
řℓ

i“1 Yi|
?
2ℓ log log ℓ

`
|
řℓ

i“1 Yi|
?
2ℓ log log ℓ

+

´ 1

∣∣∣∣∣ ą ε

¸

(234)

ď lim
nÑ8

sup
PPP

PP

˜

Dk ě n :

∣∣∣∣∣supℓěk

#

ε{2 `
|
řℓ

i“1 Yi|
?
2ℓ log log ℓ

+

´ 1

∣∣∣∣∣ ą ε{2

¸

` (235)

lim
nÑ8

sup
PPP

PP

˜

Dk ě n :
|
řk

i“1pXi ´ µP q{σP ´
řk

i“1 Yi|
?
2k log log k

ą ε{2

¸

(236)

ď lim
nÑ8

sup
PPP

PP

˜

Dk ě n :

∣∣∣∣∣supℓěk

#

|
řℓ

i“1 Yi|
?
2ℓ log log ℓ

+

´ 1

∣∣∣∣∣ ą ε{2

¸

` (237)

lim
nÑ8

sup
PPP

PP

˜

Dk ě n :
|
řk

i“1pXi ´ µP q{σP ´
řk

i“1 Yi|

k1{qplog kq2{q
ą ε{2

¸

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

“0

(238)

“ lim
nÑ8

sup
PPP

PP

˜

Dk ě n :

∣∣∣∣∣supℓěk

#

|
řℓ

i“1 Yi|
?
2ℓ log log ℓ

+

´ 1

∣∣∣∣∣ ą ε{2

¸

(239)

“ sup
PPP

lim
nÑ8

PP

˜

Dk ě n :

∣∣∣∣∣supℓěk

#

|
řℓ

i“1 Yi|
?
2ℓ log log ℓ

+

´ 1

∣∣∣∣∣ ą ε{2

¸

(240)

“ 0, (241)

where the second inequality follows from Theorem 5.1 and the third follows from the triangle inequality
and the fact that k1{qplog kq2{q ď 2k log log k for all k sufficiently large. The second-last equality
follows from the fact that the probability does not depend on features of the distribution P and the
last equality follows from the P -pointwise law of the iterated logarithm.

A.7 Proof of Lemma 5.2 and Theorem 5.1

Lemma 5.2 (Strong Gaussian coupling inequality). Let pXnq8
n“1 be independent random variables

on the probability space pΩ,F , P q. Suppose that for some q ě 2, we have EP |Xk ´ EPXk|q ă 8 for
each k P N. Let fp¨q be a positive and increasing function so that

ř8

n“1pnfpnqq´1 ă 8 and

8
ÿ

k“1

EP |Xk ´ EPXk|q{σq
k

kfpkq
ă 8, (68)

where σ2
k :“ VarP pXkq. Then one can construct a probability space prΩ, rF , rP pP qq rich enough to define

p rXn, Ynq8
n“1 where rXn and Xn are equidistributed for each n and pYnq8

n“1 are marginally independent
standard Gaussians so that for any ε ą 0,

P
rP pP q

˜

Dk ě m :

∣∣∣∣∣
řk

i“1p rXi ´ Yiq

k1{qfpkq1{q

∣∣∣∣∣ ą ε

¸

ď
Cq,f

εq

#

8
ÿ

k“2m´1

EP |Xk ´ EPXk|q{σq
k

kfpkq
`

1

2m

2m´1
´1

ÿ

k“1

EP |Xk ´ EPXk|q{σq
k

kfpkq

+

, (69)

where Cq,f is a constant that depends only on q and f .
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First, we need the following result due to Lifshits [27, Theorem 3.3] which is itself a refinement of
an inequality due to Sakhanenko [36].

