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The charge density wave (CDW) or nematicity has been found to coexist with superconductivity
in many systems. Thus, it is interesting that the superconducting transition temperature Tc in the
doped BaNi2As2 system can be enhanced up to six times as the CDW or nematicity in the undoped
compound is suppressed. Here we show that the transverse acoustic phonons of Ba1−xSrxNi2As2
are strongly damped in a wide doping range and over the whole Q range, which excludes its origin
from either CDW or nematicity. The damping of TA phonons can be understood as large electron-
phonon coupling and possible strong hybridization between acoustic and optical phonons as shown
by the first-principle calculations. The superconductivity can be quantitatively reproduced by the
change of the electron-phonon coupling constant calculated by the McMillan equation in the BCS
framework, which suggests that no quantum fluctuations of any order is needed to promote the
superconductivity. On the contrary, the change of Tc in this system should be understood as the
sixfold suppression of superconductivity in undoped compounds.

I. INTRODUCTION

The electronic nematic phase breaks the rotational
symmetry of the underlying lattice and in theory, its
quantum fluctuations may enhance superconductivity [1–
5]. Experimentally, nematicity has been widely found in
cuprates and iron-based superconductors, where nematic
quantum fluctuations have been suggested to play impor-
tant roles in promoting superconductivity [6–19]. In the
mean time, doubts on the effects of nematic fluctuations
on superconductivity have also been raised [20–23]. One
of the major obstacles in further investigating the rela-
tionship between the nematicity and superconductivity
in both systems is the existence of the antiferromagnetic
(AFM) order and its strong fluctuations [24–28]. It has
been shown recently that the Ba1−xSrxNi2As2 (BSNA)
system may offer an opportunity to study the role of
nematic fluctuations on superconductivity without the
influence from AFM fluctuations [29].

The structures of both BaNi2As2 and SrNi2As2 are
ThCr2Si2 type at room temperature [30–32]. The for-
mer changes to the triclinic structure at Ts = 135 K
[30, 31, 33], while the latter stays in the tetragonal struc-
ture down to the lowest temperature. Interestingly, both
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of them show superconductivity at similar temperatures
between 0.6 and 0.7 K despite their structural difference
at low temperatures [30–32]. Moreover, both of them
show no magnetism, which suggests that the supercon-
ducting mechanism may be associated with conventional
phonon-mediated pairing [34]. The structure transition
in BaNi2As2 can be suppressed by chemical doping, such
as phosphorus, copper, cobalt, and strontium, and the
Tc shows up to sixfold enhancement near the structural
instability [29, 35–38]. Such a phenomenon has also been
observed in other nickel pnictides [39, 40], suggesting a
general mechanism to enhance superconductivity.

The enhancement of superconductivity in doped
BaNi2As2 systems may be associated with the quantum
fluctuations of two phases. The first one is nematicity,
which has been suggested to exist in both BSNA and
BaNi2(As,P)2 systems [29, 41, 42]. The nematic tran-
sition temperature extracted from the Curie-Weiss-like
fitting of the elastoresistivity becomes zero near optimal
doping, which resembles the case in iron-based super-
conductors [7, 10–12]. The second phase involved is the
charge density wave (CDW). Two types of CDWs have
been found in BaNi2As2, an incommensurate CDW (IC-
CDW) above Ts and a commensurate CDW (C-CDW-1)
below it [43]. In BSNA, a new commensurate CDW (C-
CDW-2) appears above x = 0.4 [44], as shown in Fig.
1(a). The appearance and enhancement of superconduc-
tivity near the CDW instability have been widely found
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FIG. 1. (a) Schematic phase diagram of Ba1−xSrxNi2As2
based on the data in Refs. [29, 44]. SC stands for super-
conductivity. The arrows indicate the samples measured by
INS in this work. (b) Schematic effects of nematic fluctuations
and CDW on the acoustic phonons. The black and blue lines
are unaffected phonon dispersion and that under nematic fluc-
tuations, respectively. The change of phonons by CDW are
illusrated by the green shaded area and black oblique lines,
respectively. The pink area indicates the results of this work.
The inset shows the schematic scans to measure the TA and
LA phonons around the (2,0,0).

in many other systems [45–49]. Whether the BSNA
system falls into the same category is interesting and
unclear. We note that both CDW and nematic order
have effects on phonon spectra, as roughly illustrated in
1(b), and thermodynamical measurements have indicated
significant phonon softening when the CDW disappears
[29, 35, 36, 50]. Thus, it is crucial to further investigate
the pairing mechanism by studying the phonons.

