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Systems displaying quantum topological order feature robust characteristics that are very attrac-
tive to quantum computing schemes. Topological quantum field theories have proven to be powerful
in capturing the quintessential attributes of systems displaying topological order including, in par-
ticular, their anyon excitations. Here, we investigate systems that lie outside this common purview,
and present a rich class of models exhibiting topological orders with distance-dependent interacting
anyons. As we illustrate, in some instances, the gapped lowest-energy excitations are comprised of
anyons that densely cover the entire system. This leads to behaviors not typically described by
topological quantum field theories. We examine these models by performing dualities to systems
displaying conventional (i.e., Landau) orders. Our approach enables a general method for mapping
generic Landau-type theories to dual models with topological order of the same spatial dimension.
The low-energy subspaces of our models can be made more resilient to thermal effects than those
of surface codes.

Introduction. Topological quantum field theories
(TQFTs)[1–4], are closely interwoven with existing de-
scriptions of topological quantum order (TQO). Ax-
iomatically, TQFTs are mappings from (inherently met-
ric independent) manifold cobordisms to Hilbert spaces
[2]. It is often understood that a microscopic model dis-
playing TQO effectively renormalizes to a certain TQFT
in the low-energy limit, resulting in ground-state degen-
eracies computable via that TQFT [5, 6]. Consequently,
many distinct microscopic models may be associated with
the same type of TQO. Importantly, from a practical
standpoint, the properties of gapped low-energy (anyon)
excitations in TQO systems are typically analyzed via
such TQFTs [7]. These excitations form the focus of our
attention.

In this work we report on TQO systems for which con-
ventional TQFT descriptions are insufficient. The inter-
actions in these systems non-trivially alter the braiding
and fusion properties of their lowest-energy excitations
(these excitations may become unbounded so as to cover
all of space) without modifying the ground-state space
TQFT. To elucidate the basic premise, we introduce and
study simple Zq (with q ≥ 2) extensions of the well-
known (q = 2) Kitaev toric code (TC) [8] models. Our
construct is not limited to (string-net [9–13] long-range,
specific non-abelian [14], high-dimensional) or other spe-
cific extensions of the TC that we merely focus on here
in order to provide the simplest example. As we illus-
trate, such TQO models may map, via exact dualities,
to theories exhibiting Landau orders.

Diverse, and often inequivalent [15, 16], notions of
TQO abound. We follow Kitaev’s definition which high-
lights the innate robustness of TQO systems to (quasi-)
local perturbations [8], hence their promise for topolog-
ical quantum information processing. According to this

error-detection motivated definition, the matrix elements
of all (quasi-)local operators V in the ground-state basis,
spanned by orthonormal states {|gγ⟩}, satisfy

⟨gα|V |gβ⟩ = vδα,β , (1)

with v a constant depending only on V . Physically,
Eq. (1) asserts that different ground-states cannot be
told apart via (quasi-) local measurements (and thus
cannot be assigned different conventional Landau order
parameters). Such a condition may be extended be-
yond the lowest-energy (i.e., ground-state) sector [15, 16]
in a way that further highlights the relation between
d−dimensional Gauge like symmetries and topological
orders. For symmetry enriched topological order (SET)
[17], v may include quantum numbers associated with
symmetries.

TQFTs are indispensable in studies of numerous TQO
systems where they describe anyon braiding and fusion
[7]. With the exception of theories exhibiting rigid sub-
system symmetries (e.g., fractons and related models),
where the degeneracy increases with system size, [18–25],
TQFTs generally encode ground-state (anyon vacuum)
degeneracies. We will show that excitations of TQO sys-
tems may differ from those of expected anyon models.
Even in the infrared limit, whenever (anyon) excitations
appear, their salient characteristics will be metric (i.e.,
geometry) dependent. TQFT descriptions of the vacuum
remain unaltered.

The Star-Plaquette Product Model (SPPM). We high-
light very general families of Hamiltonians arising in the
algebras of generic stabilizer codes. Our simplest non-
trivial example will be the “q-state SPPM.” On general
lattices Λ, this model is given by the nearest-neighbor

ar
X

iv
:2

31
1.

03
35

3v
3 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
6 

M
ar

 2
02

4



2

FIG. 1: (Color online.) The Z2 SPPM as an example of our duality. Left: The SPPM of Eq. (2) with star As,
plaquette Bp, and interaction AsBp (yellow) operators indicated. Center: The associated dual classical Ising (q = 2)
model. The interactions AsBp are dual to the nearest-neighbor Ising spin interactions (also highlighted in yellow).
Right: An excited SPPM state created by acting with string operations on the ground-state (the dual excited Ising
model state is displayed in the central panel). X and Z string excitations create m and e anyons at their endpoints.

Hamiltonian (see Fig. 1),

HSPPM = −
∑
⟨s,p⟩

JspAsBp −
∑
s

gsAs −
∑
p

gpBp + h.c.,

(2)
defined on a Hilbert space H formed by the tensor prod-
uct of NΛ link subspaces. The ⟨s, p⟩ sum in the first
term is over neighboring “stars” and “plaquettes” (see
left panel of Fig. 1) that share common lattice links.
We will analyze excitations in systems having spatially
non-uniform couplings yet largely consider uniform gs =
gp = g and Jsp = J . In the square lattice realization of
Eq. (2), the individual (commuting) star and plaquette

operators are As = X1X
†
2X

†
3X4 and Bp = Z1Z2Z

†
3Z

†
4

with the labelling performed anti-clockwise from the up-
per link of the star/plaquette, and where † is the adjoint.
The elementary Zq “clock” and “shift” unitary operators
Zj and Xj lie on each of the NΛ lattice links j and satisfy
the Weyl algebra XjZj = ei2π/qZjXj [26] (generalizing
the two-state (q = 2) Pauli algebra). The union of sites
(s) and plaquette centers (p) or dual-sites forms a “diag-
onal lattice” highlighted in blue in Fig 1 (a.k.a. “radial
lattice/graph” [27]). For J, g > 0, the ground-states of
the SPPM and the paradigmatic Zq TC model [8, 28–30],

HTC = −
∑
s

(As +A†
s)−

∑
p

(Bp +B†
p), (3)

are identical with a degeneracy exponential in the genus
of the lattice surface dTC = q2(genus). The SPPM and
TC also share all of their excited eigenstates (with de-
generacies that are integer multiples of dTC). Crucially,
however, the respective energies of these eigenstates will
differ in both models. The first term in Eq. (2) does not
appear in the TC and leads to an energy that depends
on the geometrical arrangement of TC defects (anyons)
where Eigenvalue[As],Eigenvalue[Bp] ̸= 1.

