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In the field of symmetry-protected topological
phases, a common wisdom is that the symmetries
fix the topological classifications, but they alone
cannot determine whether a system is topologi-
cally trivial or not. Here, we show that this is no
longer true in cases where symmetries are projec-
tively represented. Particularly, the Zak phase,
a topological invariant of a one-dimensional sys-
tem, can be entirely determined by the projective
symmetry algebra (PSA). To demonstrate this
remarkable effect, we propose a minimal model,
termed as flux Su-Schrieffer-Heeger (SSH) model,
where the bond dimerization in the original SSH
model is replaced by a flux dimerization. We
present experimental realization of our flux SSH
model in an electric-circuit array, and our predic-
tions are directly confirmed by experimental mea-
surement. Our work refreshes the understand-
ing of the relation between symmetry and topol-
ogy, opens up new avenues for exploring PSA
determined topological phases, and suggests flux
dimerization as a novel approach for designing
topological crystals.

The action of symmetries on a physical system is de-
scribed by their representations. Such actions impose
constraints on the physical state and decide its topologi-
cal classification, i.e., what are the topologically distinct
phases allowed by the symmetries. Nevertheless, know-
ing the symmetries and their representations does not
automatically tell us which phase (trivial or nontrivial)
the system is in, a fact well-known from previous stud-
ies [1–3].

Consider the famous SSH model [4], as illustrated in
Fig. 1. Topological classification of SSH model can be
resulted from several choices of symmetries. Here, let’s
consider the spacetime inversion PT being the protect-
ing symmetry, which leads to a Z2 classification, with
the nontrivial and trivial phases characterized by the Zak
phase γ = π and 0, respectively [5, 6]. In the SSH chain,
the two topological phases corresponds to the two bond
dimerization patterns shown in Fig. 1. Namely, in the
unit cell (compatible with boundary condition), the non-
trivial (trivial) phase has intercell bond stronger (weaker)
than the intracell bond. One can see that the symmetry
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Figure 1. Two phases of the standard SSH model.
a, The topological phase with intercell bond stronger than
the intra-cell bond. b, The trivial phase with intercell bond
weaker than the intra-cell bond.

determines the Z2 classification, but it cannot determine
which phase an SSH chain belongs to. Indeed, the two
phases in Fig. 1 correspond to the same symmetry rep-
resentation, with the same symmetry group relations

(PT )2 = 1, (PT )L(PT ) = L−1, (1)

where L is the unit translation along the chain. Note that
in equations (here and hereafter), the symmetry symbols
means their corresponding operators (i.e., representation
in a physical system).

Recently, the framework of ordinary crystal symme-
try groups has been extended into PSAs [7–14]. That
is, the successive action of two crystal symmetry op-
erators S1 and S2 may be modified by an additional
phase factor [15]: ρ(S1)ρ(S2) = Ω(S1, S2)ρ(S1S2), where
ρ(S) denotes the representation of S. In general, the
phase factor Ω(S1, S2) is valued in U(1), and in the pres-
ence of time-reversal symmetry T , it will be restricted to
Z2 = {±1} [12].

In the framework of PSAs, a remarkable discovery is
that the Zak phase γ is an invariant of a PSA, i.e., it
is completely determined by the symmetries’ projective
representations.