In this work, we studied the acoustic phonons in
BSNA by the inelastic neutron scattering (INS) tech-

nique. Wide Q-range damping of the transverse acoustic
(TA) phonons are found in all samples around the opit-
mal doping. Such large damping of TA phonons can be
understood by neither CDW nor nematic fluctuations.
By comparing with the first-principle calculations, we
show that the superconductivity around the optimal dop-
ing level can be well understood by the McMillan equa-
tion in the BCS theory without invoking the quantum
fluctuations from either CDW or nematicity.

II. EXPERIMENTS

Single crystals of BSNA were grown by the self-flux
method as reported previously [29]. The INS experiments
were carried out on the thermal triple-axis spectrometers
EIGER [51] at SINQ, Switzerland, TAIPAN at ANSTO,
Australia [52], and cold neutron multiplexing spectrome-
ter BOYA at CARR, China. The information of all sam-
ples is listed in the Supplemental Material [53]. The sam-
ples were measured in the [H,K,0] scattering plane with
the momentum transfer Q = Ha∗+Kb∗+Lc∗, where the
reciprocal lattice parameters a∗, b∗ and c∗ are defined in
the tetragonal lattice with a = b ≈ 4.144 Åand c ≈ 11.633
Å. The TA and longitudinal acoustic (LA) phonons were
measured by scans along [2,K,0] and [H,0,0], respec-
tively, as shown in the inset of Fig. 1(b). The resolu-
tions of the instruments were calculated by the ResLib-
Cal program [54], where the effects of sample mosaics
have been included. The first-principles calculations were
preformed via the QUANTUM ESPRESSO package [55]
with the virtual crystal approximation method [56]. The
ultrasoft pseudopotentials with the generalized gradient
approximation was used to create the pseudopotential
of fake atoms, and which is parametrized by the Perdew-
Burke-Ernzerhof function [57]. Phonon dispersion curves
were calculated based on the density functional perturba-
tion theory [58], where a denser 16×16×16 (16×16×12)
k-point grid and a 4×4×4 (4×4×3) q-point grid were
employed for the electron-phonon coupling (EPC) calcu-
lations of the tetragonal (triclinic) phase.

III. RESULTS AND DISCUSSIONS

Figures 2(a) and 2(b) show constant-Q scans at [2, K,
0] for the TA phonons in the x = 0.65 sample at 150 and
5 K, respectively. Since the crystal structure at 5 K is
triclinic, the nominal [2, K, 0] in the tetragonal notation
approximately corresponds to [2, K, -1-K/2] in the tri-
clinic notation. To quantitatively study the phonon dis-
persion, we use the following damped harmonic-oscillator
function [59] to fit the constant-Q scans,

S(Q,E) =
A

Ec(1− e−E/kBT )

Γ/2

(E − Ec)2 + Γ2/4
(1)

where Ec, Γ and A are the phonon energy, the peak full-
width at half-maximum (FWHM) and the fitting con-
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FIG. 2. The results of TA phonons for the x = 0.65 sam-
ple. (a), (b) Constant-Q scans along [2,K,0] at 150 and 5
K, respectively. The solid lines are fitted by Eq. (1). (c)
Constant-Q scans at (2,0.5,0) at various temperatures. The
solid lines are fitted by Eq. (1). (d) The temperature depen-
dence of phonon energy and width at (2,0.5,0).

stant. The backgrounds are fitted by a constant plus a
Gaussian function with the center fixed at zero energy to
account for the tail from the elastic incoherent nuclear
scattering.

