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GAITSGORY’S CENTRAL FUNCTOR AND THE

ARKHIPOV–BEZRUKAVNIKOV EQUIVALENCE IN MIXED

CHARACTERISTIC

JOHANNES ANSCHÜTZ, JOÃO LOURENÇO, ZHIYOU WU, JIZE YU

Abstract. We show that the nearby cycles functor for the p-adic Hecke stack at parahoric
level is perverse t-exact, by developing a theory of Wakimoto filtrations at Iwahori level, and
that it lifts to the E1-center. We apply these tools to construct the Arkhipov–Bezrukavnikov
functor for p-adic affine flag varieties at Iwahori level, and prove that it is an equivalence for
type A groups.
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1. Introduction

Let F be a p-adic field with ring of integers O and residue field k, and let G be a connected
reductive F -group with a parahoric O-model G. The first goal of this paper is to define a p-adic
analogue of the Gaitsgory central functor [Gai01] sending perverse sheaves on the Hecke stack
HkG,C over the completed algebraic closure C of F to central perverse sheaves on the Hecke stack
HkG,k̄. The second goal of the paper is, when G = I is Iwahori, to also define a p-adic analogue
of the Arkhipov–Bezrukavnikov functor [AB09] relating coherent sheaves on the dual Springer

variety N̂Spr to constructible étale sheaves on HkI,k̄. During the introduction, we will assume for

simplicity that G is split and that the coefficients of our sheaves equal Q̄ℓ, as these hypothesis
hold for most of the paper. We begin by recalling some of the representation-theoretic aspects
at the level of Grothendieck groups.

1.1. Hecke algebras. We assumeG is a pinned split connected reductive F -group, i.e. equipped
with a choice of Borel subgroup B, a maximal split torus T ⊂ B ⊂ G, and pinning isomorphisms
for the root groups attached to positive simple roots with respect to B. The corresponding
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Iwahori–Weyl group W = N(F )/T (O), where N is the normalizer of T ⊂ G, admits a length
function ℓ which makes (W, ℓ) into a quasi-Coxeter group.

Let H denote the affine Hecke algebra. Recall that the Iwahori-Matsumoto presentation, see
[IM65], defines H as the Z[q±1/2]-algebra generated by a basis {Tw|w ∈ W} modulo relations

TwTw′ = Tww′ if ℓ(w)+ ℓ(w′) = ℓ(ww′), and (Ts + q−1/2)(Ts− q1/2) = 0 for all length 1 elements
s. Let I ⊂ G(F ) be the Iwahori subgroup associated with B. Then, the Iwahori-Hecke algebra
H := Cc(I\G(F )/I) is the space of compactly supported smooth functions on I\G(F )/I. Fixing
a Haar measure on G(F ) so that I has measure 1, convolution of functions equips H with the
structure of a unital associative algebra. The affine Hecke algebra specializes to the Iwahori-Hecke
algebra via the isomorphism

H⊗Z[q±1] Q̄ℓ ≃ H,
where Q̄ℓ is regarded as a Z[q±1/2]-algebra by mapping q to the cardinality of k (and thus
choosing a square root of this integer in Q̄ℓ). Let Hf ⊂ H be the finite Hecke algebra associated
with the finite Weyl group and the set of simple reflections. The antispherical module is defined
as

Mas := Z[q±1/2]sgn ⊗Hf
H,

where Tw ∈ Hf acts by multiplication by (−1)ℓ(w)q1/2 on Z[q±1/2]sgn. We also define the anti-
spherical module for H to beMas := M⊗Z[q±1/2] Q̄ℓ.

According to Grothendieck’s sheaf-function dictionary, the space of functions on the set of
Fq-points of a scheme has the category of complexes of coherent or constructible sheaves as its

geometric counterpart. Let Ĝ denote the Langlands dual group of G over Q̄ℓ, and Û ⊂ B̂ ⊂ Ĝ
be a Borel subgroup and its unipotent radical. Recall the Springer resolution of the nilpotent
cone N̂ ⊂ Lie(Ĝ)

pSpr : N̂Spr = Ĝ×B̂ Lie Û → N̂ .
The Steinberg variety is defined as Ŝt := N̂Spr ×N̂ N̂Spr. Kazhdan-Lusztig [KL87] showed that

the affine Hecke algebra is isomorphic to the Grothendieck group K0([Ĝ × Gm\Ŝt]), where the
latter has an algebra structure induced by convolution. In particular, the antispherical module
Mas is identified with K0([Ĝ × Gm\N̂Spr]). If we forget the Gm-equivariance, then we recover
both the Iwahori-Hecke algebra H and its anti-spherical moduleMas.

On the other hand, it follows from the work of Iwahori–Matsumoto [IM65] that the Iwahori-
Hecke algebra coincides with K0(P(HkI)) where P denotes the category of perverse sheaves on
the Hecke stack HkI = L+I\LG/L+I. The natural action of H on Mas induces a surjective
map H → Mas with kernel generated by the Kazhdan-Lusztig basis elements indexed by the
w ∈W , which are not minimal in their leftWfin-coset. This leads us to consider the antispherical
category of perverse sheaves Pas(HkI) given as the Serre quotient by the IC-sheaves index by
those w. Another approach to realize Mas is as the I-invariants of the compact induction to
G(F ) of a generic character χ of the unipotent radical Iopu of the opposite Iwahori subgroup.
This is the so-called Iwahori–Whittaker model and its categorification plays an important role
later in our arguments.

We have observed that there is an abundance of spaces and sheaves that seem related to affine
Hecke algebras and their anti-spherical modules. In the next sections, we will explain how to
upgrade these isomorphisms to equivalences of stable ∞-categories. A guiding principle for this
is the fact that there are certain objects which serve as building blocks for the various categories
and we must track down where they get sent to. This is motivated by Bernstein’s construction
of translation elements θν in the affine Hecke algebra whose trace along the finite Weyl orbits
are central, and also of an isomorphism between the spherical Hecke algebra and the center of
the Iwahori-Hecke algebra.
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1.2. The central functor. The first goal of this paper is to fully develop the central functor Z
for p-adic groups, in analogy with Gaitsgory’s central functor from [Gai01] in the function field
case. The correct geometric setup for this construction is naturally the world of diamonds or
more generally v-sheaves on perfectoids of characteristic p. Indeed, for any parahoric O-model
G, we have a Hecke stack HkG defined over Spd(O) and we can define a nearby cycles functor RΨ
by pull-push along the geometric fibers over a complete algebraic closure C of F and the residue
field k. Indeed, this was already partially exploited in [AGLR22] to define certain complexes of
sheaves Z(V ) = RΨ(Sat(V )), where Sat denotes the geometric Satake equivalence of Fargues–
Scholze [FS21]. It was proved in [AGLR22] that these complexes are algebraic and constructible,
that they carry certain centrality isomorphisms, and finally that they are supported at the V -
admissible locus AG,V .

Two very important properties of the functor Z remained however elusive in [AGLR22], namely
verifying that the centrality isomorphisms of Z satisfy various expected compatibilities that make
it into a central functor, and that it lands in the category of perverse sheaves. Our most important
results in this direction can be resumed as follows:

Theorem 1.1 (Theorems 4.15 and 4.17, Corollaries 4.20 and 4.21). The functor Z : Rep(Ĝ)→
Dula(HkG,k) lifts to an E2-monoidal functor towards the E1-center of the right side. More-
over, each Z(V ) is perverse, and has unipotent monodromy. If G = I is Iwahori, then Z(V ) is
convolution-exact and admits a Wakimoto filtration whose associated graded equals I(V|T̂ ).

Let us explain a bit of the notions and ingredients that go into the above theorem. Our
treatment of the centrality of Z is to our best knowledge the only one that uses the machinery of
stable∞-categories, which entails additional higher coherent homotopies. An important technical
tool is the notion of an abstract six-functor formalism in the sense of Mann [Man22a, Man22b],
which allows us to work at the level of the category of correspondences. Once we are there, we
perform the usual fusion trick of looking at the disjoint locus of (Spd(OC))

2 and conclude the
desired monoidality via full faithfulness of pullback away from the diagonal for those sheaves
which are perverse over (SpdC)2. To obtain this full faithfulness, we apply a certain calculation
of nearby cycles of kimberlites from [GL22].

Trying to prove perversity of Z(V ) was the genesis of this project. Contrary to the function
field case, we cannot rely on Artin vanishing to provide us with this crucial fact. Instead, we
first consider a Iwahori I and look at the Wakimoto functor I : Rep(T̂ ) → P(HkI) following
[AB09], but defined instead at the level of complexes as in [AR]. The centrality of Z(V ) implies
that it lies in the full subcategory generated by the essential image of I under extensions. Each
graded piece can then be recovered by invoking geometric Satake and a certain orthogonality with
respect to the constant terms CTBop , which proves perversity and the existence of a Wakimoto
filtration all at once. This differs considerably from the strategy in [AB09], which exploits both
perversity and convolution-exactness (known in equicharacteristic by Artin vanishing). Perversity
in the general parahoric case can be deduced from the Iwahori one, based on a suggestion of
Achar, which we learned from Cass–Scholbach–van den Hoven [CvdHS24], who adapted our
argument for Iwahori models to their setting. From the Wakimoto filtration, we can also deduce
the convolution-exactness and unipotency of the monodromy operator induced by the Galois
group (note that Sat(V ) descends to Spd(F ) with trivial inertia action). In the meantime, the
Wakimoto filtration has been decisively used in [GL22] to give a new proof of unibranchness (i.e.,
topological normality) of local models in complete generality.

1.3. The AB functor and Iwahori–Whittaker sheaves. The next part of our paper carries
out the construction of the various functors from [AB09] and, except for treating ∞-categorical
questions carefully, does not significantly diverge from it. Recall that we work here with the
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Springer stack [Ĝ\N̂Spr] that resolves the corresponding nilpotent stack of Ĝ. We have the
following result:

Theorem 1.2 (Proposition 5.7). There is a monoidal functor F : Perf([Ĝ\N̂Spr])→ Dcons(HkI)
extending Z× I.

Let us briefly describe the construction of F following [AB09]. The main idea consists in

defining an analogous functor starting from the quotient stack [Ĝ× T̂\N̂ af
Spr] containing [Ĝ\N̂Spr]

as a dense open stack, where N̂ af
Spr is the affine hull of the canonical T̂ -torsor over N̂Spr. The

projective objects of the category of coherent sheaves on the enlarged stack can be mapped to
P(HkI) by using the functors Z, I, and the nilpotent monodromy endomorphism of the former,
after verifying the Plücker relations. After deriving this functor to perfect complexes on the
affine stack, we are reduced to showing vanishing on complexes supported at the complement of
[Ĝ\N̂Spr].

Next, we study the category Dcons(HkIW) of Iwahori–Whittaker sheaves. This is the stable
∞-category of (L+Iopu ,L)-twisted equivariant constructible sheaves on FlI , where L is a certain
character sheaf obtained via the Artin–Schreier cover. It also carries a perverse t-structure and
the category P(HkIW) is a highest weight category in the sense of Beilinson–Ginzburg–Soergel
[BGS96], with simple and tilting objects indexed by X∗(T ). We get a perverse t-exact averaging
functor avIW : Dcons(HkI) → Dcons(HkIW) given by left convolution against the simple object
attached to 0 ∈ X∗(T ) and we denote by ZIW , resp. FIW , the composition avIW ◦Z, resp. avIW ◦
F.

Theorem 1.3 (Theorem 7.4). If G is of type A, then ZIW(V ) is tilting.

Notice that in [AB09] there is no assumption on the type of G. Unfortunately, we are missing a
crucial ingredient replacing theGm,k-action given by rotating the uniformizer, which is impossible
in the p-adic setting. Let us explain how the proof works, so as to better understand the impact
of this gap. First of all, the tilting property propagates under convolution and can be verified on
adjoint quotients, so we may assume V is either minuscule or quasi-minuscule. In the minuscule
case, all the weights are comprised in a finite Weyl orbit, so one can easily verify the given
property. In the quasi-minuscule case, we must still handle the (co)restriction of ZIW(V ) to
the weight 0 Iwahori–Whittaker cell. Here, the vanishing can be achieved by calculating the
alternating sum of the Ext groups via an argument on Grothendieck groups and finally bound
a Hom(ZIW(1),ZIW(V )) accordingly. Now, this bound is achieved in [AB09] via the theory
of the regular quotient described below together with the fact that the monodromy operator is
defined for every sheaf in P(HkI) as it is induced by the Gm,k-action given by rotation. For type
A groups, we can realise every representation up to central isogeny as a direct summand of a
minuscule representation, so we still get the tilting property.

The last step in proving that FIW is an equivalence (now, necessarily only in type A) revolves

around the regular orbit Or ⊂ N̂ inside the nilpotent cone. The Springer resolution is an
isomorphism above this Ĝ-orbit, and hence we should find a category of étale sheaves that plays
a similar role. For this, we look at the Serre quotient P0(HkI) of perverse sheaves on the Hecke
stack obtained by modding out IC sheaves with positive-dimensional support.

Theorem 1.4 (Proposition 8.3, Proposition 10.8). If G is of type A, then there is a symmetric

monoidal equivalence P0(HkI)
∼−→ Rep(ZĜ(n0)), where n0 is a regular nilpotent element.

Together with the tilting property, this result is key in order to prove the Arkhipov–Bezrukavnikov
equivalence, as it induces certain injections of Hom maps. Let us remark that the most delicate
point in the above theorem consists in showing that n0 is regular. For this, we use the theory
of weights by descending Z(V ) to a mixed sheaf and calculating its monodromy filtration. In
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[AB09], one applies Gabber’s local weight-monodromy theorem, see [BB93], stating that the
weight filtration equals the monodromy filtration, and then calculates the former via the affine
Hecke algebra. This is not available for our nearby cycles, unless µ is minuscule, by work of
Hansen–Zavyalov [HZ23] combined with the representability theorem in [AGLR22]. Again, we
can only easily reproduce this argument for type A groups. It would be possible to adapt a dif-
ferent argument due to Bezrukavnikov–Riche–Rider [BRR20], but this would lead us into some
detours that seem unnecessary, as we do not have the tilting property for other groups.

Let us finish by stating the second main result of this paper, i.e. the AB equivalence for p-adic
groups of type A:

Theorem 1.5 (Theorem 9.1). If G is of type A, then the functor FIW : Perf([Ĝ\N̂Spr]) →
Dcons(HkIW) is an equivalence.

We strongly believe that this result must also hold for general split connected reductive groups
G. Yun–Zhu have announced in conference talks regarding work of preparation of Hemo–Zhu, see
also [Zhu20], a proof of the full Bezrukavnikov equivalence [Bez16] for p-adic groups, that builds
on a colimit presentation in terms of double quotients of parahoric jet groups due to Tao–Travkin
[TT20]. Recently, Bando [Ban23] also gave a distinct proof of the Bezrukavnikov equivalence
for p-adic groups by comparing constructible-étale sheaves in equi- and mixed characteristic via
an ingenious geometric construction. However, these previous methods do not yield concrete
knowledge about the central functor, whereas our paper places Z right at the center of it all. We
also think that our functor Z will naturally appear in the picture if one studies étale sheaves on
p-adic Hecke stacks, see, e.g., the unibranchness theorem of [GL22], and thus it must play a role
in comparing the Zhu [Zhu20] and the Fargues–Scholze [FS21] variants of a categorical p-adic
local Langlands correspondence. A natural task for the future will be to explain if and how all
of the previous approaches fit together, namely by comparing a priori different central functors.

1.4. Acknowledgements. This paper owes a lot to the machinery developed in [AGLR22],
so we are first of all thankful to Ian Gleason and Timo Richarz for their contribution to that
project, and also further conversations involving this project. We benefited from a workshop
on the Bezrukavnikov equivalence in Essen–Münster–Bonn organized by the first two authors
together with Ulrich Görtz, Eugen Hellmann, and Konrad Zou, and we are thankful to all of
the participants. The fourth author benefited from participating in the special academic year
at the Institute for Advanced Study. He thanks Zurich Insurance Company for the support and
organizers and all participants of the special year program. Part of the project was conducted
when the fourth author was visiting the Max-Planck Institute for Mathematics, he is grateful
to the institute for host. We would also like to acknowledge the relevant discussions we had or
feedback we got from Pramod Achar, Robert Cass, Harrison Chen, Jean-François Dat, Arnaud
Étève, Thomas Haines, Linus Hamann, David Hansen, Xuhua He, Eugen Hellmann, Claudius
Heyer, Tasho Kaletha, Arthur-César Le Bras, Lucas Mann, Cédric Pépin, Simon Riche, Peter
Scholze, Thibaud van den Hove, Eva Viehmann, Yifei Zhao, Xinwen Zhu, Konrad Zou.

1.5. Notation. Unfortunately, we will have to use a lot of notations. Thus, let’s get over this
and define the following objects, which will occur in the whole text.

First, let us discuss scheme-theoretic notations.

• p a prime,
• F a p-adic field with ring of integers O, and (perfect) residue field k.
• F an algebraic closure of F and Γ := Gal(F/F ) the absolute Galois group,

• Γ̆ ⊆ Γ the inertia subgroup and Γun := Γ/Γ̆ the unramified quotient,

• F̆ the completion of the maximal unramified extension of F in F , Ŏ ⊆ F̆ its ring of
integers, and k the residue field of Ŏ,
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• G a quasi-split reductive group over F ,
• S ⊆ T ⊆ B ⊆ G a maximal split torus S ⊆ G, T its centralizer (a maximal torus in G
as G is quasi-split), and a Borel B ⊆ G containing T ,
• B− ⊆ G is the opposite Borel of B,
• N := NG(T ) denotes the normalizer of T in G,
• T the connected Néron model of T over O,
• IfH/F is a torus, then X•(H), resp. X•(H) denote the groups of (geometric) cocharacters,
resp. characters of H ,
• X• := X•(T ), X• := X•(T ),

• X̄• := X•,Γ̆, where the subscript Γ̆ denotes the coinvariants.

• X+
• , X

•,+ denote the dominant cocharacters resp. dominant characters of T with respect
to B,
• X•(S)

+, X•,+(S) denote the dominant cocharacters resp. dominant characters of S with
respect to B,

Next, let us introduce combinatorial notations.

• W := N(F̆ )/T (Ŏ) the Iwahori-Weyl group of T , also called extended affine Weyl group,
• A(G,S) the appartment associated with S, identified with X•(S)R for pinned G,
• a ⊆ A(G,S) a fixed alcove,
• f ⊆ A(G,S) a facet contained in the closure of a,
• S ⊆W the set of reflections at the walls of a, also called the set of simple reflections,
• Waf ⊆ W the affine Weyl group, which is the Coxeter group generated by the simple
reflections,
• Ωa the stabilizer of a, which yields an isomorphism

W ∼=Waf ⋊ Ωa. (1.1)

• ℓ : W → N≥0 the length function on W , i.e., the unique function ℓ(−) : W → N≥0, which
extends the length function ℓ(−) : Waf → N≥0 on the Coxeter group Waf , such that
ℓ(τ) = 0 for τ ∈ Ωa.
• ≤ is the Bruhat order on W , i.e., w ≤ w′ for w = (waf , τ), w

′ = (w′
af , τ

′) ∈ W ∼=
Waf ⋊ π1(G)Γ̆ if and only if τ = τ ′ and waf ≤ w′

af for the Bruhat order ≤ on Waf coming
from its Coxeter structure,
• Wfin = N(F̆ )/T (F̆ ) the finite Weyl group, which sits in an exact sequence

1→ X̄• →W → Wfin → 1. (1.2)

• tν̄ ∈ W is the translation element associated with ν̄ ∈ X̄•.
• wν̄ denotes the minimal length element in the coset Wfintν̄ for ν̄ ∈ X̄•, upon choosing an
origin for A(G,S).

Now let us define notations related to affine flag varieties and perfect geometry.

• Algperfk the category of perfect k-algebras,

• for a scheme X over k we denote by Xpf its perfection,

• for R ∈ Algperfk we set WO(R) := O ⊗W (k) W (−), the ring of O-Witt vectors,

• if X/O is an affine scheme of finite type, then L+X : (Algperf)→ (Sets), R 7→ X(WO(R))
is the positive loop functor for X ,
• if Z/F is an affine scheme of finite type, then LZ : (Algperf)→ (Sets), R 7→ Z(WO(R)[1/p])
is the loop functor for Z,
• I/O the Iwahori group scheme for G associated with the alcove a,
• G/O the parahoric model of G associated with the facet f
• the quotient of étale sheaves FlG := LG/L+G is the (partial) affine flag variety for G,
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• the quotient stack HkG = [L+G\FlG ] in the étale topology is the Hecke stack for G,
• the quotient stack Hk(I,G) = [L+I\FlG ] in the étale topology is the Hecke stack for the
pair (I,G).

Next, let us introduce some cohomological notations.

• ℓ 6= p a prime,
• Λ an algebraic extension of Fℓ or Qℓ.
• Dét(−) := Dét(−,Λ) denotes the ∞-derived category of “étale sheaves of Λ-modules” on
a perfect scheme, or a small v-stack.
• Dét(HkG) := Dét(HkG ,Λ)

bd denotes the ∞-category of “étale sheaves of Λ-modules” on
HkG , whose support is a finite subset of the underlying topological space of HkG .

Finally, we collect our notations for the “coherent” side. Note that we consider these objects
usually under the assumption that Λ is a field extension of Qℓ.

• Ĝ denotes the dual group of G over Λ,
• T̂ ⊆ Ĝ denotes the dual torus to T , and we identify X•(T̂ ) ∼= X•(T ),

• Ĝ′ := Ĝ× T̂ ,
• T̂ ⊆ B̂ ⊆ Ĝ denotes the Borel subgroup with dominant characters identifying with
X•(T )

+,

• Û ⊆ B̂ is the unipotent radical of B̂ with Lie algebra Lie(Û),

• ĝ := Lie(Ĝ) denotes the Lie algebra of Ĝ,

• N̂ ⊆ ĝ is the nilpotent cone, i.e., the closed subscheme of nilpotent elements,

• pSpr : N̂Spr := Ĝ×B̂ Lie(Û)→ N̂ denotes the Springer resolution of the nilpotent cone,

• N̂ qaf
Spr := Ĝ×Û Lie(Û )→ N̂Spr denotes the canonical T̂ -torsor over N̂Spr,

• X̂ := Spec(O(Ĝ/Û)) is the affine closure of the quasi-affine scheme Ĝ/Û ,

2. Geometry of the affine flag variety

In this section, we want to recall the geometry of the (Witt vector) partial affine flag variety
FlG , which was first considered as an algebraic space in [Zhu17, Section 1.4]. Its representability
by an ind-(perfected projective k-scheme) was then proven in [BS17, Corollary 9.6] via reduction
to G = GLn and the construction of the determinant line bundle there. Let us note that the base
change FlG,k̄ is the affine flag variety of the parahoric group G ⊗O Ŏ. Hence, geometric questions

for FlG often reduce to the case F = F̆ . Our treatment will focus especially on L+I-equivariant
subvarieties of FlG .

2.1. Schubert varieties and convolution. During the entire paper, we will assume that the
group G is residually split. In fact, almost all of our arguments with sheaves take place when
F = F̆ , except for a brief appearance of mixed sheaves, for which residual splitness is a lax
enough assumption. This simplifies the Galois action on the Iwahori–Weyl group.

