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Abstract

Are asymptotic confidence sequences and anytime p-values uniformly valid for a nontrivial class
of distributions P? We give a positive answer to this question by deriving distribution-uniform
anytime-valid inference procedures. Historically, anytime-valid methods — including confidence
sequences, anytime p-values, and sequential hypothesis tests that enable inference at stopping
times — have been justified nonasymptotically. Nevertheless, asymptotic procedures such as
those based on the central limit theorem occupy an important part of statistical toolbox due to
their simplicity, universality, and weak assumptions. While recent work has derived asymptotic
analogues of anytime-valid methods with the aforementioned benefits, these were not shown to be
P-uniform, meaning that their asymptotics are not uniformly valid in a class of distributions P.
Indeed, the anytime-valid inference literature currently has no central limit theory to draw from
that is both uniform in P and in the sample size n. This paper fills that gap by deriving a novel
P-uniform strong Gaussian approximation theorem. We apply some of these results to obtain
an anytime-valid test of conditional independence without the Model-X assumption, as well as a
‘P-uniform law of the iterated logarithm.
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1 Introduction

Some of the simplest and most efficient statistical inference tools are asymptotic ones that rely on
large-sample theory such as the central limit theorem (CLT). However, there is a sharp distinction
between asymptotics that are only valid for a single distribution P and those that are uniformly valid
over a large collection of distributions P. To elaborate, consider the classical CLT which states that
for independent and identically distributed rAfmdom variables X1, ..., X,, ~ P with mean pp and finite
variance 0% < o0, their scaled partial sums Z,, := >.;" | (X;—up)/(0py/n) are asymptotically standard
Gaussian, meaning for any real =, we have P p(Zn < z) — ®(x) where ® is the cumulative distribution
function (CDF) of a standard Gaussian. However, this is a distribution-pointwise statement in the
sense that the limit holds for a single P € P. An unsettling consequence of P-pointwise statements is
that no matter how large n is, |Pp/(Z,, < x) — ®(x)| can be far from zero for some P’ € P — or more
informally, asymptotics may be “kicking in” arbitrarily late.

By contrast, distribution-uniformity (or more specifically P-uniformity) rules out the aforemen-
tioned unsettling scenario so that convergence occurs simultaneously for all P € P. Concretely, con-
sider the difference between P-pointwise versus P-uniform convergence in distribution when written
out side-by-side:

sup lim |Pp(Z, <x)— ®(z)| =0 versus lim sup |Pp(Z, <z)— ®(z)| =0, (1)
Pep n—® n—% pep
-

P-pointwise convergence in distribution P-uniform convergence in distribution

where the essential difference lies in the order of limits and suprema. The initial study of P-uniformity
is often attributed to Li [26] and many papers have emphasized its importance in recent years; see
Kasy [20], Rinaldo et al. [31], Tibshirani et al. [42], Shah and Peters [38], Kuchibhotla et al. [24], and
Lundborg et al. [28]. Note that this literature sometimes refers to distribution-uniformity as “honesty”
[26, 24] or simply “uniformity” [20, 31, 42, 38, 28]. We opt for the phrase “distribution-uniform” —
or “P-uniform” when we want to specify that uniformity is with respect to P — since there are
many other notions of uniformity throughout probability and statistics, including time-uniformity
and quantile-uniformity, both of which will become relevant throughout this paper. We do not use
the term “honesty” as it has also been used to refer to other properties of estimators in statistical
inference [45, 1] and is sometimes used in the sense of parameter-uniformity [35].

Simultaneously, there is a parallel literature on time-uniform (typically called “anytime-valid”)
inference where the goal is to derive confidence sequences (CSs) — sequences of confidence intervals
(CIs) that are uniformly valid for all sample sizes — as well as anytime p-values and sequential
hypothesis tests (to be defined more formally later) that can be continuously monitored and adaptively
stopped. This literature has historically taken a mostly nonasymptotic approach to inference so that
the type-I errors and coverage probabilities hold in finite samples; see the early work of Wald, Robbins,
and colleagues [46, 12, 32, 25], as well as the review paper of Ramdas, Griinwald, Vovk, and Shafer [30]



which gives a broad overview of this literature. However, nonasymptotic approaches generally require
strong assumptions on the random variables such as lying in a parametric family, a priori known
bounds on their support, or on their moments. On the other hand, this paper takes an asymptotic
view of anytime-valid inference where type-I errors and coverage probabilities hold in the limit; see
Robbins and Siegmund [33], Waudby-Smith et al. [47], and Bibaut et al. [4]. An advantage of this
regime is that the resulting methods take simple, universal forms and allow for substantially weaker
conditions (for example, requiring only that absolute moments exist and are finite but for which a
priori bounds are not known).

To illustrate time-uniformity in the asymptotic regime, suppose that random variables X1,..., X,
have finite mean p and variance 0% and we would like to derive a CI for u. A classical asymptotic
CI C,, has the guarantee that limsup,,_,., Pp(n ¢ Cp) < «, but its asymptotic validity hinges on
the sample size n being fixed and pre-specified in advance. By contrast, an asymptotically valid CS
(C’,gm))f:m can elicit a much stronger property written in juxtaposition with the classical asymptotic
CI as follows:

limsup Pp (,u ¢ Cn) <« versus limsupPp (sz >m:ué¢ C',gm)) < a, (2)
n— 00 m—0
(Asymptotic) fixed-n CI (Asymptotic) anytime-valid CS

where the main difference lies in the fact that the right-hand side probability holds uniformly in
k = m for sufficiently large m. From a practical perspective, the right-hand side permits a researcher
to continuously monitor the outcome of an experiment, for example, updating their Cls as each new
data point is collected as long as the starting sample size m is sufficiently large. Importantly, these
anytime-valid procedures allow for the experiment to stop as soon as the researcher has sufficient
evidence to reject some null hypothesis (e.g. as soon as 0 ¢ C_’,gm) for a null effect of 0). Note that while
CSs and anytime p-values are typically studied from a nonasymptotic viewpoint, we will henceforth
omit the “asymptotic” phrasing when referring to asymptotic procedures such as those in (2) since
we are solely interested in asymptotics in this paper (and distribution-uniformity is always trivially
satisfied for nonasymptotics).

In this paper, our main goal is to define and derive distribution-uniform anytime-valid tests, p-
values, and confidence sequences. However, the time-uniform guarantee in the right-hand side of
(2) is a distribution-pointwise statement, and to the best of our knowledge, there currently exist no
distribution-uniform guarantees for time-uniform asymptotics. The reason for this is subtle and has
led us to identify a gap in the probability literature. To elaborate, while fixed-n asymptotics are
based on the CLT, Waudby-Smith et al. [47] analyzed asymptotic analogues of nonasymptotic CSs
using strong Gaussian approximations (sometimes called “strong invariance principles” or “strong
embeddings”) such as the seminal results of Strassen [40] and Komlds, Major, and Tusnady [22, 23]
— see also Chatterjee [8] and the references therein. Not only have strong approximations not yet
been studied from a distribution-uniform perspective, it is not even clear what the right definition of
“distribution-uniform strong Gaussian approximation” ought to be. We give both a definition and a
corresponding result satisfying it in Section 5, and this serves as a probabilistic foundation for the
rest of our statistical results.

1.1 Outline of the paper

Below we outline how the paper will proceed, highlighting our key contributions.

e We begin in Section 2 by defining P-uniform anytime-valid inference in the form of anytime
hypothesis tests, anytime p-values, and confidence sequences (Definition 2.1). This definition
serves as context for Section 2.1 where we state our main result in Proposition 2.1 (initially
without proof). The remaining sections are focused on providing the necessary machinery to
prove a stronger version of Proposition 2.1 which is ultimately given in Theorem 3.3.



e Section 2.2 lays some foundations for distribution-, time-, and boundary-uniform central limit
theory for centered partial sums, culminating in Proposition 2.2. The results therein are new to
the literature even in the distribution-pointwise regime. However, Proposition 2.2 is stated in
terms of the true (rather than empirical) variance in standardizing the partial sums, motivating
the following section on distribution-uniform almost-sure consistency.

e Section 3 discusses what it means for a sequence of random variables to converge almost-surely
and uniformly in a class of distributions. The section culminates in a result showing that
the empirical variance is a distribution-uniform almost-surely consistent estimator for the true
variance and its convergence rate is polynomial in the sample size (Proposition 3.2), which, when
combined with Proposition 2.2 from Section 2 yields our main result in Theorem 3.3.

e Section 4 applies the content of the previous sections to the problem of anytime-valid conditional
independence testing. We first show that distribution-uniform anytime-valid tests of conditional
independence are impossible to derive without imposing structural assumptions, a fact that can
be viewed as a time-uniform analogue of the hardness result due to Shah and Peters [38, §2].
We then develop a sequential version of the Generalized Covariance Measure test due to Shah
and Peters [38, §3] and show that it distribution- and time-uniformly controls the type-I error
(and has nontrivial power) as long as certain regression functions are estimated at sufficiently
fast rates. To the best of our knowledge, this is the first anytime-valid test of conditional
independence that does not rely on Model-X assumptions.

e Section 5 highlights that all of the preceding results fundamentally rely on a distribution-uniform
strong Gaussian approximation (Theorem 5.1) that serves as a (purely probabilistic) founda-
tional piece of our main results and it is the first result of its kind in the literature (to the
best of our knowledge). This strong approximation is itself a consequence of a nonasymptotic
high-probability coupling inequality (Lemma 5.2). Finally, we illustrate how these couplings
and approximations give rise to a distribution-uniform law of the iterated logarithm. All three
of these results may be of independent interest.

1.2 Notation

Throughout, we will let {2 be a sample space, F the Borel sigma-algebra, and P a collection of
probability measures so that (2, F, P) is a probability space for each P € P. We will often write
(Q,F,P) to refer to the collection of probability spaces (£, F, P)pep. Note that P € P are defined
with respect to the same sample space €2 and sigma-algebra F but do not need to have a common
dominating measure (e.g. P can consist of infinitely many discrete and continuous distributions as
well as their mixtures).

Throughout, we will work with random variables that are defined on the collection of probability
spaces (£, F,P) (unless otherwise specified, as will be the case in Section 5). For any event A € F, we
use Pp(A) to denote the probability of that event and Ep(-) to denote the expectation of a random
variable with respect to P € P, meaning for X defined on (2, F, P),

pp =Ep(X) = fx dP(x). (3)

Similarly, 0% = Varp(X) will be shorthand for Ep(X — Ep(X))?, and so on.

2 What is distribution-uniform anytime-valid inference?

Recalling the P-uniform convergence in distribution guarantee provided in (1), a fixed-n p-value p,
defined on (€, F,P) is said to be Pp-uniform for the null hypothesis Py < P if

limsup sup Pp(p, < @) < «, (4)
n—ow PePy



and it is easy to see how such a p-value can be constructed given a statistic satisfying the right-hand
side of (1). Similarly, Waudby-Smith et al. [47, Definition 2.7] provide a definition of (P-pointwise)
time-uniform coverage of asymptotic CSs, which is also implicit in Robbins and Siegmund [33] and
Bibaut et al. [4]. Adapting their definition to anytime p-values, we say that (ﬁ,(cm))f:m
time-uniform type-I error control under the null Py if

has asymptotic

VP e Py, limsupPp(Fk = m: ﬁ;m) <a)<a. (5)
m—0o0
Juxtaposing (4) and (5), we can intuit the right definition of distribution- and time-uniform type-I
error control, where we simply place a supremum over Py inside the limit in (5). We lay this definition
out formally alongside corresponding definitions for anytime hypothesis tests, confidence sequences,
and sharpness thereof below.

Definition 2.1 (P-uniform anytime-valid statistical inference). Let P be a collection of distributions

and let Py € P be the null hypothesis. We say that (f,(cm))f:m is a Po-uniform anytime hypothesis
test if

limsup sup Pp (Hk >m: f](c"b) - 1) <« (6)

m—o0 PePy

and that (ﬁ;cm))koc‘:m is a Po-uniform anytime p-value if

lim sup sup Pp (Elk >m: ﬁém) < a) < a. (7)

m—0 PePy

Moreover, we say that (C’,gm))fzm is a P-uniform (1 — a)-confidence sequence for 0(P) if

lim sup sup Pp (Elk >m:0(P)¢ C',gm)) < a. (8)

m—o PeP

Finally, we say that all of these procedures are sharp if the limit suprema are limits and the inequalities
(< a) are equalities (= ).

As one may expect, any P-uniform anytime-valid test, p-value, or CS satisfying Definition 2.1
is also P-uniform for a fixed sample size n in the sense of (4) as well as P-pointwise anytime-valid
for any P € P in the sense of (5). With Definition 2.1 in mind, we will now derive distribution-
uniform anytime hypothesis tests, p-values, and confidence sequences for the mean of independent
and identically distributed random variables.

2.1 Our primary goal: Inference for the mean

While Definition 2.1 is a natural extension of distribution-uniform inference to the anytime-valid
setting, it is deceptively challenging to derive procedures satisfying Definition 2.1 even for the simplest
of statistical problems such as tests for the mean of independent and identically distributed random
variables and the main results of this section themselves rely on certain technical underpinnings such
as distribution-uniform almost-sure consistency and strong Gaussian approximations. Rather than
laboriously discuss these technical details here, let us instead articulate our main goal and result
— distribution-uniform anytime inference for the mean — and defer more in-depth discussions to
Sections 2.2, 3, and 5.
In many of the results that follow, we will rely on a monotonically increasing function ¥ : R0 —
[0,1] given by
U(r):=1-2[1—@(r) +ro(vr)]; r=0. (9)

This function happens to be the cumulative distribution function of a particular probability distribu-
tion that we have opted to call the Robbins-Siegmund distribution since it was implicitly computed



by Robbins and Siegmund [33] in the context of boundary-crossing probabilities for Wiener processes.
For now, we will only rely on the fact that ¥ is invertible and leave more detailed discussions of its
properties to Appendix B.1. As we will see shortly, ¥ plays a role in asymptotic anytime-valid infer-
ence similar to that of the Gaussian cumulative distribution function in asymptotic fixed-n inference.

