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The boson peak (BP), a low-energy excess in the vibrational density of states over the

Debye contribution, is often identified as a characteristic of amorphous solid materi-

als. Despite decades of efforts, its microscopic origin still remains a mystery. Recently,

it has been proposed, and corroborated with simulations, that the BP might stem

from intrinsic localized modes involving one-dimensional (1D) string-like excitations

(“stringlets”). We build on a theory originally proposed by Lund that describes the

localized modes as 1D vibrating strings, but we specify the stringlet size distribution

to be exponential, as observed in simulations. We provide an analytical prediction

for the BP frequency ωBP in the temperature regime well below the observed glass

transition temperature Tg. The prediction involves no free parameters and accords

quantitatively with prior simulation observations in 2D and 3D model glasses based

on inverse power law potentials. The comparison of the string model to observations

is more uncertain when compared to simulations of an Al-Sm metallic glass material

at temperatures well above Tg. Nonetheless, our stringlet theory of the BP naturally

reproduces the softening of the BP frequency upon heating and offers an analytical

explanation for the experimentally observed scaling with the shear modulus in the

glass state and changes in this scaling in simulations of glass-forming liquids. Fi-

nally, the theoretical analysis highlights the existence of a strong damping for the

stringlet modes above Tg, which leads to a large low-frequency contribution to the

3D vibrational density of states, observed in both experiments and simulations.
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I. INTRODUCTION

Amorphous solids exhibit a variety of characteristic anomalies in their vibrational, ther-

modynamic and transport properties, when compared to the more familiar case of ordered

crystalline matter1,2. Among the different, and apparently universal3, anomalous properties

of glassy materials, the boson peak (BP) is probably the most commonly discussed and

controversial. This peak refers to an excess in the vibrational density of states (VDOS) nor-

malized by the phonon density of states of Debye theory, g(ω)/ωd−1, where d is the number

of spatial dimensions and ω the frequency. The BP is ubiquitously observed in amorphous

systems4 and recently this feature has also been observed in crystalline systems at finite

temperature (e.g.,5,6), so it is unclear whether it arises from structural disorder7.

Several theoretical models have been proposed to rationalize the BP anomaly in glasses7–21,

but a final verdict has not yet been reached. A common idea is that the BP represents a

signature for the emergence of additional vibrational modes coexisting, but distinct from

phonons. These “excess modes” have been suggested to arise from both structural disorder

or from the anharmonicity in intermolecular interactions inherent to the liquid state and

heated crystals. These commonly observed vibrational modes are expected to be effectively

localized as they involve a rather limited number of atoms or molecular segments in complex

molecules14,15,22–28. At large enough wave-vector, they also interact with phonons, making

them overdamped, i.e., reaching the Ioffe-Regel (IR) limit29–31, leading to hindered thermal

transport because of the consequent strong phonon scattering.

Despite numerous experimental and simulation studies, a fully predictive theoretical

model explaining the existence of these modes and how they give rise to the observed boson

peak remains elusive. Recently, it has been recognized that, on atomic scales, localized

string-like excitations that involve reversible particle exchange motion in the form of linear

polymeric structures exist in glass-forming liquids. These dynamic structures have been

termed “stringlets”32. See Fig.1 for a visual representation from simulations. Moreover, it

has been shown32,33 that these stringlets are the dominant contribution to the boson peak and

grow upon heating, leading to the material softening upon heating. A similar phenomenon

was originally observed in the glassy interfacial dynamics of crystalline Ni nanoparticles

in their “premelted” state, where anharmonic interactions in the crystalline material are

prevalent33,34. The existence of these structures and their significance for the boson peak
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FIG. 1. Left panel: A concrete visualization of string-like (“stringlets”) excitations involving

cooperative particle exchange motion, and corresponding to localized modes having a frequency

around the BP value. Figure taken with permission from36. Right panel: A stringlet atomic

configuration of the Al-Sm metallic glass system32 at 550K.

have been confirmed in both 2D and 3D amorphous systems by Hu and Tanaka35,36. More-

over, Betancourt et al.37,38 have shown a direct relation between the stringlets and string-like

collective motion that has often been observed in connection with activated transport oc-

curring on a much longer timescale. A general relation between the stringlet size and the

mean square displacement on the fast β-relaxation time, a quantity that has been related

to the long time α-relaxation time, has been observed as well39. Recently, Hu and Tanaka

confirmed and extended these relations between the fast dynamics and α-relaxation35,36.

Experimental studies have long suggested that transverse modes might give a predominant

contribution to the boson peak40–42 and later simulation studies have provided strong sup-

port for this proposition29,43. Additionally, it has also been noted that excess modes of a

one-dimensional nature44 are consistent the commonly observed near linear frequency de-

pendence of the light-vibrational coupling parameter C(ω)45–47. These observations and

their interpretation are broadly in accord with the idea that topological “defects” can give

rise to the BP in glasses48,49, and also with the related suggestion that these excitations are

important for the plasticity and yield strength of glassy materials50–53.
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We note that previous models35,36,54 phenomenologically assumed that the excess modes

responsible for the boson peak involve structures with a log-normal size distribution, but

the physical basis of this assumption has been completely unclear. Lund55 recently sought

to describe these excess normal modes using a continuum solid model in which a random

distribution of line “defects” or “elastic strings” was assumed to exist based on simula-

tion observations. Lund’s model is an extension of the elastic string model of Granato and

Lücke56, introduced long ago in the description of the plasticity in highly defective crystals,

where the strings correspond to pinned segments of dislocation lines in an extended disloca-

tion network. We note that an even earlier string model of the boson peak was proposed by

Novikov44. Lund’s model55 was able to rationalize many of the anomalous features of glasses,

including the presence of a BP anomaly, Rayleigh sound attenuation constant, a negative

sound dispersion for acoustic phonons with a minimum near the BP, and the saturation of

the IR limit for transverse phonons. Nevertheless, the application of this model57 to estimate

the length distribution p(l) of these hypothetical string-like structures, based on experimen-

tal observations of the VDOS in glycerol and silica, unfortunately led to a string length

distribution inconsistent with simulation observations32,35,36, which appears to indicate an

approximate universal exponential form, p(l) ≈ exp(−l/λ). We address this inconsistency

below. Before continuing, we emphasize that despite several commonalities, stringlets are

strictly speaking not “structural defects” as found in crystalline materials, even if they share

some geometric similarities to dislocation networks. In this context, “string-like” dislocation

segments exist within the dislocation loop networks where the points of impingement of the

dislocation loops define pinning points or end-points of the dislocation segments56,58. As

we shall discuss extensively below, string-like structures generally arise also in glass-forming

liquids, which apparently have the same length distribution assumed in the modeling of

dislocation segments. This situation allows us to model these structures based on a similar

coarse-grained string mathematical model. We emphasize, however, that the stringlets of

glass-forming liquids should not be equated with dislocation segments arising in mechani-

cally deformed crystalline materials. A previous discussion of this important point can be

found in section V of Ref.55, and we discuss this “analogy” further in Appendix A. Moreover,

this form of collective motion on the timescale of the fast beta relaxation process, occurring

generally on a timescale on order of a ps, should not be identified with collective motion

associated with thermal activation events associated with the alpha relaxation process that
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occurs on a much longer timescale associated with the average rate of intermittent hopping

events associated with particle diffusion and the structural relaxation of the material as a

whole37,59. As we shall discuss below, Hong et al.60,61 have heuristically identified the boson

peak with this alternative form of collective motion.

Here, we revisit the Lund string model of the boson peak55 and extend it to make a

parameter-free prediction of ωBP in both 2D and 3D for amorphous solids. In contrast to

the work of Lund, however, we assume an exponential form for the string length distribution

p(l), at the outset to be consistent with simulation observations32,35,36, and we further assume

that the average stringlet vibration speed equals the transverse sound velocity to uniquely fix

our model parameters. This model leads an extremely simple analytic expression for the BP

frequency without any fitting parameters, which appears to be highly predictive in the the

low temperature glass state, where many boson peak measurements are normally performed.