Lemma 2.1. The following conditions are equivalent:

(1) The Γ-action on W is trivial.
(2) Γ acts trivially on X̄•.
(3) G is residually split, i.e., the reductive quotient Gredk of the special fiber of every parahoric

O-model of G is split over k.

Proof. By [KP23, Proposition 7.10.10] the group G is residually split if and only if Γ acts trivially
on X̄•. If Γ acts trivially on W , then as well on X̄• ⊆ W . Assume now that Γ acts trivially on
X̄•. As W is generated by Waf and X̄• it suffices to show that Γ acts trivially on Waf . But Waf

embeds Γ-equivariantly into the group of affine transformations on X̄•,R, and the Γ-action on the
latter is trivial. �
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The geometry of the Iwahori orbits on the affine flag variety is summarized in the next lemma.

Lemma 2.2. (1) The map N(F̆ )→ FlG , n 7→ n · L+G induces a bijection

W/Wf = T (Ŏ)\N(F̆ )/(N(F̆ ) ∩ G(Ŏ))→ Hk(I,G) (2.1)

on underlying topological spaces, i.e, the L+I-orbits Fl(I,G),w := L+I · w ⊂ FlG are
indexed by W/Wf .

(2) The L+I-orbits on FlG form a stratification of FlG , i.e., the closure Fl(I,G),≤w of a
Schubert cell Fl(I,G),w is a union of Schubert cells. More precisely, it is the unique closed
perfect subscheme such that

|Fl(I,G),≤w| =
⋃

w′≤w

|Fl(I,G),w′ | (2.2)

for the Bruhat order on W .

Proof. Statement (1) is essentially the Bruhat decomposition, see [BT72, Théorème 6.5] or [KP23,
Theorem 7.8.1],

W/Wf
∼= I(F̆ )\G(F̆ )/G(F̆ ) (2.3)

(applied over all formally unramified extensions of Ŏ). Since G is residually split, we conclude
by étale descent that all points of Hk(I,G) are k-rational and enumerated by W/Wf . Then (2)
follows by considering convolution and the Demazure resolutions, cf. [Zhu17, Section 1.4] for
details. �

Definition 2.3. The (perfect) projective schemes Fl(I,G),≤w are called Schubert varieties, while
their open and dense subschemes Fl(I,G),w are called (Iwahori) Schubert cells.

If n ≥ 1, the contracted product

FlG×̃ · · · ×̃FlG
n−factors

:= LG×L+G · · · ×L+G LG/L+G (2.4)

is called the n-fold convolution product of FlG . The multiplication morphism

m := mFlG : FlG×̃ · · · ×̃FlG → FlG , (g1, . . . , gn) 7→ g1 · · · gnL+G (2.5)

has interesting geometric properties. If X1, . . . , Xn ⊆ FlG are (locally) closed L+G-stable sub-
schemes and Y1, . . . , Yn ⊆ LG their preimages, then we set

X1×̃ . . . ×̃Xn := Y1 ×L+G . . .×L+G Yn/L
+G, (2.6)

which is a (locally) closed subscheme of FlG×̃ . . . ×̃FlG . A similar discussion can be had with the
convolution product FlI×̃ . . . ×̃FlI×̃FlG , where the parahoric G appears only in the last factor
and all the other intermediate terms are given by the Iwahori I.
Lemma 2.4. Let w1, . . . , wn ∈W and assume that w1 · · ·wn is right Wf -minimal and reduced.

(1) The map
FlI,w1×̃ · · · ×̃FlI,wn → FlG (2.7)

has image in Fl(I,G),w1···wn
and induces an isomorphism

FlI,w1×̃ · · · ×̃FlI,wn
∼= Fl(I,G),w1···wn

. (2.8)

(2) We have
m(FlI,≤w1×̃ · · · ×̃FlI,≤wn) ⊆ Fl(I,G),≤w1···wn

(2.9)

and the map
FlI,≤w1×̃ · · · ×̃FlI,≤wn → Fl(I,G),≤w1···wn

(2.10)

is (perfectly) proper and birational.
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(3) If w ∈W and τ ∈ Ωa, then

Fl(I,G),w → Fl(I,G),τw, gL
+G 7→ τgL+G (2.11)

is an isomorphism.

Proof. It suffices to check the statements in the case that F = F̆ . Using induction on n, one
reduces the first statement to the case that n = 2. Now,

I(Ŏ)w1I(Ŏ) · I(Ŏ)w2G(Ŏ) ∼= I(Ŏ)w1w2G(Ŏ) (2.12)

by the right Wf -minimality and reducedness assumptions on w1w2: indeed, this follows from
the theory of Tits systems, which we can apply by [BT72, Théorème 6.5] and [BT84, Corollaire

6.4.7]. This implies the claim when also applied over all formally unramified extensions of Ŏ.
The second statement follows from the first, and the third follows from the first and second as
I(Ŏ)τI(Ŏ) = I(Ŏ)τ for τ ∈ Ωa. �

For example, if w = τs1 . . . sn is a right Wf -minimal reduced word, with si being simple
reflections and τ stabilizing a, then FlI,≤τ ×̃FlI,≤s1×̃ . . . ×̃FlI,≤sn → Fl(I,G),≤w defines the De-
mazure resolution. Studying Demazure resolutions yields the following important geometric
consequences.

Lemma 2.5. Let w ∈W/Wf and denote by wmin ∈ W its right Wf -minimal representative.

(1) Fl(Ĭ,Ğ),w
∼= Aℓ(wmin),pf

k
, in particular dimFl(I,G),w = ℓ(wmin).

(2) If ℓ(wmin) = 0, i.e., wmin = τ ∈ Ωa, then Fl(I,G),w = Fl(I,G),≤w is isomorphic to Spec(k).
(3) If ℓ(wmin) = 1, i.e., wmin = τs with s a simple reflection and τ ∈ Ωa, then

Fl(I,G),≤w
∼= P1,pf

k
. (2.13)

Proof. Using 2.4 one reduces to the case that w = s is a simple reflection. In this case, one

checks FlĬ,≤s
∼= P1,pf

k
by hand, cf. [Zhu17, Section 1.4]. The remaining assertions follow. �

Let us note that the morphism

(pr,m) : FlG×̃FlG → FlG × FlG , (g1, g2) 7→ (g1, g1g2) (2.14)

is an isomorphism, i.e., convolution products are secretly just products. Given now L+G-stable
locally closed perfect subschemes X1, X2, Y ⊆ FlG such that m(X1×̃X2) ⊆ Y , we can factor
m : X1×̃X2 → Y as

X1×̃X2
(pr,m)−−−−→ X1 × Y projection−−−−−−→ Y. (2.15)

A similar discussion holds if we replace the L+G-equivariant convolution by the L+I-equivariant
version. For the Iwahori convolutions in FlG , we get the following important affineness statement.

Lemma 2.6. Let w ∈ W and X ⊂ FlG be a closed L+I-stable perfect subscheme. Then the map

m : FlI,w×̃X → FlG (2.16)

is affine. If G = I is Iwahori, then the map

m : X×̃FlI,w → FlI (2.17)

is also affine. In particular, the inclusion jw : FlI,w → FlI is affine for any w ∈ W .

More generally, the affineness of jw : Fl(I,G),w → FlG for w ∈ W/Wf follows from Lemma 2.5
because Fl(I,G),≤w → FlG is a closed immersion and jw : Fl(I,G),w → Fl(I,G),≤w is affine because
the target is separated.
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Proof. We may assume that F = F̆ . The proof of [AR, Lemma 4.1.6] applies, and we recall its
argument. Using the above remarks, we can write m : FlI,w×̃X → FlG as the composition

FlI,w×̃X → FlI,w×̃FlG
(pr,m)∼= FlI,w × FlG

projection−−−−−−→ FlG (2.18)

of morphisms of ind-perfect schemes. The first morphism is affine as X ⊂ FlG is a closed
immersion, and the second is affine by Lemma 2.5. If G is Iwahori, then the affineness of
m : X×̃FlI,w → FlI can be checked after passing to the quotient Hecke stacks

[L+I\X ×L+I FlI,w]→ HkI (2.19)

Forgetting about L+I-equivariance on the right, we reduce to the previous case. �

We need the following result later on, but only at Iwahori level.

Lemma 2.7. Let X ⊂ FlI be a locally closed L+I-stable perfect subscheme. Then there exists a
finite subset SX ⊂W such that for any w ∈W we have

m(X×̃FlI,w) ⊂ ∪x∈SXFlI,xw, m(FlI,w×̃X) ⊂ ∪x∈SXFlI,wx.

Proof. The proof is via an induction argument on ℓ(w) which is similar to the equal characteristic
setting, [AR, Lemma 4.4.2]. We sketch the proof here. Of course, it suffices to treat the case
X = FlI,w for some w ∈W . Let firstX = FlI,w for some w ∈W with ℓ(w) = 0. Take SX = {w},
then the statement holds by noting that ℓ(xw) = ℓ(wx) = ℓ(x) for any x ∈ W .

Assume now X = FlI,w for some w ∈ W with ℓ(w) > 0. Write w = w1s1 = s2w2, where
ℓ(w1) = ℓ(w2) = ℓ(w) − 1. The induction hypothesis implies that there exist finite subsets
SX1 , SX2 ⊂W such that

m(FlI,w1×̃FlI,w′) ⊂ ∪x∈SX1
FlI,xw′, m(FlI,w′×̃FlI,w2) ⊂ ∪x∈SX2

FlI,w′x,

for any w′ ∈W . Note that for any w′′ ∈W ,

FlI,s1×̃FlI,w′′ ⊂ FlI,w′′ ⊔ FlI,s1w′′ , FlI,w′′×̃FlI,s2 ⊂ FlI,w′′ ⊔ FlI,w′′s2 ,

and
FlI,w1×̃FlI,s1 ≃ FlI,s2×̃FlI,w2 ≃ FlI,w

by 2.4. We conclude that SX := SX1 ∪ SX1s1 ∪ SX2 ∪ s2SX2 is the desired finite subset, thereby
concluding the proof. �

2.2. Constant terms and semi-infinite orbits. Throughout this section, we assume G = I is
Iwahori. Let U ⊂ B be the unipotent radical. Then we get the Iwasawa decompositions ([KP23,
Theorem 3.3.3])

W = N(F̆ )/T (Ŏ) ≃ U(F̆ )\G(F̆ )/I(Ŏ), w 7→ U(F̆ )wI(Ŏ). (2.20)

Geometrically, this yields the semi-infinite orbits.

Definition 2.8. For w ∈W we set Sw := LU · w ⊂ FlI .

By [AGLR22, Section 5] the Sw, w ∈ W, are represented by locally closed ind-(perfect schemes)
and coincide with the connected components of the attractor Fl+I for a regular action by Gm.
More precisely, take a regular coweight χ : Gm,F → S, i.e., such that the centralizer of χ in G is
T (for example, the sum of all positive coroots). Then B is the attractor locus

G+ = {g ∈ G | t 7→ χ(t)gχ(t)−1 extends to A1
F } (2.21)

for the conjugation action of Gm,F on G. More generally, if B ⊆ P ⊆ G is any parabolic
subgroup, then there exists a character ψ : Gm,F → S such that P = G+ is the attractor locus
for the Gm,F -action on G by conjugation. The centralizer M of ψ is then a Levi subgroup of P .
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The cocharacter χ extends to a group homomorphism Gm,O → S by the universal property
of connected Néron models. By conjugation, we deduce a L+Gm,O-action on FlI and we restrict
it to Gm,k along the Teichmüller lift map. We get the decomposition

Fl+I =
∐

w∈W

Sw, where Sw := LU · w ⊂ FlI , (2.22)

of the attractor locus, cf. [AGLR22, Section 5]. Similarly, the repeller locus Fl−I , i.e., the attractor
locus for the inverted Gm-action, decomposes as

Fl−I =
∐

w∈W

S−w , where S−w := LU− · w ⊂ FlI , (2.23)

where U− denotes the unipotent radical of the opposite Borel B− of B. The semi-infinite orbits
are relevant for computing constant term functors. Let

i+ : Fl+I → FlI , i
− : Fl−I → FlI (2.24)

be the inclusions (=disjoint union of disjoint locally closed immersions). Let Fl0I ⊆ FlI be the
fixed point locus of Gm and let

q+ : Fl+I → Fl0I , q
− : Fl−I → Fl0I (2.25)

be the natural morphism given by evaluating at 0 ∈ A1
k resp. ∞ ∈ A1

k.

Remark 2.9. The natural inclusion FlT → Fl0I induced by the Gm-equivariant morphism T →
I, with Gm acting trivially on T , is not an isomorphism. Namely, FlT is the perfect constant
k-scheme associated with the set X̄•, while Fl0I is associated with the set W .

Following [AGLR22, Section 6.3] we can now define the constant term functor (associated
with B and I).

Definition 2.10. We set

CTB := Rq+! ◦ i+,∗ : Dét(HkI)→ Dét(L
+T \Fl0I) (2.26)

By Braden’s theorem the natural map Rq+! ◦ i+,∗ → Rq−∗ ◦Ri−,! is an isomorphism, cf. [FS21,
Theorem IV.6.5], [AGLR22, Section 6]. This implies excellent formal properties of the constant
term functor.

Remark 2.11. Let A ∈ Dét(HkI) and w ∈ W = HkI(k). By proper base change the fiber of
CTB(A) over w is calculated by RΓc(Sw, A|Sw

).

To use the formula in 2.11 we establish the following lemma.

Lemma 2.12. Let w ∈ W be such that w(b) − b ∈ X̄+
• , where b denotes the barycenter of the

standard alcove a.

(1) FlI,w = L+U · w, where U ⊆ I denotes the scheme-theoretic closure of U in I.
(2) FlI,w = Sw ∩ FlI,≤w.

Proof. The first claim is equation (5.11) in the proof of [AGLR22, Lemma 5.3]. The first claim
implies FlI,w ⊆ Sw ∩ FlI,≤w as Sw = LU · w. Let x ∈ FlĬ,≤w \ FlI,w. By (perfect) properness

of FlI,≤w the orbit map γ : Gm,k → FlI,≤w, t 7→ χ(t)x extends to a Gm-equivariant map
γ̃ : A1

k → FlI,≤w. As FlI,w is open in FlI,≤w and W ⊆ FlI is exactly the set of Gm,k-fixed
points, 2.2 implies that x ∈ Sw′ for w′ := γ̃(0) < w because Sw′ is exactly the subscheme of
points contracting to w′ under the Gm-action. �
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Next we describe the closure relations for the stratification of FlI by the Sw, w ∈W . As this
is a geometric questions, we may assume F = F̆ for this. Then we have to define the dominant
cocharacters X̄+

• in X̄•. Recall that X•(S)
+ denotes the (B-)dominant cocharacters for S. As

we assumed F = F̆ , we get that

X•(S)Q ∼= X̄•,Q, (2.27)

and thus we can define X̄+
• as the preimage of X•(S)

+
Q under the map X̄• → X̄•,Q. Given X̄•

we can now define the semi-infinite Bruhat order � on W , which depends on B. Namely, set
w � w′ if and only if for the Bruhat order tnν̄w ≤ tnν̄w′ for all ν̄ ∈ X̄+

• and n≫ 0.

Lemma 2.13. For w,w′ ∈W we have Sw ⊆ Sw′ if and only if w � w′.

Proof. This is [AGLR22, Proposition 5.4], where � is denoted by ≤∞
2 . �

If w = tµ̄, w
′ = tν̄ , then w � w′ if and only if ν̄ − µ̄ lies in X̄+

• . In particular, on X̄+
• the

two orders ≤,� agree. We will constantly use the equality ℓ(tν̄) = 〈2ρ̄, ν̄〉 for ν̄ dominant, see
[Zhu14, Lemma 9.1].

3. Cohomology of the affine flag variety

In this section, we want to study cohomology of constructible sheaves on the Hecke stack HkI .
In particular, we will

(1) introduce Wakimoto-filtered complexes in mixed characteristic, following [AB09], [AR]
and [Zhu14],

(2) calculate the constant terms of Wakimoto sheaves,
(3) show that central objects for convolution are Wakimoto-filtered.

In this section we assume that F = F̆ , and thus in particular that k is algebraically closed.

3.1. (Co)standard functors. The considerations that are going to come have an easy shadow
on Grothendieck groups. Recall that we always assume our ring of coefficients Λ to be a field.

For w ∈ W/Wf let jw : Fl(I,G),w → FlG be the locally closed affine immersion. Note that jw
is L+I-equivariant, and hence descends to a morphism

jw : Hk(I,G),w → Hk(I,G) (3.1)

of stacks, where on the left side Hk(I,G),w := [L+I\Fl(I,G),w], and that we will usually denote in
the same way. Define the standard object

∆(I,G),w := jw,!(Λ)[ℓ(wmin)] ∈ Dét(Hk(I,G)) (3.2)

and the costandard object

∇(I,G),w := Rjw,∗(Λ)[ℓ(wmin)] ∈ Dét(Hk(I,G)) (3.3)

associated with w ∈ W/Wf .
Let

Dcons(Hk(I,G)) ⊂ Dét(Hk(I,G)) (3.4)

be the full subcategory consisting of objects with perfect stalks. LetK0(Hk(I,G)) be the Grothendieck

group of Dcons(Hk(I,G)). Since points in FlG have connected stabilizers under the L+I-action,
K0(Hk(I,G)) identifies with the Grothendieck group of the category of L+I-equivariant sheaves
on FlG . Consequently, K0(Hk(I,G)) is a free abelian group on the classes of the intersection
complexes IC(I,G),w = j!∗(Λ) of Fl(I,G),≤w.

Via convolution K0(HkI) is naturally a ring, cf. [AR, Section 5.2], and K0(Hk(I,G)) is a left
K0(HkI)-module. In fact, this ring identifies with the integral group ring of W as we recall now.
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Lemma 3.1. The maps

θ : K0(HkI)→ Z[W ], [F ] 7→
∑

w∈W

(−1)ℓ(w)χ(FlI,w, j
∗
wF)w (3.5)

and

ϑ : Z[W ]→ K0(HkI), w 7→ (−1)ℓ(w)[∇I,w] (3.6)

are inverse ring isomorphisms.

Here, χ(FlI,w, j
∗
wF) denotes the Euler characteristic. In the equal characteristic case, a proof

is given in [AR, Lemma 5.2.1].

Proof. If s ∈ W and ℓ(s) = 1, then by Lemma 2.5, we have FlI,≤s
∼= P1,pf

k and we get distin-
guished triangles

ICI,e → ∆I,s → ICI,s
+1−−→, ICI,s → ∇I,s → ICI,e

+1−−→
because ICI,s identifies with the underived pushforward R0js,∗(Λ). Thus, θ([∇I,s]) = θ([∆I,s]) =
s and θ(ϑ(s)) = s. It then follows from 3.2 below that θ, ϑ are ring homomorphisms and in fact
θ([∆I,w]) = θ([∇I,w]) = w for any w ∈ W . Now, ϑ is surjective because the [∆I,w] = [∇I,w]
generate K0(HkI). This finishes the proof. �

We will now study convolutions of standard and costandard sheaves. Before proceeding, we
upgrade these objects to actual functors. Recall that Dét(HkI) has a natural monoidal structure
in the sense of [Lur17, Definition 4.1.1.10] as we will see later on, see §4.2. For now, it suffices
to construct the underlying bifunctor as follows. First, consider the diagram

HkI ×HkI [L+I\LG×L+I LG/L+I] HkI

HkI HkI

pr1 pr2

p m

(3.7)

of ind-v-stacks on perfect schemes, with pr1, pr2 the two projections onto the first and second
factors, respectively, p the natural morphism, and m the (quotient by the left L+I-action of the)
convolution morphism discussed in 2.1. Now, for any F1,F2 ∈ Dét(HkI), define

F1 ∗ F2 := Rm!(p
∗(F1⊠

LF2)). (3.8)

Note that m is (perfectly) proper and thus Rm! = Rm∗. The full subcategory Dcons(HkI) is
stable under convolution. A similar diagram can be used to define a convolution product ∗ that
realizes Dcons(Hk(I,G)) as a left module of Dcons(HkI).

Note that the full subcategory of Dcons(Hk(I,G)) whose objects are supported at the origin
identifies with Dcons([∗/L+I]). Convolution restricts to the usual tensor product on these sheaves
which is symmetric monoidal. Furthermore, note that L+I is an extension of its reductive
quotient, which is naturally isomorphic to the special fiber Sk of the connected Néron model S of
S, by a connected pro-unipotent group. By [FS21, Proposition VI.4.1], we can therefore identify
Dcons([∗/L+I]) with Dcons([∗/Sk]) via pullback along [∗/L+I] → [∗/Sk]. This is convenient,
because Dcons(Hk(I,G),w) also identifies with Dcons([∗/Sk]) for any w ∈ W/Wf , since Sk maps

isomorphically to the reductive quotient of the stabilizer group L+I ∩ wL+Gw−1.
Moreover, the above abstract nonsense allows us to regard standard and costandard objects

as functors by tensoring. Indeed, we define the standard and costandard functors:

∆(I,G),w : Dcons([∗/Sk])→ Dcons(Hk(I,G)), M 7→M ∗∆w, (3.9)

∇(I,G),w : Dcons([∗/Sk])→ Dcons(Hk(I,G)), M 7→M ∗ ∇(I,G),w, (3.10)
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and one checks easily that there are isomorphisms ∆(I,G),w(M) ≃ jw!M [ℓ(w)] and∇(I,G),w(M) ≃
Rjw∗M [ℓ(w)] of functors. Since jw is an affine morphism (Lemma 2.6), both functors are t-exact
by [BBDG18, Corollaire 4.1.3] for the natural t-structure on Dcons([∗/Sk]) and the perverse
t-structure on Dcons(Hk(I,G)), cf. [AGLR22, Definition 6.8] for the latter.

We start with the following lemma on the convolution of standard and costandard objects.

Lemma 3.2. For any w1 ∈ W and w2 ∈ W/Wf such that ℓ(w1) + ℓ(w2,min) = ℓ((w1w2)min),
there exist canonical isomorphisms

∆I,w1 ∗∆(I,G),w2
≃ ∆(I,G),w1w2

∇I,w1 ∗ ∇(I,G),w2
≃ ∇(I,G),w1w2

,

satisfying the obvious associativity constraint.

Proof. In equicharacteristic, this statement can be found in [AB09, Lemma 8(a)] with a proof
given in [AR, Lemma 4.1.4 (1),(2)]. The same proof applies here. For any w1 ∈ W and w2 ∈ W
such that w1w2 is rightWf -minimal and reduced, the convolution morphism FlI,w1×̃Fl(I,G),w2

→
Fl(I,G),w1w2

is an isomorphism by Lemma 2.4, so the constant complexm!Λ identifies with Λ. This

yields the desired isomorphisms after !- or ∗-extension and shifts. Indeed, Rm!(jw1,!Λ⊠̃jw2,!Λ)
∼=

jw1w2,!Λ and Rm∗(Rjw1,∗Λ⊠̃Rjw2,∗Λ)
∼= Rjw1w2,∗Λ. �

Recall that in a monoidal category, an object is called left-invertible (resp. right-invertible) if
multiplication on the left (resp. right) is an equivalence.