Indeed, define the process (ﬁz(cm))%;m given by
" =1 (kfi3/37 — log(k/m)) (10)

and the intervals (C_’lim)(a))koo‘:m given by

O (@) = fix + 31/ [0 11— a) + log(k/m)]/k, (11)

where 67 := %Zle(Xi — [ix)? is the sample variance. The following result gives conditions under

which (ﬁ,(fm))koo:m is a Po-uniform anytime p-value for the null of up = 0 and (C‘,gm) (@), is a

P-uniform (1 — «)-CS for pp in the sense of Definition 2.1.

Proposition 2.1 (Distribution-uniform anytime-valid inference for the mean). Let Xy, Xo,... be
random variables defined on (2, F,P), and suppose that for some § > 0, the (2 + &) moment is
P-uniformly upper-bounded and the variance is P-uniformly positive, i.e.

sup Ep|X —Ep(X)|*"% <0 and inf Varp(X) > 0. (12)
PeP pep

If Py € P is a subcollection of distributions so that Ep(X) = 0 for each P € Py, then (;T),(Cm))zczm is a
sharp Po-uniform anytime p-value:

lim sup Pp (Elk >m: ﬁ,&m) < a) = a, (13)

m—® pep,

and (C_',im) (a)){L,, is a sharp P-uniform CS for the mean:

m

lim sup Pp (Hk >m: pup ¢ C',gm) (a)) = qa. (14)
m—00 PeP

Rather than prove Proposition 2.1 directly, we will spend the next few sections laying the ground-

work to prove a more general result, culminating in Theorem 3.3. Clearly, one can obtain a sharp

Po-uniform level-a anytime hypothesis test (f,(cm))kw:m in the sense of Definition 2.1 from Proposi-

tion 2.1 by setting f,(cm) = ﬂ{ﬁém) < a} or ffcm) = 1{0 ¢ C’,ﬁm)}. Notice that uniformly bounded
(2 + )" moment conditions are precisely what appear in several distribution-uniform central limit
theorems [38, 28].

2.2 Time- and P-uniform central limit theory for partial sums

Recall that in the batch (fixed-n, non-sequential) setting, the CLT is typically stated for a single
quantile, meaning that the survival function Pp(S,/v/n = ) — equivalently, the CDF! — of /n-
scaled normalized partial sums S, 1= o7 "' [X; —Ep(X)] converge to that of a standard Gaussian:

Vo eR, lim Pp(Sn/vn = z) —[1—®(x)]| = 0. (15)

Under no additional assumptions, however, the above holds quantile-uniformly [44, Lemma 2.11],
meaning

lim sup |[Pp(Sn/v/n =) — [1— @(x)]| = 0. (16)

n—0 geR

IThis discussion is in terms of the survival function Pp(S,/+/n = z) instead of the CDF Pp(Sp/v/n < x) to aid
transparent comparisons with boundary-crossing inequalities in Proposition 2.2.



Clearly, (16) is strictly stronger than (15). Particularly relevant to this paper, distribution-uniform
fized-n tests and Cls are also stated with quantile-uniformity and their proofs typically rely on this
property. Even in the P-pointwise case, however, there is no result showing that an analogous property
exists for time-uniform boundaries (and it is not clear in what sense such a statement should be
formulated). The following theorem provides such a result in both the P-pointwise and P-uniform
settings.

Proposition 2.2 ((P,n,x)-uniform boundaries for centered partial sums). Let X1, Xs,... be ran-
dom wvariables defined on probability spaces (Q, F,P*) with finite (2 + §)™ moments, i.e. Ep|X —
Ep(X)[>t% < w0 for every P € P*. Letting Sy, = > (Xi — Ep(X;))/op be their centered partial
sums, we have

VP e P*, lim sup|Pp (Hk >m: |Sp| VE =T+ 10g(k/m)> C[-v@)]l=0. (17

m—=9%0 >0

Furthermore, if P < P* is a sub-collection of distributions for which the (2 + 8)™ moment is P-
uniformly upper-bounded and the variance is P-uniformly positive, then the above limit holds P-
uniformly:

lim sup sup |Pp (Elk >m:|Sp| /VE =7+ log(k/m)) —[1-=T(z)]| =0. (18)

M=% peP x>0

The proof of Proposition 2.2 in Appendix A.1 relies on our novel distribution-uniform strong
Gaussian approximation discussed in Section 5. After some algebraic manipulations, one can see that
(18) is equivalent to saying that sup~,,{S%/(cpk) —log(k/m)} converges P-uniformly in distribution
to the Robbins-Siegmund distribution, i.e.

lim sup sup =0, (19)

m—0 peP x>0

Pp <sup { SE log(k/m)} < x) —U(z)

2
k=m JPk

and similarly for the P-pointwise case in (17) but with the above limit over m and supremum over
P € P swapped.

Note that Proposition 2.2 does not quite yield Proposition 2.1 as a direct consequence since the
variance 0% used in the latter is the true (rather than empirical) variance. Moving to a fully empirical
version of Proposition 2.2 will require that the variance o2 is not only consistently estimated but
almost surely at a polynomial rate and for the P-uniform result in (18), we will require that this
consistency also holds uniformly in P. But what does it mean for a sequence of random variables
(such as a sequence of estimators) to converge to a limit almost surely and uniformly in P? The next
section provides an answer to this question alongside sufficient conditions for the sample variance to
be P-uniformly almost surely consistent.

3 Almost-sure consistency and time-uniform asymptotics

In Proposition 2.2, we stated a P-, time-, and boundary-uniform convergence result for centered partial
sums, but this depended on those partial sums S, (P) := >.I" | (X; — pp)/op being weighted by the
true standard deviation op. The natural next step is to replace the true variance 0% by an empirical
variance G2 so that the results of Proposition 2.2 still hold with 2 in place of 0%, thereby providing
tools that can be used to derive P-uniform anytime-valid tests, p-values, and confidence sequences.
However, the conditions that must be placed on 52 are different from what one may encounter in a
classical asymptotic inference analysis — indeed we will require 62 to be P-uniformly almost-surely
consistent for 02 := Ep(X — EpX)? at a faster-than-logarithmic rate. However, the notion of P-
uniform almost-sure convergence is not commonly encountered in the statistical literature, so this

section is dedicated to reviewing this.



3.1 What is P-uniform almost-sure consistency?

Recall the classical notion of convergence in P-probability for a single P € P and its natural extension
to P-uniform convergence in probability. That is, a sequence of random variables Y7, Y5, ... defined
on a probability space (2, F, P) is said to converge in probability to 0 (or Y,, = op(1) for short) if for
any € > 0,

sup lim Pp(|Y,| =€) =0, (20)

Pep n®

and that this convergence holds uniformly in P (or Y,, = op(1) for short) if

lim sup Pp(|Y,|=¢) =0. (21)
n—%0 pep
The extension of (20) to (21) is very natural, but at first glance, an analogous extension for almost-
sure convergence is less obvious. Indeed, recall that a sequence of random variables Y7, Y5, ... is said
to converge P-almost surely to 0 for every P e P if

VPeP, Pp ( lim [Y,,| = 0) ~1. (22)

It is not immediately obvious what the “right” notion of P-uniform almost-sure consistency ought to
be since taking an infimum over P € P of the above probabilities does not change the statement of
(22) whatsoever. Intuitively, it is not possible to simply swap limits and suprema in (22) as was done
when (20) was extended to (21). However, it is possible to make such a leap when using an equivalent
definition of almost-sure convergence using an idea attributable to Chung [11] and Beck and Giesy
[3]. To elaborate, it is a well-known fact that for any P € P,

Pp ( lim |Y,| = 0) —1 ifand onlyif Ve>0, lim Pp <sup Vi > 5> —0.? (23)
n—00 m—0 k=m
and for this reason, instead of writing Y,, = 0,5.(1) as a shorthand for P-almost-sure convergence,
we write Y,, = op(1) with the overhead bar 0 to emphasize time-uniformity and the subscript op to
emphasize the distribution P that this convergence is with respect to. As such, a natural notion of
P-uniform almost-sure convergence is one that places a supremum over P € P in the right-hand limit
of (23) which we make precise in the following definition.

Definition 3.1 (P-uniform almost-sure convergence [11, 48]). We say that a sequence of random
variables Y1,Ya, ... defined on the probability spaces (2, F,P) converges P-uniformly and almost surely
to 0 if

Ve >0, lim supPp (sup Y| = s> =0, (24)
m—090 pep k=m

and we write Y,, = op(1) for short, where the overhead bar 6 emphasizes time-uniformity and the sub-

script op emphasizes P-uniformity. Finally, we write Y, = op(ry) for a monotonically nonincreasing

sequence (rp)X_y if rp - Yy = 0p(1).

The expression in (24) initially appeared in a paper by Chung [11] in a proof of a P-uniform strong
law of large numbers, and later in a more explicit form by Beck and Giesy [3]. Table 1 summarizes
the four notions of convergence 6p(-), 0p(-), 0p(+), and op(-) and the implications between them.

Adapting (24) to the discussion of consistency in parameter estimation, however, requires some
additional care since the parameter of interest may itself depend on the distribution P € P. That is,

let (0,,)%_, be a sequence of estimators and for each P € P, let §(P) € R be a real-valued parameter.
We will consider 6,, to be a P-uniformly consistent estimator for § = {0(P)} pep if

lim sup Pp (sup |0, — 0(P)| = E) =0, (25)

m—0 pep k=m

2For a short proof of this fact, see Waudby-Smith et al. [47, Section B.3]



Table 1: Four notions of convergence with implications between them. Recall that op(+) is equivalent
to P-a.s. convergence. Clearly, if a sequence of random variables converges with respect to one of the
four cells below, it also does so with respect to the cell above and/or to the left of it. This section
is concerned with the strongest of the four, found in the bottom right cell with the bolded frame:
P-uniform almost-sure convergence.

P-pointwise P-uniform
In probability op(+) — op(+)
) )
Almost surely op(+) — op(+)

and as a shorthand, we will write 6,, —6 = op(1). Similarly to Definition 3.1, we write 0,—0 = op(rn)
if r, - (6, —0) =op(1). '

Following the relationship between op and Op notation in the fixed-n in-probability setting, we
now provide an analogous definition of time- and P-uniform stochastic boundedness. To the best of
our knowledge, this definition is new to the literature.

Definition 3.2. We say that a sequence of random variables Y1,Ya, ... defined on (2, F,P) is time-
and P-uniformly stochastically bounded if for any § > 0, there exists some C = C(§) > 0 and
M= M(C,6) > 1 so that for allm = M,

sup Pp (3k = m : | Xi| > C) < 4, (26)
PeP

and we write Y,, = _673(1) as a shorthand for the above. Similar to Definition 3.1, we write Y, =
OP(TH) Zf Tn Yy = Op(l)

Note that we do not refer to Definition 3.2 as P-uniform “almost sure” boundedness since even
in the P-pointwise case, almost-sure boundedness and time-uniform stochastic boundedness are not
equivalent despite the relationship in (23) for almost-sure and time-uniform convergence. A related
condition has also appeared in the context of conditional local independence testing as in Christgau
et al. [10]. As one may expect, there is a calculus of op(-) and Op(-) analogous to that for op(-) and
Op(-). We lay this out formally in the following lemma, but the proofs are routine and can be found
in Appendix A.2.

Lemma 3.1 (Calculus of Op(-) and op(+)). Let Y1,Ya, ... be random variables defined on (Q, F,P).
Let (an)®_y and (b)), be positive and monotonically nonincreasing sequences. Then we have the
following basic implications:

Y, = op(a,) =Y, = Op(a,) (27)

Y, = op(a,)0p(b,) =Y, = op(anb,) (28)
Y, = Op(a,)Op(b,) = Y, = Op(anby,) (29)
Y, = op(a,) + Op(a,) = Y, = Opl(a,) (30)
Y, =op(a,) + op(b,) =Y, = op(max{an,b,}). (31)

Furthermore, (31) holds with op(-) replaced by Op(-) on both sides. Finally, if Y, = Op(a,) and
an/bp — 0, then Y,, = op(by,).

The calculus provided in Lemma 3.1 will appear frequently throughout the proofs of our main
results. In the next section, we discuss P-uniform, almost-sure, polynomial-rate variance estimation
and its implications for deriving an empirical version of Proposition 2.2.



3.2 P-uniform almost-sure variance estimation

In Section 2.2, we alluded to the fact that arriving at a fully empirical version of Proposition 2.2
would require P-uniform almost-surely consistent estimation of the variance o? := E(X — EX)? at
a faster-than-logarithmic rate. With Definition 3.1 and the expression (24) in mind, we now provide
sufficient conditions for this consistency.

Proposition 3.2 (P-uniform almost-surely consistent variance estimation). Consider the same setup
as in Proposition 2.2 where (X,)%_, have P-uniformly upper-bounded (2 + &6)** moments and P-
uniformly positive variances. Then the sample variance 62 := 37" (X; — [in)? is a P-uniformly
almost-surely consistent estimator of the variance o2 at a polynomial rate, meaning there exists 8 > 0
so that

52 = 0 + 5p(nP), (32)

or more formally, for all e > 0, we have

lim Pp (sup kP|6E —o%| = E) =0. (33)
k

m—00 >m

Proposition 3.2 is an immediate consequence of Waudby-Smith, Larsson, and Ramdas [48] com-
bined with the de la Vallée Poussin criterion for uniform integrability (see Chong [9] and Hu and
Rosalsky [19]).

3.3 The main result: (P,n,a)-uniform statistical inference

Pairing together Proposition 2.2 and Proposition 3.2, we obtain the following (P-uniform) anytime p-
values and CSs whose type-I errors converge to the nominal level a € (0,1) uniformly in o. We present
this in the following result on distribution-, time-, and a-uniform — or (P, n, a)-uniform for short —
statistical inference. This is our main result and it implies both Proposition 2.1 and Proposition 2.2
as special cases.