For lattices Λ on a torus, the minimal degeneracy of
each energy level of both the SPPM and the TC is asso-
ciated with a pair of (d = 1 dimensional) non-commuting
symmetries (for each independent non-contractible loop
Ca (or C ′

a)) given by (i) closed string products of Zj op-
erators on the lattice Λ and of (ii) Xj operators on the
dual lattice Λd,

Zq
1(2) =

∏
j∈C1(2)

Zj , Xq
1(2) =

∏
j∈C′

1(2)

Xj . (4)

The lowest–energy excited states of the TC model are
created by acting on its ground-states with products of
local Zj or local Xj operators along open strings [8]. We
denote, respectively, the lattice and dual lattice strings by
Zq
s1,s2 and Xq

p1,p2
for strings with endpoints at sites s1, s2

or dual-sites p1, p2. Each such string product creates an
excited state of fixed energy, regardless of its length, with
anyons at its endpoints. That is, there is no “string ten-
sion.” The TC anyons can drift apart an arbitrary dis-
tance without energy cost. This feature makes only the
topology of the anyons (not their geometry) germane.
The SPPM fundamentally differs from the TC by hav-
ing additional nearest-neighbor interactions appearing in
the first term of Eq. (2). These interactions produce dif-
ferences in energies between nearest-neighbor and more
distant anyons, introducing an effective string tension.
The associated energies are identical to those of domain
walls in classical clock models.

Duality between the SPPM and classical clock models.
We next demonstrate that the SPPM is dual to a con-
ventional nearest-neighbor q-state clock model. For con-
creteness, we analyze the SPPM on a torus. The “bond-
algebra” [14, 15, 26, 31–34], i.e., the set of all independent
algebraic relations amongst the individual terms appear-
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ing in the SPPM Hamiltonian is given by

[As, As′ ] = [As, Bp] = [Bp, Bp′ ] = 0, (5a)

Aq
s = Bq

p = 1, (5b)

(As1Bp1
)(A†

s2B
†
p1
)(As2Bp2

) · · · (AsnBpn
)

×(A†
s1B

†
pn
) = 1, (5c)∏

s

As =
∏
p

Bp = 1. (5d)

Eqs. (5c) applies to the product of the said bilinears
along any closed loop Γ of length (2n). Eqs. (5c) are
identities that follow, algebraically, from Eqs. (5a). We
have explicitly written down Eqs. (5c) in order to pro-
vide all bond-algebraic relations (including constraints
amongst the individual bonds (terms) that appear in the
SPPM Hamiltonian of Eq. (2)). Relations similar to Eqs.
(5c) apply to products of the (AsBp) bilinears (and their
Hermitian conjugates) along an arbitrary open contour
Γ′; when multiplied at their two endpoints (r and m) by
terms of the A†

r and/or B†
m type (or their Hermitian con-

jugates), such operator products along any open contour
Γ′ are unity. Eqs. (5a,5b, 5c) describe the bulk theory.
By contrast, Eqs. (5d) arise from periodic boundary con-
ditions. Here, in a full lattice tiling with all stars s or
plaquettes p, in the products of Eqs. (5d), each local
unitary X-type operator or Z-type operator will appear
twice in the product Eq. 5d.

We now turn to classical Landau-type nearest-neighbor
q-state clock models (classical 2D Ising model for q = 2)
in “external longitudinal fields” gi given by the Hamilto-
nian

Hc = −
∑
⟨i,j⟩

Jij(z
∗
i zj + ziz

∗
j )−

∑
i

gi(zi + z∗i ), (6)

with zj ∈ C being q-th roots of unity. Hc is defined on
the diagonal lattice of the SPPM, see Fig. 1. The diag-
onal lattice splinters into “even” and “odd” sub-lattices
that are, respectively, associated with the sites and dual-
sites of the SPPM square lattice; by comparison to Eq.
(2), we set gi = gs (even sub-lattice) and gi = gp (odd
sub-lattice) with Jij = Jsp. Aside from boundary con-
sequences (Eq. (5d)), the duality between the SPPM
and the clock model is a mapping of star operators to
even-site clock variables and plaquettes to odd-site clock
variables and vice versa,

As ↔ zi, Bp ↔ z∗j . (7)

This bond-algebraic duality mapping generates the terms
in the clock model from those of the SPPM, the nearest-
neighbor SPPM products map to nearest-neighbor prod-
ucts of the classical clock model AsBp ↔ ziz

∗
j . Apart

from trivial (classical) commutativity of its individual
terms (similar to that of the quantum SPPM (Eq. (5a)),

the bond-algebra of Hc is specified by counterparts to
Eqs. (5b, 5c),

zqi = 1, (8a)∏
(i,j)∈Γ

z∗i zj = 1. (8b)

Further analogous to the SPPM, the product

zr′
(∏

(i,j)∈Γ′ z∗i zj

)
z∗m′ = 1 along any open contour

Γ′ having r′ and m′ as its endpoints. Similar to Eqs.
(5c), these last open contour product relations and the
closed contour (Γ) product equalities of Eqs. (8b) are
algebraic identities. An analog of Eq. (5d) for the
classical Ising (q = 2) case would imply that all spin
flips relative to the ferromagnetic state in the dual
classical Ising model can only appear in pairs on any
of the sublattices; for the general q-state clock model
of Eq. (6), on each of the two sublattices, the sum of
the clock spin angles must be an integer multiple of 2π.
A constraint equivalent to Eq. (5d) can be realized in
a clock model Hamiltonian dual by amending Hc by a
pair of non-local terms [9]. In the thermodynamic limit,
the free energy density of the classical clock model is
unaltered and the duality of Eq. (7) follows. Dualities
between classical clock spin and SPPM systems for other
boundary conditions can be found in [9].