In particular, our predictions are in good agreement with the experimental results for the

BP frequency at T = 0, with an uncertainty between 1% and 5%. The stringlet model also

captures the correct qualitative trend at high temperatures where these vibrational modes

begin to become overdamped. Interestingly, we are also able to reproduce the softening

of the BP frequency with temperature and to explain the experimentally observed scaling

of ωBP with the shear modulus G62. Our theory suggests that a strong damping of the

stringlet modes is required above Tg to describe simulation observations. As a by-product,

the introduction of a friction term for the string vibrations produces a low-frequency diver-

gence in the VDOS normalized to the Debye law, g(ω)/ωd−1, which is ubiquitously observed

in experimental and simulation data at finite temperature60,63 (resembling similar features

in anharmonic crystals and incommensurate structures), and usually not discussed in most

of the traditional theories for the BP (see64–68 for some exceptions).

II. THE STRINGLET MODEL

We initially directly follow Lund et al.55,57, and model the stringlets as 1D vibrating

strings that are anchored at both ends. Similar results follow by assuming that the strings

are free at both ends, since, in both cases, the vibrations would be characterized by a funda-

mental wave-vector k = π/l, with l the length of the string. As noted before, 1D vibrational
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modes being excited by light are consistent with the low-frequency Raman scattering obser-

vations on glasses, where a near linear scaling for the light to vibration coupling coefficient

C(ω) has been found over a large frequency range69. According to this simple continuum

based model, which is agnostic to the actual physical origin of these vibrational modes, each

stringlet of length l has a corresponding frequency of vibration given by,

ωl =

√(πv
l

)2
− γ2 ≡

√
ω2
0 − γ2 (1)

where v is the speed of propagation of the stringlet wave, and γ represents a “friction pa-

rameter” (see55,57 for details). Eq.(1) is based on the assumption that only the fundamental

frequency of vibration of the stringlet is relevant, i.e., higher harmonics are neglected. We

consider a set of stringlets whose length follows a distribution denoted as p(l). Based on this

assumption, the stringlet density of states gs(ω) can readily be obtained using the inverse

distribution function. More precisely, given the distribution function of a random variable

X > 0, the distribution function of the inverse variable Y ≡ 1/X can be derived by relat-

ing the cumulative distribution function of the initial variable F (x) to that of the inverse

variable,

G(y) = 1− F

(
1

y

)
. (2)

The density function of the inverse variable Y can be then obtained as the derivative of the

cumulative distribution function:

g(y) =
1

y2
f

(
1

y

)
. (3)

Following this procedure, the frequency distribution of the stringlets can be obtained as,

gs(ωl) dωl = −(d− 1) p(l) dl (4)

where d is the spatial dimension. Notice how the minus sign in the above equation, which can

be formally derived using the procedure described above, ensuring the physically required

positivity of the stringlet density of states gs(ω) presented below. In three dimensions

(d = 3), the factor of d− 1 = 2 in the r.h.s. of Eq.(4) reflects the ability of the stringlets to

oscillate along two linearly independent directions that are perpendicular to its equilibrium

orientation. Formally, this framework is equivalent to considering a distribution of damped

oscillators with frequency ω0 and damping rate γ. We can then define the quality factor

Q = ω0/γ according to which Q ≪ 1 corresponds to underdamped vibrations and Q of
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O(1) to overdamped ones. Notice that a priori Q depends on the stringlet length l since ω0

exhibits this property.

We next introduce a new assumption – with respect to previous work55,57 – into this type

of quasi-continuum framework that is an exponential distribution for the stringlet length,

p(l) = p0 e
−l/λ (5)

which is motivated directly by simulation observations32,35,36. Here, λ is the average stringlet

length. Notice that this distribution is different from what assumed in57, where a localized

Gaussian-like distribution of lengths is considered (see Fig.7 therein). As shown in32,35,36,

this assumption is inconsistent with the simulation data. From simple physical arguments,

it is clear that the stringlet length l has to be larger than the atomic scale a and smaller

than the sample size L. For this reason, Eq.(5) represents the correct physical distribution

in the regime a ≪ l ≪ L. Importantly, the average stringlet length λ, that as we will see

corresponds to the frequency range around the boson peak, is of the order of nanometers.

That is at least one order of magnitude larger than a and much smaller than L. This implies

that, in first approximation, any correction to (5), including the existence of UV cutoff set

by a, produces subleading effects to the density of states around the BP frequency, which is

the main subject of this work. In other words, for frequencies of the order of the BP scale,

Eq.(5) is the correct distribution function.

Combining Eq.(1) with Eq.(4), we obtain obtain a closed form analytic expression for the

stringlet VDOS,

gs(ω) = p0 π(d− 1) v
ω e

− πv

λ
√

γ2+ω2

(γ2 + ω2)3/2
. (6)

In the limit of zero damping, well below Tg, this expression becomes particularly simple,

lim
γ→0

gs(ω) = p0 π(d− 1) v
e−

πv
λω

ω2
. (7)

We repeat that the above expression is not expected to capture the correct physics for very

large frequencies, of the order of ωUV ≈ v/a, with a the atomic distance. The main reason is

that stringlet vibrations cease to exist at that microscopic scale and the stringlet density of

states has to be corrected with a cutoff similar to the Debye frequency for acoustic phonons.

However, such a microscopic frequency scale is much larger than the BP frequency and

therefore irrelevant for the present discussion. From Eq.(6), we can see that in two spatial
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dimensions the Debye normalized stringlet VDOS gs(ω)/ω has a maximum ωmax,

ω2D
max =

1

3

√
π2v2/λ2 − 9γ2, (8)

which in the limit of zero damping becomes simply,

ω2D
max(γ = 0) =

π

3

v

λ
. (9)

In 3D, there is also an analytical maximum in gs(ω)/ω
2, but the resulting analytic expression

is somewhat complicated. The effect of the friction γ is always that of softening the bare

prediction, as shown explicitly for the 2D case in Eq.(8). The 3D solution simplifies in the

zero damping limit, for which we obtain the concise result,

ω3D
max(γ = 0) =

π

4

v

λ
. (10)

More generally, as discussed previously in59, and below, the stringlet distribution is not

a perfect exponential, as expected from mean field theories of linear string formation at

equilibrium. A better, more general, representation involves a combination of an exponential

form with a power-law prefactor59,

p(l) = p0 l
−θ e−l/λ, (11)

where the exponent θ depends on the topology of the string-like structures, and their ex-

cluded volume and other interactions. It is straightforward to re-derive the stringlet VDOS

using this distribution. This yields the relation,

g̃s(ω) =

(d− 1)π1−θp0 ω

(
v√

γ2+ω2

)3−θ

e
− πv

λ
√

γ2+ω2

v2
(12)

which reduces to Eq.(6) when θ = 0. For zero damping, γ = 0, this is simply,

lim
γ→0

g̃s(ω) = (d− 1)π1−θp0 v
1−θωθ−2e−

πv
λω . (13)

In 3D, and in the limit of zero damping, the reduced stringlet VDOS g̃s(ω)/ω
2, displays a

maximum set by the condition,

ω̃3D
max(γ = 0) =

π

(4− θ)

v

λ
, (14)

which is a simple generalization of Eq.(10).
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Finally, we consider the full vibrational density of states g(ω), including the phononic

Debye contribution. We then arrive at the simple relation,

g(ω) = gDebye(ω) + gs(ω), (15)

where, in 3D for example,

gDebye(ω) =
ω2

2π2v̄3
, and

1

v̄3
=

1

v3L
+

2

v3T
, (16)

where vL, vT are respectively the speed of longitudinal and tranverse acoustic phonons. The

arguments above indicate that the boson peak frequency ωBP coincides with the location

of the maximum in the stringlet contribution to the VDOS, gs(ω). The independence of

the two contributions to the total density of states in Eq.(15) relies on the simplifying

assumption that phonons and stringlets are non-interacting. As we will see below, this

simple expression is sufficient to capture the most salient features related to the boson peak.