Theorem 3.3 ((P,n, o)-uniform statistical inference). Let X1, Xo,... be defined on (2, F,P)
and suppose that for some § > 0, the (2 + &) moment is P-uniformly upper-bounded and the

variance is P-uniformly positive. Recall the definitions of (ﬁ,ﬁm))f:m and (é,im) (@), from
Proposition 2.1:

Y =1 - U (kp} /53 — log(k/m)) (34)
and  C™ (@) := i, + 657/[VL(1 — @) + log(k/m)]/k. (35)

Let Py S P be a subcollection of distributions so that Ep(X) = 0 for each P € Py. Then

the time-uniform type-I error of (ﬁém)),;‘o:m and the time-uniform miscoverage of (C',gm))f:m

converge to a € (0,1) uniformly in o, meaning

lim sup sup ‘]P’p (Elk >m :;El(cm) < oz) — a’ =0, and (36)
M=% pePy ae(0,1)
lim sup sup ’]P’p (Elk >m:Ep(X)¢ é,gm) (a)) — a‘ =0. (37)

M=% PeP qe(0,1)

The full proof of Theorem 3.3 can be found in Appendix A.3. As alluded to at the beginning
of Section 2, its proof relies on a P-uniform strong Gaussian approximation theorem discussed in
Section 5. Before that, we will discuss how the results derived thus far can be used to conduct
distribution-uniform anytime-valid tests of conditional independence.
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4 Illustration: Sequential conditional independence testing

In this section, we aim to derive anytime-valid tests for the null hypothesis, X I Y | Z given
R x R x Re-valued triplets (X,,,Y,, Z,)%_; on probability spaces (£, F,P). Several works on condi-
tional independence testing operate under the so-called “Model-X” assumption where the conditional
distribution of X | Z is known exactly [6]. We do not work under the Model-X assumption in this
illustration. It is well-known that testing for conditional independence is much simpler under Model-
X, and indeed the recent works of Duan et al. [13], Shaer et al. [37], and Griinwald et al. [17] derive
powerful anytime-valid tests in that paradigm. Borrowing a quote from the recent work of Griinwald
et al. [17], the authors write “it is an open question to us how to construct general sequential tests
of conditional independence without the [Model-X] assumption”. This section gives an answer to this
question, deriving tests that draw inspiration from the batch tests found in Shah and Peters [38] —
a pair of authors we will henceforth refer to as S&P. Before giving a brief refresher on batch condi-
tional independence testing and the main results of S&P, let us review some basic concepts in weak
regression consistency since nuisance function estimation will form key conditions for our results.

4.1 Prelude: weak regression consistency

An important part of conditional independence testing (in both batch and sequential settings as we
will see) is the ability to consistently estimate certain regression functions. Recall that the (potentially

random) squared Ly (P) risk of a regression estimator fn:R? R for a function f: R? — R is given
by

~ ~ 2
o= Py o= [ ()= 1)) aPlo). (39)
zE
Importantly, if sample splitting is used to construct fn, the norm | - ||z,(py is to be interpreted as

conditional on that “training” data. Recall from Gyorfi et al. [18, Definition 1.1] that a regression
estimator f,, : R? — R is P-weakly consistent for a function f : R — R in Lo(P) at a rate of r,, if its
expected Lo(P) risk vanishes at that rate, meaning

Ep|fo— flrop) = o(ra), (39)

and hence we will say that fn is P-weakly consistent at the rate r, if the above convergence occurs
uniformly in the class of distributions P:

sup Ep||fr = fllLo(p) = 0(rn)- (40)
PeP
At times, we may omit Lo(P) from the norm | - |, p) in (39) and write || - | when the norm is clear

from context.

4.2 A brief refresher on batch conditional independence testing

Given R x R x R-valued triplets (X;,Y;, Z;)"_, from some distribution in a class P, the problem of
conditional independence testing is concerned with the null

Ho: X LY |Z versus the alternative H;: X XY | Z. (41)

As alluded to before, without the Model-X assumption, powerful tests for the conditional indepen-
dence null Hy in (41) are impossible to derive (even in the batch and asymptotic settings) unless
additional distributional or structural assumptions are imposed [S&P, §2]. Indeed, S&P show that
even in the bounded setting where (X,Y,Z) ~ P € P* take values in [0,1] x [0,1] x [0,1], any test
with distribution-uniform type-I error control under Hj is powerless against any alternative in Hj.

11



Formally, if Py* < P* is the subset of distributions satisfying Hy (and hence P := P*\Py* satisfies
I{]_)7 then
sup limsupPp (I‘n = 1) < limsup sup Pp (Fn = 1) . (42)

PeP} n—w0 n—ow PePy

N

Best-case Pf—pointwise power Worst-case Pg-uniform type-I error

As a consequence of (42), one cannot derive a more powerful test than the trivial one that ignores all
of the data (X;,Y;, Z;)_; and randomly outputs 1 with probability a.

Despite the rather pessimistic result in (42), S&P derive the Generalized Covariance Measure
(GCM) test which manages to achieve nontrivial power while still uniformly controlling the type-I
error. The caveat here is that they are controlling the type-I error in a restricted (but nevertheless rich
and nonparametric) class of nulls Py € PJ, and the restriction they impose is that certain nuisance
functions are sufficiently estimable, a requirement commonly appearing in other literatures including
semiparametric functional estimation [21, 2]. Let us now review the key aspects of their test. S&P
introduce the estimated residuals R;,, for each i € [n]:

Rin = {Xi = i (Zi)HYi — 1 (Z:)} (43)
where i (z) and [i¥(z) are estimates of the regression functions p®(z) := E(X | Z = z) and p¥(z) :=
E(Y | Z = z). For the remainder of the discussion on batch conditional independence testing,

we will assume that fF(Z;) and ¥ (Z;) are constructed from an independent sample (e.g. through
sample-splitting or cross-fitting, in which case we may assume access to 2n triplets of (X,Y, 7)) for
mathematical simplicity, but S&P do not always suggest doing so. However, we will not dwell on
arguments for or against sample splitting here. From the residuals in (43), they construct the test
statistic GCM,, taking the form

. 1 &
GCM,, := —— > Rin, (44)

oy i=1
where 52 := L3 RZ — (13", Rm)2 and they show that if the regression functions (u¥, u®)
are estimated sufficiently fast (and under some other mild regularity conditions) then /nGCM,,
has a standard Gaussian limit, enabling asymptotic (fixed-n) inference. We formally recall a minor
simplification of their main result here. Consider the following three assumptions for a class of
distributions Py.

Assumption GCM-1 (Product regression error decay). The weak convergence rate of the average

of product residuals is faster than n='/2, i.e.

sup |1 — il Lapy - 1Y — Bl Lacp) = o(n™2). (45)
PePy
Assumption GCM-2 (Py-uniform regularity of regression errors). Letting £° := {X — p®(Z)} and
&Y = {Y—p¥(Z)} denote the true residuals, the variances of {i%(Z)—p*(Z)}&Y and {¥%(Z)—u¥(2)}&*
are Po-uniformly vanishing, i.e.

sup Varp ({11n(2) = p*(2)} - €¥) = o (1) (46)
and  sup Varp ({AL(Z) — u?(Z)} - €) = 0(1). (47)
PePy

Assumption GCM-3 (Py-uniformly bounded moments). The true product residuals defined above
have Po-uniformly upper-bounded (2 + &) moments for some § > 0 and uniformly lower-bounded
second moments:

sup Ep [¢°¢[*"" < o0 (48)
PePy

and inf Varp(£%¢Y) > 0. (49)
PePy

12



With these three assumptions in mind, we are ready to recall a simplified version of Shah and
Peters [38, Theorem 6.

Theorem (S&P: Py-uniform validity of the GCM test). Suppose (X, Y;, Z;)*, are R x R x R%-valued
random variables on the probability spaces (2, F,P) and let Py = P be the collection of distributions
in P satisfying the conditional independence null Hy and Assumptions GCM-1, GCM-2, and GCM-3.
Then,

lim sup sup |Pp(v/nGCM,, < z) — @(x)‘ =0. (50)

n—%0 peP, zeR
and hence the function given by F,(cm) =1 {|\/ﬁGCMn| > 11— a/Q)} is a Po-uniform level-a test.

We will now shift our focus to sequential conditional independence testing with anytime-valid
type-I error guarantees. Before deriving an explicit test, we first demonstrate in Proposition 4.1 that
the hardness of conditional independence testing highlighted in (42) has a similar analogue in the
anytime-valid regime.

4.3 On the hardness of anytime-valid conditional independence testing

As mentioned in Section 4.2, S&P illustrated the fundamental hardness of conditional independence
testing by showing that unless additional restrictions are placed on the null hypothesis Py, any Pj-
uniformly valid (fixed-n) test is powerless against any alternative, i.e.

sup limsupPp (I‘n = 1) < limsup sup Pp (Fn = 1) . (42 revisited)
PeP} n—w n—w PeP}

J

Best-case P{-pointwise power Worst-case Pj-uniform type-I error

Does an analogous result hold if I, is replaced by an anytime-valid hypothesis test f‘]im) as in Defi-
nition 2.17 The following proposition gives an answer to this question, confirming that anytime-valid
conditional independence testing is fundamentally hard in a sense similar to (42).

Proposition 4.1 (Hardness of anytime-valid conditional independence testing). Suppose (Xp, Yn, Zn)i_y

are [0, 1]3-valued triplets on the probability spaces (0, F, P*) where P* consists of all distributions sup-
ported on [0,1]3. Let Py < P* be the subset of distributions satisfying the conditional independence

null Hy and denote Py := P*\Pg. Then for any potentially randomized test (I_‘,(Cm))oo

k=m>’

sup limsupPp (Hk >m: f‘lgm) = 1) < limsup sup Pp (Hk >m: f,(cm) = 1) . (51)

Pep} m—w0 m—0 PePy

In other words, no Pg-uniform anytime-valid test can have power against any alternative in P at
any {m,m + 1, ... }-valued stopping time no matter how large m is.

The proof can be found in Appendix A.4. It should be noted that Proposition 4.1 is not an
immediate consequence of S&P’s fixed-n hardness result in (42) since while it is true that the time-
uniform type-I error in the right-hand side of (51) is always larger than its fixed-n counterpart, the
time-uniform power in the left-hand side of (51) is typically much larger than the fixed-n power.
Indeed, while an important facet of hypothesis testing is to find tests with power as close to 1 as
possible, the time-uniform power of anytime-valid tests is typically equal to 1, and such tests are
sometimes referred to explicitly as “tests of power 1” for this reason [34]. This should not be surprising
since the ability to reject at any stopping time (data-dependent sample size) larger than m introduces
a great deal of flexibility. The fact that this flexibility is insufficient to overcome Pg-uniform control
of the time-uniform type-I error is what makes Proposition 4.1 nontrivial.

Using the techniques of Section 2, we will now derive an anytime-valid analogue of S&P’s GCM
test with similar distribution-uniform guarantees, allowing the tests and p-values to be continuously
monitored and adaptively stopped.
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4.4 SeqGCM: The sequential generalized covariance measure test

We will now lay out the assumptions required for our SeqGCM test to have distribution-uniform
anytime-validity. Similar to our discussion of the batch GCM test in the previous section, we will
assume that for each n, i¥ and ¥ are trained from an independent sample. This can be achieved easily
by supposing that at each time n, we observe pairs (X{"), Yl(n), an)), (XQ("), YQ("), Zén)) where the first
is used for training (a7, 1), and the second is used for evaluating {X,, — 0% (Z,)} - {Yn — 0%(Z,)}.

Recall that in S&P’s GCM test, the test statistic GCM,, := LS R; /02 was built from the
product residuals R; ,, that were defined in (43) as

Rip =X — i (Zo)} {Ys — 3 (Z)} - (52)

In particular, note that the regression estimators 1% and ¥ are trained once on a held-out sample of
size n and then evaluated on Z1, ..., Z,, which is perfectly natural in the batch setting. By contrast,
we will evaluate the product residual

R, :={X, — ﬁfb(Zn)} {Y, — ﬁ%(zn)} (53)
to arrive at the test statistic .
S 1
GCM7 = — R‘, 54
= g Lt (54

where we will abuse notation slightly and redefine 62 := 1 " | RZ — (L 37" | Ri)Q. The main differ-
ence between (52) and (53) is that in the latter case, the index for regression estimators (4%, i¥%) is the
same as those on which these functions are evaluated. Notice that while GCM,, is more amenable to
online updates than GCM,,, it does less to exploit the most up-to-date regression estimates. Neverthe-
less, as we will see shortly, it is still possible to control the distribution- and time-uniform asymptotic
behavior of GCM,, under weak regression consistency conditions on (fiZ,i%). This is in contrast to
some earlier work of Waudby-Smith et al. [47, Section 3] that also considered asymptotic time-uniform
inference with nuisance estimation (focusing on the problem of average treatment effect estimation),
but relied on strong regression consistency conditions. It should be noted that the weak consistency
rates we impose here are polylogarithmically faster than those considered by Waudby-Smith et al.
[47]. The key technique that will allow us to derive strong convergence behavior of certain sample
averages of nuisances from weak consistency of regression functions is a distribution-uniform strong
law of large numbers due to Waudby-Smith, Larsson, and Ramdas [48, Theorem 2]. This will be
discussed further after the statement of Theorem 4.2.

Since the assumptions required for our SeqGCM test are similar in spirit to those of S&P’s batch
GCM test (Assumptions GCM-1, GCM-2, and GCM-3) we correspondingly name them “Assump-
tions SeqGCM-1 and SeqGCM-2” and underline certain keywords to highlight their differences (we
do not need to make additional moment assumptions beyond those found in Assumption GCM-3, and
thus there is no “SeqGCM-3” to introduce).

Assumption SeqGCM-1 (Product regression error decay). The weak convergence rate of the product
of average squared residuals is no slower than {nlogQMn!_l/2 for some § > 0, i.e.

s - ~ 1
sup |, — 1" Lypy - 1125 — 1llzyp) = O | ——m—=|; (55)
PePy n10g2+6(n)

Assumption SeqGCM-2 (Py-uniform regularity of regression errors). Both Var ({i%(Z) — p*(Z)} - £¥)
and Var ({i%(Z) — p¥(Z)} - €2) are Po-uniformly vanishing to 0 no slower than 1/(logn)**° for some
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6 >0, ie.