Our duality implies that the addition of the AsBp cou-
pling term to the TC HamiltonianHTC that yieldsHSSPM

modifies the classical one-dimensional classical clock (and
Ising) model spectrum of HTC [15, 16, 35] to be that of
the classical two-dimensional Hc. Given Eq. (7), proper-
ties of the SPPM model can be gleaned from well-known
behaviors of classical clock (and Ising) models. We list
several of these. When |g| = 0+, the global Zq sym-
metry of the uniform coupling classical clock model is
spontaneously broken at low temperatures with free en-
ergy barriers diverging with system size. When g = 0,
uniform coupling classical q > 4 clock models exhibit
Kosterlitz-Thouless (KT) transitions (with two dual KT
phase endpoints [26]); critical Ising and three-state Potts
transitions appear for q = 2, 4 and q = 3 renditions re-
spectively. HSPPM realizations with random Jsp are dual
to classical spin glass [36] models. When both J and g are
uniform non-zero constants, instead of a phase transition
(i.e., a non-analyticity of the free energy in the thermo-
dynamic limit), the system may exhibit a Widom line or
a weak, Kertesz [37] type, crossover known in spin models
and matter coupled lattice gauge theories [38] and thus
similarly do so in its SPPM dual. For random gs,p, the
SPPM maps into a classical random field model featuring
numerous effects [39]. Classical ANNNI models arising
for next-nearest-neighbor couplings Jij [40] exhibit rich
devil staircase structures. From the bond-algebraic type
[14, 15, 26, 31–34] duality (7), all such behaviors of these
classical clock systems appear in their quantum duals.

Topological Order of the SPPM. The duality of Eq. (7)
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implies that any eigenstate of the clock model is also an
eigenstate of the SPPM. Particularly, when g, J > 0, in-
cluding the g = 0+ limit, the ground-states of the SPPM
are eigenstates of all As and Bp operators with an eigen-
value of 1 [41]. These eigenstates are the exact ground-
states as of the TC model. By virtue of the symmetries
(4), the TC model satisfies the condition of Eq. (1) and
its finite temperature extension [15, 16], and thus harbors
TQO. Similar to the TC model, these (low-dimensional)
generalized gauge-like symmetries [15, 16, 42, 43] can-
not be spontaneously broken [35, 43, 44] and endow the
system with TQO [15, 16]. Since the eigenstates of the
SPPM are those of the TC model, it follows that the
SPPM exhibits TQO. Equivalently, any given classical
clock state {zi} corresponds to a dTC−dimensional sector
of topologically degenerate SPPM eigenstates of identical
{As, Bp} eigenvalues that thus cannot be told apart by
local measurements [45]. The latter topology dependent
degeneracy follows from our duality by an exponentia-
tion, qE−F−V = q2(genus−1), of the Euler-Poincare formula
to count redundant q-state operators - the number by
which the NΛ local SPPM Zq operators (number of lat-
tice edges E) exceeds the number of spins in the dual
classical clock model {zi} (the latter being the sum of
the total number of {Bp} operators (number of lattice
faces F) and of the {As} operators (number of vertices
V))- to the surface genus; an additional degeneracy factor
of q2 in dTC originates from the two constraints of (5d)
rendering two additional Zq operators redundant.

Excitations of the SPPM. The duality (7) allows us to
find all SPPM excitations through their duals in the clas-
sical clock model. As we noted earlier, for g, J > 0, any
excited state (having stars for which Eigenvalue[As] ̸= 1
and/or plaquettes Eigenvalue[Bp] ̸= 1) is also an excita-
tion of the Zq TC model of Eq. (3). Notably, different
from other systems exhibiting TC ground-states [46], the
identical spectra of the SPPM and classical clock model
are trivially quantized (given by sums of integer multiples
of the coupling constants times cosines of the q allowed
discrete clock angles). Thus, in particular, the SPPM is
gapped allowing for stable anyon excitations. An anyon
in the Zq TC model, ϵn,ℓ with 0 ≤ n, ℓ ≤ (q − 1), is a
composite of n minimal “electric” charges e on the lat-
tice sites (here, e = ϵ1,0) and ℓ basic “magnetic” charges
m (with m = ϵ0,1) associated with dual-sites. The energy
of different TC eigenstates depends only on anyon type
and number. By contrast, in the SPPM, even the ener-
gies of the lowest-energy excitations may depend on the
geometry, e.g., whether the anyons are nearest-neighbors.

The statistics in general lowest-energy states need not
correspond to ideal braiding of individual fundamental
charges. Indeed, in general applications of the duality
of Eq. (7), lowest-energy (gapped) excited states of the
classical spin system may involve non-compact configu-
rations such as the lowest-lying excited states of spin-
glass [36, 47], ANNNI [40], and other models. When

the lowest-energy excitations of these classical systems
are spatially non-compact, the duality (7) implies that
the corresponding lowest-energy excitations of the quan-
tum system are, rich composites of many point charges.
A simple example is the SPPM (2) on a torus with
Jsp = J > 0 and vanishing fields gs = gp = 0 at
all sites s and plaquettes p except for s = 0, where
8J > gs=0 > 0. Here, the classical system has the fer-
romagnetic ground-state zi = 1 corresponding to con-
ventional TC TQO on the quantum side of the duality
(7) where ∀s, p : Eigenvalue[As] = Eigenvalue[Bp] = 1
with, on the torus, a dTC = q2-dimensional ground-
state manifold satisfying Eq. (1). The lowest-energy
excited states correspond to different uniform classical
clock model ferromagnetic states (and, thus, uniform
dual As and Bp eigenvalues) associated with a global
rotation by 2π/q [48]. When q = 2, the dTC degenerate
lowest-energy eigenstates of the SPPM are the highest-
energy eigenstates of the TC (∀s, p : Eigenvalue[As] =
Eigenvalue[Bp] = −1). These eigenstates correspond to
maximally dense alternating e and m charges covering the
entire lattice. For gs = gp = 0, this excited state is degen-
erate with the conventional TC ground states displaying
a Zq global symmetry [9]. When gs, gp are non-zero (even
if infinitesimal), this global symmetry is lifted with, as
discussed above, the lowest energy excited state having
maximally dense anyons. Since the anyons in this low-
est excited state tessellate all of space, realizing pristine
long-distance operations involving only individual anyons
may be physically challenging. Rich relations exist be-
tween TQO symmetries, and resulting excitations, not
limited to symmetry-enriched TC and unusual fracton
models [49–52]. We emphasize the duality as a descrip-
tion for the SPPM.

