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Abstract—Cooperative spectrum sensing (CSS) is a promising
approach to improve the detection of primary users (PUs)
using multiple sensors. However, there are several challenges for
existing combination methods, i.e., performance degradation and
ceiling effect for hard-decision fusion (HDF), as well as significant
uploading latency and non-robustness to noise in the reporting
channel for soft-data fusion (SDF). To address these issues, an
integrated communication and computation (ICC) framework
is proposed in this paper. Specifically, distributed semantic
communication (DSC) jointly optimizes multiple sensors and the
fusion center to minimize the transmitted data without degrad-
ing detection performance. Moreover, over-the-air computation
(AirComp) is utilized to further reduce spectrum occupation
in reporting channel, taking advantage of characteristics of
wireless channel to enable data aggregation. Under the ICC
framework, a particular system, namely ICC-CSS, is designed
and implemented, which is theoretically proved to be equivalent
to the optimal estimator-correlator (E-C) detector with equal gain
SDF when the PU signal samples are independent and identically
distributed. Extensive simulations verify the superiority of ICC-
CSS compared with various conventional CSS schemes in terms
of detection performance, robustness to SNR variations in both
sensing and reporting channels, as well as scalability with respect
to the number of samples and sensors.

Index Terms—Cooperative spectrum sensing, distributed se-
mantic communication, over-the-air computation.

I. INTRODUCTION

W ITH the advent of the era of the Internet of Everything,
academia and industry have raised requirements for

the next generation mobile communication system, namely 6G
[1]. How to access massive Internet-of-Things (IoT) devices
and achieve ultra-high transmission rate with limited spectrum
resources is an urgent problem to be solved [2]. Cognitive
radio has been regarded as a promising technology to cope
with the increasingly scarce spectrum resources [3]. The phi-
losophy of cognitive radio is the reuse of spectrum resources,
which allows secondary users (SUs) to access the unlicensed
spectrum band opportunistically when primary users (PUs)
are inactive. To achieve this, SUs must be empowered with
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the cognitive ability, i.e., spectrum sensing, that enables them
to detect the state of PUs with the aim of avoiding inter-
system interferences. In view of this, spectrum sensing is the
foundation for realizing cognitive radio.

Over the last decade, to detect the idle spectrum, various
spectrum sensing methods have been developed based on the
covariance matrix which is considered a versatile test statis-
tic and contains various discriminative features [4]. Among
these methods, the estimator-correlator (E-C) detector [5] can
achieve the optimal detection performance using the likelihood
ratio. Unfortunately, prior information about PUs signals is
needed for the E-C detector, which greatly limits its applica-
tions in practice. Hence, semi-blind detection methods, e.g.,
energy detection (ED) [6] and maximum-eigenvalue detection
(MED) [7], have been proposed to reduce the requirement on
the prior information about PUs, and thus the signal-to-noise
ratio (SNR) is only required. Nonetheless, when the noise
power estimation is inaccurate, semi-blind detection methods
suffer from significant detection performance degradation. To
avoid the effect of noise power uncertainty, totally-blind meth-
ods, e.g., maximum-minimum eigenvalue detection (MMED)
[8] and covariance absolute value (CAV) detection [9], have
been developed for spectrum sensing, which do not require any
prior information. Nevertheless, the performance of totally-
blind methods is unsatisfactory to that of semi-blind detection
methods.

Furthermore, relying on a single SU for spectrum sensing is
inefficient due to the uncertainty of the channel characteristics
between the PU and the SU. Towards further improving
the detection performance, multiple sensors are utilized to
construct a sensor network and jointly determine the state of
the target PU, which is known as cooperative spectrum sensing
(CSS). Note that we use “sensor” instead of “SU” in the rest of
the paper. Generally, conventional fusion strategies adopted by
the fusion center (FC) can be divided into two categories, i.e.,
hard-decision fusion (HDF) and soft-data fusion (SDF) [10].
Specifically, HDF strategy is a two-level decision process to
determine the presence of the PU. Each sensor is required
to make local decisions based on the received signals and
transmits one bit that represents the state of the PU to the
FC. Then, the final decision is given at the FC with “and”,
“or”, or majority rules. In contrast, SDF strategy transmits the
test statistics directly to the FC for data fusion and decision-
making. Particularly, maximal ratio SDF, which requires the
estimation of noise power, and equal gain SDF, which does
not require any prior information, can be utilized for decision-
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making at the FC [10].
However, manual features employed in conventional CSS

schemes may prove inadequate for diverse wireless commu-
nication environments, and the manual design of features
tailored to specific scenarios can be prohibitively costly [11].
To mitigate this issue, deep learning-based CSS techniques
have been explored, which automatically extract discriminative
features from the collected data [12]. Specifically, a convo-
lutional neural network (CNN)-based detection framework,
namely CM-CNN, was proposed to capture the features hidden
behind the covariance matrix to further form a data-driven
test statistic, validating the feasibility of deep neural networks
(DNNs) in spectrum sensing [13]. Moreover, considering the
temporal correlation of the PU states, CNNs and long short-
term memory (LSTM) networks were employed to extract spa-
tial and temporal features simultaneously to further enhance
the detection performance [14], [15]. Besides, in order to deal
with the hidden node problem in CSS, graph convolution
networks (GCNs) were investigated to model the relationship
between different sensors to enhance the adaptability to dy-
namic changes in the wireless environment [16].

A. Motivations

Although the deep learning-enabled CSS can achieve out-
standing performance, there are still several challenging issues
that demand attention and further exploration. Specifically, the
communication overhead from connecting sensors to the FC,
as well as the inherent physical noise in the reporting channel,
are frequently overlooked. In such a case, the SDF strategy and
deep learning-based CSS techniques improves the accuracy
of spectrum sensing at the cost of significantly increased
communication overhead compared with the HDF strategy. On
the other hand, when considering a noisy reporting channel,
the SDF strategy and deep learning-based CSS techniques
may fail to perform the task and the HDF strategy has a
ceiling effect [10]. Consequently, the pivotal issue that needs
to be addressed is to minimize the number of transmitted
symbols within the reporting channel, meanwhile effectively
handling inevitable channel noise without compromising task
performance.