Lemma 3.3. For any w ∈ W , the objects ∇I,w and ∆I,w are both left- and right-invertible in
the monoidal category Dcons(HkI). More concretely, there exist (non-canonical) isomorphisms

∇I,w ∗∆I,w−1 ≃ δI,e ≃ ∆I,w ∗ ∇I,w−1.

where δI,e := ∆I,e = ∇I,e with e ∈ W is the identity element and δI,e is the unit object for
convolution.

Proof. It is clear that δI,e is the unit for convolution. The existence of the searched for isomor-
phisms is stated over a Laurent series field in [AB09, Lemma 8(a)] and proved in [AR, Lemma
4.1.4(3)]. Again the same proof applies. The non-canonical isomorphism can be obtained by
induction on ℓ(w) provided we construct them for all simple reflections s and τ ∈ Ωa. The case
for τ ∈ Ωa is clear as FlI,τ = FlI,≤τ by Lemma 2.5. Let s ∈ S. Notice now that the twisted prod-
uct FlI,≤s×̃FlI,≤s identifies with the direct product FlI,≤s × FlI,≤s via the morphism (pr1,m),

cf. Lemma 2.5. In particular, it is isomorphic to P1,pf
k ×Spec(k) P

1,pf
k . Under this identification

FlI,e×̃FlI,≤s identifies with {∞} ×Spec(k) P
1,pf
k and FlI,≤s×̃{∞} with the diagonal ∆pf

P1
k
. Here,

∞ ∈ P1,pf
k
∼= FlI,≤s denotes the point eI. From here the argument from [AR, Lemma 4.1.4.(3)]

applies (using that perfection does not alter the étale site). �

Remark 3.4. As noted in the discussion after [AR, Remark 4.1.5], the isomorphisms in 3.3
depend on various choices, e.g., a decomposition of w into elements of length ≤ 1. For func-
torial purposes, one can often work with any inverse of ∇I,w, while using ∆I,w−1 for practical
computations.

As usual one is interested in understanding what happens on the abelian subcategory P(HkI)
arising as the heart of the perverse t-structure. While it is not stable under the monoidal
structure of Dcons(HkI), we can still benefit from the semiperversity below. We formulate it also
for general parahorics G, because it plays a key role in the perversity of central sheaves.
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Lemma 3.5. For any w ∈ W , left convolution with ∆I,w (resp. ∇I,w) defines a left (resp. right)
exact endofunctor of D(Hk(I,G)). If G = I is Iwahori, the same holds for right convolution. In
particular, for any other v ∈W , we have ∆I,w ∗ ∇I,v,∇I,w ∗∆I,v ∈ P(HkI).

Proof. Note that by definition D≤0
cons(Hk(I,G)) (resp. D≥0

cons(Hk(I,G))) is spanned by the non-
negative (resp. non-positive) shifts of the ∆(I,G),v (resp. ∇(I,G),v) for v ∈W/Wf . By Lemma 2.6,

the convolution map m : FlI,w×̃Fl(I,G),≤v → FlI is affine. Now,

∆I,w ∗ ∇(I,G),v = Rm!(Λ⊠̃∇v) (3.11)

with Λ⊠̃∇(I,G),v perverse by our assumption and Lemma 2.6. Thus ∆I,w∗∇(I,G),v is concentrated
in non-negative perverse degrees because !-pushforward of affine morphisms is left exact for the
perverse t-structure, cf. [BBDG18, Corollaire 4.1.2]. On the other hand,

∇I,w ∗∆(I,G),v = Rm∗(∆w⊠̃Λ) (3.12)

is concentrated in non-positive perverse degrees by [BBDG18, Théorème 4.1.1]. If G = I is
Iwahori, then by symmetry we can run the same arguments for the right convolution. This
finishes the proof. �

During the remainder of this section, we will no longer need the general parahoric case. So
we assume that G = I is Iwahori and suppress it from the index of the standard and costandard
sheaves.

Lemma 3.6. For any w1, w2 ∈W , the perverse sheaves ∆w1 ∗∇w2 ,∇w1 ∗∆w2 are both supported
on FlI,≤w1w2 , and restrict to Λ[ℓ(w1w2)] on FlI,w1w2 .

Proof. The proof is similar to the equal characteristic case, cf. [AR, 4.1.10], and we sketch it
here. The Euler characteristic

θ : K0(HkI) −→ Z[W ], [F ] 7−→
∑

w∈W

(−1)ℓ(w)χ(FlI,w, j
∗
wF)w (3.13)

defines a ring homomorphism. By the proof of 3.1 we know that θ([∆w]) = θ([∇w ]) = w for any
w ∈W . Now let w ∈W be any element such that FlI,w is open in the support of ∆w1∗∇w2 . Then
the coefficient of w in θ([∆w1 ∗∇w2 ]) ∈ Z[W ] does not vanish. By perversity, see Lemma 3.5, and
I-equivariance it is a non-zero multiple of the Euler characteristic of the cohomology of Λ[ℓ(w)]

on FlI,w ∼= Aℓ(w),pf
k . Now,

θ([∆w1 ∗ ∇w2 ]) = θ([∆w1 ])θ([∇w2 ]) = w1w2, (3.14)

and thus w = w1w2 and ∆w1 ∗∇w2 is supported on FlI,≤w1w2 . By perversity and I-equivariance,
we must have that

j∗w1w2
(∆w1 ∗ ∇w2)

∼= Λ⊕m[ℓ(w1w2)] (3.15)

for some m ≥ 1. But the coefficient of w1w2 is 1, so m = 1 as desired. The statement for
∇w1 ∗∆w2 follows similarly. �

If F ∈ Dét(HkI), then

supp(F) = {w ∈ W | j∗wF 6= 0} (3.16)

is the support of F , and
cosupp(F) = {w ∈W | j!wF 6= 0} (3.17)

its cosupport.
We need the following geometric consequence of Lemma 2.7. In equal characteristic this is

[AR, Proposition 4.4.4.].
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Proposition 3.7. For any F ∈ Dcons(HkI), there exists a finite subset AF ⊂ W such that for
any w ∈W ,

(1) supp(∆w ∗ F) ⊆ w ·AF , cosupp(∇w ∗ F) ⊆ w ·AF ,
(2) supp(F ∗∆w) ⊆ AF · w, cosupp(F ∗ ∇w) ⊆ AF · w.

Proof. Let X ⊆ FlI be a closed finite union of I-orbits such that supp(F) ⊆ X . Set AF := SX

with SX as in 2.7, i.e.,

m(X×̃FlI,w) ⊆ AF · w (3.18)

and

m(FlI,w×̃X) ⊆ w ·AF (3.19)

for all w ∈ W . Now the proper base change theorem implies that supp(F ∗∆w) ⊆ AF · w and
supp(∆w ∗ F) ⊆ w · AF for any w ∈ W . Because we assumed that X is closed, we can also
use that Rm∗ commutes with !-restrictions (by the adjoint version of the proper base change
theorem) to see that cosupp(F ∗ ∇w) ⊆ AF · w and cosupp(∇w ∗ F) ⊆ w · AF for any w ∈ W .
This finishes the proof. �

Regarding the products ∆w1 ∗∆w2 , ∇w1 ∗ ∇w2 for w1, w2 ∈W we note the following.

Lemma 3.8. Let w1, w2 ∈ W , then

(1) ∆w1 ∗ ∆w2 lies in the smallest full subcategory of Dcons(HkI), which is closed under
extensions, and contains ∆w[n] for w ∈W and n ∈ Z≤0.

(2) ∇w1 ∗ ∇w2 lies in the smallest full subcategory of Dcons(HkI), which is closed under
extensions, and contains ∇w[n] for w ∈W and n ∈ Z≥0.

Proof. Given the results of this section the argument of [AR, Lemma 6.5.8] applies. �

Let Ωa ⊂W be the stabilizer of the fundamental alcove a, i.e., the subset of length 0 elements.

Lemma 3.9. Given w ∈ W , let τ ∈ Ωa be the unique element contained in FlI,≤w. Then,
the sheaf ICτ appears with multiplicity 1 in the Jordan–Hölder series of ∇w and equals its top.
Dually, ICτ appears with multiplicity 1 inside ∆w as its socle.

Proof. This follows from the same proof of [BBM04, Lemma 2.1]. The idea is to argue by
induction on the length of w. Besides the combinatorics of Coxeter groups, one only has to know

that FlI → FlJs is a P1,pf
k -bundle locally for the étale topology that actually splits over Schubert

cells (use root groups to see this latter property). Here, I → Js is the minimal parahoric fixing
the wall of the fundamental alcove a fixed by s. �

3.2. Wakimoto sheaves. Let w1, w2 ∈ W . In general,

∆w1 ∗∆w2 ≇ ∆w1w2 , ∇w1 ∗ ∇w2 ≇ ∇w1w2 (3.20)

unless ℓ(w1) + ℓ(w2) = ℓ(w1w2), cf. 3.2. In this subsection, we want to remedy this fact by
introducing objects

Iν̄ ∈ Dét(HkI) (3.21)

for ν̄ ∈ X̄• (recall the embedding X̄• →W, ν̄ 7→ tν̄) such that

Iν̄1 ∗ Iν̄2 ∼= Iν̄1+ν̄2 (3.22)

for all ν̄1, ν̄2 ∈ X̄•, and

Iν̄
∼= ∆tν̄ (3.23)

if ν̄ ∈ −X̄+
• . Note that by Lemma 3.3 this already forces

Iν̄ ∼= ∇tν̄ (3.24)
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if ν̄ ∈ X̄+
• . In fact, we must have

Iν̄
∼= ∆tν̄2

∗ ∇ν̄1 (3.25)

if we write ν̄ = ν̄1 − ν̄2 with ν̄1, ν̄2 ∈ X̄+
• (which is always possible). Note that ℓ(tν̄1) + ℓ(tν̄2) =

ℓ(tν̄1tν̄) if ν̄1, ν̄2 ∈ X̄+
• . Hence, Lemma 3.2 implies that the above formula for Iν̄ is independent

(up to isomorphism) of ν̄1, ν̄2. To get a more canonical construction of Iν̄ , we will adopt the
definition from [AR, Section 4.2.1].

Definition 3.10. Let ν̄ ∈ X̄•. The Wakimoto sheaf Iν̄ is the object in Dcons(HkI) corepresenting
the functor

F 7→ colimHom(∇tν̄1
,F ∗ ∇tν̄2

), (3.26)

with the colimit running over all ν̄1, ν̄2 ∈ X̄+
• such that ν̄ = ν̄1 − ν̄2. The transition morphisms

in the colimit are given by convolution (and using the canonical isomorphisms in Lemma 3.2).

Note that all the transition morphisms in the colimit are isomorphisms. In particular, we can
conclude (by invertibility of ∇tν̄2

), cf. Lemma 3.3) that

Iν̄ ∼= ∆tν̄2
∗ ∇tν̄1

(3.27)

as desired. More generally, we can use the fact that Dcons([∗/Sk]) acts on Dcons(HkI) to deduce
a functor

Iν̄ : Dcons([∗/Sk])→ Dcons(HkI), M 7→ Iν̄ ∗M (3.28)

between the two categories via evaluation at the Wakimoto sheaf. This will be called the Waki-
moto functor and still be denoted by Iν̄ by abuse of notation.

Remark 3.11. The Wakimoto sheaves Iν̄ were introduced by Mirković for geometrizing Bern-
stein elements in the affine Hecke algebra, see [AR, Section 5.1].

Given a subset Ω ⊂ X̄•, it will also be convenient to define the Ω-Wakimoto functor

IΩ = ⊕ν̄∈ΩIν̄ : Dcons([Ω/Sk])→ Dcons(HkI) (3.29)

as the direct sum of the Iν̄ for ν̄ ∈ Ω, where Ω =
⊔

Ω Spec k regarded as an ind-scheme, so that
complexes of étale sheaves have compact support. If Ω = X̄• is the total set, then we simply
write I for IX̄•

, which is monoidal by Lemma 3.2. Indeed, we can identify Dcons([X̄•/Sk]) with

the full subcategory of compact objects of the product in Cat∞ of the monoidal 1-category X̄•

with the stable ∞-category Dcons([∗/Sk]). We see that the first category maps monoidally to
the abelian category P(HkI) via the Wakimoto sheaves Iν̄ , see [AR, Section 4.2.3], whereas the
second maps monoidally to the E1-center Dcons(HkI). This implies the claim by the universal
property of centers, see [Lur17, Section 5.3.1].

Lemma 3.12. The Wakimoto functors satisfy the following properties:

(1) For any ν̄ ∈ X̄•, Iν̄ is t-exact for the perverse t-structure.
(2) For any ν̄ ∈ X̄•, Iν̄ is supported on Fl≤ν̄ and j∗ν̄Iν̄ ≃ Λ[〈2ρ̄, ν̄〉].
(3) For any µ̄, ν̄ ∈ X̄•, there exists a canonical isomorphism Iµ̄ ∗ Iν̄ ≃ Iµ̄+ν̄ .
(4) For any µ̄, ν̄ ∈ X̄• with tν̄ � tµ̄, we have RHomDét(HkI)(Iµ̄, Iν̄) = 0.

Proof. The first statement follows from 3.5, the second from 3.6 and the third is implicit in the
discussion of monoidality of I. Let us discuss the forth statement. Using (3), the invertibity of
Iν̄(Λ) and the definition of the semi-infinite Bruhat order � reduces by suitable convolution to
the case that ν̄, µ̄ ∈ X̄• are dominant. Then Iµ̄(M) = ∇tµ̄(M), Iν̄(N) = ∇tν̄ (N) and thus by 2.2

RHomDét(HkI)(∇tµ̄(M),∇tν̄ (N)) ∼= RHomDét(HkI
(j∗tν̄∇tν̄ , N [ℓ(tν̄)]) = 0 (3.30)

if tν̄ � tµ̄ (for the Bruhat order ≤ or equivalently the semi-infinite order � as ν̄, µ̄ ∈ X̄+
• ). �
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For a stable ∞-category D and a set of objects S ⊂ Ob(D), let 〈S〉 be the smallest full
subcategory of D whose objects include S and which is stable under cones and shifts.

Definition 3.13. Define the Wakimoto category as the full subcategory Wak := 〈I〉 of Dét(HkI)
generated by the essential image of I under cones. An object F ∈ Ob(Wak) is called Wakimoto
filtered.

By 3.12 the category Wak ⊆ Dét(HkI) is stable under convolution. As it contains δe ∼= Iν̄ it
is thus itself monoidal.

Remark 3.14. In the works [AB09, AR], their respective authors do not define the full sub-
category Wak ⊂ Dét(HkI), but rather a full subcategory P(Wak) ⊂ P(HkI) consisting of those
perverse sheaves that admit a filtration by perverse sheaves with grading in the essential image
of I. Morally, one can try to think of P(Wak) as the heart of Wak, but it is not an abelian
category, only exact, and it is not true that every perverse sheaf that is Wakimoto filtered as a
complex actually lies in P(Wak). Indeed, pick ν dominant with respect to B and let ∆0 ⊂ ∆−ν

be the socle by [BBM04, Lemma 2.1]. Then, the cokernel lies in Wak, but its 0-th graded piece
equals ∆0[1], which is not perverse.

We give the following simple criterion for determing whether an object of Dét(HkI) lies in
Wak.

Proposition 3.15. Let F ∈ Dcons(HkI). Then, the following are equivalent:

(1) F is Wakimoto filtered;
(2) supp(I−ν̄ ∗ F) ⊂ {t−µ̄ : µ̄ ∈ X+

• } for all ν̄ ≪ 0;
(3) cosupp(Iν̄ ∗ F) ⊂ {tµ̄ : µ̄ ∈ X+

• } for all ν̄ ≫ 0.

In particular, if F satisfies Iν̄ ∗ F ∼= F ∗ Iν̄ for all ν ∈ X̄•, then it is Wakimoto filtered.

Here, the notation ν̄ ≫ 0 means that 〈ν̄, α〉 ≫ 0 for all B-positive relative roots α of G, while
ν̄ ≪ 0 means −ν̄ ≫ 0.

Proof. Assume that F is Wakimoto filtered, and let us check that it satisfies (2) and (3). We
may then assume that F = Iν̄′ for some ν′ ∈ X̄•. If now ν ≫ 0, then

I−ν̄ ∗ F ∼= ∆t−ν̄+ν′ (3.31)

and the support claim follows. Similarly, we can argue for (3). Let us now assume that F satisfies
(2). We want to show that F is Wakimoto filtered. Replacing F by I−ν̄ ∗ F for some suitable
ν ≫ 0, we may assume that

supp(F) ⊆ {t−µ̄ : µ ∈ X̄+
• }. (3.32)

It is then formal that F lies in 〈∆t−µ̄ : µ ∈ X̄+
• 〉, cf. [AR, Lemma 4.4.3]. But

〈∆t−µ̄ : µ ∈ X̄+
• 〉 ⊆Wak (3.33)

by the construction of Wakimoto sheaves. The argument that (3) implies (1) is similar.
For the last claim, let AF ⊆W be as in Proposition 3.7, i.e.,

supp(∆w ∗ F) ⊆ w · AF , supp(F ∗∆w) ⊆ AF · w (3.34)

for all w ∈ W . As I−ν̄ ∗ F ∼= F ∗ I−ν̄ for ν̄ ∈ X̄•, we can conclude that for ν ≫ 0

supp(I−ν̄ ∗ F) ⊂ t−ν̄AF ∩ AF t−ν̄ . (3.35)

Now, we claim that for ν ≫ 0

t−ν̄AF ∩ AF t−ν̄ ⊆ {t−µ̄ : µ̄ ∈ X+
• }, (3.36)
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which would finish the proof. To check the claim let us recall that

X̄+
•
∼=Wfin\W/Wfin. (3.37)

If now w ∈ t−ν̄AF ∩AF t−ν̄ , then we can write w = t−ν̄w1 = w2t−ν̄ for w1, w2 ∈ AF ⊆W , i.e.,

tν̄ = w−1
1 tν̄w2. (3.38)

Given (3.37) and writing w1, w2 as a product of a translation and an element in the finite Weyl
group, we can conclude that w1, w2 ∈ X̄•, i.e.,

t−ν̄AF ∩AF t−ν̄ ⊆ X̄•. (3.39)

As AF is finite, we can conclude that for ν ≫ 0 we even get

t−ν̄AF ∩ AF t−ν̄ ⊆ {t−µ̄ : µ ∈ X̄+
• } (3.40)

as desired. �

Remark 3.16. In [AB09, Proposition 5] and [AR, Proposition 4.4.1], it is shown that a central
perverse sheaf whose convolution functor is perverse t-exact lies in the category P(Wak). The
proof given in those references is considerably more complicated, because of the need to ensure
that the graded sheaves are actually perverse. Our proof is much simpler due to taking place in
the derived setting, and later we will see how to recover the extra degree information required
for perversity for the essential image of the Gaitsgory’s central functor Z.

For an arbitrary subset Ω ⊂ X̄•, we can also define the full subcategory WakΩ = 〈IΩ〉.
Proposition 3.17. If Ω ⊂ X̄• is a lower poset (for �), the inclusion WakΩ →Wak has a right
adjoint Wak → WakΩ, F 7→ FΩ such that the cone G of the adjunction unit FΩ → F lies in
Wak and satisfies GΩ = 0.

Proof. Given F ∈ Ob(Wak), we show the existence of a final morphism FΩ → F , such that
FΩ ∈ Ob(WakΩ). By induction on the length of the filtration, we can write F as an extension
of G = GΩ by Iν̄(M) for some ν̄ ∈ X̄• and M ∈ Db

ét(Spec k). If ν̄ ∈ Ω, we are done. Otherwise,
we have µ̄ 6� µ̄ for all µ ∈ Ω by the lower set hypothesis on Ω, so we get RHom(Iν̄(M),G) = 0
by Lemma 3.12 and hence there exists a (unique) splitting F ≃ Iν̄(M)⊕ G. One concludes that
FΩ exists and identifies with G via the given map to F (again by Lemma 3.12). �

If Ω equals {ν̄ � µ̄} resp. {ν̄ ≺ µ̄} for some µ̄ ∈ X̄•, we simply write Wak�µ̄ resp. Wak≺µ̄,
instead of WakΩ. We can now define the Wakimoto gradeds for F ∈Wak.

Definition 3.18. For any µ̄ ∈ X̄•, we define the endofunctor

grµ̄ : Wak→Wak,F 7→ cone(F≺µ̄ → F�µ̄). (3.41)

We also define gr := ⊕µ̄∈X̄•
grµ̄ : Wak→Wak.

Note that grν̄(F) lies in the essential image of the functor Iν̄ : Dcons([∗/Sk]) → Wak. In
the next subsection, we will show that this functor is fully faithful by explicitly constructing
an inverse via constant terms of the opposite Borel, see 3.21. In particular, we can essentially
uniquely lift grν̄(F) to an element of Dcons([∗/Sk]) and can make the following definition.

Definition 3.19. Let F ∈Wak, we define

Gradν̄(F) ∈ Dcons([∗/Sk]) (3.42)

to be the canonical object such that Iν̄(Gradν̄(F)) identifies with grν̄(F).
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3.3. Cohomology of Wakimoto filtered objects. We now analyze the cohomology of objects
in Wak. First, we show that convolution with Wakimoto sheaves induces a shift.

Proposition 3.20. For any ν̄ ∈ X̄• and F ∈ Dcons(HkI), there is a canonical isomorphism

RΓ(FlI ,F ∗ Iν̄) ≃ RΓ(FlI ,F)[〈2ρ, ν〉]. (3.43)

Proof. Let us first assume that ν̄ ∈ X̄+
• , which implies

Iν̄(Λ) = ∇tν̄ = Rjw,∗(Λ)[ℓ(tν̄)]. (3.44)

The map (pr1,m) : FlI×̃FlI → FlI × FlI is an isomorphism. The second projection FlI×̃FlI →
HkI is transformed to the map

π : FlI × FlI → HkI , (ḡ, h̄) 7→ g−1h. (3.45)

By definition F ∗ Iν̄(Λ) ∼= Rpr2,∗(pr
∗
1(F)⊗L

Λ π
∗∇ν̄(Λ)) and thus we get

RΓ(FlI ,F ∗ Iν̄(Λ))
≃RΓ(FlI × FlI , pr

∗
1(F)⊗L

Λ π
∗∇tν̄ )

≃RΓ(FlI ,F ⊗L
Λ Rpr1,∗π

∗∇tν̄ )

Using that RΓ(FlG,≤tν̄ ,∇tν̄ )
∼= Λ[ℓ(tν̄)] one checks that the pullback of Rpr1,∗π

∗∇tν̄ along LG→
FlI is isomorphic to Λ[ℓ(tν̄)]. As the object Rpr1,∗π

∗∇tν̄ ∈ Dét(FlG) is LG-equivariant (because
π and pr1 are) we can conclude that Rpr1,∗(π

∗∇tν̄ )
∼= Λ[ℓ(tν̄)]. Moreover, we normalize this

isomorphism such that over 1·I ∈ FlI it reduces to the canonical isomorphismRΓ(FlG,≤tν̄ ,∇tν̄ )
∼=

RΓ(FlI,tν̄ ,Λ[ℓ(tν̄)])
∼= Λ[ℓ(tν̄)] (induced by adjunction). With this convention, the resulting

isomorphism

RΓ(FlI ,F ∗ Iν̄) ∼= RΓ(FlI ,F)[ℓ(tν̄)] (3.46)

for ν̄ ∈ X+
• is additive in ν̄. Thus, it can be extended to the desired natural isomorphism

RΓ(FlI ,F ∗ Iν̄) ∼= RΓ(FlI ,F)[〈2ρ̄, ν̄〉], (3.47)

using [Zhu14, Lemma 9.1.] to see that ℓ(tν̄) = 〈2ρ, ν〉 if ν̄ is dominant. �

We immediately deduce the following two corollaries.