Lemma A.5 (Sakhanenko-Lifshits inequality). Let X1, X2, ¨ ¨ ¨ : Ω Ñ R be independent mean-zero
random variables on a probability space pΩ,F , P q and let q ě 2. Then one can construct a new

probability space prΩ, rF , rP q rich enough to contain p rXn, Ynq8
n“1 so that pX1, X2, . . . q and p rX1, rX2, . . . q

are equidistributed and pY1, Y2, . . . q are standard Gaussian random variables so that

EP

˜

max
1ďkďn

∣∣∣∣∣ k
ÿ

i“1

Xi{σP pXiq ´

k
ÿ

i“1

Yi

∣∣∣∣∣
¸q

ď Cq

n
ÿ

i“1

EP |Xi|
q

σP pXiq
q

(242)

where Cq is a constant depending only on q.

Notice that σP pXiq “ σ
rP pXiq and EP |Xi|

q “ E
rP |Xi|

q in the above lemma so we may use them
interchangeably.

Proof of the main result

Proof of Lemma 5.2. Throughout the proof, we will use σi in place of σP pXiq whenever the distribu-
tion P is clear from context. We will also let SkpP q and Gk be the partial sums given by

SkpP q :“
k
ÿ

i“1

pXi ´ EP pXiqq{σP pXiq and Gk :“
k
ÿ

i“1

Yi. (243)

For any P P P, we appeal to Lemma A.5 and let prΩ, rF , rP q be a construction so that for any n,

E
rP

ˆ

max
1ďkďn

|Sk ´ Gk|

˙q

ď Cq

n
ÿ

k“1

EP |Xk ´ EP pXkq|q

σP pXkqq
, (244)

By Markov’s inequality, we have that for any z ą 0,

P
rP

ˆ

max
1ďkďn

|SkpP q ´ Gk| ą z

˙

ď Cq

řn
k“1 EP |Xk ´ EP pXkq|q{σq

k

zq
, (245)

noting that the right-hand side does not depend on the new probability space, but only on the original
P . Defining ∆k ” ∆kpP q :“ SkpP q ´ Gk, we have that for any k and n,

max
Dpn´1qďkăDpnq

t∆ku “ max
Dpn´1qďkăDpnq

␣

∆k ´ ∆Dpn´1q´1

(

looooooooooooooooooooomooooooooooooooooooooon

paq

`∆Dpn´1q´1
looooomooooon

pbq

, (246)

where Dpnq :“ 2n are exponentially spaced demarcation points that will become important in the
arguments to follow. We will proceed by separately bounding paq and pbq time-uniformly with high-
probability.

Step 1: Bounding paq time-uniformly with high probability. Let ak :“ k1{qfpkq1{q. By (245)

applied to ∆k ´ ∆Dpn´1q´1 ”
řk

i“Dpn´1qpXi ´ EP pXiqq{σi with z :“ εaDpn´1q, we have that

P
rP

ˆ

max
Dpn´1qďkăDpnq

t∆k ´ ∆Dpn´1q´1u ą εaDpn´1q

˙

(247)

ď Cq

Dpnq´1
ÿ

k“Dpn´1q

EP |Xk ´ EP pXkq|q{σq
k

aqDpn´1q
εq

(248)

ď ε´qCq

Dpnq´1
ÿ

k“Dpn´1q

EP |Xk ´ EP pXkq|q{σq
k

aqk
. (249)
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Union bounding over n “ m,m ` 1, . . . we have that

P
rP

`

Dn ě m and k P tDpn ´ 1q, . . . ,Dpnq ´ 1u : t∆k ´ ∆Dpn´1q´1u ą εak
˘

(250)

ď P
rP

ˆ

Dn ě m : max
Dpn´1qďkăDpnq

t∆k ´ ∆Dpn´1q´1u ą εaDpn´1q

˙

(251)

ď

8
ÿ

n“m

ε´qCq

Dpnq´1
ÿ

k“Dpn´1q

EP |Xk ´ EP pXkq|q{σq
k

aqk
. (252)