Conclusions. Various models displaying TQO (satis-
fying the ground-state indistinguishability condition of
Eq. (1)) exhibit excitations that lie beyond conventional
TQFT descriptions. To demonstrate this, we introduced
models containing distance dependent interactions (em-
ulating perturbations) between anyons of known parent
TC models. Such anyon interactions are expected in ex-
perimental realizations. We illustrated that particular
TQO Zq systems are dual to classical clock type models,
with duals to other classical models easily constructed.
Unlike thermally fragile [35] TC and other topological
models [23] that map onto one-dimensional systems, our
models are identical to conventional high-dimensional
Landau-type theories. Simple interactions augmenting
those of well-studied topological systems such as the TC
may change their spectra (while still leaving the systems
topologically ordered). In particular, the lowest-energy
excited states of the resulting topologically ordered sys-
tems are not necessarily those of single anyons for which
conventional TQFT considerations apply. Instead, in the
thermodynamic limit, the lowest-energy excitations may
correspond to an infinite size dense lattice of anyons.
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There are illuminating connections between quantum er-
ror correcting (surface) codes and TQO as established
by writing Hamiltonians in terms of stabilizer group
generators [53], and encoding code words in ground-
states. Our models include elements of the stabilizer
group (e.g., the products {(AsBp)}), augmenting inde-
pendent ({As}, {Bp}) generators. This inclusion leads to
new physics. Indeed, as we emphasized, the J = 0 SPMM
(i.e., Zq TC model) is dual to decoupled one-dimensional
chains [15, 16, 35] while for J ̸= 0 (when products
{(AsBp)} appear in HSPPM), no such dimensional reduc-
tion results; the resulting dual high–dimensional classical
systems may display large free energy barriers rendering
them more immune to thermal fluctuations. In [9], we ex-
pound on similar generalizations of string-net and other
(including higher-dimensional) models their various fea-
tures, and comparisons to certain theories [54–58]. Our
models realize quantum codes not explored to date.
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SUPPLEMENTAL MATERIAL:
TOPOLOGICAL ORDERS BEYOND TOPOLOGICAL QUANTUM FIELD THEORIES
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In what follows, we expand on various aspects.

FURTHER DETAILS OF DUALITY MAPPINGS
OF THE SPPM TO CLASSICAL CLOCK MODELS

Mapping an SPPM on an Open Surface to a
Classical Clock Model

Here, we consider the duality mapping between an
“open boundary condition” planar SPPM to a square lat-
tice classical clock model. In this mapping, clock spins
of the classical model are duals of the star or plaque-
tte terms of the SPPM. On the boundary of the planar
SPPM system, we define star and plaquette operators to
include only those links that still lie in the lattice. The
products

∏
sAs and

∏
pBp will now act on boundaries

and are unconstrained (do not satisfy Eq. (5d)). The
result is a dual classical clock model on the same lattice
with a number of clock model spins that is equal to that of
the number of bonds in the quantum system (Eq. (7)). If
the number of independent bonds or generators, i.e., the
sum of the number of star and plaquette terms, (Ns+Np)
is smaller than the number of links, there will be an ad-
ditional degeneracy factor of q(N−Ns−Np). For simple
boundaries, this will result in a global “holographic de-

generacy” [59]- a degeneracy scaling exponentially in the
system boundary length.

Mapping an SPPM on a Torus to a Classical Clock
Model

We now examine the duality between the SPPM on a
torus (periodic boundary conditions) and a classical clock
model. The incorporation of the periodic boundary con-
dition constraint of Eq.(5d) can be achieved by amending
the classical clock model Hamiltonian Hc of Eq. (6) by
a finite number of bounded non-local terms (that sum to
δHc). Towards this end, for any particular even (s) and
odd (p) sublattice sites, we define the two operators

Ws̃ ≡
∏

j even,j ̸=s̃

zj , W∗
p̃ ≡

∏
k odd,k ̸=p̃

z∗k. (9)

We next implement the mapping of Eq. (7) with the
modification that for the sites s̃ and p̃,

As̃ ↔
∏

j even,j ̸=s̃

zj = Ws̃, Bp̃ ↔
∏

k odd,k ̸=p̃

z∗k = W∗
p̃ . (10)

With the mapping of Eq. (10), the product of all clock
spin variables in the respective even and odd partitions
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will satisfy the global SPPM constraint of Eq. (5d).
Thus, out of the N classical clock model spins, one pair of
spins become redundant (fixed by the products of spins
on other sites as on the righthand side of Eq. (10)) and
will not impact the energy of the N spin model. That is,
by comparison to the N site classical clock model, there
is an additional uniform global degeneracy factor of q2

of each level (i.e., a factor of q for each of the two classi-
cal spins at sites s̃ and p̃ that will no longer impact the
system energy once the substitution of Eq. (10) is imple-
mented into the system Hamiltonian). This degeneracy
can also be read off from the two Zq symmetries of the
system (Eq. (4)) highlighted in Fig. 2. A detailed list of
operators in the two models connected by this particular
duality is given in Table I.

Performing the duality of Eqs. (7, 10) to the SPPM
Hamiltonian of Eq. (2) with periodic boundary condi-
tions (where Eq. (5d) applies) leads to a classical spin
model with the said Hamiltonian of (Hc+δHc). The pre-
cise form of δHc depends on whether s̃ and p̃ are nearest-
neighbors. When, e.g., s̃ and p̃ are well separated,

δHc = −J
∑
⟨j p̃⟩

W∗
p̃zj +Wp̃z

∗
j − g(Wp̃ +W∗

p̃ )

−J
∑
⟨k s̃⟩

W∗
s̃ zk +Ws̃z

∗
j − g(Ws̃ +W∗

s̃ )

+J
∑
⟨i p̃⟩

z∗p̃zj + zp̃z
∗
j + g(zp̃ + z∗p̃)

+J
∑
⟨k s̃⟩

z∗s̃zk + zs̃z
∗
j + g(zs̃ + z∗s̃ ). (11)

This Hamiltonian is a function of (N − 2) independent
spins once Eq. (10) is implemented. Thus, on the 4-fold
coordinated square lattice, |δHc| ≤ (32J + 8g) (here the
prefactor of 32 originates from the product of 8 (number
of relevant terms) × 4 (lattice coordination number)).
An individual clock spin (at an arbitrary site j) can be
written as zj = e2iπkj/q, kj = 0, 1, ..., q − 1. With this
substitution, the clock model Hamiltonian of Eq. (6)
then reads

Hc = −2J
∑
⟨i,j⟩

cos(
2π(ki − kj)

q
)− 2g

∑
j

cos(
2πkj
q

).(12)

In what follows, we first briefly discuss the J = 0 case
(the Zq TC model) and then turn to the SPPM (J ̸= 0).