It is certainly possible to go beyond this leading order approximation by considering the

interactions between these no longer independent normal modes. Formally, this might be

done by modifying the respective dynamical equations, in a way similar to what done for

dislocations and phonons in ordered crystals (see for example58,70). We leave this refinement

of the model to future work.

We notice that a similar expression for the BP frequency as in Eqs.(9)-(10) was suggested

before by Granato71, Hong et al.60,61 and Kalampounias et al.72 on a more heuristic basis

(See also Refs.73,74 and Ref.75 for the original idea of introducing a length scale associated

with the boson peak.). The length-scale appearing in Eqs.(9)-(10) has been interpreted

by Hong et al.60,61 in recent work as a “cooperativity length scale” ξ associated with co-

operative motion associated with the growing activation energy of the alpha relaxation

time of glass-forming liquids postulated in the Adam-Gibbs model76. However, there is

some evidence that this characteristic length defined from an equation of the assumed form

of Eqs.(9) and (10) increases with temperature, as observed for the stringlet length λ in

simulations32,34. In contrast, the activation and the associated scale of collective motion in

glass-forming liquids grows upon cooling, Refs.37,59, a trend that is contrary to the intuitively

attractive idea of identifying ξ with the size of the “cooperatively rearranging regions” of

Adam-Gibbs. Independent of these experimental observations on the boson peak, string-like

collective motion whose extent grows with temperature has been inferred from low angle
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inelastic coherent neutron scattering measurements77. Notice that the numerical prefactor

in Eqs.(9)-(10), defining the characteristic length associated with the boson peak, is com-

pletely unspecified in previous studies, while it is specified exactly in our theory. We finally

remark that our theoretical approach presents two important improvements with respect to

the earlier phenomenological studies reported above. First, the length scale appearing in the

expression for the BP frequency is immediately identified from the stringlet length obtained

from simulations observations. At the same time, the numerical prefactor describing the

stringlet size distribution can be directly extracted from the simulation data. Compared to

the previous literature, our theory is based on more physical arguments that go beyond a

pure dimensional analysis or vague ideas about cooperative motion of some unspecified kind.

Nevertheless, it is rather remarkable that the brilliant raw intuition behind the qualitative

picture of Sokolov and coworkers60,61 anticipated the functional form predicted by our model.

In summary, this simple model exhibits three striking predictions. (I) It gives an ana-

lytical and simple estimate for the BP frequency in both 2D and 3D systems, Eqs.(9)-(10).

These results imply that the BP in a 3D system should appear at lower energies compared

to a 2D system with the same length distribution and sound speed. (II) If we reasonably

assume that the speed of the stringlet excitation is the same of that of transverse phonons,

this model immediately predicts that ωBP ∼ G1/2 in the low temperature glass state where

the stringlet average length (and the configurational entropy as well) are expected to be-

come independent of temperature37–39. However, the stringlet model also predicts that this

simple scaling becomes progressively modified at temperatures approaching Tg, where the

temperature dependence of λ can no longer be neglected. Importantly, identifying the ve-

locity of propagation of stringlet excitations with the average speed of transverse sound is

a working hypothesis in our coarse-grained model. Nevertheless, this hypothesis can be

motivated by previous observations in simulations29,36 and measurements78,79 that the bo-

son peak strongly correlates with the transverse sound modes. Moreover, we remark that

Sokolov and coworkers60,61 have recently analyzed the boson peak in diverse materials with

a view of defining a dynamical correlation length for collective motion based on an assumed

expression in which the boson peak is taken to be proportional to the transverse sound

velocity divided by a cooperative length scale (the analog of the stringlet “size” in our the-

ory). (III) At highly elevated temperatures where we may expect the glass to become a
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liquid, however, the stringlet theory interestingly predicts a linear frequency dependence of

the VDOS, and thus leads to a 1/ω divergence of the reduced density of states, the density

of states normalized by the Debye density of states. This scaling is consistent with recent

modeling of the density of states so that the stringlet model appears to recover a physically

correct behavior in the high temperature simple liquid as well as in the low temperature

glass states.

PREDICTION OF THE BOSON PEAK DEEP IN THE GLASS STATE

We next consider the capacity of the revised string model of the boson peak to quan-

titatively account for the frequency dependence of the boson peak. First, we obtain the

value of the parameter λ in Eq.(5) by fitting the distribution of stringlet length obtained

from simulations. Then, we take the value for the velocity of transverse phonons vT which

is obtained by fitting the dispersion relation obtained from simulations. Once these two

parameters are known, and fixed by the simulations, our theory provides a parameter-free

prediction for the BP frequency in both 2D and 3D amorphous solids, Eqs.(9)-(10). We can

then directly compare the predicted value for ωBP , which we will denote as ωth
BP , with the

experimental numbers obtained from the simulation data, which we will label as ωexp
BP .

We start by considering the simulation data for 2D and 3D zero temperature glasses

presented in35,36. In Fig.2, we present two explicit examples performed using the data for

the 2D power law model (2DPL) in35 and the 3D inverse power law model (3DIPL) in36.

By plausibly assuming that the average velocity of the stringlet propagation coincides with

the speed of transverse sound, we obtain a prediction for the BP of the 2D glass given by

ωth
BP ≈ 1.344 which has to be compared with the reported simulation value ωexp

BP = 1.41. The

difference between the two is less than 5%.

For the 3D system, the agreement is even superior, showing ≈ 1% uncertainty. The

predictions of the theory and the compared experimental values are reported in Table I.

The estimates from the theoretical model are in remarkable agreement, i.e., agreement to

within 5% uncertainty, with the value for the BP frequency obtained from simulations. It is

emphasized that, once the distribution of length is extracted from the experimental data and

the value of the speed of transverse sound is taken from the simulation dispersion relation,
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TABLE I. The theoretical prediction versus the experimental value for the BP frequency using the

exponential fit, Eq.(5). The uncertainty Υ is defined as Υ = 2|ωth
BP − ωexp

BP |/(ωth
BP + ωexp

BP ). All

quantities presented here are in reduced Lennard-Jones units.

λ vT ωth
BP ωexp

BP Υ

3DIPL36 1.335 4.23 2.487 2.46 1%

2DPL35 3.717 4.78 1.344 1.41 4.7%

the theory has no free parameters.

In order to test further our theory, we have extracted the simulation data from35,36 and

compared them directly to the total VDOS with our predictions. In order to do so, we added

a Debye contribution to the total DOS:

gDebye(ω) = Aω2, (17)

where the Debye level A is fixed using the numerical data, and a constant in frequency

renormalization factor in front of the stringlet contribution as well. Additionally, as evident

from the figures in the bottom panel of Fig.2, a more careful analysis reveals that the fit to

an exponential becomes rather uncertain for longer strings which are relatively rare in the

simulation sampling, i.e., l > 15 in reduced LJ units. This was already observed in59, where

a combination of a power-law with an exponential was considered and shown to fit the data

better. In order to investigate this point further, we have performed a second analysis in

which the stringlet length distribution p(l) is not fitted with the exponential form, Eq.(5),

but rather with a power-law corrected expression as in Eq.(11).