Furthermore, the growth in the number of sensors within
a sensor network necessitates an increased communication
resource requirement for data transmission through the re-
porting channel. When the number of sensors in a sensor
network becomes sufficiently large, the objective to improve
the spectral efficiency by means of having SUs to use the idle
spectrum may not prove viable if more spectrum resources are
used for reporting channels. Specifically, if Frequency Division
Multiple Access (FDMA) technique is adopted in the reporting
channel, the objective to improve the spectral efficiency via
the use of idle spectrum may not prove feasible, since more
spectrum resources are wasted to achieve the cooperation in
order to use the idle spectrum. On the other hand, if Time
Division Multiple Access (TDMA) technique is employed, the
FC has to spend much more time to receive the data from
sensors, which significantly impacts the timeliness of spectrum
sensing.

B. Our Contributions

For the first issue of the noisy reporting channel, DNN-
based distributed semantic communication (DSC) is utilized to
deal with physical noise and reduce the number of transmitted
symbols while guaranteeing the performance of the task. To
tackle the second issue of a large sensor network, over-the-
air computation (AirComp) is employed to enable compu-
tation during communication and efficiently utilize spectrum
resources, which mitigates resource constraints and addresses
scalability concerns related to the number of sensors. The
novel contributions of this paper are summarized as follows.

(1) Following the philosophy of inextricably linking com-
munication and computation [17], a novel integrated
communication and computation (ICC) framework is
proposed in this paper. By tightly integrating task com-
putation with source coding and channel coding (i.e.,
DSC), as well as electromagnetic wave transmission
in the air (i.e., AirComp), ICC framework can achieve
superior task performance with low spectrum resource
consumption. To the best of our knowledge, this is the
first integration of DSC and AirComp for task execution.

(2) Under the ICC framework, a novel DNN-based system
is implemented for CSS, namely ICC-CSS, which elim-
inates the need for prior information in online detection.
Specifically, the semantic encoder and semantic decoder
are specially designed and jointly optimized to explore
discriminative features and mitigate the noise in the
reporting channel. Meanwhile, the semantic encoders
distributed in different sensors share the same model
parameters, enabling scalability in terms of the number
of sensors.

(3) To clarify the effectiveness of ICC-CSS, theoretical
performance analysis is given which proves that ICC-
CSS is equivalent to the optimal E-C detector with equal
gain SDF when the PU signal samples are independent
and identically distributed (i.i.d.).

(4) Extensive simulations are conducted to compare ICC-
CSS with various conventional CSS schemes using
randomly generated signals. The results verify the supe-
riority of ICC-CSS in terms of detection performance,
robustness to SNR variations in both the sensing channel
and reporting channel, as well as the scalability related
to the number of samples and sensors.

The remainder of this paper is organized as follows. In
Section II, DSC and AirComp are briefly introduced. Section
III presents the system model and problem formulation. The
realization of the proposed system and theoretical performance
analysis are detailed in Section IV. In Section V, extensive
simulation results are provided to evaluate the performance of
the proposed system, and the conclusion is finally summarized
in Section VI.

Notations: The single boldface letters are used to represent
vectors or matrices and single plain capital letters denote
integers. Given a vector x, xi indicates its i-th component.
The single boldface capital letters denotes random variables
and Fraktur capital letters represent sets. Rm×n, Cm×n rep-
resent sets of real and complex matrices of size m × n,
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respectively. E(·) and lg denotes the expectation and base-
10 logarithm, respectively. x ∼ CN(µ, σ2) means variable
follows a circularly-symmetric complex Gaussian distribution
with mean µ and covariance σ2.

II. RELATED WORK

A. DSC

The foundational research on artificial intelligence (AI)-
enabled semantic communication systems was first developed
in [18] for text transmission, named DeepSC, in which DNNs
were leveraged as semantic encoder and decoder, and the
transceiver was jointly optimized to minimize the semantic
error rather than bit error. Following this idea, subsequent
work expanded DeepSC to other data modalities, including
images [19], speech [20], and covariance matrix in spectrum
sensing [21]. In addition to exploring diverse data modalities,
various techniques have been investigated to enhance the
efficacy of semantic communication systems. Specifically, two
primary approaches were explored at the transmitter end, i.e.,
the utilization of channel state information (CSI) [22] and
the investigation of semantic importance distribution [23].
These strategies aim to tackle varying channel conditions and
optimize resource allocation, respectively. At the receiver end,
several countermeasures have been implemented to mitigate
undesired distortions and reconstruct semantic information.
These measures include the integration of a hybrid automatic
repeat request mechanism [24], an iterative decoding architec-
ture [25] and a contextual reasoning mechanism [26].

While there is extensive research on single-user semantic
communication, there has been relatively limited investigation
into DSC. Given the growing ubiquity of IoT devices, DSC can
greatly reduce the communication overhead and enable edge
intelligence [27]. A DSC system was explored specifically
for the task of visual question answering, aiming to enable
users to answer the question cooperatively [28]. However, it
is important to note that this work is confined to the scenario
involving only two users and does not possess the capacity for
arbitrary scalability in terms of the number of users involved.
Therefore, there is an urgent need to develop arbitrary scalable
DSC for the massive communication scenario [1].

B. AirComp

AirComp is a promising technology to enable the wireless
channel the ability of computing, whose basic principle is
to harness the waveform superposition property of physical
channels to achieve over-the-air aggregation of data concur-
rently transmitted by devices [29]. Several critical issues in
AirComp have been widely studied, including power man-
agement, synchronization, architecture, and channel estimation
[30]. Besides, a typical application scenario is to compute the
arithmetic mean of symbols on multiple source devices during
transmission over a wireless data center network [31]. More-
over, AirComp has been widely used in federated learning to
aggregate model parameters, which can preserve privacy and
save communication overhead [32].

The limitations of AirComp arise from its restriction to
computing only explicit approximate nomographic functions,

Primary User 
(PU) Fusion Center 

(FC)Multiple Sensors

Sensing Channel Reporting Channel
(All sensors use the same 

spectrum band simultaneously.)

Primary User 
(PU) Fusion Center 

(FC)Multiple Sensors

Sensing Channel Reporting Channel

Fig. 1. Cooperative spectrum sensing scenario.

Sensing Slot Data Transmission Slot

Sensing Period

Fig. 2. Spectrum sensing time slot.

which constrains its potential applications [30]. However,
recent advancements have seen the utilization of DNNs to
replace both the pre-processing and post-processing functions
[33]. This enables the approximation of any unknown function
through learning from data, thereby expanding the scope of
potential application scenarios for AirComp. In this paper,
by taking advantage of DNN-enabled AirComp, DNNs are
employed to learn suitable pre-processing functions and post-
processing functions with the aim of conserving spectrum
resources and performing the task which satisfies the stringent
spectrum requirements of CSS.