Corollary 3.21. There is a canonical isomorphism

RΓ(FlI , Iν̄(M)) ≃M [〈2ρ̄, ν̄〉] (3.48)

for M ∈ D([∗/Sk]) and ν̄ ∈ X̄•.

Proof. This follows from Corollary 3.20 by setting F = I0(Λ) = δe. �

Corollary 3.22. For any F ∈ P(Wak), there is a canonical isomorphism

Hn(FlI ,F) ≃
⊕

〈2ρ̄,ν̄〉=−n

Gradν̄(F). (3.49)

Proof. This result is analogous to [AR, Proposition 4.5.4]. The existence of a canonical isomor-
phism follows from Corollary 3.21 by using a filtration of F by Wakimoto sheaves. Note that the
associated graded of F is perverse, so we conclude that, whenever ν̄1 � ν̄2, then the cohomology
complexes RΓ(FlI , grν̄i(F)) sit in different degrees with the same parity. This implies that the
connecting homomorphisms of the associated long exact sequences vanish. �

We wish to determine the Λ-module Gradµ̄(F) in a functorial manner. For this we calculate
constant terms.
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Proposition 3.23. For any F ∈ Dét(HkI), w ∈ W and ν̄ ∈ X•, there is a canonical identifica-
tion

CTB−(Iν̄ ∗ F)tν̄w ≃ CTB−(F)w [〈2ρ, ν〉] (3.50)

between stalks of constant term complexes.

Proof. First, we assume ν̄ ∈ X̄+
• , so that Iν̄(Λ) = ∇tν̄ (Λ). Notice that

∇tν̄ (Λ) ∗ F ≃ Rm∗(Λ⊠̃ν̄(π)∗F)[〈2ρ, ν〉].
By Braden’s theorem, the left side of (3.50) naturally identifies with cohomology supported at
the corresponding LU -orbit Stν̄w. Since Stν̄ contains FlI,t(λ) by Lemma 2.12, the pullback of

Stν̄w to FlI,≤t(λ)×̃FlI identifies with L+U ν̄(π)L+U ×L+U Sw. By abuse of notation, we denote

the latter scheme by Flt(λ)×̃Sw, even though the twisted product is not for the Iwahori group.
Amassing all this information, we get that

RΓc(S−tν̄w, Iν̄(Λ) ∗ F) ≃ RΓ(FlI,tν̄×̃Sw,Λ⊠̃ν̄(π)∗Ri!wF)[〈2ρ, ν〉], (3.51)

where we also applied base change to commute Ri!w and Rm∗. Because FlI,tν̄ is an orbit under
the pro-unipotent group L+U , see again Lemma 2.12, the twisted product does not alter the
cohomology complex, thereby yielding the desired claim. �

Corollary 3.24. We have a canonical isomorphism Gradν̄(F)[〈2ρ, ν〉] ≃ CTB−(F)tν̄ .
Proof. This follows by induction on ν̄, by considering the filtration F�• and applying Proposi-
tion 3.23. �

Remark 3.25. The corollary above tells us when Gradν̄(F) is perverse with some ease for
F ∈Wak. This corollary together with geometric Satake and constant terms is what will allow
us to show that the central functor Z actually factors through P(Wak), thus bypassing the
strategy of [AB09, Theorem 4, Proposition 5] and [AR, Proposition 4.4.1]. Indeed, if we know
that CTB−(F) is perverse, then its associated graded is perverse, and we can write the Wakimoto
complex F as an extension of perverse Wakimoto sheaves, so it lies in P(Wak).

We end this section by discussing the monoidal structure of the functor Grad :=
⊕

ν̄∈X̄•
Gradν̄

restricted to P(Wak).1

Lemma 3.26. The full subcategories P(Wak) ⊂Wak are stable under convolution.

Proof. By induction on the number of non-zero graded pieces, we reduce to the case of the
convolution of two Wakimoto complexes, but this is Lemma 3.12. �

Proposition 3.27. For any F ,G ∈ P(Wak), and ν̄1, ν̄2 ∈ X• with ν̄ := ν̄1 + ν̄2, there is a
canonical morphism

βν̄1,ν̄2 : grν̄1(F) ∗ grν̄2(G)→ grν̄(F ∗ G). (3.52)

such that
⊕

ν̄1+ν̄2=ν̄ βν̄1,ν̄2 is an isomorphism.

Proof. The statement is proved by induction on the number of non-vanishing Gradν̄ , similarly to
the equicharacteristic case [AB09, Proposition 6a)] and [AR, Lemma 4.7.4, Proposition 4.7.5]. �

Corollary 3.28. For any F ,G ∈ P(Wak), and ν̄1, ν̄2 ∈ X̄• with ν̄ := ν̄1+ ν̄2, there is a canonical
morphism

αν̄1,ν̄2 : Gradν̄1(F)⊗L
Λ Gradν̄2(G)→ Gradν̄(F ∗ G). (3.53)

1We however don’t discuss an E1-monoidal structure of the functor Grad on Wak.
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such that
⊕

ν̄1+ν̄2=ν̄ αν̄1,ν̄2 is an isomorphism. Consequently, for any such F and G, there is a
canonical isomorphism

Grad(F)⊗L
Λ Grad(G) ∼= Grad(F ∗ G) (3.54)

inside the category Dét(X̄•).

Proof. This follows directly from proposition 3.27 and lemma 3.12 (3). �

4. Central functor

4.1. Background. We introduce the spaces that underlie the construction of the Gaitsgory’s
central functor Z in mixed characteristic. The spaces are not of classical nature, and live in the
world of v-stacks created by Scholze [Sch17, SW20]. We recall their basic properties, following
[FS21, AGLR22].

We use the notation introduced in 1.5, but additionally assume that G is residually split,
which implies that each L+I-orbit in FlG is already defined over Spec(k), cf. 2.1.

Definition 4.1. The Hecke stack HkG,O is the v-stack sending a characteristic p affinoid perfec-
toid space Spa(R,R+) to the groupoid of
• untilts Spa(R♯, R♯,+) of Spa(R,R+) over O,
• G-torsors P1 and P2 on Spec(B+

dR(R
♯)) together with an isomorphism

γ : P1|Spec(BdR(R♯))
∼= P2|Spec(BdR(R♯)). (4.1)

We refer to [SW20, Section 20.3] for the definition of the rings B+
dR(R

♯) and BdR(R
♯).

An alternative way to define HkG,O is as the v-stack quotient

HkG,O = [L+
OG\GrG,O] (4.2)

where L+
OG is the jet group over O, i.e., the v-group sheaf over Spd(O) with value G(B+

dR(R
♯))

on untilts Spa(R♯, R♯,+) over O, and

GrG,O := LOG/L+
OG (4.3)

with LOG the loop group over O, i.e., the v-group sheaf over Spd(O) with value G(BdR(R
♯)) on

Spa(R♯, R♯,+), cf. [AGLR22, Lemma 4.10].
Note that over the generic fiber η = Spd(F ), GrG,O identifies with the BdR-affine Grassman-

nian GrG,F . On the other hand, over the special fiber s = Spd(k), GrG,O becomes isomorphic to

the analytification Fl♦G of the Witt vector affine flag variety FlG .

Now we pick a complete algebraically closed extension C of F with residue field k̄, and let
η̄ = Spd(C), s̄ = Spd(k̄). Consider the natural diagram

HkG,C
j→֒ HkG,OC

i←֓ HkG,k̄, (4.4)

where j is the open immersion of the generic fiber and i the closed immersion of the special fiber.
This induces a nearby cycles functor, see [AGLR22, Section 6.5],

RΨ := i∗Rj∗ : Dét(HkG,C) −→ Dét(HkG,k̄) (4.5)

between the stable∞-categories of derived étale sheaves in the sense of Scholze [Sch17, Definition
14.13, Lemma 17.1] with bounded support as in Fargues–Scholze [FS21, Chapter VI]. For ℓ-adic
coefficients, we follow the same conventions of passing to the limit as in [Sch17, Section 27] and
then inverting ℓ, compare with [AGLR22, Section 6.5].

An important property ofRΨ is that it preserves universal local acyclicity in the sense of [FS21,
Section IV.2.1], see also [AGLR22, Section 6] for our convention for non-torsion coefficients Λ.
Below, we denote by Dula(X/S) ⊂ Dét(X) the full subcategory of universally locally acyclic
sheaves (or, if the base is understood, simply Dula(X)).



GAITSGORY AND ARKHIPOV–BEZRUKAVNIKOV IN MIXED CHARACTERISTIC 23

Proposition 4.2. Nearby cycles RΨ restrict to a functor

Dula(HkG,C)→ Dula(HkG,k̄). (4.6)

Proof. This is [AGLR22, Corollary 6.14]. �

Recall that in the previous sections of the paper, we introduced a Hecke stack HkschG as a
perfect k-stack. Its associated v-sheaf under the functor ♦ is the fiber over Spdk of the analytic
Hecke stack HkanG that we defined over SpdO. There is a natural comparison map of sheaves due
to [Sch17, Section 27]

Proposition 4.3. The natural comparison functor

c : Dét(Hk
sch
G,k̄)→ Dét(Hk

an
G,k̄) (4.7)

is an equivalence carrying Dcons(Hk
sch
G,k̄) to Dula(Hk

an
G,k̄).

Proof. For the definition of the comparison functor, we refer to [Sch17, Section 27] and [AGLR22,
Appendix A]. The above result is [AGLR22, Propositions 6.7 and A.5]. �

This result also highlights the importance of ula sheaves as singling out constructible sheaves
over a base field. From now on, we will not make a stark distinction between HkschG and HkanG,k
and will simply omit the superscript when writing down its derived category of sheaves.

Definition 4.4. We define the central functor (for the Witt vector affine flag variety) as the
composition

Z : Rep(Ĝ)
∼−→Pula(HkG,C)

RΨ−−→Dula(HkG,k̄) (4.8)

Here, the first arrow comes from the geometric Satake equivalence of [FS21, Chapter VI], with the
Satake category consisting of ula perverse sheaves on HkG,C . The second arrow are just nearby
cycles which respect the ula property by Proposition 4.2. Often below, we will find it convenient
to still abusively denote by Z the nearby cycles functor RΨ: Dula(HkG,C)→ Dula(HkG,k̄).

Remark 4.5. As explained in [AGLR22, Section 8] the nearby cycles functor is Galois equivari-
ant. More precisely, given A ∈ Pula(HkG,E) for some finite extension E/F , then RΨ(AC) has a
natural ΓE-action that is equivariant with respect to the residual action of ΓkE . Here, ΓE ⊆ Γ
denotes the Galois group of E, and ΓkE the one for the residue field kE of E.

4.2. Convolution and fusion. In this section, we are going to discuss in detail the convolution
and fusion products.

Definition 4.6. Given a finite linearly ordered set J = {j1 < · · · < jn}, we define the convolution
Hecke stack HkJG to be the v-sheaf over SpdO which classifies successive modifications of G-
torsors over B+

dR, indexed by the elements ji ∈ J . More precisely, for a given f : S → SpdO

the groupoid HkJG(S) is given by G-torsors Pj1 , . . . ,Pjn on B+
dR(S) with modifications Pj1 99K

Pj2 , . . . ,Pjn−1 99K Pjn defined on BdR(S).

One often finds the expression HkJG = Hkj1G ×̃ . . . ×̃HkjnG to denote the convolution Hecke
stack. We have already seen that there is a natural correspondence with n = 2 inducing the
convolution product ∗ : Dét(HkG,S) × Dét(HkG,S) → Dét(HkG,S) for any S → SpdO, see 3.1.
We wish to enhance this operation to a monoidal structure of ∞-categories in the sense of
[Lur17, Definition 4.1.1.10]. This will be quite technical, and we recommend the unaccostumed
reader to try to ignore the heavy language at first, and focus on the geometry at hand. After each
categorical proof, we also provide an explanation of our constructions at the level of 1-morphisms
of correspondences, which should prove helpful.
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Let us recall some of the notions from [Lur17, Section 4.1]. First, we have the (nerve of) the
1-category Comm⊗ (also denoted by Fin∗ or E⊗

∞ in [Lur17]) whose objects are finite pointed sets
〈n〉 = {0, 1, . . . , n} with base point 0 and whose morphisms 〈n〉 → 〈m〉 preserve 0. A symmetric
monoidal ∞-category C is given by a cocartesian fibration C⊗ → Comm⊗ of ∞-operads, see
[Lur17, Example 2.1.2.18], [Lur17, Definition 2.1.1.10], in particular, C

⊗
[n] ≃ Cn in a natural

manner. Similarly, we have the ∞-operad Assoc⊗ (which is equivalent to some other common
∞-operads denoted by A⊗

∞ or E⊗
1 in [Lur17]) given as the 1-category whose objects are pointed

finite set 〈n〉 and morphisms 〈n〉 → 〈m〉 are pointed maps equipped with a total order on the non-
pointed fibers and composition is given by the lexicographical order, see [Lur17, Remark 4.1.1.4].
A monoidal∞-category is a cocartesian fibration C⊗ → Assoc⊗ of∞-operads and its underlying
∞-category C is the fiber of the fibration over 〈1〉. When the cocartesian fibration is clear from the
context, we will often abuse language and refer to C as a monoidal ∞-category. Such a datum
induces by [Lur17, Propositions 2.4.1.7, 2.4.2.5] a map Assoc⊗ → Cat×∞ that preserves inert
morphisms in the sense of [Lur17, Definitions 2.1.1.8, 2.1.2.3] and also cocartesian morphisms, in
particular C⊗ → Assoc⊗ induces an associative algebra in Cat∞. Here, Cat×∞ denotes Cat∞ with
its cartesian symmetric monoidal structure, cf. [Lur17, Section 2.4.1]. Note that in general maps
of ∞-operads are not necessarily monoidal, but rather only lax-monoidal, see [Lur17, Definition
2.1.3.7].

In order to produce the desired map that will induce a monoidal structure on Dét(HkG,S), we
recall that following [Man22a, Definition A.5.2] we dispose of a symmetric monoidal ∞-category
Corr(vSt) of correspondences on v-stacks. The 6-functor formalism defined in [Sch17] for torsion
coefficients can be reinterpreted as in [Man22a, Definition A.5.6] thanks to [Man22b, Theorem
5.11] via an operadic map

D
⊗
ét : Corr

⊗(vSt)ℓ-fine → Cat×∞, (4.9)

where the ℓ-fine subscript indicates that we restrict to the full subcategory of Corr(vSt) whose
correspondences have ℓ-fine maps to the right. We extend it to ℓ-adic coefficients via the naive
construction of taking limits and tensoring with Q, instead of using nuclear ℓ-adic sheaves,
compare with [Sch17, Section 26] and [Man22b, page 6]. Note also that Dét is a map of ∞-
operads, and not symmetric monoidal (only lax symmetric monoidal). Despite this, all the maps
obtained below between ∞-operads of either correspondences or sheaves will turn out to be
monoidal.

Now, we are going to enhance ∗ to a monoidal structure on the∞-category, by constructing a
map H

⊗
S : Assoc⊗ → Corr⊗(vSt) of ∞-operads that commutes with the maps towards Comm⊗

and recovers the convolution ∗ on HkG,S via evaluation on the active morphism 〈2〉 → 〈1〉 (with
order 1 < 2). We were crucially assisted in this task by discussions with Heyer, Mann, and Zhao.
Note that there is an obvious isomorphism

HkG,S := L+
SG\LSG/L+

SG ≃ [∗/L+
SG]×[∗/LSG] [∗/L+

SG] (4.10)

One can therefore realize HkG,S as the internal endomorphism object of [∗/L+
SG] in the ∞-

category Corr(vSt/[∗/LSG]), and hence it inherits a natural∞-monoidal structure in the category
of correspondences by forgetting the slice over [∗/LSG]. In fact, the functor Corr(vSt/[∗/LSI])→
Corr(vSt) is naturally symmetric monoidal. Note that the associated planar ∞-operad in the
sense of [Lur17, Definition 4.1.3.2] is nothing other than the Čech nerve of the natural map
[∗/L+

SG]→ [∗/LSG].
Let us try to understand more closely what the map H

⊗
S : Assoc⊗ → Corr⊗(vSt) induced by

the above monoidal structure on HkG,S looks like. We send an object 〈n〉 to the fiber product
HknG,S over S and the morphism α : 〈n〉 → 〈m〉 to the correspondence

HknG,S ← HkαG,S → HkmG,S , (4.11)
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where the middle term is the m-indexed product of the convolution Hecke stacks in the sense of
4.6 with superscripts ranging over the ordered fibers of α, the left map is the natural projection
and the right map is the product of the natural multiplication. Note that the left map is a torsor
for a power of L+

SG, and thus pro-smooth, whereas the right map is fibered in powers of GrG,S and

hence it is ind-proper. One can also write down the image under H⊗
S of arbitrary n-morphisms

of the 1-category Assoc⊗, which are in bijection with sequences of composable morphisms.
In order to be able to apply the functor D

⊗
ét, we have to replace the convolution Hecke

stacks by finite-dimensional truncations so that the maps to the right become ℓ-fine, but here
we will ignore this subtlety and refer to [XZ17, Definition 5.1.2, Subsection 5.1.7] for a detailed
treatment. We denote by D

⊗
ét(HkG,S) the monoidal ∞-category obtained from composing H

⊗
S

and D
⊗
ét (after taking appropriate truncations, so that this becomes legitimate). This clearly

refines the convolution product ∗, as seen by taking one of the two active maps 〈2〉 → 〈1〉.
Lemma 4.7. The full subcategory Dula(HkG,S) is stable under convolution.

Proof. The reason is ula sheaves are preserved under smooth pullback, exterior products, and
proper pushforward, which are the operations involved in the convolution product. �

By [Lur17, Proposition 2.2.1.1] on full subcategories of ∞-operads, we have a monoidal ∞-
category Dula(HkG,S) giving rise to convolution.

Lemma 4.8. Given a map f : T → S, the pullback functor f∗ is monoidal, i.e., it enhances
essentially uniquely to a E1-monoidal map f∗,⊗ : D⊗

ét(HkG,S) → D
⊗
ét(HkG,T ) (and similarly for

ula sheaves).

Proof. This is immediate because the pullback functor f∗ : Corr(vStS)→ Corr(vStT ) is symmet-
ric monoidal. �

Proposition 4.9. The functor Z : Dula(HkG,C) → Dula(HkG,k) is monoidal, i.e., it enhances

essentially uniquely to a E1-monoidal map Z⊗ : D⊗
ula(HkG,C)→ D

⊗
ula(HkG,k).

Proof. Recall that Z = i∗Rj∗, where j and i denote the inclusion of the generic and special
fibers of HkI,OC . We have seen that both pullback functors j∗ and i∗ are monoidal, thanks to
Lemma 4.8. We claim that on ULA objects, j∗ induces an isomorphism of ∞-operads. This
can be checked at the level of underlying ∞-categories by [Lur17, Remark 2.1.3.8], and that
statement is [AGLR22, Proposition 6.12]. �

There is a more general version of the Hecke stack that can be obtained by not taking SpdO
as the base, but allowing products with itself over Spd k.

Definition 4.10. Let Si → SpdO, i = 1, . . . , d be finitely many v-sheaves over O. We define the
Hecke stack HkG,S with S = S1 × · · · × Sd as the classifying stack of modifications of G-bundles
over the completion of the relative curve YS at the union of the d Cartier divisors specified by
the d projections S → Si, see [FS21, Definition VI.1.6].

A similar variant exists for the convolution Hecke stacks, where one allows compositions of
several modifications instead of modifying simultaneously at several divisors. We are now able
to recall the fusion interpretation from [FS21, Section VI.9] that refines the convolution product
and induces symmetry constraints on perverse sheaves. Recall that a perverse t-structure on
Dét(HkG,C) was defined by Fargues–Scholze in [FS21, Definition/Proposition VI.7.1].

During the rest of this subsection and the next one, we are going to abbreviate the categories
Dula(HkG,S) by CS , where S is some v-sheaf over (SpdO)n. If S is the product of the v-sheaf
associated with Huber rings (Ri, R

◦
i ) over O, then we will write CR1×···×Rn for CS so as to

highlight each of the factors. The full subcategory of perverse sheaves will be abbreviated by PS

and PR1×···×Rn , respectively.
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Proposition 4.11. The full subcategory PC ⊂ CC of perverse sheaves is stable under convolution
and it extends to a symmetric monoidal ∞-category.

Proof. Stability under convolution can be found in [FS21, Proposition VI.8.1] and the symmetric
monoidal structure follows from [FS21, Definition/Proposition VI.9.4]. We explain the second
part, which will prove useful later on. We have to prove that the bifunctor

PC × PC → PC (4.12)

is monoidal, where the left side carries the monoidal structure. This will endow PC with the
structure of a braided monoidal category (but we will not check explicitly that it is symmetric).
To get the braiding, we extend the map into two commutative triangles in Cat∞:

P
6=
C2

PC × PC PC2

PC

(4.13)

where the vertical arrows are the pullbacks to the obvious strata of (SpdC)2 given by the diagonal
and its complement, and the middle map is induced by the fusion correspondence

Hk2G,C ← HkG,C×̃HkG,C → HkG,C2 . (4.14)

The vertical maps are clearly monoidal and the upper one is fully faithful by [FS21, Proposition
VI.9.3], so it suffices to see that the upper diagonal map is monoidal. Indeed, the loop groups
L+
C2G and LC2G naturally factor into a product away from the diagonal, so we get an induced

map H
⊗
C × H

⊗
C ← H

⊗, 6=
C2 of functors Assoc⊗ → Corr⊗(vSt) regarded as a correspondence to

the left by functoriality of endomorphisms objects. This yields our desired monoidal map upon
applying D⊗ and restricting to the monoidal subcategories of perverse sheaves. �

For the reader’s convenience, let us explain more informally what is happening in the above
proof. Let α : 〈n〉 → 〈m〉 be a 1-morphism in Assoc⊗. Notice that we have a composition of two
correspondences, namely the fusion and the diagonal ones:

HknG,C ← HkαG,Cn → HkmG,Cn ← HkmG,C (4.15)

where the first two maps are the natural pro-smooth projection and ind-proper multiplication,
and the last is a diagonal closed immersion. It is clear that the fiber product is the usual
correspondence defining the monoidal structure on Dula(HkG,S). Now the advantage of the
first correspondence lies in the fact that, after excluding the partial diagonals, the stack HkαG,S
decomposes as a product of regular Hecke stacks, so that the order of the modifications (in other
words the ordering on the fibers of α) no longer matters. If we restrict to the full subcategory

PC ⊂ CC of perverse sheaves, then pullback PCn → P
6=
Cn away from the union of the partial

diagonals of (SpdC)n is fully faithful, see [FS21, Proposition VI.9.3]. This yields the various
symmetry constraints, as desired.

