
Real-Time Recurrent Reinforcement Learning

Julian Lemmel, Radu Grosu
Technical University Vienna
Karlsplatz 13, 1040 Wien AT
julian.lemmel@tuwien.ac.at

Abstract

In this paper we propose real-time recurrent reinforcement
learning (RTRRL), a biologically plausible approach to
solving discrete and continuous control tasks in partially-
observable markov decision processes (POMDPs). RTRRL
consists of three parts: (1) a Meta-RL RNN architecture, im-
plementing on its own an actor-critic algorithm; (2) an outer
reinforcement learning algorithm, exploiting temporal differ-
ence learning and dutch eligibility traces to train the Meta-
RL network; and (3) random-feedback local-online (RFLO)
learning, an online automatic differentiation algorithm for
computing the gradients with respect to parameters of the net-
work. Our experimental results show that by replacing the op-
timization algorithm in RTRRL with the biologically implau-
sible back propagation through time (BPTT), or real-time re-
current learning (RTRL), one does not improve returns, while
matching the computational complexity for BPTT, and even
increasing complexity for RTRL. RTRRL thus serves as a
model of learning in biological neural networks, mimicking
reward pathways in the basal ganglia.

Introduction
Model-free deep reinforcement-learning algorithms, lever-
aging recurrent neural network architectures (RNNs), have
recently been shown to serve as a strong baseline for
a wide range of partially-observable Markov decision
processes (POMDPs) (Ni, Eysenbach, and Salakhutdinov
2022). Gradient-based reinforcement-learning (RL) algo-
rithms, such as temporal-difference (TD) methods, have
been shown to be sample efficient, and come with formal
convergence guarantees when using linear function approx-
imation (Sutton and Barto 2018).

However, linear functions are not able to infer hidden state
variables that are required for solving POMDPs. RNNs, on
the other hand, can compensate for the partial observability
in POMDPs, since they are capable of aggregating informa-
tion about the entire sequence of preceding observations.

Neural networks were originally inspired by biological
neurons, which are in general recurrently connected, and
subject to synaptic plasticity. These long-term changes of
synaptic efficacy are mediated by locally accumulated pro-
teins, and a scalar-valued reward signal represented by
some neurotransmitter (e.g. dopamine) concentration (Wise
2004).

 Shared RNN step

(one-hot)

(logits)

Shared CT-RNN

Figure 1: The RTRRL recurrent network architecture imple-
ments the Meta-RL framework, as defined in Wang et al.
(2018), by feeding the past action at−1 to the CT-RNN
alongside the current reward rt and the current observation
ot. The latent state ht which is computed by the CT-RNN,
is then used to produce the next action at and the next value
estimate v̂t through linear mappings.

The ubiquitous backpropagation through time algo-
rithm (BPTT) (Werbos 1990), which is used for training
RNNs in practice, appears to be biologically implausible,
due to the need of weight transport (Bartunov et al. 2018),
and distinct forward and backward phases. Thus, BPTT re-
quires individual neurons to alternate between computation
and precisely communicating gradients of their synaptic pa-
rameters to each other. With BPTT, RNN-based RL algo-
rithms renounce any claim to biological interpretation.

Biologically plausible methods for computing gradients
in RNNs however exist, such as random-feedback online
learning (RFLO) (Murray 2019), a simplified versions of
real-time recurrent learning (RTRL) (Williams and Zipser
1989).

The main question we asked in this paper was if combin-
ing biologically-plausible methods for learning and gradi-
ent computation in RNNs, such as TD and RFLO, respec-
tively, would be able to learn and solve POMDP RL tasks?

Taking advantage of the previous work, we are able here
to answer the above question in a positive fashion, with a
novel approach consisting of three basic building blocks:

1. A Meta-RL RNN architecture, whose interface and recur-
rent connections are such that when trained, they become
on their own an actor-critic algorithm,

2. A TD(λ) Actor-Critic algorithm exploiting temporal dif-

ar
X

iv
:2

31
1.

04
83

0v
2

 [
cs

.L
G

]
 2

8
M

ar
 2

02
4

ference and dutch eligibility traces, to train the weights
of the Meta-RL network, and

3. The Biologically Plausible RFLO online automatic dif-
ferentiation algorithm, for computing the gradients of the
parameters in the Meta-RL network.