III. SYSTEM MODEL

In this paper, a scenario for CSS is considered as illustrated
in Fig. 1, in which K sensors with M antennas and a PU with
one antenna are assumed. The PU randomly emits signals in a
licensed spectrum band, and K sensors, randomly distributed
in a certain area, receive signals through multiple antennas
at the same time. The licensed spectrum band is named as
sensing channel. After obtaining the raw data, each sensor
preprocesses the data and sends the processed data through
the reporting channel to the FC in order to make the final
decision cooperatively.

A. Sensors

The n-th signal sample emitted by the PU within one
sensing period can be denoted as s(n) ∈ C, where n ∈
{1, ..., N} is the sample index. Without loss of generality,
the PU signal s(n) is assumed to follow an i.i.d. complex
Gaussian distribution with zero mean and variance of σs

2,
i.e., s(n) ∼ CN (0, σs

2). Due to the fact that the existence of
PU signals is unknown, there are two hypotheses, i.e., H0 if
the spectrum is idle and H1 if the spectrum is occupied by the
PU at the current time. Thus, the n-th signal sample received
by the k-th sensor, i.e., xk(n) ∈ CM×1, can be formulated as

xk(n) =

{
h̃ks(n) + ũ(n), H1,

ũ(n), H0,
(1)

where the term h̃k ∈ CM×1 denotes the CSI from the
PU to the k-th sensor, and the noise ũ(n) ∈ CM×1 is an
i.i.d. circularly symmetric complex Gaussian (CSCG) vector
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Fig. 3. ICC framework that combines DSC and AirComp.

with zero mean and the covariance matrix with variance of
σ̃u

2, i.e., R̃u = σ̃u
2
IM . Since one sensing period is much

smaller than the coherence time, the CSI h̃k is assumed to
remain constant within one sensing slot as shown in Fig. 2,
which can be independently drawn from a complex Gaussian
distribution, i.e., h̃k ∼ CN (0, σ̃h

2
R̃h), where R̃h is the

channel covariance matrix and σ̃2
h is the channel gain. For

convenience, the uniform linear array is assumed to be adopted
by each sensor. Hence, the covariance matrix R̃h can be
represented by an exponential correlation model, i.e.,

[R̃h]p,q = ρ|p−q|, (2)

where ρ ∈ (0, 1) is a constant antenna correlation value and
(·)p,q denotes the p-th row, q-th column element. Besides, the
signal-to-noise ratio (SNR) of the sensing channel is defined
as

S̃NR = 10 lg
σ̃h

2
σs

2

σ̃u
2 . (3)

As pointed in [13], the statistical covariance matrix can be
utilized as a comprehensive test statistic since various discrim-
inative features are included. Considering the limitation of the
finite number of samples in practice, the sample covariance
matrix is used as an alternative to the statistical covariance
matrix. Therefore, at the end of a sensing slot, the sample
covariance matrix Rk ∈ CM×M received by the k-th sensor
can be obtained based on N observation vectors, given by

Rk =
1

N

N∑
n=1

xk(n)x
H
k (n). (4)

After obtaining the sample covariance matrix, preprocessing is
required since the capacity of the reporting channel is limited
due to the ubiquitous noise. Expanding the spectrum band to
increase the reporting channel capacity is counterproductive to
cognitive radio. On the other hand, the presence of significant
redundant information within Rk makes compression possible.
Hence, Rk is pre-processed at each sensor and the process is
formulated as

yk = Fen(Rk;α), (5)

where Fen(·;α) represents a semantic encoder constructed by
DNNs, and yk ∈ CD×1 denotes the complex symbols obtained
by k-th sensor, which carries the essential information for
detecting the presence of PU. Note that all sensors share the
same model parameters α.

B. Fusion Center

After the raw data has been processed independently at each
sensor as shown in Fig. 3, yk needs to be transmitted to the FC
through the reporting channel for a joint final decision-making.
In conventional CSS schemes, Fen(·;α) can be viewed as
model-based approaches and yk, k ∈ [1, ...,K] are transmitted
through different time slots or different spectrum bands. In
such a case, the received signal for k-th sensor, zck ∈ CD×1,
can be formulated as

zck = ĥk b̂kyk + ûk, (6)

where ĥk ∈ C denotes the CSI for k-th sensor in the reporting
channel and can be estimated by various channel estimation
methods such as maximum likelihood. Consequently, the result
of the channel estimation is denoted as b̂k, which can be
utilized to mitigate the impact of channel fading on yk at the
transmitter. Besides, ûk in (6) is the additive white Gaussian
noise (AWGN), which formulated as an i.i.d. CSCG vector
with zero mean and the covariance matrix with variance of
σ̂u

2, i.e., R̂u = σ̂u
2
IM . Furthermore, the SNR of the reporting

channel is given by

ŜNR = 10 lg
P̂y

σ̂u
2 , (7)

in which P̂y is the average power of the complex symbols
yk,∀k = {1, 2...K}.

However, the fusion strategies based on (6) exhibit signif-
icant disadvantages. Specifically, for HDF methods, we have
the following proposition.

Proposition 1. In the case of HDF methods, in which D,
the dimension of zck, is equal to 1, a performance upper
bound exists when S̃NR tends towards infinity while ŜNR
remains fixed. This upper bound is attributed to the presence of
noise in the reporting channel. Conversely, when ŜNR tends
towards negative infinity, the signal becomes dominated by
noise, leading to convergence of the detection probability.

Proof: Please refer to Appendix A. ■

On the other hand, SDF methods require a higher value of
D, which depends on the quantization technique. It becomes
evident that any contamination of a high bit in the data will
have a significant impact on the final decision. Hence, SDF
methods can only achieve favorable performance when ŜNR
is extreme high, which may not be achievable in practice.

Therefore, in the proposed ICC framework, all sensors adopt
the same spectrum and simultaneously send their respective
signals with the goal of computing a multivariate function. In
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this paper, it is assumed that the sensors’ transmissions are
well synchronized. The received complex symbols z ∈ CD×1

can be formulated to replace (6) as

z =
1

K
(

K∑
k=1

ĥk b̂kyk) + û. (8)

Then the received complex symbols z are processed by a
DNN-based semantic decoder, denoted as Fde(·;β), to obtain
a final decision about the presence of PU, given as

hα,β|H1
(R) = Fde(z;β), (9)

in which β is the model parameters of semantic decoder,
and hα,β|H1

(R) ∈ [0, 1] represents the probability of PU
existence. Besides, R is used to denote the set {Rk, k =
1, 2, ...,K} for convenience, which is the current input of the
semantic encoder Fen(·;α). Correspondingly, the probability
that PU is absent is given by

hα,β|H0
(R) = 1− hα,β|H1

(R) . (10)

Finally, hα,β|H1
(R) can be utilized as a test statistic T

according to Proposition 2 as shown below.