4.3. Associative center. Let C be a monoidal ∞-category. One may attach to C another
monoidal ∞-category called its associative center and denoted Z(C). Observe that the ∞-
category End(C) = Fun(C,C) is left-tensored over C via the latter’s monoidal structure. We define
Z(C) := EndC×C(C) of C-bilinear endomorphisms in the sense of [Lur17, Definition 4.6.2.7]. Since
these are monoidal∞-categories with tensor structure given by composition, and C-bilinearity is
stable under composition, we see that the full subcategory Z(C) inherits a monoidal structure. It
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comes equipped with a natural monoidal map ev1 : Z(C)→ C given by evaluation at the monoidal
unit. Also note that this definition coincides by [Lur17, Theorem 4.4.1.28, Theorem 5.3.1.30]
with the center of an associative algebra of Cat∞ in the sense of [Lur17, Definition 5.3.1.12].

Theorem 4.12. The monoidal functor Z : CC → Ck lifts monoidally to the center Z(Ck).

Proof. According to [Lur17, Definition 5.3.1.12], this amounts to showing that the left action
morphism Zlc := ∗ ◦ (Z, id) : CC × Ck → Ck is monoidal, where the left side is an associative
algebra in Cat∞ by multiplying coordinates separately. We consider the following union of two
commutative squares in Cat∞:

CC × Ck CC×k

COC × Ck COC×k

Ck × Ck Ck2

(4.16)

where the vertical maps are pullback functors and hence clearly monoidal, and the horizontal
maps are given by the fusion product (and therefore are not a priori monoidal). Note also
that Ck2 = Ck as we take products over k itself and so the lower horizontal map is simply
convolution. Since the left upper morphism is an equivalence, we recover Zlc by taking an
inverse and composing across the left lower edge of the diagram. Since the right upper map is
fully faithful by Lemma 4.13 below, it suffices to monoidally enhance the upper horizontal map.

But this follows as in the case of the fusion map P2
C → P

6=
C2 of perverse sheaves away from the

diagonal: indeed, the loop groups L+
C×kG and LC×kG split as a direct product of the loop groups

over C and k, so we get an equivalence by functoriality of endomorphism objects. �

Again for the reader’s convenience, we repeat our explanation of our reasoning in terms of
1-morphisms of Assoc⊗. We have to see that morphisms α : 〈n〉 → 〈m〉 in Assoc⊗ are naturally
intertwined with Zlc, i.e., that the diagram below

Cn
C × Cn

k Cm
C × Cm

k

Cn
k Cm

k

(4.17)

commutes, where the vertical maps are powers of Zlc and the horizontal ones are induced by α.
Notice that the composition across the right arises from the composition of correspondences

HknG,OC
×HknG,k ← Hk

γ[m]◦α[2]
G,On

C×kn → HkmG,On
C×kn (4.18)

where γ : 〈2〉 → 〈1〉 is active carrying the usual order, γ[m] : 〈2m〉 → 〈m〉 denotes its concate-
nation, and similarly for α[2] : 〈2n〉 → 〈2m〉. The composition across the left arises instead from
the correspondence

HknG,OC
×HknG,k ← Hk

α◦γ[n]
I,On

C×kn → HkmG,On
C×kn . (4.19)

Indeed, we can invoke the monoidal equivalence CC ≃ COC proved in Proposition 4.9 and
[AGLR22, Proposition 6.12], apply the monoidal functor D to the previous correspondences,
and then compose with the pullback i∗.

In order to verify that these maps are naturally isomorphic, we must be able to swap the con-
tribution of each OC -factor adjacent to a k-factor. Thanks again to the equivalence COC ≃ CC of
[AGLR22, Proposition 6.12] and the fully faithful embeddings COn

C×kn ⊂ CCn×kn of Lemma 4.13
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proved below, we are reduced to comparing the maps after taking the pullback functor j∗. But
since SpdC and Spd k map disjointly to SpdO, both convolution Hecke stacks become isomorphic
to HkαG,Cn ×HkαG,kn , so the result is clear.

The following lemmas were used in the proof of Theorem 4.12:

Lemma 4.13. The natural map j∗ : COn
C×km → CCn×km is fully faithful for any n,m ≥ 0.

Proof. We must show that the unit A = Rj∗j
∗A for every ULA sheaf. This follows from the ula

property and the next lemma. �

Recall our shorthand notation for the various functors and categories defined over products of
OC , C, and k. In order to avoid cumbersome notation below involving Spd and lots of brackets,
we apply this convention now to the point functor, so that ∗On

C
:= (SpdOC)

n

Lemma 4.14. If j : ∗Cn := (SpdC)n → (SpdOC)
n =: ∗On

C
, then Rj∗Λ = Λ.

Proof. For reasons that will become clear during our induction argument, we replace the exponent
n by a finite set J during our proof. If |J | = 1, this follows already from [GL22, Theorem 4.7]
applied to the kimberlite ∗OC , since its reduction equals ∗k and hence nearby cycles are per
definition algebraic, so they can be calculated via the étale site for kimberlites, which is trivial.

If |J | = 2, then we first compute the stalk of Rj∗Λ at ∗k×C . We know that partially compactly
supported cohomology vanishes by [FS21, Theorem IV.5.3], so RΓ(∗OC×C , j!Λ) = 0, compare
with [FS21, Proposition V.4.2, Remark V.4.3]. This means that our sought stalk is given by
RΓ(∗C2 ,Λ) which coincides with Λ thanks to [Sch17, Theorem 19.5]. It remains to compute the
stalk at the reduction ∗k of the kimberlite ∗O2

C
, so we apply [GL22, Theorem 4.7] once again.

Finally, in the general case, we can stratify ∗OJ
C

by locally closed subsets of the form ∗CK

where K ⊂ J . We prove the equality Rj∗Λ = Λ on the analytic strata (i.e., with K being
non-empty) by descending induction on the cardinality of K. If K = J , there is nothing to show.
Otherwise, consider the open set ∗

O
J\K
C ×CK and observe again by [FS21, Theorem IV.5.3] that

Rπ∗i!Λ = 0 where

∗
O

J\K′

C ×CK′

i−→ ∗
O

J\K
C ×CK

π−→ ∗
O

J\K′

C ×CK , (4.20)

and K ⊂ K ′ has singleton complement. This implies the claim regarding the stratum ∗CK again
thanks to [Sch17, Theorem 19.5]. As for the non-analytic point ∗k of ∗OJ

C
, we invoke [GL22,

Theorem 4.7] again for the last time. �

Next, we prove that the symmetry constraints that appear in the full subcategory PC ⊂ CC

of perverse sheaves are compatible with the braidings in the associative center Z(Ck). While
PC is symmetric monoidal, Z(Ck) is not. Instead, the associative center carries a structure over
the ∞-operad E⊗

2 of little squares, see [Lur17, Definition 5.1.0.2]. This arises more formally as
the tensor product in Op∞ of E⊗

1 with itself, see [Lur17, Theorem 5.1.2.2]. Here, we identify
E⊗
1 with Assoc⊗ via [Lur17, Example 5.1.0.7]. Our assertion that associative centers carry an

E⊗
2 -structure is [Lur17, Remark 5.3.1.13], which explains that they can be regarded as associative

algebras in the category of associative algebras of Cat∞, the extra associative structure arising
by bilinearity.

Theorem 4.15. The composite PC ⊂ CC
Z−→ Z(Ck) is an E2-monoidal map.

Proof. Our goal is verifying that the monoidal map PC → Z(Ck) actually respects the extra
monoidal structures on both sides in the ∞-category of associative algebras. This amounts to
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checking by the universal property of the center that the following commutative square

PC × PC PC × Ck

PC Ck

(4.21)

in Cat∞ is actually a commutative square in Alg
E
⊗
1
(Cat×∞), where the maps are the obvious ones

induced by convolution or Z and their monoidal enhancements were defined in Proposition 4.11
and Theorem 4.12.

Let us recapitulate how the braiding isomorphisms were constructed. For PC , we saw during
Proposition 4.11 how to define a monoidal structure on the left vertical map via a pair of com-
muting triangles. In the special fiber, we saw during Theorem 4.12 how to define a monoidal
structure on the right vertical map (actually, we took the larger category CC instead of just PC)
via a pair of commuting squares.

We must now perform these constructions at once in such a way that they are intertwined.
Indeed, we have the following pair of commuting triangles

C
6=
O2

C

COC × COC CO2
C

COC

(4.22)

which relate to the previously constructed diagrams via natural pullback functors and passing to
certain full subcategories. More precisely, restricting to C2 and to perverse sheaves recovers the
diagram (4.13), while restricting to OC × k recovers the diagram (4.16) up to composing across
the upper left and the lower left corners. Now, the upper vertical map is not fully faithful, and
so we need to restrict to a full subcategory of sheaves where that happens. It suffices to take the
category EO2

C
of sheaves which are perverse over C2 by Lemma 4.16 below. �

Lemma 4.16. Denote by EOn
C
the ∞-category given as the fiber product COn

C
×CCn PCn. Then,

the pullback functor EOn
C
→ E

6=
On

C
is fully faithful.

Proof. We have a commutative diagram

EOn
C

E
6=
On

C

PCn P
6=
Cn

(4.23)

The left arrow is fully faithful, because it is base changed from COn
C
⊂ CCn along PCn → CCn as

proved in Lemma 4.13. The bottom arrow is fully faithful by [FS21, Lemma VI.9.3]. To show full

faithfulness of the right arrow, it suffices to handle the map C
6=
On

C
→ C

6=
Cn . By the ula property,

we are reduced to showing that the derived pushforward of the constant sheaf along ∗ 6=Cn → ∗ 6=On
C

is constant, which is also a consequence of Lemma 4.14. In particular, the top arrow is fully
faithful. �
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4.4. Perversity. Recall that for every algebraically closed field C, we have a perverse t-structure
on Dét(HkG,C) given by strata dimension, see [FS21, Section VI.7] and [AGLR22]. This restricts
to a t-structure on the full subcategory Dula(HkG,C) of ula sheaves, since Λ is a field2. It would
be possible to define a relative perverse t-structure as in [FS21, Definition/Proposition VI.7.1],
at least after restricting to ula sheaves, but we will not pursue this avenue here.

Our main result is the perverse t-exactness of Z at Iwahori level.

Theorem 4.17. Assume G = I is Iwahori. Let B ⊂ G be an arbitrary Borel subgroup. The
complex Z(V ) is a Wakimoto-filtered perverse sheaf with graded isomorphic to I(V |T̂Γ).

Proof. By Theorem 4.12, we see that Z(V ) lies in the essential image of the obvious evaluation
functor coming from the associative center Z(Dula(HkI,k)). By Proposition 3.15, this implies
that Z(V ) lies in the full subcategory Wak for our choice of Borel subgroup B ⊂ G. It remains
to see that there is a canonical isomorphism

CTB−(Z(V ))ν̄ ≃ V (w0ν̄)[〈2ρ, ν〉], (4.24)

where w0 denotes the longest element of the finite absolute Weyl group of G. Indeed, we would
then know by Corollary 3.24 that Z(V ) is a perverse sheaf, because the same would hold for
its Wakimoto grading. But notice that constant terms of Z(V ) can be calculated applying
geometric Satake in the generic fiber, see [AGLR22, Corollary 6.14, Equation (6.32)], which
yields the desired answer. �

Remark 4.18. There appears to be a discrepancy between the isomorphism grad◦Z(V ) ≃ V |T̂Γ

and (4.24) due to the appearance of the longest element w0 in the latter formula. However, this
is due to the fact that we were implicitly using an identification of T with the universal Cartan of
G, compare with [AR, Remark 1.1.10]. Conjugating the identification by w0 will not change the

T̂ I-grading coming from geometric Satake, but will change the one coming from the Wakimoto
filtration, thereby fixing the issue.

Next, we deduce a few important consequences from this theorem. We start by proving that
Z(V ) is perverse for general parahorics. This is based on a suggestion of Achar to Cass–van den
Hoven–Scholbach, see [CvdHS24, Theorem 5.30].

Corollary 4.19. Let G be an arbitrary parahoric. Then, Z(V ) is a perverse sheaf.

Proof. Pick a Borel subgroup T ⊂ B ⊂ G such that the underlying euclidean roots of the affine
roots vanishing on the facet f fixed by G(O) are positive with respect to B. One can easily check
that tµ̄ is right Wf -minimal for all B-dominant µ̄, compare with [CvdHS24, Lemma 5.28], so
the map FlI,tµ̄ → Fl(I,G),tµ̄ is an isomorphism under the same assumption. Let now ν̄ be an
arbitrary coweight and write it as the difference ν̄1− ν̄2 of two B-dominant coweights. Collecting
the previous facts, we deduce that Rπ∗I

B
ν̄ = ∆I,tν̄2

∗ ∇(I,G),tν̄1
, and hence Z(V ) lies in non-

negative perverse degrees by Lemma 3.5. Similarly, after replacing B by its inverse, we can see
that Z(V ) lies in non-positive degrees. �

From now on, we always assume that the parahoric level G = I is Iwahori. We say that a
central perverse sheaf A is convolution exact if its left (equivalently right) convolution functor
ℓA : Dula(HkI,k)→ Dula(HkI,k) is t-exact for the perverse t-structure.

Corollary 4.20. The central perverse sheaf Z(V ) is convolution exact.

2Otherwise, the truncation functors do not generally preserve perfect complexes, an issue that already arises
for the natural t-structure.
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Proof. Given an element w of the affine Weyl group, we can find a Borel B ⊂ G such that
ℓ(tν̄w) = ℓ(tν̄) + ℓ(w) for all ν̄ ≫ 0 with respect to B. Indeed, we can consider a minimal
gallery from the I(O)-stable alcove a to its Weyl translate wa, and simply take B as the Borel
corresponding to a Weyl chamber containing the vector given as the difference of the barycenters
of a and wa.

Now consider the complexes Iν̄ ∗ ∇w for arbitrary ν̄, and notice that it equals the perverse
sheaf ∆t−ν̄′ ∗ ∇tν̄′′w if we choose ν̄ = ν̄′′ − ν̄′ and ν̄′′ ≫ 0. Here, we applied Lemma 3.12 and

Lemma 3.8. Now, Theorem 4.17 states that the perverse sheaf Z(V ) admits a filtration with
subquotients isomorphic to a direct sum of Iν̄ , hence implying that Z(V ) ∗ ∇w is perverse for
any V . By a dual argument, the same result holds for ∆w. Finally, we apply the fact that
the iterated extensions of the non-positive shifts of ∇w (resp. non-negative shifts of ∆w) span

the non-negative part pD
≥0
ula(HkI,k) (resp. the non-positive part pD

≤0
ula(HkI,k)) of the perverse

t-structure to deduce that ℓZ(V ) is indeed perverse t-exact. �

In the following, we say that an endomorphism ϕ : A → A of an object A in an abelian
category C is unipotent if (ϕ− 1)n = 0 for some positive integer n. We say ϕ is quasi-unipotent
if a power of ϕ is unipotent. Recall that Z(V ) carries a natural IE -action, where E is the reflex
field of the representation V and IE ⊆ ΓE the inertia subgroup, see Remark 4.5.

Corollary 4.21. The IE-action on the perverse sheaf Z(V ) is given by quasi-unipotent auto-
morphisms. Moreover, there exists a finite index subgroup I ′ ⊂ IE such that the action factors
through its maximal pro-ℓ quotient. If G is split, then I ′ = IE = I acts unipotently on Z(V ).

Proof. Since IE fixes a Borel subgroup B ⊂ G defined over F , we conclude the IE-action on
Z(V ) preserves the Wakimoto filtration and it acts on Gradν̄(Z(V )) ≃ V (w0ν̄), compare with
Theorem 4.17, via its natural action on the given weight space. Since V (w0ν̄) equals the sum
of the V (w0ν) for all lifts ν of ν̄, we see that IE acts on the Wakimoto sheaves by permuting
those weight spaces. Let F ′ be a splitting field of G and note that its absolute Galois group
I ′ acts trivially on V . In particular, the I ′-action on Z(V ) is unipotent. Note, moreover, that
both the pro-p wild inertia, and the remaining prime-to-ℓ tame quotient must map trivially to
an unipotent ℓ-adic group, so the I ′-action factors through its maximal pro-ℓ quotient. �

In particular, if Λ is an algebraic extension of Qℓ and given an isomorphism between Zℓ and
the maximal pro-ℓ quotient of I ′, we deduce the existence of a canonical nilpotent morphism

nV : Z(V ) −→ Z(V ) (4.25)

such that the action of γ′ ∈ I ′ on Z(V ) is given by exp(tℓ(γ
′)nV ), where tℓ : I ′ → Zℓ is the

natural quotient map.

Corollary 4.22. The isomorphism of functors Grad ◦ Z(V ) ≃ V |T̂ I is monoidal.

Proof. We first explain how to construct the monoidal structure of the restriction functor V 7→
V|T̂ I geometrically using constant terms following [Yu22, §6] and [ALRR24, §4]. Namely, for any

A,B ∈ P(HkG,C), we have isomorphisms

CTB−(A ∗ B)ν ∼= RΓc(S
−
ν ,A ∗ B) (4.26)

∼=
⊕

ν1+ν2=ν

RΓc(S
−
ν1×̃S−

ν2 ,A⊠̃B) (4.27)

∼=
⊕

ν1+ν2=ν

RΓc(S
−
ν1 ,A)⊗RΓc(S

−
ν2 ,B)) (4.28)

∼=
⊕

ν1+ν2=ν

CTB−(A)ν1 ⊗ CTB−(B)ν2 . (4.29)
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by combining [BR18, Theorem 5.9], [Yu22, Lemma 6.1], and [ALRR24, Corollary 4.16]. This
monoidal structure coincides with the natural one on V 7→ VT̂ I under geometric Satake. However,
strictly speaking, this construction is not quite complete, because on the one hand [Zhu17, Yu22]
works with the Witt vector affine Grassmannian instead of the B+

dR-affine Grassmannian, and
moreover it would not be immediate that this monoidal structure is compatible with that of
[FS21]. In order to fill this gap, we must use the equivalence between the Satake categories over

C and k for the split group GC in [FS21, VI.6.7] and a theorem of Bando [Ban22, Ban23] showing
that it is monoidal, i.e., that pulling back the Satake category of [Zhu17, Yu22] to the context
of [FS21] yields the same monoidal structure on perverse sheaves.

As nearby cycles commute with constant terms [FS21, Proposition IV.6.12], we get an equiv-
alence ZT ◦ CTB− ≃ CTB− ◦ ZG, where the indices T and G denote the underlying group of
the Hecke stack for which we take nearby cycles. In particular, we obtain a monoidal structure
on the functor CTB− ◦ ZG by composing the above monoidal structure on CTB− with the one
on ZT (which clearly coincides with the restriction along T̂ I ⊆ T̂ under geometric Satake for
T resp. T ). Looking back to the construction of the monoidal structure on Wakimoto gradeds
in Corollary 3.28, it made inductive use of the isomorphisms from Corollary 3.22 and Corol-
lary 3.24. These resulted as well from decomposing twisted products of semi-infinite orbits, and
so this monoidal structure on CTB− ◦ZG must coincide with the previous one above, which was
constructed using geometric Satake. �

4.5. Highest weight arrows. Let µ ∈ X̄• be a dominant coweight with respect to B. For
a ĜΛ-representation V with a single highest weight µ, we see that Z(V ) is supported on the
µ-admissible locus AI,µ, cf. [AGLR22, Theorem 6.16], which equals the union of the I(O)-orbits
of the translations t(ν̄) associated with weights ν of V . We are going to define a canonical map

fV : Z(V )→ grµ̄ Z(V ) (4.30)

called the highest weight arrow, which geometrizes the projection onto the µ̄-weight space.
First, observe that we have the adjunction unit

Z(V )→ Rjµ̄,∗j
∗
µ̄Z(V ). (4.31)

But the restriction of Z(V ) to the I-orbit FlI,µ̄ is isomorphic to the local system with value
RΓ(FlI,µ̄,Z(V )). On the other hand, we know by Lemma 2.12 that FlI,µ̄ coincides with the
intersection AI,µ ∩ St(µ̄) = FlI,≤µ̄ ∩ St(µ̄). Therefore, Corollary 3.24 tells us that j∗µ̄Z(V ) ≃
Gradµ̄ Z(V )[〈2ρ, µ〉] in natural fashion. In particular, we get Rjµ̄,∗j

∗
µ̄Z(V ) ≃ grµ̄ Z(V ) and we

obtain the desired highest weight arrow.

Proposition 4.23. The highest weights arrows are symmetric monoidal, i.e., for V (resp. W )

a representation of ĜΛ with a single highest weight µ (resp. ν), there are natural identifications
fV ∗ fW ≃ fV⊗W ≃ fW ∗ fV in the sense that the diagram

Z(V ) ∗ Z(W ) Z(V ⊗W ) Z(W ) ∗ Z(V )

grµ̄ Z(V ) ∗ grν̄ Z(W ) grµ+ν Z(V ⊗W ) grν̄ Z(W ) ∗ grµ̄ Z(V )

∼

fV ∗fW fV ⊗W

∼

fW ∗fV

∼ ∼

(4.32)

is commutative, where the horizontal isomorphisms in the first row stem from Proposition 4.9,
and the isomorphisms in the second row are given by

grµ̄ Z(V ) ∗ grν̄ Z(W ) ≃ grµ+ν(Z(V ) ∗ Z(W )) ≃ grµ+ν(Z(V ⊗W )) (4.33)

with the first isomorphism given by Proposition 3.27.
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Proof. By 4.22 we know that the composition Grad ◦Z identifies with the restriction functor from
RepΛ(Ĝ) to RepΛ(T̂

I) as a tensor functor, so it is symmetric monoidal. Indeed, the monoidal
structure of Sat comes from the monoidality of constant terms in the generic fiber GrG which
is compatible with the one in the special fiber FlI , which was used in Corollary 3.28. Finally,
we just have to remark that the adjunction unit is naturally symmetric monoidal as are the
isomorphisms Rjµ̄,∗j

∗
µ̄Z(V ) ≃ grµ̄ Z(V ). �

We also have the relation of fV with the monodromy operator.

Lemma 4.24. Let V be a representation of ĜΛ, then we have

fV ◦ nV = 0. (4.34)

Proof. By definition, fV is the quotient map of Z(V ) towards the final subquotient of the Waki-
moto filtration, upon which I ′ acts trivially by geometric Satake, see 4.21. �

Moreover, we also have that nV is monoidal with respect to V . Note that here the tensor
product of two nilpotent operators nA and nB of objects A and B of a monoidal category is
given by nA ⊗ 1 + 1⊗ nB.

Lemma 4.25. The nilpotent endomorphisms nV for V ∈ RepΛ(Ĝ) form a nilpotent monoidal

endomorphism n of Z : RepΛ(Ĝ)→ P(HkI,k).