We compare our analytic expression for the full reduced density of sates to our analytic

model prediction in the top panels of Fig.2. The simulation data are shown with black sym-

bols, the theoretical prediction based on the exponential distribution, Eq.(5), is presented

with solid black lines, the theoretical prediction based on the power-law corrected distribu-

tion Eq.(11) by the dashed black lines, and finally the gray vertical bar indicates the position

of the BP. In the two-dimensional model (2DPL) the comparison between the simulation

data and our theoretical prediction is rather good, specially for the exponential fit. The

fitting corrected by a power-law term seems to give a slightly better result for frequencies

below the BP (corresponding to large l in the distribution function p(l)), but a worse result

for frequencies around and above the BP. In the three dimensional system, the comparison

13
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FIG. 2. A comparison between the theoretical predictions and simulation data for the reduced

density of states. (Top): The normalized density of states for the 2D and 3D systems. The

solid black lines are the theoretical predictions using the original exponential distribution for the

stringlet size. The black dashed lines are the theoretical predictions with the power-law corrected

fit, Eq.(11). The empty circles are the simulation data and the vertical gray bars indicate the

position of the BP. The red dashed line in the right panel is the total VDOS corrected by a Debye

cutoff exp
(
−ω2/ω2

D

)
, with ωD ≈ 13. (Bottom): the black symbols are the data from simulations.

The solid lines indicate the exponential fit and the dashed ones the power-law corrected ones.

between the theory and the simulations is good below ω ≈ 4 (in reduced units), but it

becomes poor for large frequencies, much above the BP scale. In particular, the simulation

data seem to decay much faster than our theoretical expectations. This discrepancy can

be easily understood by noticing that our theoretical prediction does not include any UV

cutoff to take into account the microscopic scale of the system. By adding a phenomenolog-
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TABLE II. The parameters for the Al-Sm system at finite temperature32. λ is reported in nanome-

ters, the velocity in m/s and the frequencies in meV. The last column indicates the theoretical

prediction for zero stringlet damping which has to be compared with the previous column report-

ing the corresponding simulation values.

Al-Sm32 λ vT ωexp
BP ωth

BP (γ = 0)

T = 450K 0.930 2151 2.681 7.52

T = 500K 1.018 2110 2.558 6.74

T = 550K 1.132 2043 2.348 5.87

T = 600K 1.269 1968 2.329 5.04

T = 650K 1.460 1851 2.226 4.12

ical Debye cutoff to the total density of states, exp (−ω2/ω2
D), this discrepancy immediately

vanishes as shown by the red dashed curve in the top right panel of Fig.2. Finally, we notice

that this discrepancy does not appear in the 2D model because the comparison does not

extend to large enough frequencies.

III. DAMPED DYNAMICS IN COOLED LIQUIDS ABOVE THE GLASS

TRANSITION

Inspired by these positive outcomes in the comparisons of the stringlet model to simula-

tions deep in the glass state, we next consider simulations for a simulated Al-Sm metallic

glass-forming material in a temperature range above Tg discussed previously in32 (see also80).

By using the experimental values reported in Table II, see also Fig.3, we are again able to

provide a parameter-free theoretical prediction for the BP frequency in the limit of zero

damping, which is shown in the last column of the same table.

The stringlet length distribution and the average stringlet length λ are shown for different

temperatures in the left panel of Fig.3. Moreover, we obtained the values for the density ρ

and the shear modulus G from32,80 and estimated the transverse speed of sound using the

well-known relation:

v2T =
G

ρ
. (18)

The data for vT required for our purposes are summarized in Table II and shown in the right
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panel of Fig.3.
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FIG. 3. Left panel: The distribution of the stringlet lengths for the finite temperature Al-Sm

system in32 and the fits to the exponential form, Eq.(5). The inset shows the dependence of the

average stringlet length λ as a function of temperature. Right panel: The speed of transverse

sound, extracted from the simulation data using Eq.(18), as a function of temperature. The values

of λ and vT are reported explicitly in Table II.

Some insight in the damping parameter can be obtained by adopting idealized assump-

tions about its temperature dependence and comparing to the observed behavior of how

the boson peak varies with temperature. As a first crude approximation, we take γ to be a

constant (pink curve in the left panel of Fig.4) and not excessively large in magnitude, i.e.,

γ smaller than ω0 in Eq.(1). We see that this option does not allow for a reasonable estimate

of the BP frequency; see the pink curve in the bottom panel of Fig.4. As it might have been

anticipated, damping must be temperature dependent and relatively large in magnitude at

temperatures well above Tg. Next, we consider for the sake of argument a temperature de-

pendent γ that is larger in amplitude but that decreases with temperature (see red curve in

the left panel of Fig.4), leads to a better accord between the stringlet model and simulation

estimates of the boson peak, see red line in the bottom panel of Fig.4, but the agreement

is still inadequate. Moreover, we find it hard to envision a microscopic explanation for why

the damping should decrease with temperature. This is clearly a non-linear dynamics many-

body phenomenon. A damping that is larger in amplitude and that grows with temperature

would then appear to be the choice for the variation of γ but it poses an immediate diffi-
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FIG. 4. Left panel: The phenomenological damping parameter used in the theoretical predictions

at high temperature, above Tg, for the Al-Sm system32. The colors match those used in the bottom

panel. Right panel: The comparison between the theoretical predictions and the simulation

results for the finite temperature Al-Sm system in32. The black symbols are the simulation data.

The orange line indicates the theoretical results in absence of stringlet damping, γ = 0. The pink

and red line indicate the theoretical results in presence of damping, as explained in the text.

culty. Heuristically, this problem has a simple origin. A large damping is necessary to soften

the stringlet frequency and consequently the predicted value for ωBP , which, in absence of

damping, is too large compared to the simulation observations. Nevertheless, a very large

damping in Eq.(1) clearly makes the stringlet frequency uncertain when γ, along with the

stringlet length and the transverse sound velocity, all depend on temperature. Eventually,

a too large damping would make the stringlet frequency in Eq.(1) complex valued, which is

obviously an issue within the model considered. We leave the task of more quantitatively

understanding the temperature dependence of the boson peak (and its intensity) above Tg

for future work.

One qualitative finding is evident from Table II (see also Fig.4). Simulation observations

cannot be described by a theory neglecting stringlet damping. The theoretical predictions

neglecting damping overestimate the observed values of ωBP by more than a factor of two.

The reason for this deviation is easy to understand. As opposed to the simulations of Hu

and Tanaka35,36, which were performed in the limit of T = 0 where stringlet damping can be
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reasonably neglected, the simulations for the Al-Sm metallic glass forming material32 were

performed at relatively high temperatures corresponding to a highly cooled glass-forming

metallic glass liquid32. At such temperatures, it is unreasonable to assume γ = 0 even

as a rough approximation. The treatment of the boson peak at higher temperatures is

complicated by the fact that the stringlet length, the transverse sound velocity and the

extent of damping described by γ can all be expected to vary appreciably with temperature

(see Figs. 3 and 4 for the temperature variation observed in the Al-Sm metallic glass-forming

liquid). Nevertheless, as we will see below, we can still gain important physical insights into

the variation of the density of states and the boson peak with temperature by considering

the stringlet model with finite damping γ and by considering a simplified description for it.

Before continuing, let us emphasize that our analysis does not take into account the exis-

tence of hydrodynamically-defined “defects”, such as the often discussed four-leaf quadrupole

defects81. Nevertheless, as argued in Ref.35, these relatively large scale structures apparently

correspond to a frequency range much below the boson peak, and thus not germane to the

present analysis. In particular, we do not expect this type of defects to have a significant

impact in the frequency range near where the boson peak is exhibited in the reduced density

of states. It is nevertheless plausible that these additional defects might contribute to the

stringlet damping, especially at elevated temperatures and/or large frequencies, and it is

also highly likely that these defects are highly significant in connection with understanding

plastic deformation in glassy materials. We certainly do not mean to imply these defects are

not important in glass-forming materials. Finally, we note that the existence of quadrupole

defects defined in relation to elastic distortions in the continuum field describing the ma-

terial provides a well defined example of how defects might arise without any crystalline

structure necessarily existing in the material in order to define a defect. This would seem to

imply that a similar non-crystalline based definition might apply to stringlets so that these

structures might genuinely be termed “defects”. This possibility remains to be established.