To clarify this point, we introduce the flux SSH model,
as shown in Fig. 2a. In this model, a unit cell has four
sites. All hoppings between nearest neighbors have the
same magnitude, but their signs can be positive or neg-
ative, denoted by blue and red colors in Fig. 2a. Going
around a plaquette, the accumulation of hopping signs
correspond to a gauge flux of 0 or π. Our flux SSH model
has an alternating distribution of 0 and π fluxes. In this
sense, the bond dimerization in the original SSH model
is replaced here by a ‘flux dimerization’.
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Figure 2. The flux SSH model. a, Illustration of the flux SSH model. A unit cell (marked by the yellow box) contains four
sites, labeled by a, b, c and d. All hopping amplitudes have the same magnitude but may have different signs. The negative
and positive ones are marked in red and blue, respectively. These signs result in a flux distribution as indicated in the figure.
b, Direct inversion operation with respect to the inversion center (red dot) does not preserve the gauge configuration, i.e., the
color of the bonds are changed from those in a. c, An additional gauge transformation G is required to recover the original
configuration in a. Here, the plus and minus signs indicate the phase change of the local basis at respective sites. One observes
that this G does not commute with L and P , as both L and P exchange ± signs. d, Band structure of the flux SSH model.
All bands have Zak phase π as determined by the PSA. e, Energy spectrum for the model with a length of 25 unit cells. The
in-gap states are surrounded by orange circles. f, Spatial distribution of the two ingap states in the third gap as indicated in
the insert of e. The two states are concentrated at two ends, and therefore represent the topological end states corresponding
to the nontrivial Zak phase.

Clearly, this model also preserves P , T , and L symme-
tries. However, the flux dimerization modifies the repre-
sentation of these symmetries and their PSA in a funda-
mental way. Consider the inversion operation. With the
inversion center at the center of a π-flux plaquette, direct
inversion transforms the chain from Fig. 2a to Fig. 2b.
One observes that although the flux distribution is pre-
served, the color of the bonds, i.e., the gauge connection
configuration, is not. To recover the original configura-
tion in Fig. 2a, an additional gauge transformation G is
required. For our current case, G is illustrated in Fig. 2c,
which involves sign (π-phase) change at some of the local
base states. It follows that the representation of inversion
in the flux SSH model is a combined operation

P = GP. (2)

It is the combined operator P = GP that commutes with
the Hamiltonian.

Importantly, G does not commute with P and L. In-
stead, we have PGP−1 = −G and LGL−1 = −G, as
reflected in Fig. 2c where both P and L inverse the sign
configuration of G. Then, one immediately observes that
the relations in (1) satisfied by the ordinary representa-

tion are now modified into a PSA, with

(PT )2 = −1, (3)

and

(PT )L(PT )−1 = −L−1. (4)

The minus signs in the two identities are invariants of the
PSA as shown in Methods.

More importantly, the PSA in (3) and (4) dictates the
value of Zak phase. To see this, note that in k space,
L is represented by eik (taking the lattice constant to
be unit), then Eq. (4) indicates that PT must send k to
k + π. Consider a single band |ψ(k)⟩ with periodicity
|ψ(k)⟩ = |ψ(k + 2π)⟩. Then PT operator acts on the
band as

UPT |ψ(k)⟩∗ = eiϕ(k)|ψ(k + π)⟩, (5)

where we expressed PT = UPTK with UPT a unitary
operator and K the complex conjugation. From Eq. (3),
we have UPTU

∗
PT = −1, which leads to

eiϕ(k+π)−iϕ(k) = −1. (6)
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Figure 3. Electric-circuit realization of the SSH model. a, Circuit diagram for the flux SSH model with five unit cells.
The shadowed area faithfully simulates the flux SSH model. Each inductor (capacitor) corresponds to a negative (positive)
hopping amplitude. A unit cell is indicated by the yellow rectangular. The remaining part is designed to tune the reference
voltage of the electric circuit. b, Photograph of our fabricated circuit board. c, Theoretical spectrum of the circuit Laplacian
as a function of the driving frequency. All frequency scales are normalized to the resonance frequency ω0. Two isolated
modes crossing the gap, which correspond to zero-energy eigenvalues of the circuit Laplacian at ω = ω0, are marked in red.
They correspond to the two topological end modes. d, e, Experimental and simulated impedance responses versus normalized
frequency. The end (bluk) impedance is measured between a2(a1) and b2(a2) in b. The curve at the end (in the bulk) is marked
in red (blue). The experimental curves well agree with the simulation curves, confirming the topological end states of the flux
SSH model.