ď ε´qCq

8
ÿ

n“Dpm´1q

EP |Xk ´ EP pXkq|q

aqk
. (253)

(254)

Step 2: Bounding pbq time-uniformly with high probability. Applying (245) to ∆Dpn´1q´1

with z “ εaDpn´1q, we have that

P
rP

`

|∆Dpn´1q´1| ą εaDpn´1q

˘

(255)

ď Cq

Dpn´1q´1
ÿ

k“1

EP |Xk ´ EP pXkq|q{σq
k

aqDpn´1q
εq

(256)

ď
Cq

εqaqDpn´1q

Dpn´1q´1
ÿ

k“1

EP |Xk ´ EP pXkq|q{σq
k. (257)

Union bounding again over n “ m,m ` 1, . . . , we have

P
rP

`

Dn ě m and k P tDpn ´ 1q, . . . ,Dpnq ´ 1u : |∆Dpn´1q´1| ą εak
˘

(258)

ď P
rP

`

Dn ě m and k P tDpn ´ 1q, . . . ,Dpnq ´ 1u : |∆Dpn´1q´1| ą εaDpn´1q

˘

(259)

“ P
rP

`

Dn ě m : |∆Dpn´1q´1| ą εaDpn´1q

˘

(260)

ď

8
ÿ

n“m

Cq

εqaqDpn´1q

Dpn´1q´1
ÿ

k“1

EP |Xk ´ EP pXkq|q{σq
k. (261)

Step 3: Union bounding over the results from Steps 1 and 2. Putting Steps 1 and 2 together,
we have the following time-uniform crossing inequality for |∆k|:

P
rP pDk ě m : |∆k| ą 2εakq (262)

ď P
rP pDk ě m : |∆k ´ ∆Dpn´1q´1| ` |∆Dpn´1q´1| ą ak ` akq (263)

ď ε´qCq

»

–

8
ÿ

n“Dpm´1q

EP |Xk ´ EP pXkq|q

aqk
`

8
ÿ

n“m

1

aqDpn´1q

Dpn´1q´1
ÿ

k“1

EP |Xk ´ EP pXkq|q

σq
k

fi

fl (264)

ď ε´qCq

»

–

8
ÿ

n“Dpm´1q

EP |Xk ´ EP pXkq|q

aqk
`

8
ÿ

n“m

1

aqDpn´1q

Dpn´1q´1
ÿ

k“1

EP |Xk ´ EP pXkq|q

σq
k

fi

fl . (265)
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Letting ρqk :“ EP |Xk ´ EP pXkq|q and further simplifying the above expression so that it does not
depend on the demarcation points Dpnq, we have

P
rP pDk ě m : |∆k| ą 2εakq (266)

ď ε´qCq

»

–

8
ÿ

k“Dpm´1q

ρqk{σq
k

aqk
`

8
ÿ

n“m

1

aqDpn´1q

Dpn´1q´1
ÿ

k“1

ρqk{σq
k

fi

fl (267)

ď ε´qCq

»

–

8
ÿ

k“Dpm´1q

ρqk{σq
k

kfpkq
`

8
ÿ

n“m

1

Dpn ´ 1qfpDpn ´ 1qq

Dpn´1q´1
ÿ

k“1

ρqk{σq
k

fi

fl (268)

ď ε´qCq

»

–

8
ÿ

k“Dpm´1q

ρqk{σq
k

kfpkq
`

8
ÿ

n“m

1

Dpn ´ 1q

Dpn´1q´1
ÿ

k“1

ρqk{σq
k

fpDpkqq

fi

fl (269)

“ ε´qCq

»

–

8
ÿ

k“2m´1

ρqk{σq
k

kfpkq
`

8
ÿ

n“m

1

2n´1

Dpn´1q´1
ÿ

k“1

ρqk{σq
k

fp2kq

fi

fl (270)

ď ε´qCq

«

8
ÿ

k“2m´1

ρqk{σq
k

kfpkq
`

8
ÿ

n“m

C´1
f

2n´1

2n
ÿ

k“1

ρqk{σq
k

kfpkq

ff

, (271)

where (268) follows from the definition of ak :“ k1{qfpkq1{q, (269) follows from the fact that f is
increasing and that Dpkq :“ 2k, (270) follows from the definition of Dp¨q, and (271) from the fact that
fpkq ě Cf logpkq for all k ě 1 and some constant Cf depending only on f (if this were not true, then
ř8

k“1rkfpkqs´1 would not be summable).