First, for 3D systems, the stringlet model with finite γ formally predicts an interesting

feature. In particular, using the stringlet reduced VDOS presented in Eq.(6), one can derive

the low-frequency behavior of the stringlet VDOS as,

gs(ω)

ω2
=

p(0)π (d− 1) v

γ2

1

ω
+ . . . (19)

Note also that Eq.(19) implies that the VDOS is linear in frequency at low energy in
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the high temperature liquid state so that our stringlet model exhibits the correct physical

behavior in both the low temperature solid and the high temperature liquid states. This

behavior is consistent with the experimental observations in classical liquids82–84 where it

has been rationalized based on the concept of unstable modes85,86. Interestingly, string-like

excitations have been also discussed in glass-forming liquids at low temperatures59,87,88, so

that it would be important to study further the BP in relation to stringlet dynamics by

heating such cooled liquids to watch how the boson peak evolves in shape and eventually

disappears. Notably, this disappearance of the boson peak upon heating is well-established

experimentally60,72,89–92. Similarities to the occurrence of glassy anomalies in materials

undergoing commensurate-incommensurate transitions64,68,93–95 and we suggest that the

pursuit of this “analogy” might offer potential insights into the boson peak in glass-forming

liquids. We next tentatively explore the extension to higher temperatures where we may

expect damping of the stringlets.

We start our discussion about the predictions of our stringlet model at elevated temper-

atures by noting that an increase of the average stringlet length λ with temperature is not

sufficient to reproduce the complete phenomenology of the “softening” of the BP, and the

simultaneous emergence of a linear in ω VDOS as appropriate for liquids83. At the outset,

we admit that the observed softening of the BP upon heating might involve multiple mecha-

nisms, among which the growth of the average stringlet length λ, the decrease of the velocity

v, or the increase of the stringlet damping γ. From the simulation data, only the variation

of λ and v with T is known, but we cannot currently directly access information about the

dependence of γ on T . Thus, we cannot fully resolve how each mechanism contributes to

the BP within the frame of our model without introducing a model of γ(T ). We introduce

a tentative model of γ(T ) below to address this problem.

Additionally, the combination of a Debye term, proportional to ω2, and a stringlet contri-

bution with finite damping produces an interesting effect in the total VDOS. In particular,

it induces an “apparent power-law” behavior at low frequency,

g(ω) ∝ ωζ with 1 < ζ < 2 (20)

which is explicitly demonstrated in the bottom panel of Fig.5. The apparent power law ζ

gradually moves from the Debye value, ζ = 2, for small damping towards a linear behavior,
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FIG. 5. Left panel: The stringlet vibrational density of states normalized by Debye law ω2 from

Eq.(6). Here, we have fixed p(0) = v = λ = 1 and we move the damping γ ∈ [10−4, 0.25] from

black to red. The arrows indicate the location of the BP and of the low-frequency 1/ω divergence

discussed in Eq.(19). Right panel: The apparent power law emerging at low frequency in

presence of damping. In this figure, we have fixed λ = v = p(0) = 1 and dialed the damping

γ ∈ [0, 1]. A Debye term gDebye(ω) = ω2 has been added on top of the stringlet contribution,

Eq.(6).

ζ = 1, for very large damping. As a consequence, for a reasonable value of damping,

one expects an apparent power-law in between these two values. A power ζ ≈ 4/3 has

been observed in superionic UO2 heated crystal96 and a similar power has also been found

experimentally in neutron scattering measurements on a Cu46Zr54 metallic glass near room

temperature97. It is tempting to rationalize such an intermediate power-law frequency scaling

of g(ω) using the argument above and ultimately attribute its origin to the strong stringlet

damping emerging at high temperatures. Unfortunately, we are not aware of a systematic

simulation study of this effective power-law in a wide range of temperatures, which would

be necessary to verify our hypothesis.

Interestingly, an expression for the critical damping at which the BP disappears in the

stringlet model of the BP can be derived analytically. For simplicity, we do this only for a

3D system. The computation for the 2D system can be easily performed following similar

steps.
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Let us start by the reduced stringlet density of states in three dimensions derived in

Eq.(6),

gs(ω)

ω2
= 2π p0 v

e
− π v

λ
√

γ2+ω2

ω (γ2 + ω2)3/2
. (21)

By defining ω2 ≡ y, the maximum of such a function, which corresponds to the location of

the BP, is given by the solution of the following equation

π v y
√
γ2 + y − λ

(
γ4 + 4y2 + 5γ2y

)
= 0. (22)

Despite the solution to this equation is complicated, one can easily derive that such a solution

involves the square root of the following quantity:

F(v, λ, γ) ≡ −432γ4λ4 − 4π4v4 + 207π2γ2λ2v2 . (23)

Whenever F(v, λ, γ) < 0, then, the solution becomes complex and therefore the function in

Eq.(21) does not show a maximum for real values of the frequency ω. In order to have the

solution real, and therefore a well-defined boson peak, the stringlet damping has to obey

the following inequality

γ < 0.466
v

λ
. (24)

This depends explicitly on the value of the stringlet speed and average length. However, we

can obtain a universal result by considering a dimensionless stringlet damping γ̃ defined as

the ratio between the stringlet damping and the BP frequency at γ = 0, or equivalently at

zero/low temperature,

ω
(0)
BP ≡ π

4

v

λ
. (25)

In doing so, we obtain a universal prediction for the disappearance of the BP within this

simple model. Whenever the dimensionless damping reaches the critical value:

γ∗ ≡

(
γ

ω
(0)
BP

)∗
= 0.568 , (26)

the BP then disappears as it is absorbed in the low-frequency 1/ω tail shown in the left panel

of Fig.5. This is a prediction of our theoretical model which can expressed as a function of

temperature. Notably, this reduced damping parameter is taken to have a limited variation

between ), corresponding to the zero temperature limit where no damping exists to a value

of 1 appropriate to an ideal gas limit in which all normal modes are unstable, i.e., “damped”.
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This definitions avoids unphysical variations of γ that can arise formally in our model if γ is

taken to be just a free parameter. Interestingly, if we think of ωBP as the average frequency

of vibration of the stringlets, this critical value is close to the onset of overdamped dynamics

in which the oscillations of the stringlets are rapidly damped and decay exponentially.

IV. A SIMPLE PHYSICAL MODEL FOR A DIMENSIONLESS

STRINGLET DAMPING

Here, we introduce a simple physical model of the dimensionless stringlet damping pa-

rameter γ̃(T ), defined as the physical damping reduced by the zero temperature (γ = 0)

boson peak frequency, and estimate this quantity in terms of a readily observable property

in both glass-forming and crystalline materials at elevated temperatures that quantifies the

anharmonicity in interparticle interactions. Our model is based on the presumption that the

apparently universal initial decay of the intermediate scattering function in both crystalline

and glass materials arises from an increasing fraction of unstable normal modes that facili-

tate the fast β-relaxation process observed in condensed materials at low temperatures. The

universality of fast dynamics in condensed materials at low temperatures makes it natural

to consider the fast dynamics of crystalline and non-crystalline solid materials in a unified

way.