Proposition 2. To maximize the probability of detection for
a given probability of false alarm, a test statistic T can be
defined as

T = hα,β|H1

H1

≷
H0

γ, (11)

in which γ is the detection threshold that could be determined
using the Monte Carlo method for a desired false alarm
probability value. If T > γ, the PU is considered to exist,
i.e., H1. Conversely, if T < γ, the PU is regarded as absent,
i.e., H0.

Proof: Please refer to Appendix B. ■

C. Problem Formulation

The objective of the ICC framework is to accurately deter-
mine the state of the PU with less spectrum resources occupied
by the reporting channel. For convenience, the true state of PU
is denoted by a binary indicator e, in which e = 1 and e = 0
denote the existence and non-existence of PU, respectively. As
mentioned before, the output of semantic decoder Fde(·;β)
can be regarded as the probability value for determining the
presence of PU under H1. Thus, the probability expressions
of two hypotheses are defined as

H1 :P (e = 1 | R,α,β) = hα,β|H1
(R) ,

H0 :P (e = 0 | R,α,β) = hα,β|H0
(R) .

(12)

Based (12), the likelihood function can be derived, and the
optimization problem can be formulated as follows.

Optimization 1. In this paper, the primary objective is to
cooperatively achieve accurate detection of the PU state by
all sensors, while ensuring that the number of transmitted

symbols in the reporting channel remains within an acceptable
threshold, i.e.,

max
α,β

L(α,β) =

I∏
i=1

[
(
hα,β|H1

(
R(i)

))e(i) (
hα,β|H0

(
R(i)

))1−e(i)

],

(13)
s.t. D(α,β) ≤ ∆, (14)

in which ∆ represents the maximum number of transmitted
symbols in one sensing period and D(α,β) is the number
of symbols to be transmitted by the current network. It is
intuitive that as D(α,β) increases, more information will be
sent to the FC, leading to better detection performance but a
larger overhead. In addition, e(i) is the binary indicator for
i-th sample representing the true state of PU, and I indicates
the total number of samples.

Note that D(α,β) is determined by the given neural
network structure. Hence, we first need to design the neural
network that satisfies the constraint (14), which will be detailed
in Section IV. Based on the neural network structure, (13) is
optimized. To facilitate the derivation, (13) can be taken the
logarithm, and maximizing (13) is mathematically equivalent
to minimize the cost function, i.e.,

J (α,β) = −1

I
lgL(α,β)

= −1

I

I∑
i=1

[e(i) lg hα,β|H1

(
R(i)

)
+
(
1− e(i)

)
lg
(
1− hα,β|H1

(
R(i)

))
].

(15)

By reducing (15), Fen(·;α) and Fde(·;β) can jointly learn
how to extract task-oriented features and give the judgement
as accurate as possible.

IV. PROPOSED ICC-CSS SYSTEM IMPLEMENTATION

In this section, based on the proposed ICC framework,
a DNN-based system for CSS, namely ICC-CSS, is imple-
mented and detailed. The architecture of ICC-CSS is shown
in Fig. 4. To give a more detailed network setup, the specific
settings of the semantic encoder and decoder are provided in
Table I. Besides, the training process is illustrated in Algorithm
1 in which the transmitter and receiver are jointly optimized
to achieve successful transmission.

A. Semantic encoder

In semantic communication systems, the transmitter typi-
cally focuses on feature extraction and noise resistance. Mean-
while, the pre-processing is necessary for AirComp to perform
the desired aggregation function, which can be implemented
by a DNN. Hence, in the proposed ICC-CSS system, a DNN-
enabled semantic encoder is used to realize feature extraction,
pre-processing, and noise resistance simultaneously.

Specifically, as shown in Fig. 4, the semantic encoder
distributed across each sensor consists of three kinds of com-
ponents, including inception blocks, a global average pooling
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Fig. 4. The network structure of our proposed ICC-CSS system.

TABLE I
THE SETTINGS OF ICC-CSS TRANSCEIVER.

Transceiver Layer Name Activation

Semantic Encoder

Inception Block ×3
(4× 14× 14)∗,

(8× 7× 7),
(16× 4× 4)

Parallel Depthwise Separable Convolution Layers
with different kernel size (3× 3, 5× 5, 7× 7) ELU

Concat Layer None∗∗

Convolution Layers ×2 ELU
Batch Normalization Layer None

Global Average Pooling Layer (16× 1) None
Power Normalization Layer (16× 1) None

Semantic Decoder

Residual Block ×6
(32× 1), (64× 1), (128× 1)
(64× 1), (32× 1), (16× 1)

Linear Layer with residual connection input ELU
Linear Layer ELU
Linear Layer with residual connection output ELU
Batch Normalization Layer None

Linear Layer (1× 1) Sigmoid

∗ (· × · × ·) and (· × ·) denote the dimensions of the output data for each block or layer.
∗∗ “None” indicates that the layer does not need an activation function.

Algorithm 1 Training of the Proposed Neural Network.
Input: Training data set R, the initial network parameters α

and β, as well as the constraint ∆.
Output: The well-trained network Fen(·;α∗) and
Fde(·;β∗).

1: for R(i) in R do
2: for Rk in R(i) do
3: yk ← Fen(Rk,α)
4: end for
5: Pass signal through the noisy reporting channel accord-

ing to (8)
6: hα,β|H1

(R(i))← Fde(z,β)
7: J (α,β)← Compute the loss function by (15)
8: Update α and β ← Gradient descent to minimize

J (α,β)
9: end for

layer, and a power normalization layer. The inception block
[34] employs three depthwise separable convolution layers
with different convolution kernels, i.e., 3 × 3, 5 × 5 and
7 × 7, to process the input data in parallel with the aim
of acquiring intermediate features at different receptive field
scales. Then, the intermediate features obtained from depth-
wise separable convolution layers are concatenated together
and subsequently subjected to further processing through two
convolution layers with the exponential linear unit (ELU)
activation function and a batch normalization layer. During
the process of three inception blocks, the shape of input
data changes from 2 × 28 × 28 to 4 × 14 × 14, further

to 8 × 7 × 7 and finally to 16 × 4 × 4. Next, the global
average pooling layer is applied to decrease the dimensionality
of the data, making it more suitable for transmission, and
avoiding overfitting. Subsequently, the power normalization
layer is utilized to guarantee that the average energy of the
transmitted symbols is equal to 1. Considering that the channel
characteristics of different sensors within a sensor network
are generally similar, the semantic encoders distributed across
different sensors are designed to share the same parameters.
By doing so, the number of sensors in the proposed system
is scalable without retraining. In scenarios where the channel
characteristics of different sensors diverge, it is also feasible
to design neural networks with different parameters for each
semantic encoder, with only minor modifications to Algorithm
1. While this strategy may yield a slight improvement in
detection performance, it significantly limits the scalability of
the number of sensors and prolongs the convergence time.