We call our new, biologically plausible, online RL
approach, real-time recurrent reinforcement learning
(RTRRL).

The use of TD(λ) in RTRRL, the most basic version of
an actor-critic algorithm with no other enhancements, such
as the batched experience replay, is able to solve discrete as
well as continuous POMDP tasks, in a biologically-plausible
fashion. Our experimental results show that, when replacing
the RFLO optimization of RTRRL with the BPTT optimiza-
tion, one achieves a similar accuracy, but in many cases at a
much slower convergence time. Moreover, replacing RFLO
with RTRL optimization considerably increases time com-
plexity, without significant improvements in accuracy.

Motivation
The main objections for BPTT-plausibility in biological neu-
ral networks are the reliance on shared weights, for forward
and backward connections, and reciprocal error-transport, a
form of propagating back the errors without interfering with
neural activity (Bartunov et al. 2018). Another concern is
that it requires storing long sequences of exact the exact ac-
tivation for each cell. (Lillicrap and Santoro 2019)

We slightly rephrase the premises of Bartunov et al.
(2018) and Lillicrap and Santoro (2019) in the following
fashion. A biologically plausible learning algorithm has to
be:

1. Local, up to some low-dimensional reward signal.
2. Online, jointly computing updates and outputs.
3. Without weight transport, in its error computation.

By weight transport, we refer to synapses propagating back
error signals mirroring the strength of forward synapses. We
will further elaborate on the above requirements for obtain-
ing biological plausibility in Appendix .

Previous work on feedback alignment (Lillicrap et al.
2014) demonstrated that weight transport is not strictly nec-
essary for training deep neural networks. In particular, they
showed that randomly initialized feedback matrices, used for
propagating back gradients to previous layers in place of the
forward weights, are also leading to acceptable function ap-
proximators. Moreover, the forward weights appear to align
with the fixed backward weights during training.

Online supervised learning for RNNs was first described
by Williams and Zipser (1989), who introduced RTRL as
an alternative to backpropagation. More recently, a range
of more computationally efficient variants were introduced.
(Tallec and Ollivier 2017; Roth, Kanitscheider, and Fi-
ete 2018; Mujika, Meier, and Steger 2018; Murray 2019).
Marschall, Cho, and Savin (2020) proposed a unifying
framework for all these variants and assessed their biolog-
ical plausibility while showing that many of them can per-
form on-par with BPTT. RFLO (Murray 2019), stands out

due to its biological update rule, that still performed well in
the experiments of Marschall, Cho, and Savin (2020).

Another motivation for investigating online training algo-
rithms of neural networks is the promise of energy-efficient
neuromorphic hardware(Zenke and Neftci 2021). The aim is
to produce bionic integrated circuits, mimicking biological
neurons. However, they also require biologically plausible
update rules to enable efficient training.

Our work shows that online reinforcement learning with
RNNs is possible with RTRRL-RFLO, which fulfills all our
premises for biologically plausible learning. Our algorithm
combines online RNN gradient computation with TD(λ).
We create a fully online learning neural controller that does
not require multi-step unrolling, weight transport or commu-
nicating gradients over long distances. Our algorithm suc-
ceeds in learning a policy from one continuing stream of
experiences alone, meaning that no replay buffer is used.

To the best of our knowledge, the proposed RTRRL, is the
first fully biologically plausible reinforcement learning al-
gorithm for rate-based recurrent neural networks.

Real-Time Recurrent RL
In this section we present RTRRL, our novel real-time recur-
rent RL approach to POMDPs. As mentioned, this approach
consists of: 1) A Meta-RL actor-critic RNN architecture,
which after training becomes on its own an actor-critic algo-
rithm, 2) A TD(λ)-Actor-Critic learning algorithm, exploit-
ing temporal-difference and dutch eligibility traces, to train
the weights of the Meta-RL network, and 3) A biologically-
plausible real-time RFLO optimization technique, comput-
ing the gradients of the parameters in the MetaRL network.

In the following subsections, we provide a gentle and self-
contained introduction to each of the constituent parts of our
RTRRL framework. We then put all pieces together, and dis-
cuss the pseudocode of the overall RTRRL approach.