These unstable modes in heated crystalline and glass materials can be calculated from

a direct instantaneous normal mode analysis where it is found that these general classes

of materials appear rather similar from this perspective98. Clapa et al.99 have made the

interesting observation that the ratio of the fraction of localized unstable modes to stable

localized modes in a model binary Lennard-Jones glass-forming material is rather similar to

the ratio of all unstable modes to stable modes estimated from systematic INM analysis of

localized and delocalized stable and unstable normal modes over a wide range of temper-

atures. These findings are relevant to the present analysis since Zhang et al.32 suggested

the identification of the stringlets with localized stable modes in the material and that the

the relaxational contribution to fast dynamics arises from the loss of stability of these same

modes, where the relaxation process involves irreversible particle exchange motion rather

than the reversible periodic motion required of stable modes. String-like collective motion

on a ps taking the form of both reversible and reversible motion was directly observed by
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Zhang et al., supporting this physical interpretation of both the boson peak and the fast re-

laxation dynamics in terms of stable and unstable modes taking the geometrical expression

of string-like displacement motion. It is noted that all modes determined from instanta-

neous normal mode (INM) analysis are stable at zero temperature and this picture of fast

dynamics relaxation simply involves the suggestion that the localized stable modes found

at zero temperature bifurcate into stable and unstable localized modes fractions at elevated

temperature. This situation is highly plausible because a similar bifurcation of the stable

modes in the zero temperature limit into families of stable and unstable modes at finite

temperature is a general finding of essentially any INM analysis of condensed materials in

their solid and liquid states. Mode damping at elevated temperatures is then a general

phenomenon that can be expected to occur for both the localized stringlet modes, which we

interpret as the ultimate physical origin of the boson peak, and structural relaxation on a

ps timescale (“fast relaxation”), which we correspondingly attribute to unstable striglets.

Supporting this theoretical interpretation of the origin of both the boson peak and fast re-

laxation in cold condensed materials broadly, it has been repeatedly observed experimentally

that a close inter-relationship exists between the “vibrational contribution” of scattering

identified with the boson peak and the “relaxational contribution” to scattering intensity in

the fast dynamics regime. This has been evidenced by the constancy of ratio of the intensities

of depolarized and polarized light scattering, the polarization ratio at fixed temperature, as

well as the light to excitation coupling coefficient C(ω) for both polarized and depolarized

light scattering observations exhibiting the same anomalous near linear frequency depen-

dence over a large frequency regime. Notably, this frequency scaling of C(ω) is consistent

with the expectation of 1-dimensional string structures32,44. As noted previously, the fast

dynamics relaxation time obtained from Brillouin scattering measurements has been found

to scale inversely with the boson peak frequency100. These and closey related observations

regarding the strong interrelationship between the boson peak and relaxational dynamics

in the fast dynamics regime are summarized by Ngai et al. in Ref.101. Finally, we point

out that only the relative intensities of these elastic and inelastic scattering features, corre-

sponding to the relative contributions of the vibrational and relaxational dynamics of the

material, vary with temperature, suggesting a corresponding shift of the fraction of stable to

unstable normal modes. Our mathematical model of strong “damping”, introduced below,

is entirely consistent with this phenomenology and relates the temperature dependence of
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the relative fraction of these modes to the temperature dependence of the non-ergodicity

parameter, quantifying the height of the intermediate scattering function at the end of the

fast beta relaxation process.

This novel model of the fast dynamics of condensed materials relies on two important

computational observations. (I) The observed string-like collective motion on a ps timescale

completely dominates the magnitude of the mean particle displacement ⟨u2⟩ on the fast

beta relaxation time because of the relative large displacements of the atoms involved in

the stringlet motion37. Notably, ⟨u2⟩ does not describe a uniform increase in the amplitude

of vibrational motion of the particles in the lattice as you might expect in a harmonic

crystal. The anharmonic interparticle interactions of particles at finite temperature make

materials rather generally “dynamically heterogeneous” even on a ps timescale, and the

string-like particle collective exchange motion is closely tied to this phenomenon. (II) The

magnitude of the non-ergodicity parameter of the self-intermediate scattering function on a

ps timescale is a uniformly decaying function of ⟨u2⟩ in both crystalline and glass-forming

materials59,102. This means that the non-ergodicity parameter encodes information about

the relative stability of the vibrational modes responsible for the boson peak, and thus the

average propensity of these modes to be damped.

We next translate this qualitative physical picture into a quantitative model by assuming

that the change in the intensity of the normalized intermediate scattering function, which can

be readily estimated from either the measurement or simulation, directly reflects the fraction

of localized stable modes (stringlets) that have become damped at any given temperature.

We tentatively assume that the dimensionless γ̃(T ), i.e., γ in Eq. (1) divided by the boson

peak frequency at γ = 0, or T = 0, can be estimated from the amplitude of the fast beta

relaxation process, which is simply 1 minus the so-called non-ergodicity parameter describing

the amplitude of the α-relaxation process. This estimate of γ̃ has the particular advantage

of being readily measured experimentally.

It is also helpful for our modeling that recent work has shown that the T dependence of

the non-ergodicity parameter can be apparently described by a near-universal function of the

mean square particle displacement ⟨u2⟩ at the fast beta relaxation time simply because the

non-Gaussian parameter is inherently small in the fast dynamics regime of relaxation37,102.
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The model just described leads to a precise estimate of γ̃(T ) given by,

γ̃(T ) =

1− e−7.6 ⟨u2⟩/σ2
T > To

0 T < To

(27)

where σ the average interatomic distance estimated from the first peak position of the

static structure factor. To is the temperature at which ⟨u2⟩ extrapolates to zero and it

indicates the temperature at which the glass-formation process “ends” (see Supplementary

Information in80 for more details). The constant 7.6 in Eq.(27) derives from the average

interparticle distance of the atoms estimated from the peak of the static structure expressed

in units of sigma and has been validated using MD simulations in103. We notice that γ̃(T )

ranges between between 0 and 1, just as the ratio of the fraction of unstable localized and

delocalized modes to their stable counterparts. In particular, the fraction of unstable modes

is likewise known to increase with temperature as anharmonic interparticle interactions

become progressively more prevalent85, and as more normal modes corresponding become

progressively unstable, i.e., “damped”. Finally, we note that the expression in Eq.(27)

applies quantitatively to polymer materials having a wide range of structures and a wide

range of crystalline materials.

In order to test this model and its predictions we have used the simulation data for

the Al-Sm metallic glass system in32,80 for which the temperature dependence of the mean

square displacement is known (see inset in Fig.7). Moreover, we have used the fact that

σ ≈ 2.8Angstrom at 500 K for this material and for simplicity we assume σ is approximately

independent of temperature. We plot our estimate of γ̃(T ) in Fig.6. We see that γ̃(T ) varies

slowly below ≈ 650 K. It then strongly increases when the temperature becomes larger,

between 650 K and 1200 K, and then plateaus at very high temperatures. Above ≈ 650 K,

⟨u2⟩ does not vary linearly as for particles subject to harmonic interparticle interaction, so

the large and non-linear variation of ⟨u2⟩ reflected in the strong increase of γ̃ provides clear

evidence of large anharmonic interactions in the material where the boson peak is predicted

by this model to become significantly damped. In Fig.7, we show the corresponding reduced

stringlet density of states as a function of the frequency normalized by the T = 0, or γ = 0,

BP frequency where the dimensionless damping γ̃ is modelled based on Eq.(27).

Evidently, the position of the BP approximately does not vary significantly with temper-

ature inside the glass state (in Ref.32, the glass transition temperature was estimated to be
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FIG. 6. Model estimate of the dimensionless stringlet damping γ̃(T ) as a function of temperature

based on the identification of the intensity in the fast relaxation process as arising the damping

of localized stable modes identified as being stringlets in previous simulations32. In the inset of

the bottom panel, the data for the mean squared displacement ⟨u2⟩ (in units of σ2) at the fast

beta relaxation time37 in the Al-Sm metallic glass system reproduced from80. The horizontal

dashed line indicates the critical damping value γ̃∗ ≈ 0.568 which corresponds to the characteristic

temperature T∗ ≈ 848 K.

close to 500 K for the metallic glass under consideration) and it starts to exhibit appreciable

softening only above this temperature. As noted above, the BP peak disappears above a

characteristic temperature T∗ ≈ 848 K in the AL-Sm glass-forming material, correspond-

ing to the analytically derived critical damping condition discussed in the previous section.