B. Semantic decoder

Similar to the semantic encoder, semantic decoder performs
noise reduction, post-processing and final decision-making
simultaneously. Specifically, after collecting a superposition
of symbols from multiple sensors, the obtained data, which is
polluted by noise, requires further processing to determine the
ultimate probability of the PU state. The semantic decoder
comprises six residual blocks, an extra linear layer, and a
sigmoid function. Each residual block consists of three linear
layers with a residual connection [35], [36], which is followed
by an ELU activation function. The utilization of residual
block can mitigate gradient vanishing and gradient explosion.
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(a) ŜNR = +∞ dB (b) ŜNR = 0 dB

Fig. 5. ROC curves under different algorithms when K = 6, M = 28, N = 100, S̃NR = −15 dB.

Following six residual blocks, a linear layer is utilized to
reduce the data dimension to a size of (1 × 1). Ultimately,
a sigmoid function is applied as a squashing function, con-
straining the output to the range of (0, 1), which represents
the predicted probability.

C. Theoretical Performance Analysis

Due to the intricate hierarchical architecture and numerous
parameters of ICC-CSS, direct theoretical analysis is imprac-
ticable. Hence, to facilitate analysis, a simplified model is
considered as a degenerate version of ICC-CSS, which can
be obtained by setting numerous parameters in ICC-CSS to
either 0 or 1. Specifically, the simplified model consists of a
convolution layer with ELU activation function and a global
average pooling layer at the semantic encoder, as well as a
linear layer with sigmoid function at the semantic decoder.
Using this simplified model, we analyze the asymptotic per-
formance of the proposed ICC-CSS under the special case
where R̃h = IM . This analysis allows us to derive and express
Proposition 3 as shown below.

Proposition 3. The proposed ICC-CSS approach can be
equivalent to the ED method with equal gain SDF. Moreover,
when the PU signal samples are i.i.d., i.e., R̃h = IM , ICC-
CSS approach can be equivalent to the optimal E-C detector
with equal gain SDF.

Proof: Please refer to Appendix C. ■

V. SIMULATIONS AND RESULTS

In this section, simulation settings are first provided. Next,
the performance of the proposed ICC-CSS system is evaluated
and compared with conventional CSS schemes. Moreover,
ablation studies are conducted to further analyze the proposed
system.

A. Simulation Settings

In this paper, the scenario for CSS task is considered in
which K sensors with M antennas and one PU with one

antenna are assumed. Unless otherwise specified, the number
of sensors K equals 6, each sensor has M = 28 antennas, and
the number of signal samples in each sensing slot N is 100.
Besides, the Adam optimizer with a learning rate of 1×10−3,
batch size of 512, and training epochs of 100 is adopted in our
experiments. All simulations are performed by the computer
with Intel Core i7-11700K @ 3.60GHz and NVIDIA RTX
2080Ti.

In order to achieve a comprehensive comparison, four
local spectrum sensing methods and two combination methods
are employed, yielding eight comparison methods in total.
Specifically, four covariance matrix-based spectrum sensing
methods are employed, which are listed below.

• MED: Maximum-eigenvalue detection [7].
• ED: Energy detection [6].
• MMED: Maximum-minimum eigenvalue detection [8].
• CAV: Covariance absolute value detection [9].

It is noteworthy that MED and ED are semi-blind methods,
which require the estimation of noise power. In our simula-
tions, the estimation of noise power is assumed to be accurate.
Thus, the results of MED- and ED-based schemes are actually
upper bounds on their performance. In contrast, MMED and
CAV are totally-blind methods, which need no information
on signal or noise. Besides, the proposed ICC-CSS requires
sample covariance matrices of signals and noise for training.

At the FC side, two combination methods are utilized, which
are listed as following.

• HDF: Each sensor passes a one-bit local decision through
the reporting channel with binary phase shift keying
(BPSK) modulation. Then, the majority rule, which is
superior to “and” and “or” rules, is applied at the FC
[37].

• SDF: The output of each local spectrum sensing method
is quantized to eight bits and transmitted to the FC with
BPSK modulation. Then, equal gain combining fusion
rule is applied which requires no prior information.

By varying different values of probability of false alarm,
different thresholds can be obtained corresponding to prob-
ability of detection values. It is worth noting that in HDF-
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TABLE II
COMPARISON IN ONE SENSING PERIOD. UNLESS OTHERWISE SPECIFIED K = 6, M = 28, N = 100, S̃NR = −15 dB, AND ŜNR = 0 dB.

Metrics
Methods HDF SDF

ICC-CSS ICC-CSS
w\o AirCompED MED MMED CAV ED MED MMED CAV

Pd (Pfa = 10−3) 0.257 0.710 0.106 0.008 0.003 0.028 0.004 0.005 0.998 0.995

Pd (Pfa = 10−1) 0.771 0.872 0.317 0.902 0.216 0.529 0.171 0.176 1.000 1.000

Symbols 6 (K) 6 (K) 6 (K) 6 (K) 48 (8×K) 48 (8×K) 48 (8×K) 48 (8×K) 8 48 (8×K)

Parameters −∗ - - - - - - - 82,337 83,889

Inference Time∗∗ (ms) 0.091 1.658 1.659 0.216 0.091 1.658 1.659 0.216 CPU:1.842
GPU:0.794

CPU:1.873
GPU:0.812

∗ The symbol “-” represents the metric is needless.
∗∗ The computation time for conventional methods is evaluated on central processing unit (CPU), while ICC-CSS is evaluated both on CPU and graphics
processing unit (GPU).