For J = 0, we may employ a trivial generalization of
the duality mapping of [15] so that the Zq TC model
(J = 0) is dual to a pair of uncoupled periodic Zq clock
model spin chains. In this J = 0 limit, denoting the clock
spin variables in the first periodic chain by z(1) and those
in the second chain by z(2) gives the dual classical clock

model Hamiltonian

Hchains
c = −g

N∑
i=1

(z
(1)∗
i z

(1)
i+1 + z

(1)
j z

(1)∗
j+1 )

−g
N∑
j=1

(z
(2)∗
j z

(2)
j+1 + z

(2)
j z

(2)∗
j+1 ). (13)

Here, the corresponding partition functions are quite sim-
ple to calculate via the transfer matrices of the model.
The discrete clock rotation invariant transfer matrix may
be diagonalized by a discrete Fourier transform. For the
single chain, the partition function reads

Zchain
c =

q∑
ñ=1

( q∑
n=1

exp (2g cos(
2πn

q
) + i

2πnñ

q
)
)N

. (14)

In the N → ∞ limit, the non-oscillatory ñ = 0 term dom-
inates over all other Fourier components. in Eq. (14),

Zchain
c ≈

( q∑
n=1

(exp (2g cos(
2πn

q
))
)N

. (15)

Thus in the thermodynamic limit, the partition function
of the J = 0 SPPM model (Zq TC model) which is the
product of partition functions of two identical chains,
Zchain

c,1 ×Zchain
c,2 , is given by the square of Eq. (15).

We now return to the general case of arbitrary J (the
SPPM). Here, the duality implies that the free energy
density of the SPPM whose classical dual is given by
(Hc + δHc) is identical to that of the conventional clock
model of Hc . As we discussed above, taking into account
the constraints of Eq. (10), there is a global degeneracy
of q2 of each level. The q → ∞ limit yields a duality to
a classical XY model.

FIG. 2: The d = 1 topologically distinct loops of the Zq

TC (associated with the symmetry operators of Eq. (4)).
The Zq

1(2) symmetries (that constitute logical operators

of the TC) are given by products of Pauli matrices on the
solid lines C1,2 that pass through the lattice sites. The
dashed lines C ′

1,2 inhabit the dual lattice and host the
logical operators Xq

1(2).
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SPPM Clock Model
As zi (even)
Bp z∗j (odd)∏
s As 1∏
p Bp 1

Xq
1(2) or Zq

1(2) 1
Zq

s1,s2 xs1xs2

Xq
p1,p2 xp1xp2

As̃

∏
j even,j ̸=s̃ zj

Bp̃

∏
k odd,k ̸=p̃ z

∗
k

Xq
p̃,s(xi)

or Zq
s̃,p(xi)

xi

Usp

∏
i xi

TABLE I: Correspondences between the operators in the
SPPM of Eq. (2) and clock model operators of Eq. (6).

MAPPING CLASSICAL CLOCK MODELS TO
SPPM SYSTEMS

We now discuss the “inverse” of the above mapping
and illustrate how to map a conventional classical clock
model on a torus onto a modified SPPM type system.
For periodic boundary conditions, the SPPM satisfies
the constraint of Eq. (5d). Previously, we discussed
the mapping from the SPPM to the clock model while
preserving this constraint. Now we examine a map from
the classical spin model to the SPPM which preserves
looser constraints. We will see that each link-local op-
eration X or Z corresponds to flipping a pair of diag-
onally neighboring clock spins. This enforces the dual
constraint of pairwise flipping spins and preserving the
spin parity number. However this constraint is not valid
in the clock model, where a single clock spin can always
be rotated. So conventional clock models with periodic
boundary conditions will not map into SPPMs with pe-
riodic boundary conditions unless we include additional
degrees of freedom. We next consider various types of
periodic clock models and their SPPM duals.

“Even-Sized” Square Lattices

We first consider a classical clock model on a square
lattice (of size L1 × L2) on a torus and map it into
an SPPM-like model on a lattice that is endowed with
periodic boundary conditions. When both L1 and L2

are even, the classical spin model vertex to SPPM
star/plaquette operator mapping (an inverse of Eq. (7))
may be applied everywhere relating the original square
lattice on which the classical clock model is defined to
the 45◦ rotated square lattice on which an SPPM type
model is defined (see Fig. 1). This mapping will result
in

∏
sAs and

∏
pBp being unconstrained, unlike Eq. 5d.

To make an analog of these products unconstrained in
the SPPM like model, we introduce two independent Zq

operators Ω1 and Ω2. With these, we replace the individ-
ual star and plaquette operators As and Bp in Eq. (2)
by, respectively,

Ās ≡ Ω1As, B̄p ≡ Ω2Bp. (16)

The operators Ω1 and Ω2 correspond to two fully de-
coupled Zq redundant gauge-like degrees of freedom lead-
ing to a q2-fold degeneracy.

“Odd-Sized” Square Lattices

We now turn to duality mappings from a classical clock
model on a torus to an SPPM type system for square
lattices when, at least, one of the sides L1 or L2 is odd.
Here, the constructs of Eq. (16) may still be applied,
allowing for the desired lack of constraints 5c. In this
case, the geometrical implementation of Eq. (10) (Fig.
(1)) will not be consistent at the boundaries of the square
lattice on which the classical clock model is defined. We
can resolve this by constructing boundary operators Bi

that will obey constraints equivalent to those in Eq. 5a-
5d. Towards that end, we introduce new operator prod-
ucts B+/− that act on both sides of the “boundary” as
shown in Fig. 3. We further introduce a corner operator
B′ if both L1 and L2 are odd. These boundary terms
are now further included in the amended Hamiltonian of
Eq. (2) with the replacement of star and plaquette terms
following Eq. (16). Neighboring Bi overlap by one link
and all Bi map individually into the clocks to which the
disconnect has been associated. These disconnects gen-
erally replace the constraint of Eq. (5d) by the looser
condition of

∏
sAs

∏
pBp

∏
∀B B = 1. However, with

modifications of Eq. 16, the respective global products
are unconstrained.

DUAL OPERATORS TO SINGLE CLOCK
ROTATION AND GLOBAL SYMMETRIES

We now further consider the operators connected by
dualities between clock models and SPPMs. We seek op-
erators with isomorphic actions on the respective bond-
algebra. Consider an on-site clock rotation at site k in
the clock model

xk : zj ↔

{
ei2π/qzj if j = k

zj otherwise
. (17)

If zj ↔ As under the inverse duality map, then the
respective transformation for the star operators reads

Al ↔

{
ei2π/qAl if j = k

Al otherwise
. (18)
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(a) The operator B0 at the intersection of two de-
fects.