Above T∗, the stringlet excitations are predicted to be fully overdamped and the DOS then

approaches the linear behavior gs(ω) ∼ ω of a simple fluid. Notice that at elevated tem-

peratures, above ≈ 1200 K, the VDOS does not vary much as a simple consequence of the

dimensionless damping γ̃ (Fig.6) approaching a constant value. All these features are in

good qualitative agreement with experimental and simulation data. Let us emphasize that

the scale at which strong temperature variations appear should relate to the scale at which

strong deviations from the scaling ωBP ∼ G1/2 are observed, suggesting a possible common

origin for these two phenomena.

We conclude with a brief discussion about the critical temperature T∗ ≈ 848. This scale is
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FIG. 7. The reduced stringlet density of states as a function of the frequency normalized by the

zero temperature (or equivalently γ = 0) BP frequency for different temperatures between 0 K to

1350 K (from blue to red). Solid lines are used to indicate the regimes in which the reduce DOS

does not vary much with temperature. The filled black line is the result at zero temperature or

γ = 0. The dashed black line is the reduced stringlet DOS at T∗ ≈ 848 K at which the BP simply

disappears.

well above Tg ≈ 500 K, but close to the onset temperature TA defining the onset of Arrhenius

dynamics for glassy dynamics which has been independent estimated to be around 900 K32.

This temperature exactly corresponds to where the intermediate scattering function first

develops a discernible multi-step decay, and at which the non-ergodicity parameter becomes

measurable. The structural relaxation time typically becomes on the order of a ps at this

characteristic temperature and non-Arrhenius relaxation, stretched exponential decay, etc.,

also first arise below this temperature. The possibility that all these phenomena are just

downstream consequences of the stringlets acting on ps timescale is an interesting possibility

to consider in the future.
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V. OUTLOOK

In this work, we showed that a simple theoretical model based on a distribution of 1D

vibrating strings55 – the stringlet theory of the boson peak – provides an excellent description

of the BP frequency ωBP for 2D and 3D amorphous systems in the glass state, where

the damping of these excitations is reasonably be assumed to be negligible. In particular,

this theoretical framework gives an analytical, and parameter-free, prediction for ωBP that

is in quantitative agreement with recent simulation data at T = 035,36. Moreover, the

observed scaling of the BP frequency with the shear modulus in this type of zero temperature

simulation, ωBP ∼ G1/2, follows as an analytic prediction from the stringlet model.

We tentatively explored the stringlet model in the relatively high temperature regime

of glass-forming liquids above Tg where some damping of the stringlet modes can natu-

rally be expected. In this temperature regime, we addressed the qualitative temperature

dependence of the boson peak frequency and its disappearance at high temperatures, in

connection with the dynamic correlation length introduced phenomenologically in previous

work investigating boson peak measurements60,61. The softening of ωBP upon heating is

reasonably reproduced by the stringlet model and attributed mainly to the change of the

stringlet length and transverse sound velocity with temperature. Our qualitative analysis

suggests that the stringlet modes become completely overdamped in the liquid regime at

sufficiently high temperatures. In association with this phenomenon, we observe the emer-

gence of a density of states that changes to a linear variation with frequency rather than the

quadratic law expected for the Debye theory of solids, a transition noted in recent studies

attempting to define a density of states appropriate to materials in their liquid state83–86.

We finally mention that recent studies32,34,35,37 of the boson peak frequency as a function

of temperature show a nearly linear behavior of ωBP with G, rather than ∝ G1/2, an ob-

servation that offers some clues about the variation of the boson peak in the temperature

regime where the average stringlet length, the sound velocity and γ are all varying in their

own individual ways with temperature. In particular, Zhang et al.32 indicated that since

the increase of ⟨u2⟩ and the occurrence of fast beta relaxation first becomes appreciable

near the Vogel-Fulcher-Tammann temperature at which the α-relaxation time extrapolates

to infinity. Stringlet damping should also begin to arise near this same temperature. Rossi

et al.104 have observed a deviation of the boson peak frequency from the Debye frequency at
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temperatures of about 200 K below Tg, roughly consistent with the arguments of Zhang et

al. that softening of the boson peak occur around To. These and other recent measurements

of the pressure dependence of the boson peak105,106, indicating a deviation from the simple

scaling of the boson peak with the transverse sound velocity, also offer some clues about this

more complicated regime for temperatures somewhat below or above Tg. Further measure-

ments along this line should be helpful in understanding the effect of excitation damping on

the boson peak.

Our analysis supports the idea that the stringlets correspond to localized modes, which

have long been suggested32,35,36 to be responsible for the BP anomaly in amorphous systems,.

However, the precise nature and origin of these modes remains an object of continued in-

vestigation. This identification raises questions about how these modes might be related

to the multipolar four-leaf modes107,108 that have recently been discussed as being related

to the the emergence of the boson peak. These structures would appear to be much larger

than the stringlets suggesting to us the possibility that that stringlets may account for their

substructure. This possibility also deserves further investigation.

In order to augment the predictive nature of the stringlet theory, and to develop it into a

full-fledged theory, clearly more work needs to be done. First, a theoretical model is required

for the first-principle prediction of the stringlet length distribution p(l), without resorting to

simulation data. A promising avenue would be to combine Lund model55 with the the well-

developed thermodynamic theory of equilibrium polymers discussed in Refs.59,109,110. Second,

it would be interesting to directly estimate of the average string length λ as a function of

temperature, and compare it with independent estimates of the dynamic correlation length

based on Eqs.(9)-(10), to verify that that this length can be interrelated as cooperativity

length, as proposed heuristically in some experimental studies60,61. Specifically, Eqs.(9)-(10)

are equivalent to the “standard” relation taken to define the dynamic correlation length by

Hong et al.60,61 and others111, when the parameter S of these experimental studies is taken

to have the specific predicted value, S = π/(d+ 1).

Additionally, we have not considered in the present work the question of the intensity

of the BP and how this relates to the characteristic features of the stringlets and their size

distribution. The universality of the functional form suggests that the boson peak frequency

and the height should be related. Using Eq.(6) in the limit of negligible damping, γ = 0,

one can easily verify that the intensity of the stringlet contribution at the BP frequency is
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given by,
gs(ωBP )

gTDebye(ωBP )
≡ vdT

gs(ωBP )

ωd−1
BP

∝ p(0)λd+1, (28)

where gTDebye(ωBP ) is the Debye contribution arising from the transverse acoustic modes

ωd−1/vdT , up to some neglected constant numerical factors. It is interesting to notice that,

in this approximation, the intensity is given uniquely in terms of the parameters appearing

in the stringlet size distribution p(l). Also, it is immediate to verify that the intensity of the

BP as in Eq.(28) grows upon heating since the average length λ increases with T .

Interestingly, the stringlet dynamics shares many similarities with the behavior of defects

and anharmonic modes in crystals71,112 (See113 for a direct proof of the stringlet anharmonic-

ity in relation to the BP in glasses.) and the role of weakly-dispersing soft optical modes,

which has been identified in several instances as the origin for the BP anomaly in crystalline

materials with no structural disorder5,6,64,65,93,94,114–116. A similarity of this kind is also re-

flected by the fact that the string model of Lund was inspired by Granato and Lücke string

model of crystal plasticity56. A unifying picture based on defect dynamics would be highly

desirable and these collective excitations are a candidate for explaining the roton-like exci-

tations observed previously in both liquids and glasses117–119, as reviewed in120. Dispersion

curves of this kind have also been suggested to be related to the BP anomaly in glasses121,122

(see also123), and might likewise be related to the stringlets.

Finally, our work revives the long-standing and vigorously debated question of whether

the structures responsible for the BP are structural defects or dynamical excitations deriv-

ing from the anharmonicity of intermolecular interactions. The evidence would appear to

favor the latter interpretation, explaining why the boson peak should also be expected in

crystalline materials at elevated temperatures where anharmonicity in intermolecular inter-

actions becomes prevalent as in cooled liquids. Recent simulations96 have indeed confirmed

that the boson peak also arises in crystalline materials at elevated temperatures, but be-

low the melting temperature, where anharmonic intermolecular interactions start to become

prevalent.
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Appendix A: Analogy between dislocations in crystals and stringlets

Dislocations are extended “defect” structures that are prevalent in the modeling of the

plasticity of crystalline materials. The model of “open” string-like defects utilized in the main

text originates from a highly successful model of crystal plasticity introduced by Granato and

Lücke56 to describe the “string-like” segments of the dislocations between pinning points.