(a) Pf = 0.001 (b) Pf = 0.1

Fig. 6. Probability of detection Pd versus S̃NR under different algorithms when K = 6, M = 28, N = 100, ŜNR = 0 dB.

based methods, the detection thresholds can be directly derived
by equations in [6]–[9] with majority rule [37]. For SDF-
based methods and ICC-CSS, the detection thresholds are
derived using the Monte Carlo method for a desired probability
of false alarm value. Besides, the primary emphasis of this
paper is the ICC framework with channel estimation not
being the central focus. Consequently, following the prior
research on semantic communication [18], [20], [22], [38]
and AirComp [31], [33], the assumption of perfect CSI in
reporting channel is used for both conventional schemes and
ICC-CSS which ensures a fair comparison. Additionally, the
omission of error correction codes in conventional schemes is
justified by avoiding the substantial increase in the number of
transmitted symbols, which is a critical consideration for the
comprehensive evaluation.

B. Results and Analysis

The detection performance, as measured by the receiver
operating characteristics (ROC), is illustrated in Fig. 5 under
various algorithms for the following settings: K = 6, M = 28,
N = 100, and S̃NR = −15 dB. In an ideal scenario where
the reporting channel is noiseless, i.e., ŜNR = +∞ dB,
SDF-based schemes outperform corresponding HDF-based
schemes, as shown in Fig. 5a, at the expense of requiring

a wider bandwidth for the reporting channel. However, when
considering a more realistic scenario with a practical reporting
channel where ŜNR = 0 dB, the performance of SDF-based
schemes significantly deteriorate, becoming inferior to HDF-
based schemes, as shown in Fig. 5b. This degradation can
be attributed to the significant impact on decision-making at
the receiver when any high bit of transmitted data are cor-
rupted. Notably, the proposed ICC-CSS demonstrates superior
performance compared to conventional methods even when
ŜNR = 0 dB, as it simultaneously performs feature extrac-
tion and noise resistance with limited number of transmitted
symbols.

To provide a specific and clear comparison among the
schemes, Table II presents quantitative indicators of different
methods, further highlighting the advantages of our scheme.
It can be observed that ICC-CSS requires only 8 symbols in
one sensing period, which is similar to 6 symbols required by
HDF-based schemes and significantly lower than 48 symbols
required by SDF-based schemes. Furthermore, for HDF-based
schemes and SDF-based schemes, the number of transmitted
symbols is increased linearly with the number of sensors. In
contrast, ICC-CSS maintains a constant number of transmitted
symbols regardless of the number of sensors involved. It is
worth noting that semantic communication demonstrates the
ability to greatly compress the data while guaranteeing the



9

(a) Pf = 0.001 (b) Pf = 0.1

Fig. 7. Probability of detection Pd versus ŜNR under different algorithms when K = 6, M = 28, N = 100, S̃NR = −15 dB.

detection performance, as compared to sending all the raw
data directly to the FC side and then fusing it. Despite the
satisfactory performance of ICC-CSS, it is important to note
that a certain amount of storage space is required to store the
network parameters due to the nature of DNNs. Additionally,
the inference time for each method is illustrated. The ED
method requires the least amount of time, while eigenvalue-
based detection methods such as MED and MMED necessitate
more time due to the time-consuming eigenvalue decomposi-
tion process. The proposed ICC-CSS, requiring 1.842 millisec-
onds in one sensing period, is comparable to eigenvalue-based
detection methods. Nevertheless, it is worth mentioning that
ICC-CSS, based on DNNs, can easily reduce the inference
time by half when utilizing a graphics processing unit (GPU).
Additionally, the ICC-CSS system without AirComp is also
evaluated, which demonstrates the effect of AirComp.

Fig. 6 illustrates the relationship between the probability
of detection Pd and S̃NR, which demonstrates the effect of
SNR in the sensing channel. Upon analysis, it is clear that
the performance of each scheme improves to some extent as
S̃NR increases. Particularly, the ICC-CSS scheme exhibits a
remarkable ability to approach a detection probability of 1.0

when S̃NR = −14dB, Pf = 0.001, or S̃NR = −18dB,
Pf = 0.1, surpassing other schemes. In contrast, SDF-based
schemes face challenges when operating at Pf = 0.001 due to
the stringent requirements for the probability of false alarm.
Nevertheless, when Pf equals 0.1, it is evident that Pd of
SDF-based schemes increases with S̃NR, in which CAV-SDF
demonstrates the most significant improvement. Moreover, it
is observed that HDF-based schemes exhibit a performance
upper bound of approximately 0.94, which can be attributed to
the presence of noise in the reporting channel as substantiated
in Appendix A.

Fig. 7 displays the relationship between the probability of
detection Pd and ŜNR, representing the SNR in the reporting
channel. As ŜNR increases, each scheme converges to a
stabilizing value, which is consistent to Fig. 5a. Notably, the
SDF-based schemes exhibit a significant boost in the range

Fig. 8. Probability of detection Pd versus signal samples N under different
algorithms when K = 6, M = 28, S̃NR = −15 dB, ŜNR = 0 dB,
Pf = 0.001.

of 4dB to 6dB when Pf = 0.001, and 2dB to 4dB when
Pf = 0.1. This improvement can be attributed to the reduction
in bit error rate achieved through BPSK modulation under
AWGN channel, resulting in a decrease from 0.1040 at 2dB
to 0.0230 at 6dB. On the other hand, as ŜNR decreases,
the HDF-based schemes converge to a specific value, as
proved in Appendix A. This behavior stems from the impact
of extremely low ŜNR values. In such a case, the noise
in the reporting channel is prominent, causing the decisions
received by the FC to be uncorrelated with the decisions sent
by sensors. Notably, the proposed ICC-CSS scheme exhibits
extreme robustness against variations in ŜNR.

In order to comprehensively evaluate our system, Fig. 8
showcases the probability of detection Pd versus the number
of samples N within one sensing period. As the number of
signal samples N increases, the sample covariance matrix
approaches the statistical covariance matrix, resulting in an
improvement in the probability of detection. When N is
increased from 20 to 60, the ICC-CSS scheme exhibits a
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Fig. 9. Probability of detection Pd versus the number of sensors K under
different algorithms when M = 28, N = 100, S̃NR = −10 dB, ŜNR =
0 dB, Pf = 0.001.

significant increase in the detection probability to 0.97, which
outperforms the other schemes. Additionally, the eigenvalue-
based schemes, i.e., MED-HDF and MMED-HDF, as well
as ED-HDF scheme, also demonstrate noticeable performance
improvement as N increases. It is important to note that when
Pf = 0.001, the SDF-based schemes fail to detect the state of
PU due to the stringent requirement imposed by the probability
of false alarm and the impact of the noisy reporting channel.