Therefore, the PSA establishes a connection between
states at k and k + π.

Using Eqs. (5) and (6), one can readily evaluate the
Zak phase [5]

γ =

∮
dk ⟨ψ(k)|i∂k|ψ(k)⟩, (7)

by dividing the integration domain into two parts, [−π, 0]
and [0, π], and relating the two by PT (see Methods). For
a single band, one finds that the Zak phase is guaranteed
to be γ = π. It must be pointed out that the above
analysis is completely general: We never used any details

of the flux SSH model except the PSA in (3) and (4) that
the model satisfies. In other words, the result γ = π is
determined solely by PSA.

Now, given the system the flux dimerization, when will
the Zak phase be zero? From the above discussion, this
must occur in a configuration with a different PSA. For
flux SSH model, this corresponds to the unit cell choice
with inversion center at zero-flux plaquette [see Fig. 2b].
One can easily check that in this case, although (4) re-
mains the same, PSA in (5) is changed to (PT )2 = +1,
which then dictates γ = 0.

Thus , the two topological phases of flux SSH model
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directly corresponds to two distinct PSAs, with (PT )2 =
α ∈ {±1}, such that the Zak phase can be expressed as

γ = i lnα mod 2π. (8)

This is in contrast to conventional cases, like the origi-
nal SSH model, where symmetries [as in Eq. (1)] cannot
determine the topological phase.

Our claims above are confirmed by a direct calculation
of the model (see Methods). Figure 2d-f shows the non-
trivial case with PSA (5) and (6). The calculated band
structure is plotted in Fig. 2d, and we verifies that each
band here has a π Zak phase. This is another salient fea-
ture distinct from conventional systems where different
bands are not guaranteed to have the same Zak phase.

A π Zak phase requires the presence of 0D topological
modes at the end of the 1D chain. In our model, this
occurs for the first and the third bulk band gaps (the
second gap is trivial since the Zak phases for the two
bands below add up to zero). Such topological end modes
are confirmed in Fig. 2e, by our calculation of a chain
with a finite length. The profiles of the two ingap states
in the third gap is plotted in Fig. 2f.
The proposed flux SSH model constitutes a minimal

model for demonstrating the PSA determined topology.
Below, we present experimental realization of this model
in an electric-circuit array, which directly verifies our the-
ory.

Electric circuits are governed by the Kirchhoff’s law.
In the frequency domain, it assumes the general form
of Ii(ω) =

∑
j Jij(ω)Vj(ω), where Ii(ω) and Vi(ω) are

the electric current and voltage at node i, Jij(ω) is the
admittance between nodes i and j, and the summation is
over all adjacent nodes. It follows that the behavior of a
circuit is characterized by its J(ω) matrix, also known as
the circuit Laplacian, and the task is to design a circuit
whose J(ω) matrix can simulate the flux SSH model.

The design is actually very straightforward, thanks to
the characters of capacitors and inductors which natu-
rally exhibit a phase difference in their responses [16–18].
As shown in Fig. 3a, one just needs to use capacitor (C1)
for the blue bond and inductor (L1) for the red bond.
Then a unit cell contains four capacitors and two induc-
tors (and four nodes). The additional inductors and ca-
pacitors (with values L1 and C2) at top and bottom in
Fig. 3a are used to facilitate measurement. They are not
essential to PSA and topology.

For this simple circuit array, one readily derives that

J(ω, k) = iωC1H(ω, k), (9)

and at driving frequency ω = ω0 ≡ 1/
√
L1C1,

H(ω0, k) = HfSSH(k)− λ1, (10)

where HfSSH is just the flux SSH model put in dimen-
sionless form (see Methods), and λ = C2/C1 is shift that
can be utilized to probe the topological end mode.