The final result follows from observing that
ř2n

k“1 ρ
q
k{pσq

kkfpkqq ď
ř8

k“1 ρ
q
k{pσq

kkfpkqq and absorb-
ing constants only depending on q and f into Cq,f :

P
rP pDk ě m : |∆k| ą εakq (272)

ď 2qε´qCq

«

8
ÿ

k“2m´1

ρqk{σq
k

kfpkq
`

8
ÿ

n“m

C´1
f

2n´1

2n
ÿ

k“1

ρqk{σq
k

kfpkq

ff

(273)

ď 2qε´qCqC
´1
f

»

–Cf

8
ÿ

k“2m´1

ρqk{σq
k

kfpkq
` 2´m

¨

˝

2m´1
´1

ÿ

k“1

ρqk{σq
k

kfpkq
`

8
ÿ

k“2m´1

ρqk{σq
k

kfpkq

˛

‚

fi

fl (274)

“ 2qε´qCqC
´1
f

»

–pCf ` 2´mq

8
ÿ

k“2m´1

ρqk{σq
k

kfpkq
`

1

2m

2m´1
´1

ÿ

k“1

ρqk{σq
k

kfpkq

fi

fl (275)

ď ε´qCq,f

»

–

8
ÿ

k“2m´1

ρqk{σq
k

kfpkq
`

1

2m

2m´1
´1

ÿ

k“1

ρqk{σq
k

kfpkq

fi

fl , (276)

which completes the proof

Let us now show how Theorem 5.1 is a consequence of the above.

Theorem 5.1 (Distribution-uniform strong Gaussian approximation). Let pXnq8
n“1 be independent

and identically distributed random variables defined on the collection of probability spaces pΩ,F ,Pq

with means µP :“ EP pXq and variances σ2
P :“ EP pX´µP q2. If X has q ą 2 uniformly upper-bounded

moments, and a uniformly positive variance, i.e.

sup
PPP

EP |X ´ µP |q ă 8 and inf
PPP

σ2
P ą 0, (66)
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then there exists a construction with independent standard Gaussians pYnq8
n“1 „ Np0, 1q so that∣∣∣∣∣ n

ÿ

i“1

Xi ´ µP

σP
´

n
ÿ

i“1

Yi

∣∣∣∣∣ “ soPpn1{q log2{q
pnqq. (67)

Proof. The proof of Theorem 5.1 amounts to analyzing the P-uniform tail behavior of the probability
bound in Lemma 5.2. Indeed, for each P P P, let prΩ, sF , rP pP qq be the construction that yields

P
rP

˜

Dk ě m :

∣∣∣∣∣
řk

i“1pXi ´ µP q{σP ´
řk

i“1 Yi

kfpkq

∣∣∣∣∣ ą ε

¸

(277)

ď ε´qCq,f

»

–

8
ÿ

k“2m´1

ρqP {σq
P

kfpkq
`

1

2m

2m´1
´1

ÿ

k“1

ρqP {σq
P

kfpkq

fi

fl , (278)

where ρqP :“ EP |X ´ EPX|q and σ2
P :“ EP pX ´ EP q2. Let sρ ă 8 be the uniform upper bound so

that supPPP ρqP ď sρq and
¯
σ2 ą 0 be the uniform lower bound on the variance so that infPPP σ2

P ě
¯
σ2.