Proof. It is enough to observe that the monoidal structure in Proposition 4.9 is I ′-equivariant,
but this follows directly from the construction. �

4.6. Mixed variant. In this subsection, we are going to upgrade our previous work to the
setting of mixed sheaves. We consider a p-adic field F with ring of integers O, a finite residue
field k of cardinality q, and an absolute Galois group Γ. We continue to fix a quasi-split and
residually split F -group G with a Iwahori O-model I. In this subsection, we assume furthermore
that Λ is an algebraic extension of Qℓ and contains a preferred choice of square-root

√
q.

We need to introduce the Γ-equivariant derived category of étale sheaves on our preferred
spaces. Note that the Deligne topos X ×s η for a finite type k-scheme X with compatible Γ-
action defined in [SGA73], see also [HZ23], is the same as the étale topos of the stack [Γ\Xk̄].
We usually consider its stable derived category Dét([Γ\Xk̄]) which is equivalent to the stable
derived category Dét(X ×s η) of Deligne defined in [SGA73], compare with the definitions in
[HZ23, Appendix A]. Recall that we have a decisive notion of a mixed complex A ∈ Dét([Γ\Xk̄])
of weight ≤ w (resp. ≥ w) in the sense of [HZ23, Definition 2.4.4]. The condition ≤ w is
defined by requiring that Hi(σ∗A) have weights bounded by w in the sense of Deligne, where
σ : X → [Γ\Xk̄] is induced by a section of the morphism of sets Γ → Galk. The weight bound
is ultimately independent from σ, see [HZ23, Section 2.4] for a discussion. The condition ≥ w is
defined in terms of ≤ w and Verdier duality for Xk̄.

Again, we can define the mixed standard functor from Dét([Γ\∗]) towards Dét([Γ\HkI,k̄])
∆mix

w : M 7→ jw!M〈ℓ(w)〉, (4.35)

where 〈d〉 denotes the shift-twist operator [d](d2 ), and the mixed costandard functor

∇mix
w : M 7→ Rjw∗M〈ℓ(w)〉. (4.36)

both of which preserve mixed perverse sheaves by Weil II. Lemma 3.2 and Lemma 3.3 generalize
to the current setting, so that we can define the mixed Wakimoto functor Imix

ν̄ : Dét([Γ\∗]) →
Dét([Γ\HkI,k̄]) mapping a weighted complex M of Λ-modules to the object representing

F 7→ colimHom(∇mix
tν̄1

(M),F ∗ ∇mix
tν̄2

(Λ)), (4.37)
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where ν̄1, ν̄2 ∈ X̄+
• run over all those elements such that ν̄ = ν̄1 − ν̄2. Again this sends a mixed

weighted Λ-module to a mixed perverse sheaf, since the mixedness property is preserved under
derived pushforward and pullback, whereas perversity was already verified in Lemma 3.6. We can
define a notion of a mixed Wakimoto complex, as lying in the full subcategory Wakmix spanned
by the essential image of Imix

ν̄ on mixed Λ-modules. Similarly, we can generalize Proposition 3.23
to the mixed setting, in such a way that it allows us to determine the Wakimoto grading of such
an object. The full subcategory P(Wakmix) consists of the objects in Wakmix whose gradeds are
all perverse.

Note that by [AGLR22, Section 8], the functor of nearby cycles upgrades to the mixed setting

RΨmix := (imix)∗R(jmix)∗ : Dét([Γ\HkG,C ])→ Dét([Γ\HkI,k̄]) (4.38)

and composition with the functor RepΛ(
LG) → P(HkG,F ) defines the mixed central functor

Zmix(−).
Theorem 4.26. The mixed central functor Zmix lands in P(Wakmix). Concretely, the Wakimoto
gradeds of Zmix(V ) are canonically isomorphic to Imix

ν̄ (V (w0ν̄)).

Proof. The arguments of Theorem 4.17 apply in this case as well. �

Recall that there exists a unique exhaustive and separated filtration FilMi Z(V ) (called the
monodromy filtration) on the perverse sheaf Z(V ) such that nV is a filtered operator of degree

−2 inducing isomorphisms ni
V : GrMi Z(V ) ≃ GrM−iZ(V ). This filtration descends by functoriality

to the corresponding mixed object Zmix(V ). On the other hand, the mixed perverse sheaf

Zmix(V ) admits a filtration FilWi Zmix(V ) in mixed perverse sheaves whose weights are at most

i and whose gradeds GrWi Zmix(V ) are purely of weight i, see [BBDG18, Théorème 5.3.5] and
[HZ23, Theorem 2.6.8]. We say following [HZ23] that Zmix(V ) is monodromy-pure of weight 0 if
these two filtrations coincide. We have the following local weight-monodromy conjecture:

Conjecture 4.27. The mixed perverse sheaf Zmix(V ) is monodromy-pure of weight 0.

For finite-type schemes over a field, it is known that nearby cycles send pure sheaves of weight
0 to monodromy-pure sheaves of weight 0, by a theorem of Gabber [BB93, Theorem 5.1.2]. In
mixed characteristic, this was partially generalized by Hansen–Zavyalov [HZ23] assuming the
existence of an étale cover by rigid-analytic tubes that admit an étale map to a disk.

Proposition 4.28. If G is split and every non-zero weight of V is minuscule, then Conjec-
ture 4.27 holds true for Z(V ).

Proof. By semi-simplicity of the Satake category in characteristic 0, we may assume V = Vµ is
the simple representation with highest weight µ. In particular, we know by the proof of [AGLR22,
Theorem 7.21, 7.23], that the local model MI,µ -defined as the v-sheaf closure of the Schubert
cell for µ- is representable by a flat projective schemeM sch

I,µ over O. By functoriality, it also maps

to the local model G/P−
µ at hyperspecial level G, which is smooth over O. Since the transition

map is an isomorphism in the generic fiber, we deduce by pull-back an étale cover of G/P−
µ by

rigid-analytic tubes admitting étale maps to a disk. Therefore, we can apply [HZ23, Theorem
4.4.4]. �

5. Coherent functor

In this section, we assume that G is split, that Λ is an algebraic extension of Qℓ, and that I
is the Iwahori O-model obtained as the dilatation of a split model GO along the closed subgroup
Bk → Gk. Consider the Springer resolution

pSpr : N̂Spr = Ĝ×B̂ Lie Û → N̂ ⊂ Lie Ĝ (5.1)
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of the nilpotent cone N̂ defined over Λ. Observe that there are natural functors RepΛĜ →
Coh([Ĝ\N̂Spr]) given by V 7→ O ⊠ V and RepΛT̂ → Coh([Ĝ\N̂Spr]) given by ν 7→ O(ν), where
[Ĝ\N̂Spr] denotes the quotient stack. We aim to construct a monoidal functor

F : Perf(Ĝ\N̂Spr)→ Dét(HkI) (5.2)

of monoidal, stable ∞-categories. Here, the domain of F is the category of perfect complex on
a smooth Artin Λ-stack, thus equivalently, the ∞-derived category of coherent sheaves, and the
source of F is the ∞-derived category of étale Λ-sheaves on a perfect Artin k-stack. The functor
F is supposed to extend both the Wakimoto functor I and the central functor Z in the sense that
the composition of F with the functor V 7→ V ⊠O on RepΛ(Ĝ) resp. the functor ν 7→ O(ν) on

RepΛ(T̂ ) is equivalent to Z resp. I.

5.1. Generalities on coherent sheaves. Throughout this section, we continue to assume Λ is
an algebraic extension of Qℓ and we let X = Y/H be the quotient stack of a finitely presented
quasi-affine Λ-scheme acted upon by a reductive group H over Λ. Let us recall how to define
the derived category Dqc(X) of quasi-coherent sheaves on X . Recall that the category ModY of
OY -module sheaves is Grothendieck abelian in the sense of [Lur17, Definition 1.3.5.1]. By [Lur17,
Definition 1.3.5.8], this abelian category induces a stable∞-categoryD(ModY ) ofOY -modules on
Y . It is naturally endowed with a t-structure in the sense of [Lur17, Definition 1.2.1.4] defined by
non-vanishing degrees of its cohomology functors, see [Lur17, Definition 1.3.5.16]. Hence, we can
define Dqc(Y ) (resp. Dcoh(Y )) as the full subcategory spanned by complexes whose cohomologies
are quasi-coherent (resp. coherent) OY -modules. We now define Dqc(X) (resp. Dcoh(X)) as the
limit of the simplicial object in ∞-categories [n] 7→ Dqc(Y

n
X) (resp. [n] 7→ Dcoh(Y

n
X)). The

resulting ∞-categories are stable and carry natural t-structures, whose hearts will be denoted
QCoh(X), resp. Coh(X).

We will decorate the derived categories by the superscripts b,+ ,− to denote the full subcate-
gories of bounded, left-bounded, and right-bounded complexes. The full subcategory Perf(Y ) of
perfect complexes is spanned by bounded complexes with finite Tor-amplitude (i.e., those which
are represented by finite complexes of vector bundles as Y is quasi-affine), and we define Perf(X)
again by descent.

Notice that the Grothendieck abelian category QCoh(X) induces a stable∞-categoryD(QCoh(X))
again by an application of [Lur17, Definition 1.3.5.8] with a natural t-structure. It will be often
useful to relate this to Dqc(X). There is an induced t-exact functor D(QCoh(X)) → Dqc(X)
and under our assumptions, we get:

Proposition 5.1. The functor D(QCoh(X))→ Dqc(X) is an equivalence.

Proof. In virtue of the equivalence of [Lur17, Remark 1.2.1.18], it suffices to verify that the
functor induces an equivalence of bounded categories. Essential surjectivity can be tested at
the triangulated level, i.e., by taking homotopy categories. Similarly, full faithfulness amounts to
checking isomorphism of homotopy groups of mapping spaces, which can be expressed in terms of
Ext groups by [Lur17, Notation 1.1.2.17], so we can also verify it at the triangulated level. Since
Dqc(X) is compactly generated by [HR17, Theorem B], the claim now follows from [HNR19,
Theorem 1.2]. �

In order to understand right-bounded complexes in the affine case, the following lemma is
decisive.

Lemma 5.2. If Y is affine, then the abelian category Coh(X) has enough projectives. In par-
ticular, the t-exact functor D−(Coh(X))→ D

−
coh(X) is an equivalence.
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Proof. Let R, resp. A be the ring of global section on Y resp. H . The category of finitely
generated R-modules (which is equivalent to Coh(Y )) has enough projectives by considering
the collection of free R-modules. Notice that the functor of taking H-invariants on R-modules
is exact by assumption on H . We can deduce that the H-equivariant free R-module V ⊗M
with V being a finite dimensional representation of H is projective in Coh(X). This collection
of projectives is enough, as each coherent sheaf on X is surjected upon by the n-fold sum of
the regular representation A ⊗ R for n ≫ 0, and we can find a finite representation V ⊂ A
which completes the job, by finiteness of the underlying R-module of the initial coherent sheaf
on X . �

If the stack X is smooth, then we actually get an equality Db
coh(X) = Perf(X) of full subcate-

gories. This motivates our construction of the AB functor via the following equivariant analogue
of the localization theorem originally due to Thomason–Trobaugh [TT90] and Neeman [Nee92].

Proposition 5.3. Let U ⊂ X be an open immersion with closed complement Z. Then Perf(U) is
the idempotent-completion of the quotient Perf(X)/Perf(X)Z , where the denominator indicates
the full subcategory spanned by complexes supported in Z.

Proof. This is [KR18, Theorem 3.4, Equation (3.6)] for the underlying triangulated categories,
which implies the statement in general. Let us explain how one obtains the result. First, it is
clear that Dqc(U) is a localization of Dqc(X) with kernel Dqc(X)Z , because restriction admits
a right adjoint given by pushforward with unit being an equivalence. Finally, since each of the
categories involved are compactly generated by [HR17, Theorem B] with compact objects given
exactly by perfect complexes by [HR17, Lemma 4.4], we can apply the localization theorem, see
[HR17, Theorem 3.12], to obtain the claim. �

5.2. Coherent sheaves on the Springer variety. Recall that the variety Ĝ/Û , which is a

T̂ -torsor over Ĝ/B̂, is quasi-affine3 , so it embeds openly in the spectrum X̂ of its global sections

O(Ĝ/Û). In turn, these admit the following explicit description as a graded Λ-algebra

O(Ĝ/Û) =
⊕

µ∈X
+
•

Vµ (5.3)

where Vµ denotes the highest weight representation of highest weight µ and multiplication is
given by the obvious maps Vµ1 ⊗Vµ2 → Vµ1+µ2 , see [AR, Lemma 6.2.1]. In particular, the above
Λ-algebra is finitely generated.

Similarly, we can define the following T̂ -torsor

N̂ qaf
Spr = Ĝ×Û Lie(Û) (5.4)

over the Springer resolution, which is a quasi-affine scheme with an action of Ĝ′ := Ĝ × T̂ .
The Lie algebra ĝ of Ĝ acts naturally via derivations on the structure sheaf of Ĝ/Û , see [AR,

Equation (6.2.8)] and we can associate to it the so-called infinitesimal universal stabilizer N̂ af
Spr

as the closed subscheme of ĝ × X̂ given by the image of the derivation map. Note that, even

though the intersection of N̂ af
Spr with ĝ× Ĝ/Û is exactly N̂ qaf

Spr , it is not generally true that N̂ af
Spr

coincides with the scheme-theoretic closure of the locally closed immersion N̂ qaf
Spr → ĝ× X̂ . The

latter is an integral variety admitting N̂ qaf
Spr as a dense open subset, with ideal of definition given

by the kernel of O(ĝ)×O(X̂ )→ O(N̂ qaf
Spr ).

We have two distinguished collections of generators for the derived category of [Ĝ\N̂Spr].

3By the construction of quotients via fixed vectors in representations, any quotient of an affine scheme of finite

type over a field by a unipotent group scheme is quasi-affine. For details on Ĝ/Û see [AR, Subsection 6.2.1].
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Lemma 5.4. The derived category Db
coh([Ĝ\N̂Spr]) is spanned by the set of the line bundles O(ν)

for ν ∈ X•, or by the set of the vector bundles V ⊗O(ν) for V ∈ Rep Ĝ and ν ∈ X+
• .

Proof. This is [Bez09, Lemma 21]. See also [AR, Lemma 6.2.7]. �

Originally, it was claimed in [AB09, Lemma 20] that the triangulated categoryDb
coh([Ĝ\N̂Spr])

is a Verdier quotient of Perf([Ĝ′\N̂ af
Spr]). Upon expanding the argument in [AR, Proposition

6.2.8], we noticed that it seemed to rely on density of N̂ qaf
Spr ⊂ N̂ af

Spr, which unfortunately fails in

general. Instead, we will argue below via [AR, Remark 6.3.10].

5.3. Construction of the AB functor. As in this whole section, we assume that I is the
standard Iwahori attached to the fixed Borel B of the pinned split group G. We recall also the
notation G′ = G× T and Ĝ′ = Ĝ× T̂ . First, we start with the functor

Z′ := Z× I : RepΛ(Ĝ
′)→ Dula(HkI) (5.5)

which has a natural monoidal structure4and factors through the full subcategory of P(Wak)
consisting of Wakimoto-filtered perverse sheaves. However, this is still not good enough, because
the convolution of Wakimoto-filtered perverse sheaves is not symmetric in general.

In order to fix this, we consider the (non-full!) subcategory C of P(HkI) whose objects
are those in the image of Z′ and whose morphisms commute with the images along Z′ of the
symmetry isomorphisms of RepΛ(Ĝ

′). This is a symmetric monoidal category by definition, see
[AR, Lemma 6.3.3]. Consider the following Λ-algebra

A = HomIndC(1C,Z
′(O(Ĝ′))) (5.6)

where the multiplication is induced by that of the group Ĝ′, and O(Ĝ′) is a Ĝ′-representation
via conjugation. By [AR, Proposition 6.3.5], this defines an identification between C and the

category of free A-modules with Ĝ′-equivariant structure of the form V ⊗ΛA where V is a finite
dimensional Λ-representation of Ĝ′.

Next, we construct a Λ-algebra homomorphism

O(N̂ af
Spr)→ A (5.7)

that is equivariant with respect to the Ĝ′-module structures. Via the Ĝ′-equivariant embedding
O(N̂ af

Spr) → g × X̂ , we start by handling each of these two factors separately (following closely

the respective part in [AR, Section 6.3]).

For any Ĝ-representation V , we extend it to a Ĝ′-representation V ′ = V ⊠ 1 by letting T̂
act trivially and consider the logarithm of the monodromy nV acting on Z(V ) = Z′(V ′). The

collection of these endomorphisms defines a map of Λ-algebrasO(ĝ)→ A which is Ĝ′-equivariant.
For details we refer to [AR, Example 6.3.1] and Lemma 4.25.

Next, we need to define a map of Ĝ′-modules Vν ⊠−ν → A and the natural source for this is
the highest weight arrow fν provided by the Wakimoto filtration, see 4.5. It defines a morphism
in C by the already checked compatibilities, so applying the description of C in terms of A yields
a map V ′

ν ⊗A→ 1⊠ ν ⊗A which corresponds to our goal after twisting by ν and restricting the
domain on the left.

In total, we have thus constructed a Ĝ′-module homomorphism

O(ĝ× X̂ )→ A. (5.8)

However, we are still left with the task of showing that this factors over the coordinate ring of
the affine enlargement N̂ af

Spr, which is a closed subscheme of ĝ× X̂ of the Springer bundle.

4Even in the E1-monoidal sense: The functors Z and I are E1-monoidal, and Z is central, see 4.12. This implies
the existence of Z′ by the definition of E1-centers, see [Lur17, Definition 5.3.1.2].
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Lemma 5.5. The Ĝ′-equivariant map (5.8) factors uniquely through a Ĝ′-equivariant map

O(N̂ af
Spr)→ A. (5.9)

Proof. Here, we follow [AR, Lemma 6.3.7]. We know that the highest weight arrow is equivariant
with respect to the monodromy operator. Passing to the logarithm, we see as in 4.24 that
fν ◦nν = 0. This equality holds true in the auxiliary category C (in fact, the monodromy action
on Z factors through C). Comparing with [AR, Example 6.3.1], we conclude from this identity

that the definition ideal of N̂ af
Spr inside g× X̂ vanishes under the map to A. �

So far, we have arrived at a functor

F̃ : Cohfr([Ĝ
′\N̂ af

Spr])→ C, (5.10)

where Cohfr denotes the full subcategory of Coh([Ĝ′\N̂ af
Spr]) spanned by the objects V ⊗ O for

V ∈ RepΛ(Ĝ). Now we are going to show that this functor passes to the actual Springer resolution

N̂Spr.

Lemma 5.6. The functor F̃ composed with the Wakimoto grading functor gr from 3.18 identifies
with the pullback functor of coherent sheaves along the morphism

[T̂\e]→ [Ĝ\N̂Spr] ∼= [Ĝ′\N̂ qaf
Spr ] ⊆ [Ĝ′\N̂ qaf

Spr ].

Here, e := Spec(Λ)→ N̂Spr = Ĝ×B̂ Lie(Û) denotes the point [(1, 0)].

Proof. We follow the proof in [AR, Lemma 6.3.8]. It suffices to understand the corresponding T̂ -

equivariant map of Λ-algebrasO(N̂ af
Spr)→ Λ. But the monodromy acts trivially on the Wakimoto

grading as we saw in 4.21, and the highest weight arrow is projects to Vλ to the highest weight
space Vλ(λ). Hence the sought homomorphism is just evaluation at the origin e. �

Proposition 5.7. There is a unique monoidal functor of stable ∞-categories up to equivalence

F : Perf([Ĝ\N̂Spr])→ Dcons(HkI) (5.11)

extending F̃ .

Proof. This is [AR, Proposition 6.3.9, Remark 6.3.10] in the triangulated setting and we follow
their argument.

Since Cohfr([G̃
′\N̂ af

Spr]) consists of compact, projective generators of Coh([G̃′\N̂ af
Spr]) by Lemma 5.2,

left Kan extension of the composition Cohfr([G̃
′\N̂ af

Spr])
F̃→ C → Dét(HkI) yields the exact “left-

derived” functor LF̃ : D≤0(Coh([G̃′\N̂ af
Spr])) → Dét(HkI) as in [Lur17, Theorem 1.3.3.2]. This

functor formally extends to an exact functor on D−(Coh([G̃′\N̂ af
Spr])). Thanks to the equivalence

from Proposition 5.1 and after restricting to perfect complexes, we get a functor

F̃ : Perf([Ĝ′\N̂ af
Spr])→ Dcons(HkI). (5.12)

This functor is monoidal because it can be written as the composition of the monoidal func-
tor Cb(F̃ ), where Cb denotes the associated ∞-category of complexes, followed by the restricted
realization functor Cb(P(Wak)) → Dcons(HkI), which is monoidal because P(Wak) is a full
subcategory of Dcons(HkI) closed under convolution. Proposition 5.3 implies that the cate-

gory Perf([Ĝ\N̂Spr]) is the idempotent-completion of the quotient of Perf([Ĝ′\N̂ af
Spr]) by the

full subcategory of those perfect complexes supported on the complement. Since Dcons(HkI) is
idempotent-complete, we are reduced to showing that such a perfect complex lies in the kernel
of F̃. Since the image of F̃ lies in Wak (this reduces to the same statement for F̃ as Wak is
idempotent-complete), we can check acyclicity after passing to gradeds by first taking Wakimoto
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filtrations termwise and then inducting. But the grading functor corresponds at the coherent
level to restriction to the origin of N̂Spr by Lemma 5.6, hence the desired vanishing holds. �

6. Iwahori–Whittaker averaging

We continue to work with a pinned split F -group G with a fixed maximal torus T and a Borel
B containing T (in particular, we do not regard them as being defined over O, unless indexed by
O). We let I be the standard Iwahori O-model of G, i.e., such that I(O) fixes the origin of the
apartment A(G, T ) induced by the pinning and is contained in the B-dominant Weyl chamber.

We let Iop denote the parahoric O-model opposite to I with respect to the origin of the
apartment and the Borel, and simply call it the opposite Iwahori. In other words, Iop(O) fixes
the alcove opposite to the one fixed by I(O). We define likewise the pro-p Iwahori Iu as the
unique smooth affine O-model of G with connected geometric fibers whose O-valued points are
the kernel of I(O)→ Iredk (k), where the Iredk is the reductive quotient of the special fiber of I.

Our next task is to choose a Whittaker datum. Assume Λ is an algebraic extension of Qℓ(ζ)
where ζ ∈ Q̄ℓ is a choice of a primitive p-th root of unity. We get the Artin–Schreier étale sheaf
LAS on Ga,k: this is the rank 1 direct summand of the pushforward π∗Λ of the constant sheaf
along the Artin–Schreier cover π : Ga,k → Ga,k arising as the ζ-eigenspace for the Galois action
of Z/pZ. It is a character sheaf in the sense of Lusztig–Yun [LY20], i.e., we have isomorphisms
m∗LAS ≃ LAS⊠LAS and e∗LAS

∼= Λ with respect to the multiplicationm and unit e of Ga,k, that
satisfy associativity constraints (this is equivalent to the corresponding∞-enhancement, because
P(Ga,k) is an abelian category). Besides, it satisfies the following cohomological vanishing

RΓ(Ga,k,LAS) = RΓc(Ga,k,LAS) = 0, (6.1)

which will turn out to be important later on.
Let Uop be the unipotent radical of the opposite Borel Bop. Consider the homomorphism

Uop
k → Ga,k induced by the sum of the negative simple roots and let χ : L+Iopu → Ga,k be the

homomorphism resulting from pre-composing the first one with the natural projection L+Iopu →
Uop
k . Taking the pullback of LAS along χ, we get a character sheaf on LIW ∈ Dcons(L

+Iopu ).
Indeed, this is the character sheaf attached to the cover πχ : (L

+Iopu )AS → L+Iopu deduced from
π : Ga,k → Ga,k by pullback along χ.