The measurement is on the impedance response Zab(ω)
between two nodes a and b, which can be expressed as

Zab(ω) =
Va − Vb
Iab

=
∑
n

|ψn,a − ψn,b|2

jn(ω)
, (11)

where jn and {ψn,i} are the n-th eigenvalue and eigen-
mode of J(ω). In Zab(ω), the mode with jn close to zero
(called the zero-admittance mode) will dominate the re-
sponse. For any target mode, we can utilize the λ term
in (10) (by tuning C2) to shift its eigenvalue to zero.
Here, we focus on the topological end mode correspond-
ing to the one in the third gap of HfSSH in Fig. 1e, which
has a value of ∼ 1.48, so we choose λ = 1.48 in our
design. This makes the topological end mode the zero-
admittance mode at frequency ω = ω0. In Fig. 3c, we
show the simulated J(ω) spectrum of our designed cir-
cuit, which confirms this point.
Experimentally, we fabricate the designed circuit on

a printed circuit board, as shown in Fig. 3b. It has a
length of five unit cells, not long but sufficient to discern
the topological end modes. We perform impedance mea-
surement on two pairs of nodes. The first pair a1 and
b1 are in the bulk (the middle cell), and the second pair
a2 and b2 are at the end (the first cell), as indicated in
Fig. 3b. From the above analysis, one expects that the
topological end mode of flux SSH model should mani-
fest as a peak at ω = ω0 for measurement at a2 and b2,
and this peak will disappear for measurement at a1 and
b1. This is confirmed by the measured results in Fig. 3d.
The experimental curves also agree very well with results
from numerical simulations of the circuit (see Fig. 3e).
In summary, we have discovered an extraordinary phe-

nomenon beyond the common wisdom regarding topo-
logical phases, i.e., the projective algebraic structure
of symmetries can completely determine the topologi-
cal phase. We propose a simple model, the flux SSH
model, which demonstrates the phenomenon. In the
present case, every band is enforced by PSA to have
nontrivial Zak phase. We also provide the first exper-
imental proof of this remarkable phenomenon using a
designed electric circuit array. Considering the rich crys-
tal space group symmetries, we expect that there will be
an abundance of such intriguing effect to be discovered
for PSAs. Our proposed flux dimerization may serve as
an effective design approach to realize novel PSA deter-
mined topological phases, applying to a wide range of
physical systems besides electric circuits, such as cold
atoms [19, 20], phononic/photonic crystals [21–24], me-
chanical networks [25, 26], and etc.
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Methods
Gauge invariance of PSA
One may modify PT by an arbitrary phase eiθ, as PT 7→
eiθPT . One finds that

(eiθPT )2 = eiθPTeiθPT

= eiθe−iθ(PT )2 = (PT )2.
(12)

In the second equality, we have used the fact that
PT is antiunitary, and therefore a complex number
is conjugated after commuting with PT . Hence, we
see (PT )2 = α is gauge invariant. It is known as a
cohomology invariant for the PSA. Similarly, one can
verify the invariance of (4) under PT 7→ eiθPT and
L 7→ eiθ

′
L.

Derivation of the enforced Zak phase
The integrand in Eq. (7) is known as the Berry
connection A(k). From Eq. (5), we find that

|ψ(k + π)⟩ = e−iϕ(k)UPT |ψ(k)⟩∗. (13)

Substituting this into the Berry connection expression at
k + π, we obtain

A(k + π) = −A(k) + ∂kϕ(k). (14)

Hence, the Zak phase can be expressed as

γ =

∫ π

0

dk (A(k) +A(k + π)) = ϕ(π)− ϕ(0). (15)

Then, using Eq. (6), we find that γ = π.
In addition, following similar derivation, one finds that

for PSA with (PT )2 = α ∈ {±1} and (PT )L(PT )−1 =
−L−1, we must have

γ = i lnα mod 2π, (16)

which is Eq. (8) in the main text.