1
sup Va o (Z) —p(2)} -9 =0 | ———— 56
sup Varp (32(2) - 172} €) = O oo (56)
1
d sup Va p2(Z2)—p(2)}- %) =0 —— | . 57
and  sup Varp (74(2) = (20} €) = O (ot ) 57)
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Figure 1: Empirical cumulative type-I error rates and power for the fixed-n GCM test of S&P versus
the sequential GCM test (SeqGCM) in Theorem 4.2 with a target type-I error of & = 0.05 in a
simulated conditional independence testing problem. Notice that in the left-hand side plot, the type-I
error rate for the GCM starts at around a = 0.05 but steadily grows as more samples are collected.
By contrast, the SeqGCM test remains below a = 0.05 for all k¥ = m = 300. In the right-hand side
plot, we see that the power of the GCM test is higher than that of SeqGCM. This is unsurprising
given that SeqGCM has a stronger (time-uniform) type-I error guarantee, but both have power near
1 after 10,000 samples.

With Assumptions SeqGCM-1, SeqGCM-2, and GCM-3 in mind, we are ready to state the Py-
uniform type-I error guarantees of the SeqGCM test.

Theorem 4.2 (Py-uniform type-I error control of the SeqGCM). Suppose (X;,Y;, Z;)2, are R x R x
Re-valued triplets defined on the probability spaces (2, F,P) and let Py S P be a collection of distri-
butions in P satisfying the conditional independence null Hy and Assumption SeqGCM-1, SeqGCM-2,
and GCM-3. Define

PRt i=1— U (k(GCMy,)? — log(k/m)) . (58)
Then (;Eﬁ%M),;‘O:m forms a Py-uniform anytime p-value for the conditional independence null:
lim sup sup [Pp(Ik=>m:pp" <a)—a|=0. (59)

M=% pePy ae(0,1)

The proof can be found in Appendix A.5 and uses the results from the previous sections com-
bined with the distribution-uniform strong laws of large numbers (SLLNs) for independent but non-
identically distributed random variables due to Waudby-Smith, Larsson, and Ramdas [48, Theorem 2].
The latter is crucial to analyzing the (uniform) almost sure convergence properties of sample averages
with online regression estimators under weak consistency assumptions (SeqGCM-1 and SeqGCM-2).

To give some intuition as to when Assumption SeqGCM-1 may be satisfied, suppose that u* and
¥ are d-dimensional and Holder s-smooth [18, §3.2]. Note that the minimax rate for estimating such
functions in the resulting class of distributions P(s) is given by

inf sup Ep|a; — "7, p) = n 2, (60)
My PEP(S)
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and similarly for p¥. In particular, if d < 2s so that the dimension is not too large relative to
the smoothness, then minimax-optimal local polynomial estimators % and ¥ for p* and p¥ can

2+6 n)_1/4 ]

be constructed and will be P(s)-weakly consistent at rates of o ((nlog In this case,

Assumption SeqGCM-1 (and Assumption GCM-1) will be satisfied as long as Py < P(s). More
broadly, any regression algorithms can be used to construct g and ¥ (e.g. using random forests,
neural networks, nearest neighbors, etc.) and they can further be selected via cross-validation or
aggregated [5, 43].

The left-hand side plot of Fig. 1 demonstrates how the SeqGCM test controls the type-I error rate
under the null uniformly over time while the standard GCM test fails to. The right-hand side plot
compares their empirical power under one alternative.

5 Distribution-uniform strong Gaussian approximation

In this section, we both articulate what it means for a strong (almost-sure) coupling to be “P-uniform”

and then provide such a coupling in the form of a strong Gaussian approximation in Theorem 5.1.

Before that, however, let us give a brief historical overview of weak and strong Gaussian approxima-

tions in the P-pointwise setting to contextualize and motivate the result to come. Given iid random

variables (X1, ..., X,) with mean p and finite variance o2 on a probability space (€, F, P), the CLT
n

states that standardized partial sums S, := »," | (X; — p)/o converge in distribution to a standard
Gaussian with CDF ®(zx) after 4/n-rescaling:

Vr e R, lirrolo Pp(Sn/v/n <) — ®(2). (61)

Note that (61) is only a statement about the distribution of Sy, but a stronger statement can be made
in terms of a coupling between S,, and a partial sum of iid Gaussians [16, Eq. (1.2)]. Concretely, one
can define a new probability space ((NZ, f“, ]5) containing random vectors (()N(l, Y1), ()N(g, Ya),..., ()N(n, Y.))
where (Y1,...,Y,) are marginally standard Gaussian and ()N(l, e ,)N(n) have the same marginal dis-
tribution as (X7i,...,X,) so that

S = G = 0p(v/n), (62)

where S, 1= >y X, and G, := >, Y; and without loss of generality, we may simply write S, —G,, =
op(y/n). Indeed, we could have simply started with a probability space (€2, F, P) rich enough to
describe (X,Y) jointly and for this reason, some authors write “without loss of generality” to refer to
this probability space construction [41]. Crucially, Y7,...,Y,, are independent of each other, but the
random variables S,, and G,, are highly dependent, and clearly (62) = (61).

For the purposes of obtaining a time-uniform guarantee, however, neither (61) nor (62) are suffi-
cient since they only hold for a single sample size n, and naive union bounds over n € N are not sharp
enough to remedy the issue. Fortunately, there do exist analogues of (62) that hold almost-surely and
hence uniformly for all n simultaneously. The study of such results — strong Gaussian approximations
— began with the seminal results of Strassen [40] who used the Skorokhod embedding [39] to obtain
an almost-sure analogue of (62) but with an iterated logarithm rate:

Sn — Gpn = 0a5.(\/nloglogn), (63)

where 0, 5.(-) denotes P-a.s. convergence. As noted in (23), the above is equivalent to saying that for
any € > 0, we have lim,, .o, Pp(3k = m : |S;, — Gi| > ) = 0, and we write this as

Sp — Gy, = op(y/nloglogn), (64)

following the notation laid out in Section 3. Improvements to the iterated logarithm rate in (63) and
(64) were made by Strassen [41] under higher moment assumptions, with the optimal rates uncovered
in the famous papers by Komlds, Major, and Tusnddy [22, 23] and Major [29].
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Here, we do not focus on attaining optimal coupling rates since error rates incurred from estimation
of nuisances (such as the variance) typically dominate them and optimal rates would not change our
main statistical results in any meaningful way (much like they do not “improve” CLT-based confidence
intervals). However, we do highlight the fact that the results of Strassen [40, 41], Komlés, Major, and
Tusnady [22, 23], Major [29], and every other work on strong approximation to our knowledge only
hold P-a.s. for a fixed P, and hence are not P-uniform in any sense. We will now define “distribution-
uniform strongly coupled processes” in Definition 5.1 and subsequently provide one such coupling in
Theorem 5.1.

Definition 5.1 ((P,n)-uniformly coupled stochastic processes). For each probability measure P in
a collection P, let (S, (P))>_, be a stochastic process defined on the probability space (2, F, P). Let
(Q, F, P(P))pep be a new collection of probability spaces containing stochastic processes (S, (P))*_,
and (Gp)*_, so that (S,(P))X_, has the same distribution as (S, (P))*_, for each P € P. We say
that (S (P))>_; and (Gn)¥_y are (P,n)-uniformly coupled at a rate of ry, if for every e > 0,

Sk(P) — G
lim sup PIS(P) (E”{} =>m: M > 6) =0, (65)
m—0 pep Tk

and we write S, — Gy, = op(ry,) as a shorthand for (65).

Since time-uniform convergence with high probability and almost-sure convergence — denoted by
0as.(+) and op(+) respectively — are equivalent, observe that Definition 5.1 reduces to the standard no-
tion of P-a.s. strong approximation when P = {P} is a singleton. To avoid repeating the technicalities
of constructing a new probability space ((NZ,]? , IB(P)) with equidistributed random variables and so
on, some authors in the strong approximation literature refer to this procedure as “the construction”
[14, 15] and they will say that “there exists a construction such that S,, — G, = 0,.(r,)” as a short-
hand. We henceforth adopt and extend this convention to the P-uniform setting by writing “there
exists a construction such that S, — G, = op(r,)”. Let us now give a strong Gaussian approximation
for partial sums of random variables with finite (2 + §)*® finite absolute moments.

Theorem 5.1 (Distribution-uniform strong Gaussian approximation). Let (X,,)%_; be independent
and identically distributed random wvariables defined on the collection of probability spaces (Q,F,P)
with means pp := Ep(X) and variances 0% := Ep(X —pp)?. If X has q > 2 uniformly upper-bounded
moments, and a uniformly positive variance, i.e.

supEp|X —ppl|? <o and inf 0% >0, (66)
PeP Pep

then there exists a construction with independent standard Gaussians (Y,)5_; ~ N(0,1) so that

n

X; — i
> S Y Y = Gp(n! 7 10g™ 1 (m). (67)
gp i=1

i=1

We remark that Theorem 5.1 is a purely probabilistic result that may be of interest outside
of statistical inference altogether. To the best of our knowledge, Theorem 5.1 serves as the first
distribution-uniform strong Gaussian approzimation in the literature. Note that the rate (67) is
optimal up to a factor of logQ/ 9(n) compared to the best rate possible in the P-pointwise setting and
in fact log¥?(n) can be replaced by any f(n)Y/4 as long as > (nf(n))™" < . As we alluded
to before, improvements to this rate would not advance the statistical inference goals of this paper.
The reason behind this is that strong approximation rates are often dominated by the rates of errors
incurred from estimating nuisance functions such as the variance (which is often of order 4/loglogn/n
or slower). Nevertheless, in future work we will explore rate-optimal analogues of Theorem 5.1 in a
thorough study of distribution-uniform strong approximations but we keep the current version here
because it is sufficient for the current paper’s objectives.

17



In fact, the strong approximation of Theorem 5.1 is a corollary of the following more general
nonasymptotic high-probability strong Gaussian coupling inequality for independent (but not neces-
sarily identically distributed) random variables that depends on features of the distribution of X in
transparent ways.

Lemma 5.2 (Strong Gaussian coupling inequality). Let (X,)%_; be independent random variables
on the probability space (0, F, P). Suppose that for some q¢ = 2, we have Ep| X}, — EpX|? < oo for
each k € N. Let f(-) be a positive and increasing function so that 3., (nf(n))~! < o and

i ]Ep|Xk — EpXk|q/O'g
< Q0

Z 0 ’ (©8)

~

where o} := Varp(Xy). Then one can construct a probability space (
(X, Yo )X, where X,, and X,, are equidistributed for each n and (Yy,)

n=1
standard Gaussians so that for any e > 0,

,F,P(P)) rich enough to define
0

w1 are marginally independent

S X - YY) Cos | & EplXi—EpXi|?/of
]PP(P) <E|k > m k/af(k)/a e s g4 k=22m71 kf(k) +
m—1_
1’ 3 "Ep|X) — EpXy|Y/o] (69)
2m k=1 kf(k) ’

where Cq ¢ is a constant that depends only on q and f.

Instantiating Lemma 5.2 in the identically distributed case with ¢ = 2 + § for some § > 0 and
taking suprema over P € P on both sides of (69) yields Theorem 5.1. The proofs of Lemma 5.2 and
Theorem 5.1 can be found in Appendix A.7.

A straightforward consequence of Lemma 5.2 and Theorem 5.1 is that the law of the iterated
logarithm holds uniformly in a class of distributions with uniformly bounded (2 + 6)** moments.

Corollary 5.3 (A P-uniform law of the iterated logarithm). Suppose (X,,)>_, are defined on proba-
bility spaces (2, F,P) where P is a collection of distributions such that

sup Ep|X —EpX[**° <0 and inf Varp(X) >0 (70)
PeP PeP

for some § > 0. Then,
k
sup |Zi:1(Xi —Ep(X)) _
k=>n +/2Varp(X)kloglog k

1+op(1). (71)

A proof of Corollary 5.3 is provided in Appendix A.6 and follows from Theorem 5.1 combined with
Kolmogorov’s P-pointwise law of the iterated logarithm.

6 Summary & discussion

We gave a definition of “distribution-uniform anytime-valid inference” as a time-uniform analogue of
distribution-uniform fixed-n inference and then derived explicit hypothesis tests, p-values, and con-
fidence sequences satisfying that definition. Our methods relied on a novel boundary for centered
partial sums that is uniformly valid in a class of distributions, in time, and in a family of boundaries.
Along the way, we discussed what it meant for a sequence of random variables to converge distribution-
uniformly almost-surely, and provided definitions for distribution- and time-uniform stochastic bound-
edness alongside a calculus for manipulating sequences with these types of asymptotics. At their core,
all of our results relied on a novel strong Gaussian approximation that allows a partial sum process to
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be tightly coupled with an implicit Gaussian process uniformly in time and in a class of distributions.
We believe this is the first result of its kind in the literature. Zooming out, we believe that this strong
Gaussian approximation forms the tip of the iceberg for distribution-uniform strong laws. In future
work, we plan to study these problems in depth.

Acknowledgments. IW-S thanks Tudor Manole and Rajen Shah for insightful discussions. The
authors acknowledge support from NSF grants 11S-2229881 and DMS-2310718.
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A Proofs of the main results

In the proofs to come, we will make extensive use of the notions of convergence in Table 1, especially
op(-) and Op(-). However, some of our terms will be converging or asymptotically bounded with
respect to different indices — e.g. there may be two sequences (X,,)5_; and (Yj)y; with indices n
and k that are diverging to o0 not necessarily together (e.g., imagine k = n?). Writing X,, = op(r,)
and Yy = op(ry) is unambiguous, for example, but when no rate is specified, we will remove ambiguity
with respect to indices n or k by saying X,, = 5%1)(1) and Yy, = 555)(1).