Replacing the above finite sum by its infinite extension and taking suprema over P on both sides, we
have that

sup
PPP

P
rP pP q

˜

Dk ě m :

∣∣∣∣∣
řk

i“1pXi ´ µP q{σP ´
řk

i“1 Yi

kfpkq

∣∣∣∣∣ ą ε

¸

(279)

ď
sρqCq,f

¯
σqεq

»

—

—

—

—

–

8
ÿ

k“2m´1

1

kfpkq
looooooomooooooon

p‹q

`
1

2m

8
ÿ

k“1

1

kfpkq
looooooomooooooon

p:q

fi

ffi

ffi

ffi

ffi

fl

. (280)

Now, p‹q Ñ 0 and p:q Ñ 0 as m Ñ 8, both of which follow from the fact that 1{rkfpkqs is summable.
Instantiating the above for fpkq :“ log2pkq completes the proof.

B Additional theoretical discussions and results

B.1 The Robbins-Siegmund distribution

Fundamental to this paper is a probability distribution that describes the supremum of a transformed
Wiener process with a delayed start (see Lemma B.1). As far as we can tell, the distribution was
first (implicitly) discovered by Robbins and Siegmund [33] and as such we refer to it as the Robbins-
Siegmund distribution. In this section, we provide its cumulative distribution function (CDF) Ψ and
show how the suprema of scaled Wiener processes have this distribution Ψ. The Robbins-Siegmund
distribution has also been implicitly used in Waudby-Smith et al. [47] and Bibaut et al. [4] for the
sake of P -pointwise anytime-valid inference.

Definition B.1 (The Robbins-Siegmund distribution). We say that a nonnegative random variable
R follows the Robbins-Siegmund (R-S) distribution if its CDF is given by

Ψprq :“ 1 ´ 2
“

1 ´ Φp
?
rq `

?
rϕp

?
rq
‰

; r ě 0, (281)

where Φ and ϕ are the CDF and density of a standard Gaussian, respectively.

The following lemma demonstrates how the supremum of a transformed Wiener process follows
the Robbins-Siegmund distribution.
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Lemma B.1. Let pW ptqqtě0 be a standard Wiener process and define

R :“ sup
tě1

"

W ptq2

t
´ log t

*

. (282)

Then, R follows the Robbins-Siegmund distribution given in Definition B.1.

Proof. Rather than derive its CDF for a given r, we will derive the survival function PpR ě a2q for
any a ě 0, showing that PpR ě a2q “ 1´Ψpa2q as given in Definition B.1, which will yield the desired
result.

PpR ě a2q “ P
`

Dt ě 1 : W ptq2{t ´ log t ě a2
˘

(283)

“ P
´

Dt ě 1 : |W ptq| ě
a

t ra2 ` log ts
¯

(284)

“ 2r1 ´ Φpaq ` aϕpaqs ” 1 ´ Ψpa2q. (285)

where the last line follows from Robbins and Siegmund [33] but with their value of τ set to 1. Alterna-
tively, a different proof found in Waudby-Smith et al. [47, Lemma A.14] yields the desired result.

The following lemma demonstrates that appropriately scaled discrete Gaussian partial sums con-
verge to the Robbins-Siegmund distribution.

Lemma B.2 (Transformed Gaussian partial sums converge to the Robbins-Siegmund distribution).
Let Gk be a sum of iid Gaussian random variables with mean zero and variance σ2. Then,

sup
kěm

"

G2
k

kσ2
´ logpk{mq

*

d
ÝÑ Ψ as m Ñ 8. (286)

Proof. Since Gk is a sum of iid Gaussian random variables with mean zero and variance σ2, we
have by Komlós, Major, and Tusnády [22, 23] that Gk “ σW pkq ` sOP plog kq where pW ptqqtě0 is
a standard Wiener process. We will now show that supkěn

␣

G2
k{kσ2 ´ logpk{nq

(

converges to the
Robbins-Siegmund distribution.