Flux SSH model
Our proposed flux SSH model is a minimal model that
realizes the PSA in (3) and (4). According to Fig. 2a,
the explicit form of the model in real space can be
written as

H = t
∑
i

(c†i,aci,b + c†i,bci,c + c†i,cci,d − c†i,dci,a)

+t
∑
i

(c†i+1,bci,a − c†i+1,cci,d) + h.c.,
(17)

where the hopping parameter t is taken to be real posi-
tive, i labels the unit cell, the first term is intracell hop-
ping, and the second term is intercell hopping. For the



6

minimal model, we include the nearest neighbor hopping.
One can certainly add more complicated terms, such as
far-neighboring hoppings, but as long as they respect the
PSA, the topological character of the system must remain
unchanged.

Transforming to k space, the flux SSH model takes the
form of

HfSSH =


0 1 + eik 0 −1

1 + e−ik 0 1 0
0 1 0 1− e−ik

−1 0 1− eik 0

 , (18)

where we put it in dimensionless form (in unit of t). Its
band structure consists of four bands with

E(k) = ±
√

3± 2
√
1 + cos2 k, (19)

which has been plotted in Fig. 2d. Direct calculation
shows that every band here carries a π Zak phase, as we
predicted based on PSA. The topological end modes for
a flux SSH chain with 25 unit cells have been confirmed
by the results in Fig. 2e and f.

In connection with the original SSH model, we also
provide the following intuitive picture. In the flux SSH
model, consider the coupling between two neighboring
sites along the chain, e.g., between sites a and b. One
can readily identify two leading interaction paths, one
is direct hopping between the two, the other is to go
around three edges of a plaquette. Then, the effective
hopping amplitude is the superposition of two paths.
Clearly, the coupling is enhanced for 0-flux plaquettes
and reduced for π-flux plaquettes. As a result, one can
imagine that the effective hopping amplitudes form a
dimerization pattern similar to the original SSH model.
This offers an intuitive understanding of the result.

The spacetime inversion operator
For the flux SSH model with HfSSH(k) in Eq. (18), the
unitary matrix associated to PT is given by

UPT =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , (20)

which satisfies

UPTU
∗
PT = −1. (21)

It is straightforward to verify that

UPTH∗
fSSH(k)U

†
PT = HfSSH(k + π), (22)

i.e., PT translates k by π.

J matrix for the flux SSH circuit
By Kirchhoff’s law, our designed circuit has its circuit

Laplacian J(ω, k) = iωC1H(ω, k), where

H(ω, k) =


2η − λ 1 + eik 0 −ζ
1 + e−ik 3η − λ 1 0

0 1 2η − λ 1− ζe−ik

−ζ 0 1− ζeik 2η − λ

 ,
where η = (L1C1)

−1/ω2 − 1, ζ = (L1C1)
−1/ω2, and λ =

C2/C1. When we tune the driving frequency ω to the LC
resonance frequency ω0 = 1/

√
L1C1, we have η = 0 and

ζ = 1. Compared with the flux SSH model in Eq. (18),
we immediately notice that

H(ω0, k) = HfSSH(k)− λ1. (23)

Therefore, the designed circuit constitutes a realization
of our proposed flux SSH model.

Experimental details
In the designed circuit, we choose C1 = 1 nF, L1 = 5.6
µH, so the resonant frequency is 2.1268 MHz. Ideally, a
single capacitor with capacitance 1.48 nF can be chosen
to realize the desired C2, but in practice, it is difficult to
find proper capacitors with this exact value. Therefore,
we use two capacitors whose capacitances are C2a = 1
nF and C2b = 0.47 nF in parallel to realize C2. In this
way, the capacitance C2 achieved is 1.47 nF, slightly
lower than the ideal value.
In the electric circuit that we fabricated, the part

number of C1 and C2a is GRM1885C1H102FA01D, the
part number of L1 is SLF10145T-5R6M3R2-PF, and
the part number of C2b is GRM1885C1H471FA01D. All
impedance measurements were performed with a HP
4194A Impedance/Gain-Phase Analyzer.

Data availability
The data that support the plots within this paper
and other findings of this study are available from the
corresponding author upon reasonable request.
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