A.1 Proof of Proposition 2.2

Proposition 2.2 ((P,n,z)-uniform boundaries for centered partial sums). Let Xy, Xo,... be ran-
dom variables defined on probability spaces (2, F,P*) with finite (2 + )" moments, i.e. Ep|X —
Ep(X)|?*° < oo for every P € P*. Letting S, := > (X; — Ep(X;))/op be their centered partial
sums, we have

vPe P, Tim sup |Pp (3= m: S| VE = Ve +logk/m)) — [1 - ¥(@)| =0 (17)
m—9L0 >0

Furthermore, if P < P* is a sub-collection of distributions for which the (2 + &) moment is P-

uniformly upper-bounded and the wvariance is P-uniformly positive, then the above limit holds P-

uniformly:

lim sup sup |Pp (Elk >m:|Sy| /VE =7+ log(k:/m)) —[1- ‘l/(x)]’ =0. (18)
M=% pep £>0

Proof. Let g® > 0 be a uniform lower bound on infpep Varp(X). Writing out sup,~,,{Sz/opk —

log(k/m)} and invoking the strong Gaussian coupling of Theorem 5.1, we have on a potentially enriched

probability space a partial sum G,, := >, Y; of standard Gaussians Y1, ...,Y, ~ N(0,1) so that for

some ¢ = 2+ 0/2 (say),

2
sup {S2/o2k — log(k/m)} = sup {(apak +5p (kl/q)) J(o2k) — log(k/m)} (72)
k=m k=m
02,G? + Op(kY1/kToglogk) + op (k%4
>m P

Gi 1 = loglog k 1 _ k%4
=5 — 4+ — + = — | =1 4
/SESL{ k 0_207) < k1=2/a o_QOP( k > og(k/m) (74)

)+ 5§f><1>} 7 (75)

|
w0
=i
e}
—
=8
|
—
o
PER
5
\
3

where (73) expands the square and applies the (P-uniform) law of the iterated logarithm (Corol-
lary 5.3) to (Gy)°_y, (74) uses the P-uniform lower-boundedness of the variance, and (75) consolidates
the op(+) terms. Now, notice that sup,s,,{G3/k — log(k/m)} converges uniformly to the Robbins-
Siegmund distribution (Lemma B.2) since the distribution of the supremum does not depend on any
measure P. That is,

Ve >0, lim sup = 0. (76)

m—u0 pep

Pp <sup {C]';'% - 1og(k/m)} < x> — W(z)

k=m

Applying van der Vaart [44, Lemma 2.11] and using the fact that ¥ is continuous, we have that the
above also holds uniformly in z > 0:

Pp <sup {i’% - log(k/m)} < 33) —U(z)

k=m

lim sup sup =0. (77)

m—=0 peP >0
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Some algebraic manipulations will reveal that the above is equivalent to the desired result:

lim sup sup |Pp <3k >m: Sk VEk =~z + log(k/m)) —[1-9(=)]| =0, (78)

m—=90 peP >0

which completes the proof. O

A.2 Proof of Lemma 3.1

Lemma 3.1 (Calculus of Op(-) and op(+)). Let Y1,Ya,... be random variables defined on (Q, F,P).
Let (an)®_; and (bn)_, be positive and monotonically nonincreasing sequences. Then we have the
following basic implications:

Y, =op(a,) =Y, = Op(a,) (27)

Y, = 0p(an)Op(bn) = Y, = 0p(anby,) (28)
Y, = Op(an)Op(b,) = Y, = Op(anby,) (29)
Y, = op(a,) + Op(a,) = Y, = Op(a,) (30)
Y, =op(an) + op(b,) =Y, = op(max{an,by,}). (31)

Furthermore, (31) holds with op(-) replaced by Op(-) on both sides. Finally, if Y, = Op(a,) and
an/by, — 0, then Y, = op(by,).

Proof of (27) Suppose that Y,, = op(a,). We want to show that for any §, there exists C = C(9)
and M = M(d) so that for all m > M,

Goal: supPp (sup lay Y| = C’) < 4. (79)

PeP k=m

Proof. This is immediate from the definition of op(ay,). Indeed, fix any € > 0 and choose M = M(e)
so that for any m > M,

sup Pp (sup [ = s) < 0. (80)
PeP k=m
Identifying C with & completes the proof. O

Proof of (28). Suppose that Y,, = A, B,, with A,, = op(a,) and B,, = op(b,). We want to show
that a; b, 1Y, = op(1). More formally, our goal is to show that for arbitrary e,6 > 0, there exists
M = M(e,d) = 1 so that for all m > M,

Goal: supPp (Ik =m:|a; b, 'Yy =) <4 (81)
PeP

Proof. Choose M sufficiently large so that for all m > M,

sup Pp (sup lag ' Ay| = \/8/2) <4 and supPp <sup b, ' By| = «/6/2) < 0. (82)
PeP k=m

PeP k=m
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Then, writing out the equation in (81), we have that

sup Pp (3k = m : |a; 'b, 'Yy| = ¢) (83)
pPeP

< sup Pp (3k = m : |aj " Ag|[by ' Bi| =€) (84)
pepP

< sup Pp <3k m : |a; " A||by ' Be| = € | sup |ag ' Ax| < v/€/2 and sup |b; ' By| < «/6/2) + (85)
PeP k=m kzm
sup Pp (sup lag ' Ax| < +//2 and sup |b; ' By| < «/5/2) (86)
PeP k=m k=m

< supPp(Fk=m:e/2=¢)+ (87)

=0
max{sup Pp (sup lay ' Ag| < /e /2) , P (sup b, ' Bi| < «/5/2)} (88)
PeP k=>m k=m
<5
<9, (89)
which completes the proof. O

Proof of (29). Suppose that Y,, = A,B, with A, = Op(a,) and B,, = Op(b,). Our goal is to
show that for any ¢ > 0, there exists some C' = C(§) and M = M(C,d) so that

Goal: supPp (sup la, *b, 1Y, | > C’) < 4. (90)
PeP k=m
Proof. Fix § > 0. Let Cy, M,, Cy, M}, be sufficiently large so that for all m > max{M,, M},
sup Pp <sup lag ' Ag| = Ma) <0 and supPp (sup b, ' By| = Mb> < 4. (91)
PeP k=m PeP k>m
Now, set C = C,Cp + 1. Then,
sup Pp (sup lay 1o, Y| = C) (92)
PeP
< supPp <sup |a; " Ay |by ' Bi| = C) (93)
PeP
< sup Pp (bup C.Cp = ) + sup Pp (sup lay ' Ay| > C, and |by, ' By| > Cb> (94)
PeP k=m PeP k=m
< sup Pp (supCC’L7 C.Cp + )—f— (95)
PeP k=m
max {sup Pp (sup |a;1Ak| > C’a> , sup Pp (sup |bngk| > Cb) }, (96)
PeP k=m PeP k=m
<6
which completes the proof. O

Proof of (30). Suppose Y,, = A, + A/, with both A,, = 6p(a,) and A, = Op(a,). The goal is to
show that for every § > 0, there exists C' > 0 and M > 1 so that for all m > M,

Goal: supPp (Sup a; Y| > C) < 4. (97)
PeP k>
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Proof. Fix § > 0. Let C" and M’ be so that suppep Pp (Supgs., ay ' |A}| > C') < §/2. Fix any
e € (0,C") and let M* be so that suppep Pp (Supgs,, ai, '|Ax| =€) < 6/2 for all m > M*. Choose
M > max{M’, M*}. Then, for all m > M,

sup P (sup a; A + Ay = C’) (98)
PeP k=m

< supP (sup ap HAg| + ag|Ay| = > (99)
PeP k=m

< sup P ( sup ay '|Ay| = ) + sup P (sup a; AL = C”) (100)
PeP k=m

< sup P (sup a; Ay = > +sup P (sup a; AL = > (101)
PeP k>=m PeP k>

<, (102)

which completes the proof. O

Proof of (31). Suppose Y,, = A, + B,, with A,, = op(a,) and B,, = op(b,). The goal is to show
that for every e, > 0, there exists M > 1 so that for all m > M,

Goal: supPp (Sup e HYe| = 5) <4, (103)

PeP k=m
where ¢, = max{a, by }.

Proof. Fixe,§ > 0. Let M be so that suppep Pp (Supjs, ax|Ak| > €) < 6/2 and suppep Pp (Supjs, bx|Bi| > €) <
§/2 for all m > M. Then, for all m > M,

sup P <sup ¢, Ay + By| = €> (104)
PeP  \k>m

< sup P (bup e AR + ¢t | Byl = 5) (105)
PeP

< supP (sup a; Ay + b | Bi| = > (106)
PeP k=m

< sup P (sup ay | Ag| = ) + sup P (sup b, '|Bi| = > (107)
PeP k=m k=m

<4, (108)

which completes the proof. O

Proof that if Y,, = Op(a,) and a, /b, — 0, then Y,, = 6p(b,). Let £,8 > 0. The goal is to show
that there exists M = M (e, d) = 1 so that for all m > M,

Goal: supPp (Sup b Y| = 8) < 0. (109)
PeP k=m

Proof. Let C > 0 and M; > 1 be constants so that suppep Pp (Supjsp, a; tYe| = C) < 6 for all
m = M;. Moreover, choose My > 1 so that ap/by < &/C for all k = Ms. Set M := max{M;, Ms}.
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Then, for all m > M,

sup Pp (sup b Y| = > (110)
pPeP

= supPp (3k =m: by Y| = £) (111)
PeP

= supPp (3k =m : ;' |Vi| = (br/ar)e) (112)
PeP

< supPp (k= m:a; ' |Yi| = (C/F) - #) (113)
PeP

= supPp (Ik > m:a; Y] = O) (114)
PeP

< 0, (115)

which completes the proof. O

A.3 Proof of Theorem 3.3

Theorem 3.3 ((P,n,a)-uniform statistical inference). Let X, Xo,... be defined on (Q, F,P) and
suppose that for some § > 0, the (2 + 6)"* moment is P-uniformly upper-bounded and the variance is

P-uniformly positive. Recall the definitions of (ﬁ,(cm))w, and (C’,gm) ()3, from Proposition 2.1:

k=m
=1 (ki3 /57 — log(k/m)) (34)
and C',gm)( ) i= g £ 56/ [T L1 — ) + log(k/m)]/k. (35)
Let Py € P be a subcollection of distributions so that Ep(X) = 0 for each P € Py. Then the
time-uniform type-I error of @ém))koo:m and the time-uniform miscoverage of (C( ))k m converge to
a € (0,1) uniformly in «, meaning

lim sup sup ’PP (sz >m :ﬁ,im) < a) - oz‘ =0, and (36)

M=% pePy ae(0,1)
lim sup sup ‘]P’p <3/<; >m:Ep(X)¢ C_',im) (a)) - a‘ =0. (37)

M=% PeP ae(0,1)

Proof. Throughout, denote S, := Y}’ (X) — Ep(X)). The proof is broken up into two steps. The
first (and main) step of the proof shows that supys,, {S?/(67k) —log(k/m)} converges (P, z)-uniformly
to the Robbins-Siegmund distribution W. The second step of the proof uses the first to show how such
convergence is equivalent to ﬁl(cm) and C’,gm) () forming distribution-uniform anytime-valid p-values

and confidence sequences, respectively, in the senses of Definition 2.1.

Step 1: Establishing the asymptotic distribution of sup,.,,{S7/(Gik) — log(k/m)}. First,
notice that by Proposition 3.2,

|62 — 0% = op,(1/logn). (116)
Letting 02 > 0 be the P-uniform lower-bound on the variance so that infpep 0% > o2, we therefore
have

1 1
- 117
o2 0% +0p(1/logn) (117)

1
_ 118
0%(1+ o2 -0p(1/logn)) (118)
1

= . (119)

0% (1 + op(1/logn))
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Now, let ,, be the 1 + op(1/logn) term in the above denominator so that 5,2 = o>y, *. Writing
out supy~,,{Sz/(G7k) — log(k/m)} and using the above, we then have

gg%ﬁ%—bng»—gg{gfk—bAWmﬁ (120)
= puo { (3~ wleetm) (121
= sup { (55— touth/m) + touti/m) - om(1/10g1)) 1L (12
- sup { <f;€ — log(k/m) + 053)(1)> 1+01§f>(1)} , (123)

where (123) uses the fact that k/m < k for any m > 1. We will now justify why the above converges
P- and quantile-uniformly to the Robbins-Siegmund distribution ¥(-). First, by Lemma B.1, we have
that supy~,,{S7/0?k —log(k/m)} converges P- and quantile-uniformly in distribution to ¥ as m — .
That is,

lim sup sup = 0. (124)

m—=0 peP x>0

e (s { 51 fogifm) | <2 - W(a)

k=m

By the fact that (P, n,z)-uniform convergence to Lipschitz CDFs is preserved under additive op(1)-
perturbations (Lemma B.4) and the fact that ¥(-) is Lipschitz (Lemma B.3), we have that

= 0. (125)

Pp (Sup { S2k log(k/m) + 053)(1)} < x) — U(z)

k>=m

lim sup sup
M=% peP 220

Finally, using the fact that (P,n,z)-uniform convergence in distribution is preserved under multi-
plicative (1 + op(1))~!-perturbations (Lemma B.5), we have that

S32 1
o (5{( 2 st/ + 90 ) me} : ) -
(m)

Step 2: Establishing validity of ﬁ,&m) and C_',Em) ().  Writing out the definition of p,”, we have
for any P € Py and a € (0,1),

lim sup sup =0. (126)

m—0 peP £>0

Pp (Elk >m: ﬁ,im) < a) (127)
=Pp{3k=m (kﬁi o —log(k/m)) < a} (128)
=Pp{3k>m:V (kuk o7 —log(k/m)) > 1—a} (129)
= Pp (3k = m: kiiz/5} — log(k/m) = ¥~1(1 — a)) (130)
=Pp (sup {kfiz /57 — log(k/m)} = ¥~ (1 — a)) . (131)

k>=m

Recalling that x + W¥(z) is a bijection between R=® and [0,1) and invoking Step 1, we have the

desired result:
lim sup sup ’IP’p <3k =m :ﬁ,&m) < a) — 04‘ =0, (132)

M= pPePy ae(0,1)
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completing the justification for ;Elim). Moving on to C‘Igm) (), we have for any P € P and any a € (0,1)
that

Pp (ak >m: Ep(X) ¢ O (a)) (133)
—Pp <3k >m:Ep(X) ¢ (uk + /[T 11 —a) + log(k/m)]/k)) (134)
= Pp <3k >m: zk:(Xi —Ep(X))| = 61/E[T1(1 —a) + log(k/m)]> (135)
=Pp(Fk=m: S,fji?,%k —log(k/m) = ¥™1(1 - a)) (136)
=Pp <;§§5 {S3/67k —log(k/m)} = U~ (1 — a)) , (137)

and thus we have that

lim sup sup ‘]P’p (Elk m:Ep(X )¢C,im)(a)) —a‘ =0 (138)

m—=©0 peP qe(0,1)

via the same reasoning as was used for the anytime p-value. This completes the proof.