Figure 2(c) shows the constant-Q scans at (2,0.5,0)
at various temperatures, which is the Q position asso-
ciated with the C-CDW-2. Figure 2(d) gives the temper-
ature dependence of the corresponding Ec and Γ. The
value of Ec only slightly decreases with decreasing tem-
perature when approaching Ts, whereas Γ shows a quick
upturn below about 80 K. While such upturn is associ-
ated with the CDW transition, the almost temperature-
independent large Γ above 100 K should not be. Below
the structural or CDW transition, Ec changes because of
the triclinic structure at low temperatures and Γ becomes
much smaller.

Figures 3(a) and 3(b) show the constant-Q scans at
(2,0.3,0) and (2,0.5,0), respectively, for other samples at
150 K. The data at 5 K of the x > 0.75 samples show
no significant difference as there is no structural transi-
tion [53]. With decreasing x, the peak position decreases
while the width becomes broader. The data can all be
well fitted by Eq. (1), which gives TA phonon disper-
sions and FWHMs in Figs. 3(c) and (d), respectively. It
is clear that TA phonons become softer with decreased
x while the damping effect gets larger in the tetrago-
nal structure (150 K). We note that a minimum appears
around K ≈ 0.8, which may come from the low-energy
optical phonons that are strongly coupled with the TA
phonons as shown later, considering that the condition
for measuring TA phonons by INS is not well satisfied
anymore at large K’s. The phonon dispersion of the x
= 0.65 sample at 5 K is different from that at 150 K,
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FIG. 3. Summary of the TA phonons in BSNA. (a), (b)
Constant-Q scans at (2,0.3,0) and (2,0.5,0), respectively, at
150 K. The solid lines are fitted by Eq. (1). (c) The phonon
dispersions along [2,K,0] of all samples. The solid lines are
guides for the eye. (d) The fitted Γ along [2,K,0]. The solid
lines are guides for the eye. The dashed line is Γcal as de-
scribed in the main text. We note that the data here were
all obtained on EIGER with the same configuration, so only
one Γcal is considered. The large Γ value at (2,0.6,0) for the
x =1 sample is due to the resolution effect [53]. (e) The
doping dependence of the Debye temperatures obtained by
various methods as described in the main text. ΘH

D , ΘL
D, and

ΘP
D are the Debye temperatures calculated based on high-

temperature specific heats, low-temperature specific heats,
and the phonon velocities, respectively. The dashed lines are
guides to the eye. (f) The doping dependence of EPC con-
stant λDFT and λEXP obtained by LDA calculations and Eq.
(2), respectively. The phonon energy width Γ at (2,0.5,0) is
also shown. The dashed lines are guides to the eye.

which is due to different crystal structures. The values
of Γ of the x = 1 sample and that of the x = 0.65 sample
at 5 K are close to Γcal for undamped phonons, which is
calculated by considering the phonon dispersion and in-
strument resolution [60] at small Q’s. Therefore, we can
consider that there is no or little damping effect for the
TA phonons in the x = 1 sample and the TA phonons in
the x ≤ 0.65 sample with the triclinic structure.

The evolution of the TA phonons provides a quantita-
tive understanding on the change of the Debye temper-
ature. The Debye temperature ΘH

D can be obtained by
fitting the high-temperature specific heat with the Debye
model [53], which is shown in Fig. 3(e). ΘH

D smoothly
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decreases with decreasing x, which is consistent with the
lowering of the TA phonon dispersion as shown in Fig.
3(c). On the other hand, a previous report has shown
that the Debye temperature ΘL

D obtained by the low-
temperature specific heat drops dramatically around the
optimal doping level [29], as shown together with our
results in Fig. 3(e) [53]. We note that ΘL

D is calcu-
lated by fitting the low-temperature specific heat C with
γT + βT 3, where β = 12π4kB/5(Θ