(b) The operators B+,B− along a single defect,

FIG. 3: (Color online.) Stitching operators B0,B+,B− obey the same general bond-algebraic constraints. They can
be used to pass strings/anyons across the defects. The SPPM lattice is in black and the corresponding Z2 clock lattice
is in light blue.

The transformation for the plaquette operators is analo-
gous. Certain operators with this action exist but depend
heavily on boundary conditions. For the periodic SPPM
discussed in the main text, with the modifications of Eq.
11, we notice that xk also rotates one of the respective
W’s. That is, the xk operators act like (and are in fact
dual to) Zq

s̃,s and Xq
p̃,p.

Zq
s̃,s =

∏
j∈Cs̄,s

Zj , Xq
p̃,p =

∏
j∈C′

p̄,p

Xj . (19)

Here, Cs̃,s is a contour in the lattice with endpoints at
s and s̃ while C ′

p̃,p is similarly placed in the dual-lattice
with endpoints at p and p̃.
Given a conventional classical clock model with peri-

odic boundary conditions, consider a duality to an SPPM
with the modifications of Eq. (16). We next construct
the dual string products

Z̄q
s̄,s = x−1

Ω1

∏
j∈Cs̄,s

Zj , X̄q
p̄,p = x−1

Ω2

∏
j∈C′

p̄,p

Xj . (20)

Here, we amended the string products with counter-
rotating operators on Ω so as to leave the operators Ās

and B̄p of Eq. (16) unchanged, For an SPPM on the
infinite planar lattice or embedded on a manifold with
a boundary, xk is dual to a product along a string-like
contour with this contour either diverging to infinity or
terminating on the boundary, respectively.

The J, g > 0 SPPM has a ground-state subspace iden-
tical to that of the TC ground-state subspace, VTC .
We know the classical clock model at g = 0 has a
global symmetry Uclock. Removing g-terms from the
SPPM also introduces a global symmetry into the sys-
tem. The J > 0, g = 0 SPPM ground-states are spec-
ified by the condition As |ψ⟩ = B†

p |ψ⟩ = ei2nπ/q |ψ⟩,

n = 0, 1, 2, ..., q − 1. The respective n = 0 subspace is
then that of the TC model, VTC . The global symmetry
group generated by an operator Usp, detailed below, then
connects the q subspaces which correspond respectively
to the q ground-states of the dual g = 0 clock model.

Specifically, the global rotational symmetry of a con-
ventional clock model is

Uclock =
∏
j

xj . (21)

The dual symmetry is then generally the appropriate
aforementioned product of strings, forming the global
symmetry of the SPPM. For the periodic SPPM dis-
cussed in the main text (with the modifications of Eq.
10 in the dual clock model at p̃ and s̃) the global sym-
metry is simply

Usp =
(∏

p

Xq
p̃,p

)(∏
s

Zq
s̃,s

)
. (22)

An alternative view of topological order centers on long-
range entanglement [60]. Here, Usp is a tensor product,
leaving the known long-range entanglement features of
VTC unchanged. The two factors of Usp also have natu-
ral interpretations in the q = 2 (i.e., Ising) model. They
connect the ferromagnetic ground-states to the ground-
states of its antiferromagnetic phase. The global X-
string product in Eq. (22), which generates m-type
anyons on all plaquettes, is dual to an operator which
globally rotates all classical clock model spins on sites of
the odd sublattice.

In the TC, an application of Usp on the ground-state
generates anyons uniformly at every site and dual-site
(i.e., plaquette center) of the lattice. The SPPM nearest
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neighbor coupling (J type) terms do not distinguish be-
tween the TC vacuum |k, 0⟩ and anyon populated states
|k, n⟩ = Un |k, 0⟩ where k = 1, 2, ..., q2(genus) and n =
0, 1, ..., q − 1. For these states, As |k, n⟩ = ei2nπ/q |k, n⟩
and Bp |k, n⟩ = e−i2nπ/q |k, n⟩. With the ϵn,ℓ excitation
taxonomy of the main text, the action of Usp,

Usp : ϵn,ℓ 7→ ϵn+1,ℓ+1. (23)

Thus,

Usp(ϵ
n,ℓ × ϵu,v) = Usp(ϵ

n+u,ℓ+v) = ϵn+u+1,ℓ+v+1, (24)

while

Usp(ϵ
n,ℓ)× Usp(ϵ

u,v) = ϵn+u+2,ℓ+v+2

̸= Usp(ϵ
n,ℓ × ϵu,v). (25)

In other words, the TC excitation algebra does not re-
main invariant under a transformation by Usp. When
g = 0, both the (i) vacuum and (ii) the maximally pos-
sible dense anyon state are ground-states of the SPPM.
New, but related, descriptions are required to accurately
capture the behavior of the excitations which in this
model are merely the domain walls between differing re-
gions locally forming a ground-state.

SPPM VARIANTS AND THEIR EXCITATIONS

Long-range models

Our construct is not limited to short-range interac-
tions. Consider a long-range Ising model [61] governed
by the Hamiltonian (J > 0),

HLRI = −
∑
i<j

J

|ri − rj |ζ
σiσj − gi

∑
i

σi, (26)

with σi = ±1. In order for a ferromagnetic ground-state
in D dimensions to have a well defined finite energy den-
sity in the thermodynamic limit, the exponent ζ > D.
Repeating our earlier steps (in particular, those relating
to the mapping of Eq. (7)) yields a quantum dual given
by

HLRSP = −
∑
s,p

J

|rs − rp|ζ
AsBp −

∑
s̸=s̃

J

|rs − rs̃|ζ
AsAs̃

−
∑
p ̸=p̃

J

|rp − rp̃|ζ
BpBp̃ − gs

∑
s

As − gp
∑
p

Bp.

(27)

Once again, when gs, gp, J > 0, this quantum model
shares a ground-state space with the TC. Excited eigen-
states of HLRSP are in a one-to-one correspondence with
those of the TC albeit with different energy penalities.
Pairs of anyons in this model will experience string ten-
sion described by the long-range Ising model of HLRI.

Frustrated Topological Order

In the main text, we emphasized the J > 0, g > 0 form
the SPPM, in which the ground-state space corresponds
to ferromagnetic ground-state in the classical model.
When J < 0 and g > 0, the classical model exhibits
an antiferromagnetic ground-state when J < −g/4. The
line J = −g/4 then describes the boundary between fer-
romagnetic and antiferromagnetic phases. In the main
text we illustrated that each classical spin configuration
corresponds to a dTC-dimensional sector of the SPPM.
In this way, the Néel state dual sectors together form the
space

HNeel =
{
|ψ⟩ ;AsBp |ψ⟩ = − |ψ⟩

}
. (28)

This sector can be constructed by operating on ferro-
magnetic spaces HFerro+ or HFerro− with one of the fol-
lowing operators.