A.4 Proof of Proposition 4.1

Proposition 4.1 (Hardness of anytime-valid conditional independence testing). Suppose (X, Yn, Zn)5_

are [0, 1]3-valued triplets on the probability spaces (2, F,P*) where P* consists of all distributions sup-
ported on [0,1]3. Let P§ < P* be the subset of distributions satisfying the conditional independence

null Hy and denote Py := P*\P;. Then for any potentially randomized test (F(m))

k=m>’

sup limsupPp (Elk >m: f;m) = 1) < limsup sup Pp (Elk >m: f’(f’”) _ 1) . (51)

PeP; m—© m—ow  PePy

In other words, no Pj-uniform anytime-valid test can have power against any alternative in Py at
any {m,m + 1,... }-valued stopping time no matter how large m is.

Proof. Suppose for the sake of contradiction that there exists a potentially randomized test (f,(cm))koo

so that for some a € (0, 1), we have both B
limsup sup Pp (Elk =m: f,(cm) = 1) < (139)
m—w  PeP}
and _
sup limsup Pp (Elk; =>m: F,(cm) = 1) > a. (140)

PeP; m—®©

Then there must exist € > 0 so that we can always find m; arbitrarily large and nevertheless satisfy

sup Pp (Ek LT 1) >a+te. (141)
PePy

Furthermore, by (139), there exists mg = 1 large enough so that for all m = my,

sup Pp <3k >m: T = 1) <a+e. (142)
PePg

In particular, choose some my = mg so that (141) holds. Notice that the events

Ay = {f,(cml) =1 for some m; < k < M} (143)
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are nested for M = my,m; + 1,... and that Ayy — A := {3k = my : f‘](cml) =1} as M — .
Consequently, there must exist some M™* such that

sup Pp ( max ™) = 1) > o+ €. (144)

PeP; mi<k<M*

On the other hand, notice that by virtue of being a Pg-uniform anytime valid test and the fact that
my = mp, we have that max,,, <x<m+ f‘éml) uniformly controls the type-I error under Py, i.e.

sup Pp ( max f‘,g"“) = 1> < sup Pp (Elk >my f‘,gml) = 1) <a+e. (145)
PeP} mySk<M* PePy

Combining the above with the hardness result of Shah and Peters [38, Theorem 2] applied to the test

)

MaXy,, <k<M* F,(cml , we have that

P i) —q 14
o e (T =) <ave (146)
contradicting (144), and thus completing the proof of Proposition 4.1. O

A.5 Proof of Theorem 4.2

Theorem 4.2 (Py-uniform type-I error control of the SeqGCM). Suppose (X;,Y;, Z;)2, are R x R x
Re-valued triplets defined on the probability spaces (0, F,P) and let Py P be a collection of distri-

butions in P satisfying the conditional independence null Hy and Assumption SeqGCM-1, SeqGCM-2,
and GCM-3. Define

Pt =1 — U (k(GCMy,)? — log(k/m)) . (58)
Then (pggnM)f=m forms a Py-uniform anytime p-value for the conditional independence null:
lim sup sup |Pp(3k=>m: ﬁﬁ%M <a)—al=0. (59)

M=% PePy ae(0,1)
Before proceeding with the proof, notice that the estimated residual R; can be written as
Ri=&+bi+v (147)
where & = £F - £ is a true product residual with
&= (Xi—p(Z)} and €= (Y — 1Y (Z)}, (148)
b; is a product regression error term given by
b := {7 (Z:) — " (Z) i (Z:) — u(Zi)} (149)
and v; := Y + v)"" is a cross-term where

Vi = (i (Z) — 1 (Zi)} €, and (150)
v = A (Zs) — p (Za)} & (151)
Furthermore, define their averages as b,, := %22;1 b; and similarly for %Y, ¥, and &,. We may at

times omit the argument (Z;) from 7 (Z;) = u?f or p®(Z;) = p® ete. when it is clear from context.
With these shorthands in mind, we are ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Note that by some simple algebraic manipulations, it suffices to show that

SUDg >0 {kGCMi - log(k/m)} converges Po-uniformly to the Robbins-Siegmund distribution as m — co.

Begin by writing GCM,, as

. 1 &
— 571 (€0 + 7 + b) (153)

and through a direct calculation, notice that our squared GCM statistic can be written as

2 & +26, (U + b) + (Un + by)?

GCM? = = (154)
n
(2 2600 +bn) | (Un +bn)?
_ by “VAQ G _ . (155)
Un Un 0/”,

) (i) (i)

In the discussion to follow, we analyze these three terms separately (in Steps 1, 2, and 3, respectively)
and combine them to yield the desired result in Step 4.

Step 1: Analyzing (i). In Lemma A.1, we show that under the assumptions of Theorem 4.2, the
estimator 62 := L 37" | R? is Py-uniformly consistent for Var(¢) = E(£?) at a rate faster than 1/logn,
meaning

62 — Var(¢) = op,(1/logn). (156)
Invoking Assumption GCM-3, let g2 be a uniform lower bound on the variance. Then, for any P € Py,
L _ &
(i) =% (157)
o2 )
&
- 158
o3 + o, (1] Togn) (158)
&
_ 159
0% (1+05% op,(1/logn)) (159)
&
_ 160
0% - (1+0=2 0p,(1/logn)) (160)
72
_ & (161)

0% (1 + op,(1/ logn))’

The final form of (i) above will be used later in Step 4 of the proof.

Step 2: Analyzing (ii). In Lemmas A.2 and A.3, we show that under the assumptions of Theo-
rem 4.2, b, = op,(1/+/nloglogn) and v,, = op,(1/1/nloglogn), respectively. Recall that 52 —E(£?) =
op,(1/1logn) by Lemma A.1. Furthermore, we have by the uniform law of the iterated logarithm in
Corollary 5.3 that &, = 67:0 (1/1loglogn/n). Combining these four convergence results together with
the calculus outlined in Lemma 3.1, we have

_ 26 (Fn + ba)

(i7) =5 (162)
_ Op,(\/loglogn/n) - op,(1/4/nloglogn) (163)

o (1+0p,(1))
= op, (1/n). (164)
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Step 3: Analyzing (i7i). Again by Lemmas A.2 and A.3 and the calculus of Lemma 3.1, we have
that

(idi) < (D”;% (165)
o, (1)

- | 1o

= 5, (1/n). (167)

Step 4: Putting (i)—(iii) together. Writing out GCMi and noting the forms of (i), (i7), and (i4)
displayed above, we have that for any P € Py,

2 2% (7. + B S D)2
GCM, = % + g"(yf; bu) | (7 be”) (168)
~—— ~-
@ (49) (449)
/b .
= — 1/n). 169
1+ 0p,(1/logn) + omy(1/n) (169)

Similar to the proof of Theorem 3.3, let 7, be the 1 + op,(1/logn) denominator of the first term
above. Then for any P € Py and any x > 0,

Pp (fﬁﬁ {KGOM} — log(h/m) } < :r) (170)
= Pp (fﬁﬂ {k (5’34:?’ + ogjja)) - log(k/m)} < x) (171)
=2 (s { £ (8703 + 200~ togti/m) | <) (172
— Pp <§§5 {1+5k§f><1) (E,i/ag, +ap) (1) - log(k:/m))} < m) , (173)

and hence similar to the proof of Theorem 3.3, we apply Proposition 2.1, Lemma B.4, and Lemma B.5
in succession to arrive at the desired result:

lim sup sup |Pp (Hk =m: k‘GCMi —log(k/m) = 33) -[1- \Il(gc)]‘ =0, (174)
m—00 PePy =0
which completes the proof of Theorem 4.2. [
Lemma A.1 (Py-uniformly strongly consistent variance estimation). Let 62 be the sample variance
1« 1 & ’
A2 2
== > Ri—|=) Ri| . 175
Then,
1
~2 2 _
—E = . 176
On (E ) op, (1ogn) ( )
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Proof of Lemma A.1. First, consider the following decomposition:

= [€rey + €8 (¥ — Y} + €Y (- A%} + (A% — ) (Y — ) (177)

= &2+ (178)

2(67)2€0 (¥ — BV} + 2(6))%E7 iy — "} + (179)

Ii

A6 {p® — B ¥ — i) + (180)
11;

262 {u¥ — @V} {u® — B} + 267 {p® — A7y {p¥ — AY) + (181)

I11;

(i = pry (= vy (182)

v,

Letting I, := %Z?zl I; and similarly for II,, III,,, and IV,,, we have that

Z£2+I + 11, + 101, + 1V, — (R,,)? (183)
i=1

and we will separately show that I,,, II,,, III,,, IV,,, and (R,)? are all op,(1/logn).

Step 1: Convergence of I,,. By the Cauchy-Schwarz inequality, we have that

YNGR RN PO NCEIEN PO R i (184)
i=1 i=1 i=1
(*) ()
Now, writing & := £7¢Y, notice that

— 1 S 2
== Z & (185)
( Zﬁ - ) +E(&) (186)
=0p,(1) +E [(I&IM)%] (187)
< op, (1) + (El&*7) ™ (188)
< 6770(1)’ (189)

where the last line follows from Assumption GCM-3. Moreover, by Lemma A.4, we have that (f) =
op,(1/1logn), and hence by Lemma 3.1, I, < (%) - (f) = op,(1/logn).

Step 2: Convergence of II,. Again by Cauchy-Schwarz, we have

3

*Zfzﬁyu—m}{u SRl <3 e -t EICIETSN N

and hence again by Lemma A .4, we have II,, = op,(1/logn).
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Step 3: Convergence of I11,,. Following Shah and Peters [38, Section D.1] and using the inequality
2|ab| < a? + b* for any a,b € R, we have

2 Y ~Y\2 x ~T

o — o {p" = (191)

1
< —
n

D& u
i=1

S ~ 1 S ~ T ~T

DE Y — Yy + - 2w = mY T -y, (192)
i=1 i=1

and hence by Lemmas A.4 and A.2, we have III,, = op,(1/logn).

Step 4: Convergence of IV,,. First, notice that

_ 1 & . R
o= = 3 " = Ay {w = Yy’ (193)
i=1
1 n N g2 1 n y Ay2
DR D I T i (194)

i=1 i=1
Applying Lemmas A.2 and 3.1, we have that IV,, = op,(1/logn).

Step 5: Convergence of (R,)? to 0. We will show that (R,,)? = op,(1/logn). Using the decom-
position in (147) at the outset of the proof of Theorem 4.2, we have that

R, =&, +by + 1. (195)
Therefore, we can write its square as
(Rn)® = (&0)* + 26 - (b + 7n) + (bn + 7)°. (196)

By Assumption GCM-3, we have that there exists a § > 0 so that suppep, Ep|£|?*9 < oo. By the de
la Vallée-Poussin criterion for uniform integrability [9, 19, 7], we have that the (1 + §)*® moment of ¢

is uniformly integrable:
lim sup Ep (¢ °1{¢]*T° = m}) = 0. (197)

u
m—0 PePy

By Waudby-Smith et al. [48, Theorem 1], we have that En = op, (nl/(1+6)_1), and in particular,

& = op, (1/\/logn) . (198)
Using Lemma 3.1, we observe that B
(&n)? = ap, (1/logn), (199)

and hence it now suffices to show that by + U, = 0p,(1/logn). Indeed, by Lemmas A.2 and A.3, we
have that b,, = op,(1/v/nloglogn) and v,, = op,(1/4/nloglogn), respectively. Putting these together,

we have

(Rn)Q = (gn)Q + 2577, : (En + Ijn) + (Bn + Dn)z = 5’p0(1/10g TL), (200)

completing the argument for Step 5.
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Step 6: Convergence of 52 to E(¢?). Putting Steps 1-5 together, notice that

E(52)=—Z§2 E(€?) + 1, + 10, + IIL,, + IV,, — (R,,)? (201)

== Z £ —E(€%) + op, (1/logn). (202)

Now, since suppep Ep|é 2|1+5/ 2 < o0, €2 we have by the de la Vallée criterion for uniform integrability
that ¢2 has a Py-uniformly integrable (1 4 §/4)" moment meaning that

lim sup Ep [(52)”5/41 {(52)1+5/4 > m}] —0, (203)

m— PePy

and hence by Waudby-Smith et al. [48, Theorem 1(a)], we have that

L 25 _ = 8p (n1/(1+5/4)_1) 7 (204)
and in particular, = " | £2 —E(¢?) = op(1/logn), so that 52 —E(£2) = op(1/logn), completing the
proof. [

Lemma A.2 (Convergence of the average bias term). Under Assumption SeqGCM-1, we have that

b=t Z 55 (1/y/nloglogn) (205)

Proof. Under Assumption SeqGCM-1, we have that

1

sup ||y, — 1| Lypy - 1187 = 1 Lapy = O | ————== |, (206)
PePo n10g2+5(n)
and hence let Cp, > 0 be a constant depending only on Py so that
v - Cp
sup |ty = 1| ocpy - 105 — 1| Loy < - (207)
PePo \/(n + 1) log®t%2(n + 1) log log(n + 1)
for all n sufficiently large. Consider the following series for all k > m for any m > 3
sup Ep [{i5_1(Zr) — 0" (Zi)} - {1 (Ze) — 0¥ (Z1)} ] (208)
PePo =, v/ k/loglog k
~r _ T nY .
fif_q = p ar, - e
< swp - HLz(P) (= HLZ(P) (209)

PePo 1=, A/ k/loglogk

= i Cr, (210)

k=m \/k log” % (k) logleg - \/k/logleg®

& Cp
- — P 211
k;m k10g1+6/4(k) (211)

and since (klog!t%*(k))~! is summable for any § > 0, we have that the above vanishes as m — 0,

hence
i 5 B BE(Z0) (20} (i () w20}

m—® pep, S k/loglog k
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Applying Waudby-Smith et al. [48, Theorem 2|, we have that

S\H

Z Mk 1(Zk) — gC(Zk)} : {ﬁz_1(zk) - My(Zk)} = 0P, (x/nlo;—logn> ) (213)

which completes the proof. O

Lemma A.3 (Convergence of average cross-terms). Suppose that for some § > 0, and some indepen-
dent Z with the same distribution as Zy,

sup 55 [((75(20) 1w (Z)€0)*] = O ((gorirzss ). (214)

PePy

Then,

1 n
- Z vV = op,(1/4/nloglogn), (215)
i=1

with an analogous statement holding when x and y are swapped in the above condition and conclusion.