Definition 6.1. The derived categoryDét(HkIW) of Iwahori-Whittaker sheaves is the ζ-isotypical
component of the stable ∞-category Dét([(L

+Iopu )AS\FlI ]).
In the above definition, we are using the fact that the Λ-linear stable∞-categoryDét([(L

+Iopu )AS\FlI ])
has a Z/pZ-action coming from Z/pZ ≃ ker(πχ) and that it decomposes as a direct sum of full
subcategories where Z/pZ acts via a Λ×-valued character, since Λ has characteristic 0 and µp ⊆ Λ.
Note that no underlying stack HkIW seems to exist, but we find this shorthand notation useful,
and hope it does not cause any confusion to the reader. We could also define Dét(HkIW) as
the ∞-category of (L+Iopu ,LIW)-equivariant étale sheaves on FlI , obtained by twisting by the
character sheaf LIW the cosimplicial diagram obtained by applying Dét to the Čech complex
of FlI → [L+Iopu \FlI ]. In the end, it turns out that all of this is unnecessarily complicated,
because:

Proposition 6.2. The forgetful functor Dét(HkIW)→ Dét(FlI) is fully faithful.

Proof. This is essentially [ARW16, Proposition A.5] and follows from the fact that L+Iopu is
pro-unipotent and hence so is its Artin–Schreier cover. Thus, we can apply [FS21, Proposition
VI.4.1]. �

The category of Iwahori–Whittaker sheaves inherits a perverse t-structure from its fully faith-
ful embedding into Dét(FlI), so that one can consider its heart P(HkIW), called the category
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of Iwahori–Whittaker perverse sheaves. The ∞-category Dét(HkIW) does not appear to be
monoidal, but it is a right module of Dét(HkI) in the sense of [Lur17, Definition 4.2.1.13].
Indeed, we invoke the natural isomorphism

[(L+Iopu )AS\FlI ] ≃ [∗/(L+Iopu )AS]×[∗/LG] [∗/L+I] (6.2)

to identify our stack as a homomorphism object in Corr(vSt/[∗/LG]) with a natural right module

structure under the endomorphism object HkI ∼= [∗/L+I]×[∗/LG][∗/L+I]. Taking the symmetric

monoidal forgetful functor Corr(vSt[∗/LG]) → Corr(vSt) and applying D
⊗
ét, we deduce a right

module structure on Dét([L
+Iopu \FlI ]) under Dét(HkI) and this module structure is preserved

under passing to direct summands. We begin our study of this∞-category by classifying Iwahori–
Whittaker local systems on L+Iopu -orbits in FlI . Note that the latter are exactly the L

+Iop-orbits
and hence are in bijection with the Iwahori–Weyl group W as in Section 2. We will denote the
corresponding L+Iop-orbit of w by FlopI,w := L+IopwL+I/L+I.

Lemma 6.3. The orbit FlopI,w carries a Iwahori–Whittaker local system if and only if w has min-

imal length in its Wfin-left coset, i.e., ℓ(wfinw) ≥ ℓ(w) for all wfin ∈ Wfin. If the latter condition
holds, then the rank 1 Iwahori–Whittaker local system on FlopI,w is unique up to isomorphism.

Proof. The Iwahori–Whittaker equivariant condition forces the stabilizer of the point ẇ to be
contained in the kernel of χ, and conversely such a containment would allow us to pullback
the Artin–Schreier sheaf along χ to the desired orbit. This inclusion happens if and only if
w(αs) is a positive affine root where αs is the positive simple affine root attached to any positive
simple reflection s ∈ Wfin. But this is equivalent to sw > w, i.e., that w is the minimal length
representative of its Wfin-left coset. �

Since the set of left Wfin-cosets of the Iwahori–Weyl group is enumerated by X•, we will call
Lν the unique Iwahori–Whittaker local system supported on the L+Iopu -orbit of wν , the minimal
length element in Wfintν , according to the preceding statement. We also obtain the standard
Iwahori–Whittaker equivariant sheaf

∆IW
ν := (jopwν

)!Lν [ℓ(wν)], (6.3)

where jopwν
is the inclusion of the L+Iop-orbit and likewise the costandard Iwahori–Whittaker

equivariant sheaf

∇IW
ν := R(jopwν

)∗Lν [ℓ(wν)], (6.4)

both of which are supported on FlopI,≤wν
and are perverse because orbits of solvable groups are

affine, so we can invoke Artin vanishing, compare with [BBDG18, Corollaire 4.1.10]. We also have

access to IC sheaves ICIW
ν by taking the image of the natural map ∆IW

ν → ∇IW
ν . Recall that in

[BGS96, Subsection 3.2] a sufficient criterion for the existence of projective covers, injective hulls
and tilting modules was given. We call an abelian category satisfying these axioms a highest
weight category, see also [BR18, Subsection 1.12.3].

Proposition 6.4. The category P(HkIW) of Iwahori–Whittaker equivariant perverse sheaves is
a highest weight category, whose underlying poset equals X• ≃ Wfin\W ordered by the quotient
Bruhat order.

Proof. The first part is a standard consequence of arguments by Beilinson–Ginzburg–Soergel,
see [BGS96, Theorems 3.2.1 and 3.3.1]. As for the second claim, it suffices to identify the
closure relations. It can be easily checked that the opposite Schubert variety FlopI,≤wν

equals

the (G, I)-Schubert variety Fl(G,I),≤ν in the notation of [AGLR22, Section 3] (up to the order
of action), which in turn coincides with FlI,≤w0wν , where w0 ∈ Wfin is the longest element
(there is a notational clash here, because wν evaluated at ν = 0 is simply the identity). Indeed,
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they have the same dimension and there is an obvious inclusion FlopI,≤wν
⊂ Fl(G,I),≤ν, because

L+G ⊃ L+IopWfin. The closure relations follow then from the usual combinatorics of flag
varieties as in [AGLR22, Section 3]. Indeed, the variety Fl(G,I),≤ν1 is contained in Fl(G,I),≤ν2 if
and only if ν1 ≤ ν2 for the quotient Bruhat order. �

Notice that FlopI,≤1 = FlI,≤w0 = G/B ⊂ FlI , with opposite cells indexed by Wfin. This implies

the equalities ∆IW
0 = ∇IW

0 = ICIW
0 and we will denote this simple Iwahori-Whittaker perverse

sheaf by Ξ. It allows us to define the Iwahori–Whittaker averaging functor

avIW : Dét(HkI)→ Dét(HkIW) (6.5)

given by A 7→ Ξ ∗ A. To get a better understanding of this functor, we start by the following
calculation:

Lemma 6.5. The sheaf avIW(ICw) equals ICIW
ν if w = wν for some ν and vanishes otherwise.

Proof. If sw < w for some simple reflection s ∈ Wfin, we conclude that ICw is equivariant for
the left action of L+Ps, where Ps is the minimal standard parahoric with respect to I and the
simple reflection s. Notice that by [BGM+19, Lemma 2.5] we have a natural isomorphism

Ξ ∗I ICw ≃ (Rπs,∗Ξ) ∗Js ICw (6.6)

where the exponent stands for the fact that the first convolution is induced by contracting the
L+I-action, and the second one by contracting the L+Js-action. Here, πs : FlI → FlPs is the
projection. In particular, it suffices to check the vanishing of Rπs,∗Ξ. Note that Ξ is supported
on Uopw0 ⊂ G/B as the complement cannot support a non-zero Iwahori-Whittaker sheaf by 6.3.
We can now see that the fiber of πs over the image of suppΞ is isomorphic to Uop

a , where a is
the positive root associated with s. Since χ does not vanish on Uop

a , it follows by proper base
change that Rπs,∗Ξ identifies with the cohomology RΓ(Ga,k,LAS) of the Artin–Schreier sheaf,
i.e., it vanishes.

If w = wν is the minimal length representative of Wfintν , we can check that the map
FlopI,1×̃FlI,w → FlopI,w is an isomorphism. Indeed, both are affine spaces with the same dimension,
and thus the given map is universally bijective by basic properties of Tits systems. In particular,
we conclude that avIW(ICw) identifies with ICIW

ν . �

Proposition 6.6. The functor avIW is perverse t-exact.

Proof. Since each half of the t-structure on Dét(HkI) is spanned under extensions by appropriate
shifts of the standard or costandard sheaves, it will suffice by symmetry to show that

avIW(∆w) = ∆IW
ν (6.7)

for all w ∈ W , where ν ∈ X• is in the same left Wfin-coset. When w = wν is the minimal length
representative, this follows from the same argument of the previous lemma for IC sheaves. In
general, consider an injection of perverse sheaves ∆wν → ∆w as in [AB09, Lemma 3b], whose
cone is spanned under extensions by ICy ∗∆wν for non-trivial y ∈ Wfin. The latter sheaves vanish
under avIW by the previous lemma and we get the desired conclusion. �

We are now ready to prove the main result regarding Iwahori–Whittaker averaging.

Theorem 6.7. The averaging functor restricted to perverse sheaves factors through a fully faith-
ful functor

avasIW : Pas(HkI)→ P(HkIW) (6.8)

where the left side is the Serre quotient of P(HkI) obtained by modding out the sheaves ICw for
all w ∈W which are not minimal in their left Wfin-cosets.
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Proof. Let G≥1 → G be the dilatation along the identity subgroup in Gk so that L+G≥1 =
L≥1GO ⊂ L+GO is the first congruence subgroup ofG. We have a natural map α : [L+G≥1\FlI ]→
HkI and similarly a forgetful functor between stable∞-categories β∗ : Dét(HkIW)→ Dét([L

+G≥1\FlI ])
because the kernel of χ contains L≥1GO. We consider the induced functor

indIW := pH−rkG ◦Rα∗ ◦ β∗ : P(HkIW)→ P(HkI) (6.9)

and claim that its composition with the quotient map P(HkI)→ Pas(HkI) yields a right inverse
to avasIW . First notice that indIW(Ξ) is an extension of negative shifts of ICw for w ∈Wfin, with
the local system IC1 appearing with multiplicity 1 (see [AR, Lemma 6.4.8]). If w is non-trivial
and F ∈ P(HkI), we can show that ICw[n] ∗ F is L+Ps-equivariant for some simple reflection s,
hence its perverse cohomology groups die under the quotient map P(HkI)→ Pas(HkI). If w = 1
and n 6= 0, then IC1[n] ∗ F sits in non-zero perverse degree. In total, this yields an equivalence
of functors indas

IW ◦ avasIW ≃ id. This implies that avasIW is injective on Ext groups. To see that
avasIW is fully faithful, we argue by induction on the length of the objects being considered: the
simple case is a consequence of Lemma 6.5, implying bijectivity of simple objects along avasIW ;
the induction step follows from the 5-lemma and the injectivity on Ext-groups. �

7. Tilting modules

We proved in Proposition 6.4 that the category of Iwahori-Whittaker perverse sheaves admits
a highest weight category structure. It then makes sense to discuss tilting objects in this category.
The aim of the current section is to show that the functor

ZIW := avIW ◦ Z : RepΛ(Ĝ)→ P(HkIW) (7.1)

lands on the full subcategory of tilting objects. This is related to the ’parabolic-singular’ Koszul
duality phenomenon studied by Beilinson–Ginzburg–Soergel [BGS96] for finite flag varieties and
Bezrukavnikov–Yun [BY13] for Kac–Moody flag varieties.

We recall the following useful property.

Proposition 7.1. For any F ∈ Dcons(HkIW), F is tilting if and only if (jopwν
)∗F and R(jopwν

)!F
are both concentrated in degree −ℓ(wν) for all ν ∈ X•.

Proof. This follows from [BBM04, Proposition 1.3]. �

7.1. Multiplicities of tilting objects. Let F ∈ P(HkIW) be a tilting object. Recall that the
multiplicity of the standard (resp. costandard) objects ∆IW

ν (resp. ∇IW
ν ) in F is well-defined

and we denote it by (F : ∆IW
ν )(resp. (F : ∇IW

ν ). It follows by orthogonality of ∆IW
ν and ∇IW

ν

that

(F : ∆IW
ν ) ≃ dimHom(F ,∇IW

ν ), (7.2)

(F : ∇IW
ν ) ≃ dimHom(∆IW

ν ,F). (7.3)

where the Hom spaces are taken inside Dét(HkIW), compare with [BGS96, Theorem 3.2.1]. We
use the same notation for F ∈ Dét(HkIW as well.

Proposition 7.2. For any V ∈ RepΛ(Ĝ) and any µ ∈ X•, we have
∑

i≥0

(−1)i(ZIW(V )[−i] : ∇IW
ν ) = dim(V (ν)) (7.4)

∑

i≤0

(−1)i(ZIW(V )[i] : ∆IW
ν ) = dim(V (ν)) (7.5)

where V (ν) denotes the ν-weight space of V .
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Proof. The proof follows the strategy of [AB09, Lemma 27] and [AR, Proposition 6.5.4] by
Corollary 3.24, and Equation (6.7). �

Corollary 7.3. For any V ∈ RepΛ(Ĝ),

(1) if ZIW(V ) is tilting, then

(ZIW(V ) : ∆IW
µ ) = (ZIW(V ) : ∇IW

µ ) = dim(Vµ); (7.6)

(2) if V is the highest weight representation of highest weight µ, then ZIW(V ) is supported
on FlopI,wµ

.

Proof. Statements follow from [AR, Remark 6.5.5, Corollary 6.5.6]. �

The rest of this section is devoted to the proof of the following theorem:

Theorem 7.4. If V is a direct summand of a tensor product of minuscule representations, then
ZIW(V ) is tilting.

In particular, we deduce that every ZIW(V ) is tilting if every simple normal quotient of G
is isomorphic to PGLn for some (not fixed) positive integer n, because every weight is a sum of
minuscule ones.

First, we handle minuscule representations, and for that we require the next lemma.

Lemma 7.5. For any V ∈ Rep(Ĝ), ν ∈ X•, x ∈Wfin, and n ∈ Z, we have isomorphisms

Extn(∆IW
ν ,ZIW(V )) ≃ Extn(∆IW

x(ν),ZIW(V )),

Extn(∇IW
ν ,ZIW(V )) ≃ Extn(∇IW

x(ν),ZIW(V )).

Proof. The proof is similar to the arguments in [AR, Lemma 6.5.11] and we sketch it here.
Without loss of generality, we assume ν to be dominant so that wν = tν , as the statement only
depends on its Wfin-orbit. We can find y ∈ Wfin with minimal length such that tν = wx(ν)y

−1 is
a minimal length decomposition, and xy(ν) = ν. Then

∆IW
ν = ∆IW

0 ∗∆wν ≃ ∆IW
0 ∗∆wx(ν)

∗∆y−1 ≃ ∆IW
x(ν) ∗∆y−1 ,

by Proposition 6.6 and Lemma 3.2. Then

Extn(∆IW
ν ,ZIW(V )) ≃ Extn(∆IW

ν ∗∆y,ZIW(V ) ∗∆y)

≃ Extn(∆IW
x(ν),ZIW(V ) ∗∆y)

≃ Extn(∆IW
x(ν),∆

IW
0 ∗ Z(V ) ∗∆y)

≃ Extn(∆IW
x(ν),∆

IW
0 ∗∆y ∗ Z(V ))

≃ Extn(∆IW
x(ν),ZIW(V ))

again by Proposition 6.6 and Lemma 3.2. The second isomorphism is proved analogously. �

Proposition 7.6. Let V be a simple representation of Ĝ with highest weight µ being a minuscule
dominant coweight of G, then ZIW(V ) is tilting.

Proof. Because of Proposition 7.1, it suffices to show that (jopwν
)∗(ZIW(V )) and (jopwν

)!(ZIW(V ))
are both perverse sheaves. Since µ is minuscule, the only weights we have to check are in the
Wfin-orbit of µ. By adjunction and Lemma 7.5, we are reduced to showing the statements above
for ν = µ. Note that the support of Z(V ) equals the µ-admissible locus AI,µ by [AGLR22,
Theorem 6.16], whose open L+I-orbits are indexed by Wfinµ. We deduce that the support of
ZIW(V ) equals FlI,≤w0tµ and hence the locally closed immersion jopwµ

is actually open and dense.

In particular, it is clear that (jopwµ
)∗(ZIW(V )) and (jopwµ

)!(ZIW(V )) are both perverse. �
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Now, we deduce Theorem 7.4 by propagating the result via convolution.

Proposition 7.7. Let V,W ∈ Rep(Ĝ) such that ZIW(V ) and ZIW(W ) are both tilting. Then
so is ZIW(V ⊗W ).

Proof. It suffices to prove that (jopwν
)∗ZIW(V ⊗W ) and (jopwν

)!ZIW(V ⊗W ) are both perverse for
any ν ∈ X•. Since ZIW(V ⊗W ) is perverse, (jopwν

)∗ZIW(V ⊗W ) concentrates in perverse degress

≤ 0, and (jopwν
)!(ZIW(V ⊗ W )) concentrates in perverse degrees ≥ 0. Note that if ZIW(V )

is tilting, the object ZIW(V ⊗ W ) ∼= ZIW(V ) ∗ Z(W ) admits a filtration with subquotients
∆IW

µ ∗ Z(W ). By Proposition 6.6 and Theorem 4.12, ∆IW
µ ∗ Z(W ) ∼= ZIW(W ) ∗ ∆wµ . Since

ZIW(W ) is tilting, then ∆IW
µ ∗ Z(W ) admits a filtration with subquotients avIW(∆wν ∗∆wµ).

Lemma 3.8 and Proposition 6.6 imply that (jopwν
)∗(ZIW(V ⊗W )) concentrates in non-negative

perverse degrees. The statement for (jopwν
)!(ZIW(V ⊗W )) is proved similarly. �

8. Regular quotient

During this section, we assume Λ = Q̄ℓ is algebraically closed. Consider the Serre subcategory
P>0(HkI) ⊂ P(HkI) generated by IC sheaves with positive dimensional support and denote by
Π0 the natural quotient functor

Π0 : P(HkI)→ P0(HkI) := P(HkI)/P>0(HkI) (8.1)

to the Serre quotient.
Therefore the simple objects in P0(HkI) are precisely given by the ICτ where τ ∈ Ωa stabilizes

the base alcove. In particular, if G is semi-simple, P0(HkI) has only finitely many simple objects.

Proposition 8.1. The monoidal structure on P(HkI) given by perverse truncated convolution
pH0((−) ∗ (−)) descends to an exact monoidal structure ⊛ on P0(HkI).

Proof. The proof follows the idea in [AR, Proposition 6.5.14] and we sketch it here. Let A1 = ICw

for some w ∈ W with ℓ(w) > 0. Then there exists a simple reflection s such that ℓ(sw) < ℓ(w).
Let Js be the minimal parahoric containing I associated with s. Then A1 is Js-equivariant.
It follows that A1 ∗ A2 is also Js-equivariant for any A2 ∈ P(HkI), and so are its perverse
cohomology sheaves. But a Js-equivariant perverse sheaf has equivariant composition factors,
hence lies in P>0(HkI). Varying w and by symmetry, we conclude that the monoidal structure
given by pH0(∗) on P(HkI) descends to a monoidal structure ⊛ on P0(HkI). In order to check
exactness of ⊛, we must see that for arbitrary x, y ∈ W the perverse cohomology sheaves in
non-zero degree of a convolution product ICx ∗ ICy lie in P>0(HkI). The only remaining case to
analyze is when both elements have length 0, but in this case ICx ∗ ICy = ICxy. �

We have the following important result:

Lemma 8.2. The functor Z0 := Π0 ◦ Z : Rep(Ĝ)→ P0(HkI) is monoidal and central.

Proof. By Proposition 8.1, we can construct the monoidality and centrality isomorphisms by ap-
plying those of Proposition 4.9 and Theorem 4.12 and then projecting towards P0(HkI), compare
with [AR, Lemma 6.5.15]. �

Note that for every Ĝ-representation V , we have a nilpotent operator n0
V : Z0(V ) → Z0(V )

arising from the logarithm of the monodromy of Z(V ). Denote by Pc
0(HkI) the full subcategory

of P0(HkI) whose objects are the subquotients of Z0(V ), V ∈ Rep(Ĝ). The exactness of ⊛ and
monoidality of Z0 imply that Pc

0(HkI) is closed under the monoidal structure. By definition, the

functor Z0 naturally factors through a functor Zc
0 : Rep(Ĝ)→ Pc

0(HkI).

Proposition 8.3. There exists a closed subgroup H ⊂ Ĝ such that we have
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(1) an equivalence of monoidal categories

Φ0 : (Pc
0(HkI),⊛) ≃ (Rep(H),⊗). (8.2)

(2) a nilpotent element n0 ∈ ĝ such that H ⊂ ZĜ(n0).

(4) an isomorphism of functors α : Φ0 ◦ Zc
0 ≃ ForĜH , carrying the monodromy operators n0

V

to the natural action of n0 on V .

Remark 8.4. If G is a type A group, then Pc
0(HkI) = P0

I , and H = ZĜ(n0). We do not need
this in the proof of the main theorem and will postpone the discussion of this fact to §10 (cf.
Proposition 10.8).

Proof. The above proposition is the mixed characteristic analogue of a particular case of [Bez04,
Proposition 1, Theorem 3]. We sketch the proof here and refer further details to loc.cit. Note that

we can regard the regular representation O(Ĝ) of the dual group as a ring object in Ind(Rep(Ĝ)).

Then Z0(O(Ĝ)) is a ring object in Ind(Pc
0(HkI)). Zorn’s lemma implies that there exists a

maximal left ideal subobject J ⊂ Z0(O(Ĝ)), whose quotient will be denoted by O(H). The
centrality of Z0 (cf. Lemma 8.2) implies that O(H) is also a ring object. Thus, we define O(H)-
Mod as the category of left O(H)-modules in Ind(Pc

0(HkI)). Clearly O(H) is a simple object
in the abelian category O(H)-Mod. Hence, its endomorphism ring K := EndO(H)(O(H)) is a
division algebra, and V 7→ V ⊗ K defines an equivalence between the category of right finite
K-modules and the full subcategory in O(H)-Mod generated by O(H) under finite direct sums
and subquotients. Now, we deduce that

K ≃ HomInd(Pc
0(HkI))(δ0,O(H)) ≃ Q̄ℓ. (8.3)

because the left hand side is a countable Q̄ℓ-vector space and hence it must be algebraic. Now,
we construct a monoidal fiber functor to invoke the Tannakian formalism.

Lemma 8.5. (1) For any A ∈ Pc
0(HkI), there exists a finite-dimensional vector space V

such that O(H)⊛A ≃ O(H)⊗ V is an isomorphism of O(H)-modules, where we endow
V with the trivial O(H)-action.