Furthermore, the impact of the number of sensors K is also
investigated on the system performance, as depicted in Fig.
9. The results clearly demonstrate that the probabilities of
detection achieved by HDF-based schemes exhibit a significant
increase as the value of K increases, eventually approaching
a value close to 1.0. Among HDF-based schemes, K has the
greatest impact on CAV-HDF scheme. On the other hand,
due to the limitations imposed by ŜNR, the performance
improvement of SDF-based schemes is relatively gradual.
Crucially, the proposed ICC-CSS scheme is designed to be
scalable for varying numbers of sensors, without requiring
retraining. Thus, it exhibits an exceptional level of robustness
to changes in the number of sensors, making it a highly reliable
solution.

As stated in Section III, AirComp is employed in our
system, which enables signals transmitted by different sensors
to be aggregated over the air. To verify the effectiveness
of AirComp, a constellation diagram is drawn as shown in
Fig. 10, including complex symbols transmitted by multiple
sensors in the presence and absence of the PU. Different colors
represent different sensors, and different markers indicate the
states of the PU. It is worth noting that when the PU is
absent, the energy of the complex symbols sent by each sensor
is extremely low, resulting in a correspondingly low energy
received at the FC. Conversely, in the presence of the PU,
sensors will transmit symbols with significantly higher energy
compared to the scenario where the PU is absent. Furthermore,
the complex symbols sent by different sensors at the same time
result in a consistent phase, as indicated by ellipses in Fig.
10, effectively reinforcing the superposition of the received

Fig. 10. The constellation diagram of ICC-CSS when K = 6, M = 28,
N = 100, S̃NR = 0 dB, in which different colors represent different
sensors, and different markers indicate different states of PU.

complex signals at the FC, thereby enhancing the resilience
of the system against noise, and bolstering overall robustness.
Additionally, when the PU exists, the majority of transmitted
symbols exhibit a positive in-phase component with only a
few displaying a slight negative quadrature component. This
intriguing phenomenon is attributed to the characteristics of
the activation function within the ICC-CSS system, i.e., ELU.
The output range of the ELU activation function, namely
(−1,+∞), imposes a tendency for the data to converge
towards positive values, which delineates a noteworthy char-
acteristic of the DNN-based system in the realm of signal
processing and transmission.

VI. CONCLUSIONS

In this paper, we have introduced a novel framework inte-
grating communication and computation, which utilizes the
sample covariance matrix for simultaneous communication
and computation. To the best of our knowledge, this is the
first integration of DSC and AirComp for task execution.
Within the proposed ICC framework, we have designed and
implemented the CSS task, which is optimized to extract
discriminative features and mitigate noise in the reporting
channel. Furthermore, we have theoretically proved that the
ICC-CSS approach is equivalent to the optimal E-C detector
with equal gain SDF when PU signal samples are i.i.d. Ex-
tensive simulations have validated the detection performance,
robustness to SNR variations in both the sensing and reporting
channels, as well as scalability with respect to the number of
samples and sensors. These results have provided empirical
evidence supporting the superiority of ICC-CSS compared
with various conventional schemes. It will be our future work
to apply the proposed ICC framework to various IoT scenarios,
such as unmanned aerial vehicle swarm communication and
vehicle-to-everything, addressing the challenge posed by the
increasing number of device accesses and the scarcity of
spectrum resources.
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APPENDIX A
PROOF OF THE PROPOSITION 1

Considering a limiting case when S̃NR → +∞ (dB), all
sensors can make the right decisions. Thus, the crux of the
problem is that the noise in the reporting channel affects trans-
mission, which consequently leads to FC judgement errors. For
BPSK modulation, the bit error rate can be written as

Pe = Q(
√

2Eb

N0
), (16)

where Q(·), Eb and N0 represent Q function, energy per
bit and noise power spectral density, respectively. Besides,
according to the majority rule, the probability of detection
can be formulated as [10]

Pd =

K∑
x=⌈(K+1)/2⌉

CxK(1− Pe)
x
(Pe)

K−x, (17)

where ⌈·⌉ represents the up rounding operation. In our simula-
tions, ŜNR and K are set to 0dB and 6, respectively. There-
fore, the probability of detection Pd can be calculated using
(17) as 0.9452, which aligns with the observed experimental
phenomenon in Fig. 6. This finding highlights the role of ŜNR
in determining the ceiling effect of HDF-based schemes.

In another limiting case where ŜNR → −∞ (dB), repre-
senting infinite noise in the reporting channel, the bit error
rate can be determined as 0.5 using (16). In such a case,
the decisions received by the FC, polluted by noise, become
independent of the decisions sent by the sensors and tend
towards a random distribution. Consequently, when K = 6 in
our simulations, according to the majority rule and (17), the
probability of detection Pd can be calculated as 0.3438, which
is consistent with the observed experimental phenomenon in
Fig. 7.

This concludes the proof.

APPENDIX B
PROOF OF THE PROPOSITION 2

Based on Bayes’ theorem, we have

P (R | H1) =
P (H1 | R) · P (R)

P (H1)
=

hα,β|H1
· P (R)

P (H1)
(18)

and

P (R | H0) =
P (H0 | R) · P (R)

P (H0)
=

hα,β|H0
· P (R)

P (H0)
, (19)

in which R denotes the set {Rk,∀k ∈ {1, 2, ...K}}. For the
convenience of analysis, P (H0) = P (H1) = 0.5

Lemma 1. (Neyman-Pearson Lemma [5]) To maximize prob-
ability of detection for a given probability of false alarm, we
decide H1 if

L(R) = P (R | H1)

P (R | H0)
> γ⋆, (20)

in which L(R) is a likelihood ratio, and γ⋆ is the detection
threshold.

Substituting (18) and (19) into (20), L(R) can be further
expressed as

L(R) =
hα,β|H1

hα,β|H0

· P (H0)

P (H1)
=

hα,β|H1

hα,β|H0

H1

≷
H0

γ⋆, (21)

where γ⋆ is a positive number. Since the sum of probabilities
under two hypotheses equals to 1 according to (10), the test
statistic can be written as

hα,β|H1

H1

≷
H0

γ⋆ · (1− hα,β|H1
), (22)

thus

hα,β|H1

H1

≷
H0

γ⋆

1 + γ⋆
≜ γ, (23)

where γ is a positive number in the range (0, 1).
This concludes the proof.