Pmof We will only prove the result for ;¥ but the same argument goes through for /. Appealing
to (214), let Cp, be a constant so that

Cp,

Ep | ({32 (Z, v P 21
swp Ep | (75(Z0) — 1w (Za)}e)*| < o (216)
Then notice that for all m sufficiently large
e Ep | ({5(20) - 17 (Z0))€))° | o
su
rer S, K/loglog
0
Cp,
< 21
Z‘;%’ék;m k(log k)2+% / log log k (218)
0
Cp,
< 3 — 21
2B 2 Tlloghy ™ 2
— 0, (220)
and hence )
e B[ - ae)’] -
A s ) W loglog -0 221

By Waudby-Smith et al. [48, Theorem 2], we have that

1 n
721/;-“’ = op(1/+4/nloglogn), (222)
n

i=1

completing the proof. O
Lemma A.4 (Convergence of average squared cross-terms). Under Assumption SeqGCM-2, we have
that

1 « 1 &

- Y2 = 2 Y — vy = op, (1/1 : 223

2 DO = 1 RED Y — Al = o, (1/ g (223)

An analogous statement holds with &% replaced by &Y and {p¥Y(Z,) — 1¥(Zn)} replaced by {u*(Z,) —
i, (Zn)}-
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Proof. Using Assumption SeqGCM-2, let Cp, > 0 be a constant so that

Cp,

Ep [(€5)*{p¥(Zn) — 02 _1(Zn)}?] < —5—- 224
sup Ep [ 1" (Zn) — 181 (Zn)}?] (Togn)2+5 (224)
Therefore, we have that
o0 E z\2f,,Y 7)) — ~Y VA 2
lim sup P (&) {1 (Zy) itkﬂ( 1)) (225)
m—90 pep, o k(log k)~
e}
. Cp,
< Jm ) Sk (226)
k=m
e}
Cp,
= 1l [\ N— 22
A 2L gk @
— 0. (228)
Combining the above with Waudby-Smith et al. [48, Theorem 2], we have that
1 = r\2 y ~Y 2 —
- DUENH Y — fY(Z:)}? = op, (1/1ogn) (229)
i=1
completing the proof. O

A.6 Proof of Corollary 5.3

Corollary 5.3 (A P-uniform law of the iterated logarithm). Suppose (X,,)
bility spaces (Q, F,P) where P is a collection of distributions such that

0

»_1 are defined on proba-

sup Ep|X —EpX[**° <0 and inf Varp(X) >0 (70)
Pep pPep

for some § > 0. Then,

k

C (X —Ep(X _
Su |21=1( P( ))l =1+ 07)(1). (71)
k=>n /2Varp(X)kloglog k

Proof. This is a consequence of our distribution-uniform strong Gaussian coupling given in The-
orem 5.1. Letting up := Ep(X) and op := 1/Varp(X) to reduce notational clutter, note that by
Theorem 5.1, we have that there exists a construction with a sequence of standard Gaussians Y7, Ys, . ..
such that

(X; — pp)/op = Z Y; + op(n9(logn)??), (230)
1 i=1

-

7

where ¢ := 2 + 0, or more formally that for any € > 0,

: E (X = pe)for =BVl ) _
nh_rgo ]sjlég Pp <3k =n: K/ {log )2/ >e| =0. (231)

Now, by the law of the iterated logarithm, we also have that

¢
sup |2 Yl _ 1+ op(1), (232)
o>n V20 loglog/

36



for each P € P, and since Y has the same distribution on every element of P € P, the above also
holds with op(1) replaced by op(1). Now, to prove the final result, we have that

lim sup Pp 3k >n : ‘ZZ (Kizpe)l ), (233)
n—0 pcp e;k 4/20'P£ IOg logﬁ
. | Sia(Xi —pp)fop — B0, Vil | 55, Yl
< 1 Pp | 3k = Lt o L —1 234
oo 1831;2 P ( 325{ v/201loglog ¢ * v/2Clloglog ¢ >e) (234)
< lim supPp [ 3k > sup < /2 + M -1l >¢/2 |+ (235)
= s pep L >k v/20loglog ¢
. | S, (X —pp)/op — 30, Vi
1 Pp | 3k = i= t 2 236
s 18316172 P ( " v/2kloglog k > €/ (236)
. | i Yl
< 1 Ppl|dk=n: —_—= -1 2 237
s 2‘;‘2 P ( 335 { 20 1oglog ¥ >e2) (237)
. IS (X —pp)/op — 3, Vi
nlgréo 21;7% Pp <3k k;l/’l(log BEE >¢e/2 (238)

. | 21 Yil
=1 Pp|3k=n: —==__ ) 1| >¢€/2 239
i 1831;7% P 31;1;3 { v/201oglogt e/ (239)

| 2i=1 Yl
= sup lim P >n:|supl —me——-—)—1|>¢/2 240
PEI; n—0o0 P ( gZII;) { A/ 20 IOg IOgE / ( )
=0, (241)

where the second inequality follows from Theorem 5.1 and the third follows from the triangle inequality
and the fact that k'/9(logk)?/? < 2kloglogk for all k sufficiently large. The second-last equality
follows from the fact that the probability does not depend on features of the distribution P and the
last equality follows from the P-pointwise law of the iterated logarithm. O

A.7 Proof of Lemma 5.2 and Theorem 5.1

Lemma 5.2 (Strong Gaussian coupling inequality). Let (X,,)i"_; be independent random variables
on the probability space (Q, F, P). Suppose that for some q = 2, we have Ep| Xy — EpX|? < oo for
each k € N. Let f(-) be a positive and increasing function so that Y (nf(n))™* <« and

i ]Ep|Xk —EpXk|q/0'g
< 00,
= kf(k)

where o} := Varp(Xy). Then one can construct a probability space (Q, F, P(P)) rich enough to define

(68)

()Z'n,Yn);‘le where X,, and X,, are equidistributed for each n and (Yy, )n 1 are marginally independent
standard Gaussians so that for any e > 0,

X (X -v) Cos) <o Ep|Xi —EpXy|'/o]
Pspy <E|k‘>m. SafmT |7 c <= k:;ma 0 +
m—1_
LZ Z 1Ep|Xk—EpXk|q/O'Z (69)
am kf(k) ’

where Cy ¢ 1s a constant that depends only on q and f.
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First, we need the following result due to Lifshits [27, Theorem 3.3] which is itself a refinement of
an inequality due to Sakhanenko [36].

Lemma A.5 (Sakhanenko-Lifshits inequality). Let X1, X5, -+ : Q@ — R be independent mean-zero
random vartables on a probability space (2, F,P) and let ¢ = 2. Then one can construct a new
probability space (Q F, P) rich enough to contain (Xn,Y ), so that (X1, Xa,...) and ()N(l,)w(g, o)
are equidistributed and (Y1,Ys,...) are standard Gaussian random variables so that

X . q<o o EplXil 242
&%Z fop(X) = 1V | <G U (242)

where Cy is a constant depending only on q.

Notice that op(X;) = 05(X;) and Ep|X;|? = E3|X;|? in the above lemma so we may use them
interchangeably.
Proof of the main result

Proof of Lemma 5.2. Throughout the proof, we will use o; in place of op(X;) whenever the distribu-
tion P is clear from context. We will also let Si(P) and Gy, be the partial sums given by

k k
Z (Xi —Ep(Xi))/op(Xi) and Gi:= Y Vi (243)

i=1

For any P € P, we appeal to Lemma A.5 and let (SN), .%, 13) be a construction so that for any n,

Ep|X; — Ep(Xk)|?
e (jua 151 - 0ul) < Z AT 24
By Markov’s inequality, we have that for any z > 0,
D1 Ep| Xk —Ep(Xy)|/o]]
Pp (113,3§n5k( ) = Gl > Z) < Cp == por ; (245)

noting that the right-hand side does not depend on the new probability space, but only on the original
P. Defining Ay = Ag(P) := Sp(P) — G, we have that for any k and n,

Ag} = Ap — A A 246
D(n— gljlip {Ar} = Din— gljlip { k D(n—1)— 1}+ D(n—1)—1> (246)
e g ()
(a)
where D(n) := 2™ are exponentially spaced demarcation points that will become important in the

arguments to follow. We will proceed by separately bounding (a) and (b) time-uniformly with high-
probability.

Step 1: Bounding (a) time-uniformly with high probability. Let aj, := k'/9f(k)'/9. By (245)
applied to Ax — Ap_1)—1 = Zf:D(nfl)(X’i —Ep(X;))/0; with 2 := eap(,—1), we have that

Pﬁ( Dln gljlip {Ar — Ap(n_1)—1} > €ap(n_ 1)> (247)
D(n)—1 q
Ep| X, — Ep(Xi)|?
<, Z p| Xk - p( f)| /oy, (248)
k=D(n—1) 4D (n-1)¢
D(n)—1 q
Ep| Xy —Ep(Xi)|?
e Z Pl Xk al;( k)| /Uk. (249)
k=D(n—1) k
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Union bounding over n = m, m + 1,... we have that

Ps(3n=mand ke {D(n—1),...,D(n) — 1} : {Ar — Ap(n_1)_1} > ag) (250)
< Pp <3n =m: D(n71r§1<a?<p(n){Ak — Ap(n—1)-1} > sap(n_1)> (251)
0 D(n)—1
_ Ep| Xy —Ep(Xy)|?/0}
SN = k. (252)
n=m k=D(n—1) k
o Ep|Xy —Ep(Xi))?
DY P | X = p(Xe)? (253)
n=D(m—1) k

(254)

Step 2: Bounding (b) time-uniformly with high probability. Applying (245) to Apg,—1)—1
with 2 = €ap(,_1), we have that

P (|Apm-1)-1] > capm-1)) (255)
D(n—1)—1 4
Ep| Xy —Ep(Xi)|?
<Cp ), Pl X — Bp(Xe)l'/oy (256)
1 Ap(n—1)€*
C D(n—1)—1
Sga— X EelXa—Ep(Xa)7/ol. (257)
D(n—-1) k=1
Union bounding again over n = m,m + 1, ..., we have
Ps(3n=mand ke {D(n—1),...,D(n) — 1} : |Apr_1)_1] > caz) (258)
<Pz (En=mand ke {D(n—1),...,D(n) — 1} : |App_1)—1] > €apm-1)) (259)
=Pp (3” =m:|Apm_1)-1| > 6%(%1)) (260)
© c D(n—1)—1

Step 3: Union bounding over the results from Steps 1 and 2. Putting Steps 1 and 2 together,
we have the following time-uniform crossing inequality for |Ag|:

Pﬁ(ﬂk‘ =Zm: ‘Ak| > 25ak) (262)
SPs(3k=m: |Ar — Ap—1)—1| + |Apn—1)—1] > ar + ax) (263)
[ 0 o) D(n—1)—1 ]

- Ep| X, —Ep(Xg)|? 1 Ep|Xy —Ep(Xy)[?
<e€ ch Z aq + Z q o_q (264)
_n:D(mfl) k n=m ~D(n—1) k=1 k |
[ & EeX B0l & 1 PO EIX, — Ep(X)l ]
<G 7 t 2 7 (265)
a a (o
_n:D(m—l) k n=m ~D(n—1) k=1 k |
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Letting p} := Ep|Xy — Ep(X)|? and further simplifying the above expression so that it does not
depend on the demarcation points D(n), we have

Pk =m : |Ag| > 2eay) (266)
0 q /. q 5o 1 D(n—1)—1
T D I e Y 1 (267)
| k=D(m—1) O n=m %D(n—1) k=1
I 0 q/ q ) D(n—1)-1
- pk/ak 1 q /-9
<& 90 + pljo (268)
! _kD;n_l) kf(k) n;m D(n—1)f(D(n—1)) ,;1 ek
[ 0 [oe) D(n—1)—1 q/ q
— pk/ak L P/ %%
<e710, > + 2 (269)
k‘*D(nL—l) k‘f n=m n - 1) k=1 f(D(k))
00 'D(n—l)—l q q
- Pk/% i/ Tk
=710, Z DI T=Y 7o) (270)
| k=2m—1 n=m k=1
e -1.2" q, q
- pk/ak Cf Pi/0},
< e, Z + ) L : (271)
=9m—1 n=m 2 ! k=1 kf(k)

where (268) follows from the definition of ay := kY9f(k)Y/4, (269) follows from the fact that f is
increasing and that D(k) := 2%, (270) follows from the definition of D(-), and (271) from the fact that
f(k) = Cylog(k) for all k> 1 and some constant C'; depending only on f (if this were not true, then
S [kf(k)]~* would not be summable).

The final result follows from observing that Zi:l pl/(olkf(k)) < X, pi/(olkf(k)) and absorb-
ing constants only depending on ¢ and f into Cj :

Pﬁ(ﬂk =m: ‘Ak| > sak) (272)
0 C 1 27
< 296710, 2 pk/ak + Z 2n 1 Z pk/gk (273)
k=2
p /0 oy /0 p /U
<weop | K- ket it Loyl el (274)
k gm—1 k=1 k=2m—1
= 29790,C71 | (Cf +27) Z p’f/gk Z pk/g’f (275)
i k=2m—1
© 7/ q 2" '—1 g q
<0, P/ 1 Pi/ %%k (276)

L RfR) T2 A k) |

which completes the proof O

Let us now show how Theorem 5.1 is a consequence of the above.