L
D)3 according to the

low-temperature limit of the Debye model. As ΘL
D is pro-

portional to the effective sonic velocity νeff , which can be
estimated by the LA and TA phonon velocities (νL and
νT ) at low energies as ν−3

eff = (1/3)ν−3
L +(2/3)ν−3

T [53].
By considering the broadening of the TA phonons that
effectively gives a distribution of νT , we can calculate ΘP

D
as shown in Fig. 3(e), which quantitatively explains the
drop of ΘL

D around the optimal doping level.
The large damping of TA phonons typically come from

strong EPC. According to BCS theory, the EPC constant
λ is related to Tc as the following empirical equation [61]

λ =
1.04 + µ∗ln(Θ/1.45Tc)

(1− 0.62µ∗)ln(Θ/1.45Tc)− 1.04
, (2)

where µ∗ is the pseudopotential. The value of µ∗ may
be taken from 0.1 to 0.2. Here we choose µ∗ to be 0.16
to compare with the theoretical calculation of λDFT as
discussed later. According to the experimental values of
ΘL

D [Fig. 3(e)] and Tc, the doping dependence of λEXP

is shown in Fig. 3(f). We note that changing µ∗ only
changes the absolute value of λEXP and does not change
the overall doping dependence. With decrease x from 1
to 0.7, λEXP quickly increases from about 0.45 to 0.7.
We note that such change of λ is quantitatively consis-
tent with the change of Γ at (2,0.5,0), further suggesting
the origin of the phonon broadening as from the EPC
coupling. For x ≤ 0.65 where the low-temperature struc-
ture becomes triclinic and no damping of TA phonons
presents, λEXP drops below 0.5. This means that the
change of Tc in the BSNA system can be readily ex-
plained by the increase of EPC and the decrease of the
Debye temperature within the mechanism of BCS theory.

To understand the broadening of the TA phonons, we
calculated the phonon spectra and EPC by the first-
principles calculations. Figures 4(a) and 4(b) show the
calculated phonon dispersion weighted by the phonon
linewidth for tetragonal SrNi2As2 and Ba0.5Sr0.5Ni2As2,
where the crystal structures are fully relaxed. We also
create a triclinic SrNi2As2 by changing the Ba into Sr
in the structure of triclinic BaNi2As2 and fully relax the
lattice, whose spectra are shown in Fig. 4(c). It is clear
that there is no substantial change for different doping
levels and structures. Moreover, the EPC constant λ also
shows little doping dependence, as already shown in Fig.
3(f). We note that while the large λ is consistent with the
experimental value around the optimal doping level, the
calculated broadening of the phonons happens mostly for
optical phonons. We thus fix the structure of SrNi2As2
by the experimental parameters without relaxation. The

SrNi  As   Tet Rel2        2 Ba   Sr   Ni  As   Tet Rel0.5      0.5      2        2

SrNi  As   Tri Rel2        2 SrNi  As   Tet Exp2        2

(a) (b)

(c) (d)

FIG. 4. Phonon dispersions weighted by the phonon linewidth
(red circles) for fully relaxed (Rel) (a) tetragonal (Tet)
SrNi2As2, (b) tetragonal Ba0.5Sr0.5Ni2As2 and (c) triclinic
(Tri) SrNi2As2. (d) Phonon dispersions weighted by the
phonon linewidth calculated by considering the experimen-
tal (Exp) parameters for tetragonal SrNi2As2.