(2) The functor ΦG : Pc
0(HkI)→ VectΛ defined by A 7→ Hom(O(H),O(H)⊛A) is an exact,

faithful, and monoidal functor. In addition, ΦG ◦ Zc
0 ≃ ForĜ : Rep(Ĝ)→ VectQ̄ℓ

.

Proof. To prove statement (1) in the above lemma, we first note that there is a canonical iso-

morphism Z0(O(Ĝ)) ⊛ Z0(V ) ≃ Z0(O(Ĝ)) ⊗Λ V of Z0(O(Ĝ))-modules for any V ∈ Rep(Ĝ).
Quotienting out the maximal left idea J, we conclude that O(H) ⊛ Z0(V ) ≃ O(H) ⊗ V . The
general situation follows from taking subquotients from both sides and we thus settle statement
(1).

The exactness of ΦG follows from that of Z0 and statement (1). Also, Equation (8.3) and
statement (1) imply that O(H) ⊛ A ∼= O(H) ⊗ ΦG(A) for any A ∈ Pc

0(HkI). Then for any
A1, A2 ∈ Pc

0(HkI), we have

ΦG(A1 ⊛A2) ≃ Hom(O(H),O(H) ⊗ ΦG(A1 ⊛A2)) ≃ Hom(O(H),O(H) ⊛ (A1 ⊛A2))

≃ Hom(O(H),ΦG(A1)⊗ (O(H)⊛A2)) ≃ ΦG(A1)⊗ ΦG(A2).

Finally, it suffices to check that ΦG sends non-zero objects to non-zero objects since it is exact.
This can be checked on all simple objects Π0(ICτ ). The faithfulness then follows from the
dualizability, in fact invertibility, of Π0(ICτ ) and the monoidal structure of ΦG. �

Lemma 8.5 allows us to apply the Tannakian formalism and obtain an equivalence of monoidal
categories

Ψ : Pc
0(HkI) ≃ ComodA(H), (8.4)
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where A(H) is a Λ-bialgebra and ComodA(H) is the category of Λ-finite A(H)-comodules. In
addition, the composition of this equivalence with the natural forgetful functor ComodA(H) →
VectΛ equals ΦG. By the Tannakian construction, the functor Ψ ◦ Zc

0 : Rep(Ĝ) → ComodA(H)

induces a surjective morphism of bialgebras O(G) → A(H). It follows from [Bez04, Lemma 3]
that A(H) is commutative and SpecA(H) is the desired group scheme H .

Now we construct n0. Recall our construction of the nilpotent endomorphism n0
V of Z0(V ) for

any V ∈ Rep(Ĝ). By naturality and compatibility with the monoidal structure as in Lemma 4.25,

we deduce a tensor endomorphism of the functor ΦG ◦Zc
0 ≃ ForĜ. In particular, this gives rise to

an element n0 of ĝ by the Tannakian formalism. On the other hand, ΦG ◦ Zc
0 ≃ ForH ◦Ψ ◦ Zc

0 ≃
ForH ◦ ForĜH , and (n0

V )V induces an automorphism of ForĜH . Hence, H ⊂ ZĜ(n0). �

Proposition 8.6. If G is of type A, then the nilpotent element n0 is regular.

Proof. Our argument is similar to the one in [AR, Section 6.5.8] and uses weight theory. Recall
that in Conjecture 4.27, we posited that the mixed sheaves Zmix(V ) ought to be monodromy-
pure of weight 0, as this is the case in equicharacteristic due to a theorem of Gabber whose
proof was written up by Beilinson–Bernstein [BB93]. By Proposition 4.28, we know that this
holds for minuscule representations. Note that the functor Π0 : P(HkI) → P0(HkI) in (8.1)
admits a mixed variant Π0

mix, namely the quotient of mixed perverse sheaves by the ones with
positive dimensional support. We claim that the images under Π0

mix are monodromy-pure of
weight 0. In other words, we want to show that the weight filtration obtained on Z0(V ) via
push-pull coincides with the monodromy filtration induced by n0. It suffices to prove this when
G is adjoint, and then we can check that both filtrations are monoidal on V , so we can propagate
the claim starting from the minuscule case.

Now, we can check whether n0 is regular by calculating the dimension of ĝn0 . Reading off the
weight filtration Z0(ĝ) on the Iwahori–Hecke algebra, one sees that its i-th graded has dimension
equal to that of the sum of the weight spaces ĝ(ν) with 〈2ρ, ν〉 = i. Since the weights of ĝ are

roots of Ĝ, its non-zero gradeds are even integers, and hence dim(ĝn0) = dim(ĝ(0)) = rk(G). �

9. Proof of the AB equivalence

At this point, we consider the composition of the two functors

FIW := avIW ◦ F : Perf([Ĝ\N̂Spr])→ Dcons(HkIW) (9.1)

that we have extensively studied thus far. Our goal is to prove the Arkhipov–Bezrukavnikov
equivalence below:

Theorem 9.1. If G is of type A, then the functor FIW is an equivalence.

One can immediately draw the following conclusion:

Corollary 9.2. If G is of type A, then the functor avasIW from 6.7 is an equivalence of abelian
categories.

The strategy behind the proof of the theorem is as usual based on generators and relations.
We start with the following lemma.

Lemma 9.3. The ∞-category Dcons(HkIW) is spanned by avIW(Iν) for all ν ∈ X• under cones
and extensions.

Proof. As in Lemmas 3.1 and 3.6, we can check that avIW(Iν) has the same class in the
Grothendieck group as ∆IW

ν . Taking its Euler characteristic, we deduce that it is supported
on FlI,≤w0wν and has generic rank 1. A standard induction argument now implies the spanning
assertion. �
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Lemma 9.4. For any V ∈ RepΛĜ, the map

Hom(ON̂Spr
, V ⊗ON̂Spr

)→ Hom(Ξ,ZIW(V )) (9.2)

induced by FIW is injective.

Proof. Since avasIW is fully faithful, it suffices to check the injectivity on the anti-spherical category
Pas(HkI). We can also further reduce to verifying injectivity after passing to the quotient

P0(HkI) defined in the previous section. Now, we use the regular orbit Ĝ/ZĜ(n0) ≃ Or ⊂ N̂ ,
together with the compatible isomorphism P0(HkI) ∼= RepΛ(H) for a certain subgroup H ⊂
ZĜ(n0). In terms of these data, the homomorphism of Hom-groups identifies with V ZĜ(n0) →
V H , which is clearly injective. �

We deduce our last key calculation:

Corollary 9.5. For any V ∈ RepΛĜ, any n ∈ Z and ν ∈ X+, the natural map

Extn(O, V ⊗O(ν))→ Extn(Ξ,ZIW(V ) ∗ Iν) (9.3)

is injective.

Proof. The left side identifies with (V ⊗Hn(N̂Spr,O(λ)))Ĝ. The higher cohomology of ON̂Spr
(λ)

vanishes, meaning we only need to consider the right side when n = 0. Since there exists an
equivariant embedding ON̂Spr

(λ) → W ⊗ON̂Spr
for a certain W ∈ RepΛĜ, the claim reduces to

the preceding lemma. �

Finally, we can prove our main theorem, the AB equivalence.

Proof of Theorem 9.1. Applying [AR, Lemma 6.2.6] and the 5-lemma, fully faithfulness will fol-
low from seeing that the injection (9.3) is bijective. Since both sides are finite dimensional
Λ-vector spaces, it will be enough to check their dimensions match. Furthermore, once we know
FIW is fully faithful, we conclude it is an equivalence as its image spans the Iwahori–Whittaker
category.

Let us compute the dimension of the right side. After convolution on the right with I−ν(Λ), it
vanishes if n 6= 0 by the tilting property of ZIW(V ), see 7.4, and has otherwise dimension equal
to that of the weight space V (−ν). As for the left side, we have already checked its vanishing
if n 6= 0 and it has otherwise dimension equal to that of the weight space V (ν), as one checks

via the cohomology of O(ν) on the Springer resolution N̂Spr, compare with [AR, Subsection
6.6.3]. �

10. Exotic t-structure on the Springer resolution

The equivalence in Theorem 9.1 allows us to transport the perverse t-structure onDcons(HkIW)

to a t-structure which we call the exotic t-structure on Perf([Ĝ\N̂Spr]), at least when G is of type
A. The exotic t-structure has been intrinsically studied in [Bez06, MR16]. In this section, we
discuss the exotic t-structure obtained via our object FlI , and explain how it will be used to
prove the assertions in Remark 8.4 for type A groups.

Recall the partial order ≤ on X• given by ν ≤ µ if and only if µ−ν is a linear combination of
positive roots. Note that the ∞-category Perf([Ĝ\N̂Spr]) has finite cohomological dimension by
either [BGS96, Corollary 3.2.2] or [DG13, Theorem 1.4.2], i.e., for any objects A,B, the vector

space ⊕iExt
i(A,B) is finite-dimensional. Then [Bez06, Lemma 5] implies that the line bundles

O(ν) form an exceptional collection indexed by ν ∈ X• in the sense of loc.cit and generate

Db
coh([Ĝ\N̂Spr]) under shifts and cones.
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Choose a refinement of the Bruhat partial order ≤ on X• to a total order ≤′. Now, we can
define the exotic exceptional collection

{∇ex
ν : ν ∈ X•} (10.1)

of Db
coh([Ĝ\N̂Spr]) as the collection of objects produced by mutation of {O(ν)|ν ∈ X•)} in the

sense of [AR, §7.1.2]. By [Bez06, Proposition 3], it in turn gives rise to the dual exotic exceptional
collection

{∆ex
ν : ν ∈ X•} (10.2)

in the sense of loc.cit. Define exD
b,≥0
coh ([Ĝ\N̂Spr]) (resp.

exD
b,≤0
coh ([Ĝ\N̂Spr])) as the full subcategory

generated under extensions by objects ∇ex
ν [n] (resp. ∆ex

ν [n]) with ν ∈ Z≥0 and n ∈ Z≤0 (resp.
n ∈ Z≥0). Then [Bez06, Proposition 4] shows that the above pair of full subcategories forms a
bounded t-structure and we call it the exotic t-structure. We denote the heart of this t-structure
by ExCoh([Ĝ\N̂Spr]).

Proposition 10.1. If G is of type A, there are isomorphisms

FIW(∇ex
ν ) ∼= ∇IW

ν , (10.3)

FIW(∆ex
ν ) ∼= ∆IW

ν , (10.4)

for any ν ∈ X•.

Proof. The proof follows the idea of [AR, Proposition 7.1.5] in the equicharacteristic situation and
we sketch it here. In view of Theorem 9.1, it amounts to prove that the collection {∇IW

ν |ν ∈ X•}
coincide with the collection of exceptional objects that come from the mutation of {avIW(Iν) : ν ∈
X•} with respect to the Bruhat order on X•. This is shown by the closure relation of affine
Schubert varieties proved in Lemma 2.2. The second isomorphism follows from the uniqueness
of the dual exceptional collection. �

We have the following immediate corollary.

Corollary 10.2. Assume G is of type A. Then, the following hold:

(1) The functor FIW is t-exact with respect to the exotic t-structure on Db
coh([Ĝ\N̂Spr]) and

the perverse t-structure on Dcons(HkIW).
(2) In addition, the functor FIW restricts to an equivalence of abelian categories

pH0(FIW) : ExCoh([Ĝ\N̂Spr])
∼−→ P(HkIW). (10.5)

We have already seen in §6 that the simple objects of P(HkIW) denoted ICIW
ν are in bijection

with X•. On the coherent side, the space Hom(∆ex
ν ,∇ex

ν ) is one-dimensional and the image of

∆ex
ν under any non-zero map is a simple object in ExCoh([Ĝ\N̂Spr]). We denote this simple

object by Lex
ν .

Lemma 10.3. (1) The realization functor

Db(ExCoh([Ĝ\N̂Spr]))→ Perf([Ĝ\N̂Spr])

is an equivalence of ∞-categories.
(2) For any ν ∈ X+

• , there are isomorphisms

∇ex
ν ≃ O(ν), (10.6)

∆ex
−ν ≃ O(−ν) (10.7)
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(3) For any ν ∈ X•, there are isomorphisms

∇ex
ν |Õr

≃ O(ν+)|Õr
, (10.8)

∆ex
ν |Or ≃ O(ν−)|Or , (10.9)

where Or ⊂ N̂ is the regular orbit, and ν+ (resp. ν−) is the dominant (resp. anti-
dominant) Wfin-conjugate of ν.

(4) Assume G is of type A. Then, for any ν ∈ X•, there is an isomorphism

FIW(Lex
ν ) ∼= ICIW

ν . (10.10)

Proof. The first three properties appear in [AR, Corollary 7.1.6, Lemmas 7.2.1 and 7.2.2].
We will explain how they follow from Proposition 10.1 for type A groups and prove the last
claim. It is well-known that Db(P(HkIW)) ∼= Dcons(HkIW). Assertion (1) then follows from the
equivalence (9.1). The first isomorphism in assertion (2) can be easily deduced from (6.7) and
Proposition 10.1, and the second isomorphism follows analogously. The statement (3) follows
from a standard induction argument on the length of the minimal element w ∈ Wfin such that
ν = wν+(resp. ν = wν−) using (2) and [AR, Proposition 7.1.4]. Assertion (4) follows directly
from Proposition 10.1 and Corollary 10.2. �

Corollary 10.4. For any A ∈ ExCoh(N̂Spr), A|Or is a Ĝ-equivariant vector bundle on Or.

Proof. The result follows from Ĝ/ZĜ(n0) ≃ Or and Lemma 10.3. �

Proposition 10.5. For ν ∈ X•, we have

Lex
ν |Or ≃

{

O if ℓ(wν) = 0

0 otherwise
(10.11)

Proof. This is [AR, Proposition 7.2.4] and we sketch it here for type A groups. If ℓ(wν) = 0, then

∇IW
ν
∼= ICIW

ν , and we conclude the proof by Lemma 10.3. In general, there exists a unique µ ∈ X•

such that ℓ(wµ) = 0 and FlI,wν and FlI,wµ belong to the same connected component. Then the

proof of Lemma 6.5 and Proposition 6.6 imply that ICIW
wµ

is a composition factor of ∇IW
µ . Then

Lemma 10.3 yields that Lex
µ is a composition factor of ∇ex

ν . Combining Lemma 3.9, Lemma 10.3,

Corollary 10.4 and the previous discussion, both Lex
µ and ∇ex

ν restricts to an equivariant Ĝ-line

bundle on Õr. In particular, as a composition factor of ∇ex
ν , Lex

ν restricts to 0. �

Denote by Perf([Ĝ\N̂Spr])nr the full subcategory of perfect complexes supported on the com-
plement of Or.

Lemma 10.6. The category Perf([Ĝ\N̂Spr])nr is generated by {Lex
ν |ν ∈ X•, ℓ(wν) > 0} under

cones and shifts.

Proof. This is [AR, Lemma 7.2.7] and we could also prove it for type A groups via Corollary 10.4
and Proposition 10.5. �

For the rest of this section, we apply the previous discussion to study the relation between
P0(HkI) and its full subcategory Pc

0(HkI), culminating in the proof that they coincide in type
A and so do H ⊂ ZĜ(n0) as promised in Remark 8.4. Recall we define the functor

Π0 : P0(HkI)→ Pc
0(HkI) (10.12)

in §8. By definition, it factors through the anti-spherical category and we will denote by Π0
as the

resulting functor Pas(HkI)→ P0(HkI). Theorem 9.1 and Corollary 9.2 show that

Fas := Db(Π0
as) ◦ F : Perf([Ĝ\N̂Spr])→ Db(Pas(HkI)) (10.13)

is an equivalence for type A groups G.
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Proposition 10.7. Assume G is of type A. Then, there exists a unique t-exact equivalence of
∞-categories

Fr : Perf([Ĝ\Or])→ Db(P0(HkI)), (10.14)

fitting into the commutative diagram

Perf([Ĝ\N̂Spr]) Db(Pas(HkI))

Perf([Ĝ\Or]) Db(P0(HkI)),

F
as

D
b(Π0

as)

F
r

(10.15)

where the left vertical arrow is induced by restriction.

Proof. The proof follows from the idea of [AR, Proposition 7.2.6]. We sketch the proof here and
refer to loc.cit for details. We first observe that Db(Π0

as) ◦ Fas(Lex
ν ) = Π0(ICwν ) by Lemma 10.3

and Corollary 9.2. Then it follows from Lemma 10.6 that Db(Π0
as) ◦ Fas restricts to zero on

Perf(Ĝ\N̂Spr)nr. Note that Perf(Ĝ\Or) is the quotient in Cat∞ of Perf(N̂Spr) by the non-regular
full subcategory (idempotent completions are not necessary as the Springer variety and the
regular orbit are smooth). On the other hand, as noticed before this proposition, the functor

Db(Π0
as) : D

b(Pas(HkI))→ Db(P0(HkI)) (10.16)

is a quotient map in Cat∞ with kernel given by the full subcategory generated by Πas(ICw) with
ℓ(w) > 0. Thus Fr is an equivalence.

By Corollary 10.2, the restriction functor Fas : Perf([Ĝ\N̂Spr]) → Db(Pas(HkI)) is t-exact
with respect to the exotic t-structure on the source and the tautological t-structure on the
target. Then, to prove Fr is t-exact, it suffices to show that every simple object in Coh([Ĝ\Or])
is the restriction of an exotic coherent sheaf. The verification of the later assertion can be argued
entirely on the coherent side as in [AR, Proposition 7.2.6]. �

Proposition 10.8. With notations in Proposition 8.3, we have Pc
0(HkI) = P0(HkI), and H =

ZĜ(n0).

Proof. The proof is completely analogous to [AR, Proposition 7.2.8] by our previous preparations.

By construction, the projective objects in Coh([Ĝ\N̂Spr]) map to Pc
0(HkI) under Π

0
as ◦Fas. Also

every coherent sheaf on the regular orbit is a quotient of a projective object in Coh([Ĝ\N̂Spr]) by
[AR, Lemma 7.2.9]. Then it follows from Proposition 10.7 that the first assertion holds. Recall the
equivalence Φ0 from Proposition 8.3 between RepH and P0(HkI). On the coherent side, we have

an equivalence Ψ : Coh(Ĝ\Or) ≃ Rep(ZĜ(n0)) induced by the isomorphism Or ≃ Ĝ/ZĜ(n0)
by the definition of the regular orbit itself. The second statement follows by showing that

For
ZĜ(n0)
H ◦ Ψ is equivalent to Φ0 ◦ F r and we refer to the end of the proof of [AR, Proposition

7.2.8] for details. �

11. Equivariant coherent sheaves on the nilpotent cone

Recall the Springer resolution

pSpr : N̂Spr = Ĝ×B̂ Lie(Û)→ N̂ (11.1)

of the nilpotent cone of the dual group Ĝ, defined over the coefficient field Λ = Q̄ℓ. In this
section, we study the category Coh([Ĝ\N̂ ]) by establishing a connection with a certain quotient
of P(HkI) and proving main results of [Bez09] in the mixed-characteristic setting for type A
groups.
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Let Pbas(HkI) denote the quotient of P(HkI) by the Serre subcategory spanned by the IC
sheaves of FlI,≤w for non-minimal w in its Wfin-double coset. Recall the anti-spherical category
Pas(HkI) in Theorem 6.7. The natural functor P(HkI)→ Pbas(HkI) factors through the quotient

Πas
bas : Pas(HkI)→ Pbas(HkI). (11.2)

In the sequel, we will relate this category to equivariant coherent sheaves on the nilpotent cone.

Theorem 11.1. Assume G is of type A. Then, there exists a unique equivalence of∞-categories:

Fbas : D
b
coh([Ĝ\N̂ ])→ Db(Pbas(HkI)), (11.3)

making the following diagram commutes

Db
coh([Ĝ\N̂Spr]) Db(Pas(HkI))

Db
coh([Ĝ\N̂ ]) Db(Pbas(HkI)),

Fas

RpSpr∗ D
b(Πas

bas)

Fbas

(11.4)

where Fas is the composition of F with the functor Db(P(HkI))→ Db(Pas(HkI)) induced by the
quotient functor P(HkI)→ Pas(HkI).

Proof. The proof follows the idea of [Bez09, Theorem 1] and [AR, Theorem 7.3.1] in equichar-

acteristic and we sketch it here. Recall that Db
coh([Ĝ\N̂Spr]) is the bounded derived category

of its abelian heart for the exotic t-structure, see Lemma 10.3. Let D be the Verdier quotient
of Db

coh([Ĝ\N̂Spr]) by the full subcategory spanned by the Lex
ν with ν 6∈ X−

• under cones and

extensions. Then RpSpr∗ factors as the composition of the quotient Π : Db
coh([Ĝ\N̂Spr])→ D and

a functor α : D → Db
coh([Ĝ\N ]) since RpSpr∗(L

ex
ν ) = 0 for any ν 6∈ X−

• , compare with [Bez09,
Lemma 1] and [AR, Lemma 7.3.3].

Similarly, let D′ be the Verdier quotient of Db(Pas(HkI)) by the full subcategory spanned by
the IC sheaves of the form ICwν with ν 6∈ X−

• . Then Db(Πas
bas) factors through D′ via a functor

α′ : D′ → Db(Pbas(HkI)). We know by [Miy91, Theorem 3.2] that α′ is an equivalence. The
equivalence Fas induces an equivalence D ≃ D′ by Corollary 9.2 and Lemma 10.3. Hence, it
suffices to show α is an equivalence. The essential surjectivity follows from [Bez03, Lemma 7]
and full faithfulness follows from the abstract [AR, Lemma 7.3.13] together with a few input
calculations. �

In unpublished notes, Deligne introduces an analogue of the perverse t-structure [BBDG18] on
the derived category of coherent sheaves on a Noetherian scheme with a dualizing complex. This
t-structure has been studied and extended by Arinkin–Bezrukavnikov [AB10]. In this subsection,

we compare the perverse t-structure onDb
coh([Ĝ\N ]) with the exotic t-structure transported from

the equivalence of Theorem 11.1 and prove [Bez09, Theorem 2, Corollary 1] in our setting.
The following lemma is due to Bezrukavnikov [Bez03].

Lemma 11.2. The perverse coherent t-structure corresponding to the perversity function p(O) =
codim(O)/2 is the unique t-structure which has all pSpr∗(O(ν)) lie in its heart.

Proof. This is [Bez03, Corollary 3]. �

Note that we have an exotic t-structure on Db
coh([Ĝ\N̂ ]) inherited from the derived category

of the Springer variety in virtue of our realization of the former as a Verdier quotient of the latter
in Corollary 11.3.
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Corollary 11.3. The exotic t-structure on Db
coh([Ĝ\N̂ ]) identifies with the perverse coherent

t-structure with perversity function p(O) = codim(O)/2.

Proof. The statement follows directly from Theorem 11.1 in light of Lemma 11.2. �
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1, 3, 4, 5, 12, 14, 18, 19, 21, 37, 41, 43

[AB10] Dmitry Arinkin and Roman Bezrukavnikov. Perverse coherent sheaves. Mosc. Math. J., 10(1):3–29,
271, 2010. 51
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