sup
kěn

"

G2
k

kσ2
´ logpk{nq

*

(287)

“ sup
kPrn,8q

"

pW pkq ` Oplog kqq2

kσ2
´ logpk{nq ` sOP

ˆ

logpkq
?
k log log k

k ` 1

˙

` O

ˆ

log

„

n ` 1

n

ȷ˙*

(288)

“ sup
kPrn,8q

"

W pkq2

kσ2
` sOP

ˆ

log k

k
¨
a

k log log k

˙

´ logpk{nq

*

` soP p1q (289)

“ sup
kPrn,8q

"

W pkq2

kσ2
´ logpk{nq

*

` soP p1q (290)

“ sup
tnPrn,8q

␣

W ptnq2{tnσ2 ´ logptn{nq
(

` soP p1q (291)

“ sup
tPr1,8q

␣

nW ptq2{tnσ2 ´ logptq
(

` soP p1q (292)

“ sup
tPr1,8q

␣

W ptq2{tσ2 ´ logptq
(

` soP p1q, (293)

where (288) results from the discrete-to-continuous overshoot in 1{k and logpk{nq when taking a
supremum over k P rn,8q instead of over k P tn, n ` 1, . . . u and (292) follows from elementary
properties of the Wiener process. It follows that

sup
kěn

"

G2
k

kσ2
´ logpk{nq

*

d
ÝÑ Ψ as n Ñ 8. (294)
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The following lemma establishes that the Robbins-Siegmund distribution has a Lipschitz CDF.

Lemma B.3. The cumulative distribution function Ψprq of a Robbins-Siegmund-distributed random
variable is L-Lipschitz with L ď 1{4. In other words,

sup
rě0

∣∣∣∣ ddrΨprq

∣∣∣∣ ď 1{4. (295)

Proof. Clearly, it suffices to show that 1 ´ Ψprq is L-Lipschitz. Defining fprq :“ 1 ´ Ψprq, we have
that

fprq :“ 2p1 ´ Φp
?
rq `

?
rϕp

?
rqq (296)

“ 2 ´ 2Φp
?
rq ` 2

?
rϕp

?
rq. (297)

A direct calculation reveals that

f 1prq “ ´ϕp
?
rq

1
?
r

`
1

?
r
ϕp

?
rq `

?
rϕ1p

?
rq

1
?
r

(298)

“ ϕ1p
?
rq (299)

“
´

?
r

?
2π

exp t´r{2u , (300)

from which it is easy to check that suprě0 |f 1prq| ď 1{4, completing the proof.

B.2 Uniform convergence of perturbed random variables

Throughout many of our proofs, we rely on facts about convergence of random variables under P-
uniformly small perturbations. Similar results are common in the proofs of P-uniform fixed-n cen-
tral limit theorems but are only discussed in the context of Gaussian limiting distributions and for
time-pointwise convergence. We show here that similar results hold for Robbins-Siegmund limiting
distributions (in fact, for any continuous and Lipschitz distribution) under time- and P-uniformly
small perturbations to random variables inside suprema over time.

Lemma B.4 (Time-uniform closure under additive soPp1q-perturbations). Let ppAk,mq8
k“mq

8

m“1 be a
doubly indexed sequence of random variables on pΩ,F ,Pq. Let Z „ F pzq with where the CDF F is
L-Lipschitz and does not depend on P P P. Suppose that

lim
mÑ8

sup
PPP

sup
zPR

∣∣∣∣PP

ˆ

sup
kěm

tAk,mu ě z

˙

´ PP pZ ě zq

∣∣∣∣ “ 0. (301)

If Rn “ soPp1q, then

lim
mÑ8

sup
PPP

sup
zPR

∣∣∣∣PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

´ PP pZ ě zq

∣∣∣∣ “ 0. (302)