acoustic phonons at lower energies become significantly
broader, as shown in Fig. 4(d), suggesting large acoustic-
optical phonon hybridization in real materials. We note
that the value of λ remains unchanged even when using
the experimental lattice parameters.
Our results on the large damping of TA phonons can-

not be explained by nematic fluctuations. Previous mea-
surements on iron-based superconductors have shown
that the TA phonons become slightly softened at low en-
ergies and small q near Bragg peaks in the presence of
nematic fluctuations [62–64] as shown in Fig. 1(b), be-
cause nematic fluctuations are long wavelength. More-
over, such softening should be reduced with increasing
temperature due to the decrease of nematic susceptibility
[62–64]. However, our results show that the TA phonons
in the optimally doped samples are significantly damped
over the whole Q range with little temperature depen-
dence, which clearly cannot be understood within the
picture based on nematic fluctuations. It should be noted
that even the presence of nematic fluctuations in nickel
pnictides may be in doubt [65].
The large damping effects cannot come from CDW

fluctuations either. Phonon softening and damping ef-
fects have been widely observed in many CDW systems
[66–70] and BaNi2As2 [71, 72]. However, we note that
such softening and damping of phonons are confined
around the CDW wave vectors as shown in Fig. 1(b) and
have strong temperature dependence associated with the
CDW order. In our case, the damping of TA phonons is
found over the whole Q and temperature ranges in the
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optimally doped samples where no CDW order occurs.
We attribute the large damping effects of TA phonons

to the large EPC and acoustic-optical phonon hybridiza-
tion in this system. As shown above, theoretical calcu-
lations have revealed strong electron phonon couplings
and large phonon linewidths of many optical phonons.
Indeed, the linewidth of the lowest optical branch around
6 meV (Fig. 4), i.e. the Eg mode in Raman scattering,
is already very large at room temperature in BaNi2As2
[42]. The FWHM of the Eg mode is about 2.7 meV, close
to the values of our results at large K’s. The TA phonons
are thus broadened through the acoustic-optical phonon
hybridization. It has been shown in some thermoelectric
materials that strong acoustic-optical hybridization can
lead to low lattice thermal conductivity κlat [73, 74]. In
our samples, we have found that κlat in the optimally
doped samples is indeed strongly suppressed [75], consis-
tent with the large acoustic-optical phonon hybridization.

The large EPC naturally explains the superconductiv-
ity of the BSNA system within the conventional BCS
framework. As shown by the above calculations and pre-
vious studies [34], the EPC constant λ is supposed to be
about 0.7 without introducing strong electron-electron
correlations. We note that recent studies have shown
the weak nature of correlations in BSNA [38], suggesting
the reliability of our calculations. Such large λ natu-
rally gives a Tc higher than 3 K according to the McMil-
lan equation [61]. Therefore, the superconductivity and
phonon spectra around optimal doping are very conven-
tional without the need to invoke quantum fluctuations of
either CDW or nematicity. This is contrary to the wis-
dom that the optimal superconductivity in this system
may come from an undoped compound and the quantum
fluctuations associated with the suppression of the order
in this parent compound [29, 38]. Instead, the change of
superconductivity with doping should be understood as
the sixfold suppression of the superconductivity in un-

doped compounds due to the weakening of the EPC. For
BaNi2As2, the decrease of EPC can be easily attributed
to the CDW as the change of lattice structure has lit-
tle effects on the EPC. On the other hand, it is unclear
what mechanism results in the suppression of EPC in
SrNi2As2, which show no signs of CDW or other order.

IV. CONCLUSIONS

In conclusion, we have shown large damping effects of
TA phonons in BSNA, which comes from large EPC and
can well reproduce the optimal superconductivity within
the conventional framework of the BCS theory. Neither
nematicity nor CDW is necessary to be introduced in
this mechanism. Our results suggest that the supercon-
ductivity in this system should not be understood as the
sixfold enhancement from parent compounds but rather
is sixfold suppressed in them. The origin of the large
EPC and its suppression in SrNi2As2 need to be further
studied.
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F. Laliberté, N. Doiron-Leyraud, B. Ramshaw, R. Liang,
D. Bonn, W. Hardy, et al., Broken rotational symme-
try in the pseudogap phase of a high-Tc superconductor,
Nature 463, 519 (2010).