The development of this classical dislocation model of deformed crystalline materials is re-

viewed in124. In a more controversial work, Granato advocated that open string-like excita-

tions in both crystalline materials and cooled liquids should correspond to extended defects

involving “generalized” interstitial defects71. Granato and his coworkers then advocated the

radical idea that liquids should be viewed as crystalline materials populated by such defects.

One of the many predictions of Granato’s model71 strongly anticipates the results of the

present paper. In particular, he argued that his interstitial defects should adopt a string

like geometrical form and he “re-purposed” his former dislocation segment theory to model

the boson peak of glass-forming liquids. This led him to a prediction of the boson peak

in the low temperature limit of the same form as Eq.(10), although his admittedly rough

derivation differs in the predicted prefactor. Moreover, his model made a rough estimate

of the boson peak frequency. Clearly, our more refined model has much in common with

the Granato model of the boson peak and the correspondence becomes even greater if an

identity is granted between the strings and his hypothetical interstitial defects. This is a

possibility that we plan to study in the future.
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While there is substantial experimental support for the ideas just described, it is ad-

mittedly unclear how one should interpret such defects in liquids (and amorphous systems

in general) given there is no crystalline reference state that would allow for a discussion

of well-defined structural defects, interstitial or otherwise. Nonetheless, both simulations

and neutron scattering measurements have indicated that there are indeed “excitations” in

the form of strings in the ps timescale of glass-forming liquids. Simulations show that such

excitations also arise in model crystalline materials, although these structures cannot rea-

sonably be identified as static dislocation loops or extended defects of composed of clustered

interstitial defects125.

It is our view that these string-like structures, that are notably observed in simulations of

both crystalline and glass-forming materials, arise from the inherently anharmonic interac-

tions in these materials, a phenomenon that is well-known in the Fermi-Ulam-Pasta-Tsingou

model (e.g.,126,127). In particular, exact and numerical solutions of the dynamics and ther-

modynamics of such non-linear lattice models reveals the presence of intrinsically localized

modes (sometimes termed “breathers”)128,129, deriving purely from the anharmonicity of the

interparticle interactions.

Importantly, the number of particles exhibiting this type of collective motion has been

shown in the closely related ϕ4 lattice model to exhibit an exponential size distribution130,

as for stringlets. Similar distributions of the number of particles in this type on non-linear

expectation have been noted in the analysis of the Peyrard-Bishop model of duplex DNA131,

another closely related anharmonic 1-dimensional lattice model.

Our theoretical framework adopted to describe the density of states distribution of the

stringlets is inspired mathematically by the Granato-Lücke dislocation segment theory, noted

above, and by a thermodynamic theory of string formation at equilibrium introduced pre-

viously to describe the T dependence and length distribution of strings37. Very similar

statistical mechanical models have been introduced to describe the formation of worm-like

micelles, the equilibrium polymerization of S, P and other elements, etc.

Despite the success of our modeling effort aimed at fundamentally understanding the

boson peak, we must admit that the fundamental cause of this type of “excitation” is still

not entirely clear. It is notable that string-like excitations are prevalent in many field theories

of phase transitions and other thermodynamic transitions132, such as the XY model133 and

the superfluid to fluid transition in He4 whose critical properties are well-described by this
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model, vortex melting in type II superconductors134, and cosmological models135–137. We

strongly believe that the formulation of such a gauge field theory of condensed matter along

this line is required to address the fundamental origin of these dynamic excitations.
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56A. Granato and K. Lücke, “Theory of mechanical damping due to dislocations,” Journal

of Applied Physics 27, 583–593 (1956).

57E. Bianchi, V. M. Giordano, and F. Lund, “Elastic anomalies in glasses: Elastic string

theory understanding of the cases of glycerol and silica,” Phys. Rev. B 101, 174311 (2020).

58A. Maurel, V. Pagneux, F. Barra, and F. Lund, “Interaction between an elastic wave

and a single pinned dislocation,” Phys. Rev. B 72, 174110 (2005).

59B. A. Pazmiño Betancourt, J. F. Douglas, and F. W. Starr, “String model for the

dynamics of glass-forming liquids,” Journal of Chemical Physics 140, 204509 (2014).

60L. Hong, V. N. Novikov, and A. P. Sokolov, “Dynamic heterogeneities, boson peak, and

activation volume in glass-forming liquids,” Phys. Rev. E 83, 061508 (2011).

61L. Hong, V. Novikov, and A. Sokolov, “Is there a connection between fragility of glass

forming systems and dynamic heterogeneity/cooperativity?” Journal of Non-Crystalline

Solids 357, 351–356 (2011).

62N. Tomoshige, H. Mizuno, T. Mori, K. Kim, and N. Matubayasi, “Boson peak, elastic-

ity, and glass transition temperature in polymer glasses: Effects of the rigidity of chain

bending,” Scientific Reports 9, 19514 (2019).

63U. Buchenau, “Soft modes in undercooled liquids,” Journal of Molecular Structure 296,

275–283 (1993).

64A. Cano and A. P. Levanyuk, “Explanation of the glasslike anomaly in the low-

temperature specific heat of incommensurate phases,” Phys. Rev. Lett. 93, 245902 (2004).

37

http://dx.doi.org/10.1103/PhysRevLett.127.015501
http://dx.doi.org/10.1103/PhysRevLett.127.015501
http://dx.doi.org/10.1038/s41467-023-38549-8
http://dx.doi.org/10.1038/s41467-023-38549-8
http://dx.doi.org/10.1103/PhysRevE.105.024602
http://dx.doi.org/10.1103/PhysRevE.105.024602
http://dx.doi.org/10.1038/s41467-023-38547-w
http://dx.doi.org/https://doi.org/10.1016/0375-9601(91)90363-D
http://dx.doi.org/10.1103/PhysRevB.91.094102
http://dx.doi.org/10.1103/PhysRevB.101.174311
http://dx.doi.org/10.1103/PhysRevB.72.174110
http://dx.doi.org/10.1063/1.4878502
http://dx.doi.org/10.1103/PhysRevE.83.061508
http://dx.doi.org/10.1038/s41598-019-55564-2
http://dx.doi.org/https://doi.org/10.1016/0022-2860(93)80144-K
http://dx.doi.org/https://doi.org/10.1016/0022-2860(93)80144-K
http://dx.doi.org/10.1103/PhysRevLett.93.245902


65M. Baggioli and A. Zaccone, “Low-energy optical phonons induce glassy-like vibrational

and thermal anomalies in ordered crystals,” Journal of Physics: Materials 3, 015004

(2019).

66M. Baggioli and A. Zaccone, “Hydrodynamics of disordered marginally stable matter,”

Phys. Rev. Res. 1, 012010 (2019).

67M. Baggioli and A. Zaccone, “New paradigm for glassy-like anomalies in solids from

fundamental symmetries,” International Journal of Modern Physics B 35, 2130002 (2021).

68C. Jiang, A. Zaccone, C. Setty, and M. Baggioli, “Glassy heat capacity from overdamped

phasons and hypothetical phason-induced superconductivity in incommensurate struc-

tures,” Phys. Rev. B 108, 054203 (2023).

69V. N. Novikov and N. V. Surovtsev, “Spatial structure of boson peak vibrations in glasses,”

Phys. Rev. B 59, 38–41 (1999).

70A. Maurel, V. Pagneux, F. Barra, and F. Lund, “Wave propagation through a random

array of pinned dislocations: Velocity change and attenuation in a generalized granato
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