Theorem 5.1 (Distribution-uniform strong Gaussian approximation). Let (X)), be independent
and identically distributed random variables defined on the collection of probability spaces (2, F,P)
with means pp = Ep(X) and variances 0% := Ep(X —pp)?. If X has g > 2 uniformly upper-bounded
moments, and a uniformly positive variance, i.e.

sup Ep|X — pup|? <0 and inf 0% > 0, (66)
PeP pePp
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then there exists a construction with independent standard Gaussians (Y5,)*_; ~ N(0,1) so that

n

ZXiU—MP_iYi

i=1 P i=1

= op(n"/10g?/"(n)). (67)

Proof. The proof of Theorem 5.1 amounts to analyzing the P-uniform tail behavior of the probability
bound in Lemma 5.2. Indeed, for each P € P, let (Q, F, P(P)) be the construction that yields

k k
P <3k — |Z¢—1(Xz' —pp)op =21 Y;
P Zm:

R (F) > 5) (277)

0 q /.4q 2" '-1 q ;) q
- pplop 1 Pp/op
<, | ) — 3 , 2
e 10y L kf(k) + om = kf (k) (278)

where pL := Ep|X —EpX|? and 0% := Ep(X — Ep)%. Let p < o be the uniform upper bound so
that suppep ph < p? and 02 > 0 be the uniform lower bound on the variance so that inf pep 0% > o2.
Replacing the above finite sum by its infinite extension and taking suprema over P on both sides, we
have that

i (X — pp)/op — S0 Y
P 3k > : 1= =
pep P ( " ‘ kf (k)

> 5) (279)

< P1Cq, s i 1

gq€q

1 & 1
IERET (280)

k=2m—1
(%) Q)

Now, () — 0 and () — 0 as m — o0, both of which follow from the fact that 1/[kf(k)] is summable.
Instantiating the above for f(k) := log®(k) completes the proof. O

B Additional theoretical discussions and results

B.1 The Robbins-Siegmund distribution

Fundamental to this paper is a probability distribution that describes the supremum of a transformed
Wiener process with a delayed start (see Lemma B.1). As far as we can tell, the distribution was
first (implicitly) discovered by Robbins and Siegmund [33] and as such we refer to it as the Robbins-
Siegmund distribution. In this section, we provide its cumulative distribution function (CDF) ¥ and
show how the suprema of scaled Wiener processes have this distribution ¥. The Robbins-Siegmund
distribution has also been implicitly used in Waudby-Smith et al. [47] and Bibaut et al. [4] for the
sake of P-pointwise anytime-valid inference.

Definition B.1 (The Robbins-Siegmund distribution). We say that a nonnegative random variable
R follows the Robbins-Siegmund (R-S) distribution if its CDF is given by

U(r):=1-2[1—@(\r) +ro(vr)]; r=0, (281)

where ® and ¢ are the CDF and density of a standard Gaussian, respectively.

The following lemma demonstrates how the supremum of a transformed Wiener process follows
the Robbins-Siegmund distribution.
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Lemma B.1. Let (W (t))t=0 be a standard Wiener process and define

R = sup { Wff)2 - logt} . (282)

t>1
Then, R follows the Robbins-Siegmund distribution given in Definition B.1.

Proof. Rather than derive its CDF for a given 7, we will derive the survival function P(R > a?) for
any a > 0, showing that P(R%R > a?) = 1 —¥(a?) as given in Definition B.1, which will yield the desired
result.

PR >a) =P (3t >1:W(t)?/t —logt > a?) (283)
=IP’(Ht 1: W) = [a2+logt]) (284)
=2[1—®(a) + ag(a)] =1 — ¥(a?). (285)

where the last line follows from Robbins and Siegmund [33] but with their value of 7 set to 1. Alterna-
tively, a different proof found in Waudby-Smith et al. [47, Lemma A.14] yields the desired result. [

)
(

The following lemma demonstrates that appropriately scaled discrete Gaussian partial sums con-
verge to the Robbins-Siegmund distribution.

Lemma B.2 (Transformed Gaussian partial sums converge to the Robbins-Siegmund distribution).
Let Gy, be a sum of iid Gaussian random variables with mean zero and variance 0. Then,

2
sup S _ log(k/m) LU asm— . (286)
k=m ko?

Proof. Since G is a sum of iid Gaussian random variables with mean zero and variance o2, we

have by Komlés, Major, and Tusnady [22, 23] that Gy = oW (k) + Op(logk) where (W (t))i=0o is
a standard Wiener process. We will now show that sup,., {G?%/ko® —log(k/n)} converges to the
Robbins-Siegmund distribution.

222 {ki - 1og(k:/n)} (287)
) (W (k) + Olog k) ~ (log(k)y/EToglogh nil
= kes:};) { To? —log(k/n) + Op ( ] > +0 <log [n])} (288)
= su 0 Ing- oglo —lo n o
- s {S0E 4 0p (RER - VEToglogk) — log(l/n) | + 00(1) (259)
= ke u OO) { — log( k/n)} +op (1) (290)
= sw[up ){W (tn)?/tno® — log(tn/n)} + op (1) (291)
= t s[111p ) {nW(t)*/tno® —log(t)} + op (1) (292)
- ts[111p ) {W(t)*/to* —log(t)} + op(1), (293)

where (288) results from the discrete-to-continuous overshoot in 1/k and log(k/n) when taking a
supremum over k € [n,o0) instead of over k € {n,n + 1,...} and (292) follows from elementary
properties of the Wiener process. It follows that

2
sup {Gk - log(k‘/n)} LY asn— . (294)

k=n k0'2
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O
The following lemma establishes that the Robbins-Siegmund distribution has a Lipschitz CDF.

Lemma B.3. The cumulative distribution function ¥(r) of a Robbins-Siegmund-distributed random
variable is L-Lipschitz with L < 1/4. In other words,

sup < 1/4. (295)

r=0

d
J‘I’(T)

Proof. Clearly, it suffices to show that 1 — U(r) is L-Lipschitz. Defining f(r) := 1 — ¥(r), we have
that

f(r) =201 = ®(Vr) + Vré(Vr)) (296)
=2-20(v/r) + 2Vré(Vr). (297)

A direct calculation reveals that
! = — T 71 71 T T / T

= ¢'(Vr) (299)
\/;

(298)

<

= Y exp{—r/2}, 300
L e (-r/2) (300)
from which it is easy to check that sup,>q |f'(r)| < 1/4, completing the proof. O

B.2 Uniform convergence of perturbed random variables

Throughout many of our proofs, we rely on facts about convergence of random variables under P-
uniformly small perturbations. Similar results are common in the proofs of P-uniform fixed-n cen-
tral limit theorems but are only discussed in the context of Gaussian limiting distributions and for
time-pointwise convergence. We show here that similar results hold for Robbins-Siegmund limiting
distributions (in fact, for any continuous and Lipschitz distribution) under time- and P-uniformly
small perturbations to random variables inside suprema over time.

Lemma B.4 (Time-uniform closure under additive op(1)-perturbations). Let ((Agm )i, )e_, be a

doubly indexed sequence of random variables on (Q, F,P). Let Z ~ F(z) with where the CDF F is
L-Lipschitz and does not depend on P € P. Suppose that

lim supsup |Pp (sup {Apm} = z) —Pp(Z =2)|=0. (301)
m—0 peP zeR k=m
If R, = op(1), then
lim sup sup |Pp (sup {Ak.m + R} = z> —Pp(Z = 2)|=0. (302)
m—% peP zeR k=m

Proof. Let e > 0 be any positive constant. Using (301) and the fact that R,, = op(1), let M be large
enough so that for all m > M, we have

sup sup |Pp (sup {Agm} = z) —Pp(Z=22)<e (303)
PeP zeR k=m
and so that
sup sup Pp <sup|R;C > 6) <e. (304)
PeP zeR k=m
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Then, writing out Pp(supys,,{Ax,m + Ri} = z) for any P € P, z € R, and m > M, we find the
following upper bound,

Pp <sup {Apm + R} = Z) (305)
k>=m
=Pp (sup{Ak,m + Ry} = 2 ’ sup |Ry| < 5) Pp(|R,| <e)+ (306)
k=m k>m %,1_/
<
Pp (sup{A;mn + Ry} =2 ‘ sup |Rg| = €> Pp <sup|Rk > €> (307)
k=m k=m k=m
<e
< Pp (sup {Apm} =2 — a> +€, (308)
k=m
and via a similar argument, the corresponding lower bound,
Pp (sup {Akm + R} = z) (309)
k=m
> Pp (sup {Apm} =2z + E) —e. (310)
k=m
Using first the upper bound, we thus have that
Pp (sup{Ak,m + Ry} = z) —Pp(Z = 2) (311)
k=m
< Pp (sup{Ak,m} >z — €> —Pp(Z=2)+¢ (312)
k=m
KPp(Zz2z2—¢)—Pp(Z =2)+2 (313)
=1-F(z—¢)—(1=F(2)) + 2 (314)
=F(z)—F(z—¢)+ 2¢ (315)
< (L + 2)e, (316)
where the last line used the fact that F' is L-Lipschitz for some L > 0. Similarly,
Pp (sup{A;“m + Ry} > z) —Pp(Z = 2) (317)
k=m
> — (L +2)e, (318)
Putting the two together, we have that
Pp (sup {Ak.m + R} = z) —Pp(Z = 2)| < (L + 2)e, (319)
k>=m
and since L neither depends on z nor on P, we have that
Pp (sup {Apm + R} > z) —Pp(Z = 2)| < (L + 2)e. (320)
k>=m
Since € was arbitrary, it follows that
lim sup sup |Pp (sup{Ak,m + Ry} = z) —Pp(Z = 2)| =0, (321)
n=%0 peP zeR k=m
which completes the proof.
O
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Lemma B.5 (Time-uniform closure under multiplicative o5 (1)-perturbations). Let ((Ag,m)? ) r_;
be a doubly indexed sequence of random wvariables on (Q,F,P). Let Z ~ F(z) with CDF F not

depending on P € P. Suppose that

lim sup sup |Pp (Sup {Ag.m} < :c) —F(z)|=0 (322)
m—90 peP reR k=m
and suppose that R, = op(1). Then,
lim sup s 1P><s {A’“m}<> F(z)| =0 (323)
im sup su u <z)-—F(x) =0.
Moo pep en | | ;@5 1+ Ry,

Proof. The proof proceeds in four steps. In First, we ensure that the CDF of sup,..,, Ak,m is (P, z)-
uniformly close to F'. Second, we use a result of van der Vaart [44] and Slutsky’s theorem to justify why
deterministically perturbed continuous random variables converge quantile-uniformly in distribution.
Third, we use the fact that R, = op(1) to ensure that R, is P- and time-uniformly smaller than a
certain radius. The fourth and final steps puts these results together to arrive at the desired result.
Let € > 0 be arbitrary. Our goal is to show that there exists M sufficiently large so that for all

m =M,
Pp (sup { Ak } < x) — F(x)
k>=m 1 + Rk;

(Here, the multiplication by 2 is only for algebraic convenience later on.)

Goal: sup sup < 2e. (324)

PeP zeR

Step 1: Ensuring that the CDF of supy.,, Ak is (P, z)-uniformly close to F'(z). By the
assumption in (322), choose M; large enough so that whenever m > M, we have

sup sup <e (325)

PeP xzeR

Pp <sup {Agm} < x) — F(x)
k=m

Step 2: CDFs of deterministically perturbed random variables are close to F. Letting
X ~ F be a continuous random variable with CDF F, note that
X g
4 x 326
1+h (326)
as h — 0 by Slutsky’s theorem. Consequently, by van der Vaart [44, Lemma 2.11] combined with the
fact that F'(x) is continuous in x € R, we have that

X
i - = li —— <a)-P(X <
}llli% sup |F(z(1+h)) — F(z)] ]]:Lli%sgp ‘IE” (1 7 x) P(X < z) (327)
=0. (328)
As such, let hy > 0 be a positive number so that whenever |h| < ha,
sup |F(z(1+ h)) — F(z)] <e. (329)

zeR

Step 3: Ensuring that R, is P- and time-uniformly close to 0. Given the assumption that
R,, = op(1), choose M3 large enough so that for all m > Ms, we have

sup Pp <Sup|Rk| > h2> <e, (330)
PeP

k=m

where hs is as in Step 2.
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Step 4: Putting Steps 1-3 together to obtain the final bound. Set M = max{Mj, M3}.
First, consider the following upper bound on Pp (Supys,, {Ak.m/(1 + Ry)} < z) for any m > M:

Ak m
P : < 1
(e {5 <) e
Ak m
=Pp|supl——p < z‘ sup |Ri| < ho | Pp | sup|Rg| < ho | + (332)
k=m 1+ Ry k=m k=m
<1
Ak m
Pp ( sup L Qg ( sup|Ry| = ha ) Pp ( sup|Ry| = ho (333)
k=>m 1+ Rk k=m k=>m
<e
< Pp <sup { Ak } < x) +e. (334)
k;m ]. + h2
By a similar argument, we have that for all m > M,
Ak m
P : < 335
P<E;EL{1+RK} x) (335)
Ak m
> Pp | sup : <z|-—e (336)
k=m (1 — ha
Keeping these upper and lower bounds in mind, we have that
Ak: m
P — 0 < - F 337
(it =) e 5
< Pp (sup {Apm} <z(l+ h2)> —F(z)+¢ (338)
k>=m
< Fx(1+hg)) — F(z) +¢ (339)
< 2e. (340)
and
Akm } )
Pp(supy—— <z | —F(z 341
P<k>g{1+3k ) )
> Pp <sup {Apm} <z(1- hg)) —F(z)—e¢ (342)
k=m
> F(z(1—hy)) — F(x) —¢ (343)
> —2e. (344)

Putting these upper and lower bounds on the difference of probabilities together and noting that their
bounds do not depend on P € P nor on z € R, we have

Ag,m
sup sup |Pp (sup { b, } < a:) — F(x)| < 2¢, (345)
PeP zeR k=m (1 + Ry
which completes the proof.
O
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