XNeel =
∏
p

Xq
p̃,p (29)

ZNeel =
∏
s

Zq
s̃,s. (30)

The operator Usp of Eq. 22 then connects Néel state dual
sectors while preserving topological winding numbers as-
sociated to the symmetries of Eq. 4 and Fig. 2. The
product of XN and ZN is Usp. Two subspaces of VN can
be identified by the value of A0, (in principle an arbi-
trary star but we take it at the origin as in the previous
subsection) which we write as

HNeel− =
{
|ψ⟩ ;AsBp |ψ⟩ = A0 |ψ⟩ = − |ψ⟩ ,

}
(31)

HNeel+ =
{
|ψ⟩ ;AsBp |ψ⟩ = −A0 |ψ⟩ = − |ψ⟩

}
. (32)

Not all {(JspAsBp)} terms in the Hamiltonian can be
simultaneously minimized (so as to yield a “frustration
free” system). This may not be possible for certain lat-
tices as is easily demonstrated by the duality of Eq. (7)
to a frustrated classical model to generate a quantum pla-
quette/star model counterpart. We may interpret such
a frustration as a modification on the typical TC model
in which anyons occur in even pairs (or fused products
with the total number of generating anyons still even). If
we impose periodic boundary conditions on the classical
clock model, frustration may occur along either identified
boundary, depending on if L1, L2 are even or odd. This
may be resolved by twisting the boundary conditions and
attaching a minus sign to J along the frustrated bound-
ary.
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Non-compact Excitations

A simple example of a Hamiltonian in the bond alge-
bra of possible As, Bp couplings is discussed in the main
text, in which the excitations are non-local colections of
anyons. We provide a further example with strictly uni-
form couplings in the Hamiltonian (in Z2 for simplicity)

H = −K
∑
links

As1As2Bp1Bp2 − g
∑
s

As − g
∑
p

Bp.(33)

We take K, g ≥ 0. The former term in the Hamiltonian
consists of products of the two stars and two plaque-
ttes about a single link in the lattice. Such products
map under our duality to 2x2 spin plaquettes of Ising
spins. Since the underlying bond algebra generated by
{As, Bp } is commutative, the underlying ground state
space is still that of previously considered SPPM models
(that of the TC model). For g = 0, global creations of
e-type or m-type anyons is a symmetry of the model (in
the absence of any geometric frustration). For finite g,
the corresponding energy is 2gNΛ. The energy of a local
anyonic pair excitation is 16K + 2g. It follows that for
the condition

NΛ < 8
K

g
+ 2 (34)

the global excitation is energetically favorable to the local
anyon pair. That is the lowest excitation of the model
are non-compact, global configurations of anyons. For a
model with a boundary enabling single anyon creation,
with excitation energy 8K + g, this condition becomes

NΛ < 4
K

g
+ 1. (35)

Star-Star and Plaquette-Plaquette Coupling

The simplest case in which the lowest–energy excita-
tions have altered braiding statistics is evident if we in-
troduce the coupling to be between stars and plaquettes.
When q = 2 (the Ising case), the corresponding Hamil-
tonian reads

Hss,pp = J
∑
⟨s,s′⟩

AsAs′ − J
∑
⟨p,p′⟩

BpBp′

−g
∑
s

As − g
∑
p

Bp. (36)

Note that nearest neighbor star (or plaquette) opera-
tors share a common lattice link. Applying Eq. (7), it is
seen that this Hamiltonian is dual to a pair of decoupled
2d Ising models. The lowest excitations of this model for

J, g > 0 are the bound electric (ee) and magnetic (mm)
anyon pairs created by applying a single Z link operator
(whence the two stars sharing that link are populated by
e charge) or single X link operator (creating m charges
on the two on plaquettes sharing the link) the ground-
state respectively. Splitting these pairs increases asso-
ciated domain wall energy contributions by 4J . When
q = 2, bound pairs braid trivially with one another, and
have trivial winding numbers, unlike the free anyons.

STRING-NET MODELS AND QUANTUM
DOUBLES

Our illustration that a TQO system (the planar
SPPM) is dual to a Landau type theory (the classical
clock model) can be readily extended to many other mod-
els. We mention a few of these below. String-Net (SN)
models use fusion category inputs to construct models on
trivalent lattices [10]. Analogous to the TC model, the
SN Hamiltonians may be expressed as sums of star and
plaquette type operators, HSN = −

∑
sA

SN
s −

∑
pB

SN
p .

The star operator ASN projects states of links sharing a
common endpoint onto a space of allowed link configura-
tions while BSN

p transforms link configurations. The defi-

nitions of BSN
p are given in terms of nontrivial F -symbols

describing the transformations at each vertex [11]. We
propose extensions of SN models that include ASN

s BSN
p

terms, as in Eq. (2), capturing nearest-neighbor anyon
interactions. Again, this geometrical dependence has no
TQFT description and can be understood through du-
alities to classical systems. We treat Quantum Double
models, which map to a subclass of SN models [12]. We
specifically consider the Zq Quantum Double Hamilto-
nian [13] ,

HQD = −
∑
s

AQD
s −

∑
p

BQD
p , (37)

(where AQD
s =

∑q−1
r=0 A

r
s and BQD

p =
∑q−1

r=0 B
r
p are sums

through all powers of the Zq TC As and Bp operators)
and its extension

HSPQD = −J
∑
⟨s p⟩

AQD
s BQD

p −g
∑
s

AQD
s −g

∑
p

BQD
p . (38)

Repeating, the mapping of Eq. (7) transforms the string-
net operators to geometric series of the classical clock
spin variables and vice versa, AQD

s ↔
∑q−1

r=0 z
r
i and

BQD
p ↔

∑q−1
r=0 (z

r
j)

∗, leading to an unconventional clas-
sical clock model that is dual to HSPQD. A possible star-
plaquette coupling in quantum double models was also
mentioned in [62], where the coupling introduces tunable
anyon masses.