APPENDIX C
PROOF OF THE PROPOSITION 3

Given the intricate nature of the hierarchical architecture and
vast number of parameters of the proposed ICC-CSS, conduct-
ing direct theoretical analysis becomes impracticable. Thus, a
simplified model is considered, including a convolution layer
with ELU activation function and a global average pooling
layer at the semantic encoder, and a linear layer with sigmoid
function at the semantic decoder. It is worth noting that this
model can be viewed as a degenerate version of ICC-CSS,
where numerous parameters are set to either 0 or 1. Hence,
similar to [13], the simplified model is formulated as a non-
linear function and analyzed the asymptotic performance in
terms of the test statistic.

According to (4), when the number of samples is large
enough, the distribution of statistic covariance matrix can be
expressed as

Rk =

{
σs

2R̃h + σ̃u
2
IM , H1,

σ̃u
2
IM , H0.

(24)

In the case where the values of σs
2R̃h and σ̃u

2 are known
for each sensor, the E-C detector is proven to be the optimal
choice [5]. Meanwhile, if the average received signal power of
each sensor is known, the optimal SDF scheme can be derived
[39]. Considering a specific scenario where R̃h = IM , the ED
method is demonstrated to be optimal and equivalent to the E-
C detector. Simultaneously, assuming the mean received signal
power of each sensor is equal, the equal gain SDF scheme
is equivalent to the optimal SDF scheme. In such a case,
the real part and imaginary part of the input matrix turn to
a diagonal matrix σ2IM and 0M , respectively, in which σ2

representing the energy. Hence, the element of the input layer
can be expressed as

S0(i, j, λ) =

{
σ2, i = j and λ = 0,

0, otherwise,
(25)

in which (i, j, λ) denotes the p-th row, q-th column, λ-th
channel. After the convolution layer, the element of the output
feature map S1(i, j, λ) can be expressed as (26), in which



12

S1(i, j, λ) = fELU

L−1∑
i0=0

L−1∑
j0=0

[S0(i+ i0, j + j0, 0) ·Kλ(L− i0, L− j0, 0)]



= fELU


M∑
d=1

∑
i+i0=j+j0=d,
0≤i0≤(L−1),
0≤j0≤(L−1)

[S0(d, d, λ) ·Kλ(L− i0, L− j0, 0)]



= fELU

σ2
M∑
d=1

∑
i+i0=j+j0=d,
0≤i0≤(L−1),
0≤j0≤(L−1)

Kλ(L− i0, L− j0, 0)



= σ2fELU


M∑
d=1

∑
i+i0=j+j0=d,
0≤i0≤(L−1),
0≤j0≤(L−1)

Kλ(L− i0, L− j0, 0)

 .

(26)

Kλ(·, ·, ·) and L denotes the λ-th convolutional kernel and
the kernel size, respectively. Besides, fELU (·) is the activation
function which can be written as

fELU (x) =

{
x, x ≥ 0,

ex − 1, x < 0.
(27)

In order to be more clearly, let

ηi,j,λ =

M∑
d=1

∑
i+i0=j+j0=d,
0≤i0≤(L−1),
0≤j0≤(L−1)

Kλ(L− i0, L− j0, 0), (28)

which is a constant term. Thus, we can rewrite (26) as

S1(i, j, λ) = σ2fELU (ηi,j,λ)

=

{
ηi,j,λσ

2, ηi,j,λ ≥ 0,

(eηi,j,λ − 1)σ2, ηi,j,λ < 0.

(29)

After the global average pooling layer, the output can be
formulated as

S2(λ) = σ2 1

(M − L+ 1)
2

(M−L+1)∑
i=1

(M−L+1)∑
j

fELU (ηi,j,λ),

(30)
which can be further rewritten as

S2(λ) = ζλσ
2, (31)

where a constant term ζλ as shown in (32) is utilized to
simplify notation.

ζλ =
1

(M − L+ 1)
2

(M−L+1)∑
i

(M−L+1)∑
j

fELU (ηi,j,λ). (32)

Note that the above analysis is based on a single sensor.
When multiple sensors are used, superscript are used to

distinguish the power received by different sensors. In the
reporting channel, symbols from different sensors are added
together as well as channel noise. As mentioned in Section III,
the channel noise is assumed to be AWGN with zero mean.
Hence, the input data for semantic decoder can be formulated
as

S3(λ) =

K∑
k

Sk
2 (λ)+nλ =

K∑
k

ζλσ
k2+nλ = ζλ

K∑
k

σk2+nλ.

(33)
The weights associated with the linear layer at semantic
decoder is denoted by Θ = [θ1, θ2, ..., θΛ]

T . Finally, the output
of the simplified model can be formulated as

S4 = fsigmoid

(
ΘTS3

)
= fsigmoid

(
Λ∑
λ

θλ

(
ζλ

K∑
k

σk2

)
+

Λ∑
λ

θλnλ

)

= fsigmoid

(
K∑
k

σk2
Λ∑
λ

θλζλ +

Λ∑
λ

θλnλ

)

= fsigmoid

(
ϕ

K∑
k

σk2 +

Λ∑
λ

θλnλ

)
,

(34)

in which ϕ =
∑Λ

λ θλζλ, and fsigmoid(·) represents

fsigmoid(x) =
1

1 + e−x
. (35)

Notably, for a well-trained DNN, the parameters ϕ and
Θ are fixed. Thus, due to the effects of random noise, the
test statistic can be obtained by expectation of (34), which is
formulated as

T = E
(

1

1 + e−ϕ
∑K

k σk2

e−
∑Λ

λ θλnλ

)
=

1

1 + e−ϕ
∑K

k σk2E(e−
∑Λ

λ θλnλ)
.

(36)
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Since nλ, ∀λ = [1, ...,Λ] follows i.i.d. Gaussian distribution,
−
∑Λ

λ θλnλ is also Gaussian distribution, and thus e−
∑Λ

λ θλnλ

is exponential distribution. Hence, ϖ can be used to represent
the expectation of e−

∑Λ
λ θλnλ , which is a constant. Besides,

the test statistic TED for ED method with equal gain SDF can
be express as

TED =

K∑
k

σk2. (37)

Consequently, the test statistic of the simplified model can be
formulated as

T =
1

1 +ϖe−ϕTED
, (38)

where ϕ and ϖ are constants. Therefore, the proposed ICC-
CSS method can be equivalent to ED method with equal gain
SDF, that is, the performance of the proposed method can be
equivalent to that of the optimal E-C detector with equal gain
SDF when the PU signal samples are i.i.d.

This concludes the proof.
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