Proof. Let ε ą 0 be any positive constant. Using (301) and the fact that Rn “ soPp1q, let M be large
enough so that for all m ě M , we have

sup
PPP

sup
zPR

∣∣∣∣PP

ˆ

sup
kěm

tAk,mu ě z

˙

´ PP pZ ě zq

∣∣∣∣ ă ε (303)

and so that

sup
PPP

sup
zPR

PP

ˆ

sup
kěm

|Rk| ě ε

˙

ă ε. (304)
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Then, writing out PP psupkěmtAk,m ` Rku ě zq for any P P P, z P R, and m ě M , we find the
following upper bound,

PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

(305)

“ PP

ˆ

sup
kěm

tAk,m ` Rku ě z
ˇ

ˇ

ˇ
sup
kěm

|Rk| ă ε

˙

PP p|Rn| ă εq
looooooomooooooon

ď1

` (306)

PP

ˆ

sup
kěm

tAk,m ` Rku ě z
ˇ

ˇ

ˇ
sup
kěm

|Rk| ě ε

˙

PP

ˆ

sup
kěm

|Rk| ě ε

˙

looooooooooomooooooooooon

ďε

(307)

ď PP

ˆ

sup
kěm

tAk,mu ě z ´ ε

˙

` ε, (308)

and via a similar argument, the corresponding lower bound,

PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

(309)

ě PP

ˆ

sup
kěm

tAk,mu ě z ` ε

˙

´ ε. (310)

Using first the upper bound, we thus have that

PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

´ PP pZ ě zq (311)

ď PP

ˆ

sup
kěm

tAk,mu ě z ´ ε

˙

´ PP pZ ě zq ` ε (312)

ď PP pZ ě z ´ εq ´ PP pZ ě zq ` 2ε (313)

“ 1 ´ F pz ´ εq ´ p1 ´ F pzqq ` 2ε (314)

“ F pzq ´ F pz ´ εq ` 2ε (315)

ď pL ` 2qε, (316)

where the last line used the fact that F is L-Lipschitz for some L ą 0. Similarly,

PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

´ PP pZ ě zq (317)

ě ´ pL ` 2qε, (318)

Putting the two together, we have that∣∣∣∣PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

´ PP pZ ě zq

∣∣∣∣ ď pL ` 2qε, (319)

and since L neither depends on z nor on P , we have that∣∣∣∣PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

´ PP pZ ě zq

∣∣∣∣ ď pL ` 2qε. (320)

Since ε was arbitrary, it follows that

lim
nÑ8

sup
PPP

sup
zPR

∣∣∣∣PP

ˆ

sup
kěm

tAk,m ` Rku ě z

˙

´ PP pZ ě zq

∣∣∣∣ “ 0, (321)

which completes the proof.
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Lemma B.5 (Time-uniform closure under multiplicative soPp1q-perturbations). Let ppAk,mq8
k“mq

8

m“1
be a doubly indexed sequence of random variables on pΩ,F ,Pq. Let Z „ F pzq with CDF F not
depending on P P P. Suppose that

lim
mÑ8

sup
PPP

sup
xPR

∣∣∣∣PP

ˆ

sup
kěm

tAk,mu ď x

˙

´ F pxq

∣∣∣∣ “ 0 (322)

and suppose that Rn “ soPp1q. Then,

lim
mÑ8

sup
PPP

sup
xPR

∣∣∣∣PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x

˙

´ F pxq

∣∣∣∣ “ 0. (323)

Proof. The proof proceeds in four steps. In First, we ensure that the CDF of supkěmAk,m is pP, xq-
uniformly close to F . Second, we use a result of van der Vaart [44] and Slutsky’s theorem to justify why
deterministically perturbed continuous random variables converge quantile-uniformly in distribution.
Third, we use the fact that Rn “ soPp1q to ensure that Rn is P- and time-uniformly smaller than a
certain radius. The fourth and final steps puts these results together to arrive at the desired result.