For simplicity of notation, in what follows henceforth,
we omit the superscript “SN.” If the trivalent lattice
three link labels connected to vertex s are in the state
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(a) (b)

FIG. 4: (Color online.) (a) Red circled links form a 3D toric code [35] star while circled blue links form a 3D plaquette.
(b) A cubic cell of the FCC. Plaquette operators map into blue vertex clocks on FCC faces. Star operators map to
red vertex clocks on FCC corners.

|ijk⟩, then As |ijk⟩ = δijkAs with δijk = 1 for allowed
vertex states and 0 for not allowed states. Bp is then a
linear combination of transforms Bw

p

Bp =
∑
s

∑
w

awB
w
p . (39)

The Bw
p are associated to a transformation at each ver-

tex on a plaquette. A geometric intepretation is that Bw
p

multiplies each plaquette with an w-th oriented string
loop. This view is sometimes called the “fat lattice con-
struction” [7]. The orientation dependence of these loops
immediately gives the global constraint

∏
pB

w
p = 1, ∀w.

Consider a hexagonal plaquette state |ψghijkl
abcdef ⟩ (and legs)

with leg links a, b, c, d, e, f and inner plaquette links
g, h, i, j, k, l such that a forms a star with g and h, b
with h and i, etc.,

Bw
p |ψp⟩ =

∑
g′h′i,...

Bw,g′h′i′...
p,ghi... (abcdef) |ψg′h′i′j′k′l′

abcdef ⟩ . (40)

A single such term is then described by 6 index F -
symbols associated to each vertex transformation,

Bw,g′h′i′...
p,ghi... (abcdef) = F al∗g

w∗g′l′∗F
bg∗h
w∗h′g′∗F

ch∗i
w∗i′h′∗

×F di∗j
w∗j′i′∗F

ej∗k
w∗k′j′∗F

fk∗l
w∗l′k′∗ . (41)

Each F-symbol obeys a series of constraints and defines
the rules of allowed link combinations [11]. It should
be noted that explicit partition functions and spectra of
these models have been studied in [63, 64], which must
ultimately play into our extensions.

The operators Bw
p and As commute by construction,

supplementing Eq. (5a). Constraints on Bw
p operators,

analagous to Eq. 5b, are then realized through the un-
derlying group structure of Bw

p . A global constraint like

Eq. 5d is, again, established for Bw
p by the aforemen-

tioned ”fat lattice” construction. We can map the Bw
p

operators into site-local degrees of freedom representing
the same group, such as we had in the SPPM for classical
clocks. Extending these types of constraints to string-net
As terms or some decomposition of some Au

s , similar to
Bw

p , would allow us to directly relate many string-nets
to classical models. We could then finally establish con-
straints on bilinear strings of Au

s and Bw
p operators of

the same type as Eq. 5c. Quantum double models are
a simple example of this, in the sense of their mapping
to both string-nets and classical models. Further diffi-
culties arise when F-symbols introduce complex phases,
such as the Z2 Chern-Simons phase in [11]. In this, pla-
quettes also include complex phase factors on the legs
which can be factored out of Bw

p . Remaining terms are
mapped to classical degrees of freedom. The TQFT then
used as the low energy effective theory is a U(1)× U(1)
Chern-Simons theory. Additional coupling, just as in the
SPPM, can change the nature of lowest–energy excita-
tions without changing the ground-state space.

HIGHER-DIMENSIONAL MODELS

Higher-dimensional systems dual to clock models can
be constructed from extensions of known stabilizer mod-
els. For instance, we may map an SPPM type extension
of the cubic lattice Zq TC model [30, 35, 65] to a classical
clock model on the face-centered cubic lattice (FCC) as
shown in Fig. 4. This model obeys Eqs. 5a-5d. We define
it by Eq. (2) yet now with six spin star As =

∏
j∈sXj

and four spin plaquette Bp = Z1Z
†
2Z3Z

†
4 operators (with

indexing, once again, performed anti-clockwise) as de-
picted in Fig. 4. In this variant of Eq. (2) the nearest-
neighbor condition ⟨s, p⟩ is defined on the 3D cubic lat-
tice. We map each face Bp to a z∗j at the center of an
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FCC face. The star operators As at the cubic lattice
sites are mapped to zj lying on FCC cube corners (Fig
4). Cubic lattice TC models display TQOs which are
membrane extensions of string order seen in the (2+1)D
case [30, 35, 65].

BRIEF REMARKS CONCERNING
COMPARISONS WITH SEVERAL OTHER

MODELS

Our construct in which the underlying microscopic the-
ory features effective charges with geometrically depen-
dent interactions is a very general one. Various known
models share some similarities and important differences
with the theories belonging to our general framework.
We briefly comment on some of these below.

Rich space filling crystalline structures somewhat sim-
ilar to those of the anyons that we discussed in the lowest
excited states of the SPPM are known to appear in myr-
iad systems including, e.g., the Quantum Dimer Model
(QDM) [54] that features complex crystalline structures
(including devil staircases). The field theories describ-
ing the QDM whose derivation relies on Wess-Zumino-
Witten type contributions are of an extended Maxwell
form [55] and, in three dimensions, exhibit higher order
curl terms. These field theories enable an understanding
of the complex QDM phase diagram (including the said
rich crystalline structures). However, when these crys-

talline structures of dimer coverings arise, the systems
are no longer topologically ordered (unlike the topologi-
cally ordered systems that form the focus in our work).
Along other lines, there are numerous works, e.g., [56]

studying effective TQFT type (including BF) descrip-
tions of systems in which the lowest energy excited states
are compact (unlike the SPPM when 8J > gs > 0).
These effective descriptions of the lowest lying excited
states do not give rise to the divergent number of anyons
that, as we established, may arise.
Given the link between symmetries and topological

order [15, 16, 42, 66], theories may feature topological
order when the underlying higher symmetries of a bare
theory are preserved by additional terms [57, 58]. Our
non-TQFT type theories preserve all d ≥ 1-dimensional
Gauge like symmetries [15, 16] of the simpler (TC and
other) models. Specific physical implications of such con-
siderations have been suggested in [57, 58] where 1-form
symmetries are preserved by Maxwell-Euler-Heisenberg
and local operator deformations on the theory. Contrary
to our framework, Chern-Simons type modifications may
generally break local gauge invariance with very specific
quantization schemes enabling gauge invariance [67]. In
specific Chern-Simons modifications of the Maxwell the-
ory that preserve gauge invariance, the Chern-Simons
term gives rise to discrete topological vacuum states [68].
Our construct in which all terms are inherently topo-
logical is a rather general method allowing for various
interactions and is different from these and other earlier
studied theories.
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