[16] Y. Sato, S. Kasahara, H. Murayama, Y. Kasahara, E.-
G. Moon, T. Nishizaki, T. Loew, J. Porras, B. Keimer,
T. Shibauchi, and Y. Matsuda, Thermodynamic evidence
for a nematic phase transition at the onset of the pseu-
dogap in YBa2Cu3Oy, Nat. Phys. 13, 1074 (2017).

[17] H. Murayama, Y. Sato, R. Kurihara, S. Kasahara,
Y. Mizukami, Y. Kasahara, H. Uchiyama, A. Ya-
mamoto, E.-G. Moon, J. Cai, J. Freyermuth, M. Greven,
T. Shibauchi, and Y. Matsuda, Diagonal nematicity in
the pseudogap phase of HgBa2CuO4+δ, Nat. Commun.
10, 3282 (2019).

[18] N. Auvray, B. Loret, S. Benhabib, M. Cazayous,
R. Zhong, J. Schneeloch, G. Gu, A. Forget, D. Colson,
I. Paul, et al., Nematic fluctuations in the cuprate super-
conductor Bi2Sr2CaCu2O8+δ, Nat. Commun. 10, 5209
(2019).

[19] K. Ishida, S. Hosoi, Y. Teramoto, T. Usui, Y. Mizukami,
K. Itaka, Y. Matsuda, T. Watanabe, and T. Shibauchi,
Divergent nematic susceptibility near the pseudogap crit-
ical point in a cuprate superconductor, J. Phys. Soc. Jpn.
89, 064707 (2020).

[20] S. Hosoi, K. Matsuura, K. Ishida, H. Wang,
Y. Mizukami, T. Watashige, S. Kasahara, Y. Matsuda,
and T. Shibauchi, Nematic quantum critical point with-
out magnetism in FeSe1−xS1−x superconductor, Proc.
Natl Acad. Sci. USA 113, 8139 (2016).

[21] O. Cyr-Choinière, G. Grissonnanche, S. Badoux, J. Day,
D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud,
and L. Taillefer, Two types of nematicity in the phase di-
agram of the cuprate superconductor YBa2Cu3Oy, Phys.
Rev. B 92, 224502 (2015).

[22] O. Cyr-Choinière, R. Daou, F. Laliberté, C. Collignon,
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instability and superconductivity in the solid solution
SrNi2(P1−xGex)2, Phys. Status Solidi B 254, 1600351
(2017).

[41] M. Merz, L. Wang, T. Wolf, P. Nagel, C. Meingast,
and S. Schuppler, Rotational symmetry breaking at
the incommensurate charge-density-wave transition in
Ba(Ni,Co)2(As,P)2: Possible nematic phase induced by
charge/orbital fluctuations, Phys. Rev. B 104, 184509
(2021).

[42] Y. Yao, R. Willa, T. Lacmann, S.-M. Souliou, M. Frachet,
K. Willa, M. Merz, F. Weber, C. Meingast, R. Heid,
A.-A. Haghighirad, J. Schmalian, and M. L. Tacon, An
electronic nematic liquid in BaNi2As2, Nat. Commun.
13, 4535 (2022).

[43] S. Lee, G. de la Peña, S. X.-L. Sun, M. Mitrano, Y. Fang,
H. Jang, J.-S. Lee, C. Eckberg, D. Campbell, J. Collini,
J. Paglione, F. M. F. de Groot, and P. Abbamonte, Un-
conventional charge density wave order in the pnictide su-
perconductor Ba(Ni1−xCox)2As2, Phys. Rev. Lett. 122,
147601 (2019).

[44] S. Lee, J. Collini, S. X.-L. Sun, M. Mitrano, X. Guo,
C. Eckberg, J. Paglione, E. Fradkin, and P. Abbamonte,
Multiple charge density waves and superconductivity
nucleation at antiphase domain walls in the nematic
pnictide Ba1−xSrxNi2As2, Phys. Rev. Lett. 127, 027602
(2021).

[45] E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G.
Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, and N. P. O.
. R. J. Cava, Superconductivity in CuxTiSe2, Nat. Phys.
2, 544 (2006).

[46] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger,
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