Let ε ą 0 be arbitrary. Our goal is to show that there exists M sufficiently large so that for all
m ě M ,

Goal: sup
PPP

sup
xPR

∣∣∣∣PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x

˙

´ F pxq

∣∣∣∣ ă 2ε. (324)

(Here, the multiplication by 2 is only for algebraic convenience later on.)

Step 1: Ensuring that the CDF of supkěmAk,m is pP, xq-uniformly close to F pxq. By the
assumption in (322), choose M1 large enough so that whenever m ě M1, we have

sup
PPP

sup
xPR

∣∣∣∣PP

ˆ

sup
kěm

tAk,mu ď x

˙

´ F pxq

∣∣∣∣ ă ε (325)

Step 2: CDFs of deterministically perturbed random variables are close to F . Letting
X „ F be a continuous random variable with CDF F , note that

X

1 ` h
d

ÝÑ X (326)

as h Ñ 0 by Slutsky’s theorem. Consequently, by van der Vaart [44, Lemma 2.11] combined with the
fact that F pxq is continuous in x P R, we have that

lim
hÑ0

sup
x

|F pxp1 ` hqq ´ F pxq| “ lim
hÑ0

sup
x

∣∣∣∣Pˆ X

1 ` h
ď x

˙

´ PpX ď xq

∣∣∣∣ (327)

“ 0. (328)

As such, let h2 ą 0 be a positive number so that whenever |h| ď h2,

sup
xPR

|F pxp1 ` hqq ´ F pxq| ă ε. (329)

Step 3: Ensuring that Rn is P- and time-uniformly close to 0. Given the assumption that
Rn “ soPp1q, choose M3 large enough so that for all m ě M3, we have

sup
PPP

PP

ˆ

sup
kěm

|Rk| ě h2

˙

ă ε, (330)

where h2 is as in Step 2.
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Step 4: Putting Steps 1–3 together to obtain the final bound. Set M “ maxtM1,M3u.
First, consider the following upper bound on PP

`

supkěmtAk,m{p1 ` Rkqu ď x
˘

for any m ě M :

PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x

˙

(331)

“ PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x
ˇ

ˇ

ˇ
sup
kěm

|Rk| ă h2

˙

PP

ˆ

sup
kěm

|Rk| ă h2

˙

loooooooooooomoooooooooooon

ď1

` (332)

PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x
ˇ

ˇ

ˇ
sup
kěm

|Rk| ě h2

˙

PP

ˆ

sup
kěm

|Rk| ě h2

˙

loooooooooooomoooooooooooon

ďε

(333)

ď PP

ˆ

sup
kěm

"

Ak,m

1 ` h2

*

ď x

˙

` ε. (334)

By a similar argument, we have that for all m ě M ,

PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x

˙

(335)

ě PP

ˆ

sup
kěm

"

Ak,m

1 ´ h2

*

ď x

˙

´ ε. (336)

Keeping these upper and lower bounds in mind, we have that

PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x

˙

´ F pxq (337)

ď PP

ˆ

sup
kěm

tAk,mu ď xp1 ` h2q

˙

´ F pxq ` ε (338)

ď F pxp1 ` h2qq ´ F pxq ` ε (339)

ď 2ε. (340)

and

PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x

˙

´ F pxq (341)

ě PP

ˆ

sup
kěm

tAk,mu ď xp1 ´ h2q

˙

´ F pxq ´ ε (342)

ě F pxp1 ´ h2qq ´ F pxq ´ ε (343)

ě ´ 2ε. (344)

Putting these upper and lower bounds on the difference of probabilities together and noting that their
bounds do not depend on P P P nor on x P R, we have

sup
PPP

sup
xPR

∣∣∣∣PP

ˆ

sup
kěm

"

Ak,m

1 ` Rk

*

ď x

˙

´ F pxq

∣∣∣∣ ď 2ε, (345)

which completes the proof.
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