The Meta-RL RNN Architecture
The Meta-RL actor-critic RNN architecture used by RTRRL
is shown in Figure 1. It features a RNN with linear output
layers for the actor and critic functions. At each step, the
RNN computes an estimated latent state and the two linear
layers compute the next action and the next value, from the
latent state, respectively. Since the synaptic weights of the
network are trained (slowly) to choose the actions with most
value, and the network states are also updated during com-
putation (fast) towards the same goal, this architecture is also
called a Meta-RL architecture (Wang et al. 2018).

As shown by Wang et al. (2018), a Meta-RL RNN can
be trained to solve a general family of parameterized tasks,
where all instances follow a common structure, and that
the activations in trained RNNs mimic dopaminergic reward
prediction errors (RPEs) measured in primates. They also
show that the network is capable of inferring the underly-
ing parameters of each new task and subsequently solve un-
seen instances after training. In particular, they use LSTM
cells (Hochreiter and Schmidhuber 1997), receiving the ob-
servation, past action, and reward as inputs, and computing a
latent state from which the next action and value estimate are

inferred by a linear mapping. In Figure 1 we use the architec-
ture of that work, but replace the LSTM with a continuous-
time recurrent neural network (CT-RNN).

Continuous-Time RNN (Funahashi and Nakamura
1993) This type of RNN can be interpreted as rate-based
model of biological neurons. They have the following state
dynamics:

ḣ = τ−1 (−h+ φ(WIx+WRh+ b))

where factor τ is the time constant, φ, a non-linear activa-
tion function, x, the input, WI ,WR, the synaptic weights for
input and states, respectively, and b is the bias.

Wang et al. (2018) argue that, the Meta-RL RNN effec-
tively learns to implement an inner RL algorithm, that em-
powers it to learn about, and solve tasks on its own. Behrens
et al. (2018) argue that, the timescale of plasticity expressed
through dopaminergic synapses in the prefrontal cortex, is
magnitudes below the time needed for primates to solve
tasks, hinting at a hierarchically layered RL algorithms rem-
iniscent of the framework of Wang et al. (2018).

The Actor-Critic Learning Algorithm
As a learning algorithm, RTRRL also uses an Actor-Critic
architecture with eligibility traces. Here, the actor and the
critic (sharing the common recurrent CT-RNN backbone),
are used to compute the synaptic-weights updates, ensuring
that for the current observation and reward, and previous ac-
tion, the network outputs the most valuable action.

In particular, the value produced by the critic, is used
to computing the TD error and the forward dutch eligibil-
ity traces, which are thereafter used to properly update the
synaptic weights. Hence, the RL algorithm used by RTRRL
ia an Actor-Critic-TD(λ) algorithm. In order to understand
it, we first discuss TD learning, and then eligibility traces.

Temporal-Difference Learning (TD). TD Learning re-
lies only on local information by bootstrapping (Sutton and
Barto 2018). It is on-line, which makes it applicable to a
wider range of problems, as it does not rely on completing
an entire episode prior to computing the updates. After each
action, the reward rt, and past and current experience st and
st+1 are used to compute the TD error δ of value estimates
v̂θ(s). The following Equation defines the TD-error:

δt = rt + γv̂θt(st+1)− v̂θt(st) (1)

The value function is learned by regression towards the boot-
strapped target. Updates can be computed by taking the gra-
dient of the value approximator θt+1 ← θt + ηδt∇θv̂θt(st),
where η is a small step size. In order to also learn behav-
ior, we use an Actor-Critic (AC) policy gradient method.
In AC algorithms, the actor computes the actions, and the
critic evaluates the actor’s decisions. In particular, the value
v̂θt(st) of the current state st is compared to its value
r+ γv̂θt(st+1) after taking an action at, that is, after im-
proving its knowledge by getting a reward r and moving to
state st+1. This leads to the the TD-error discussed above.

The policy (actor) is in this case a parameterized function
πφ that maps state s to a distribution of actions p(a). Param-
eters φ are in most cases the weights of a neural network.

The policy πφ is trained using gradient ascent. By taking the
gradient of the policy with respect to the log action probabil-
ity, and multiplying with the TD-error, we can compute the
updates φ← φ+ αδ∇φ log πφ(a). Intuitively, this tells the
actor to increase the probability for the chosen action when-
ever the RPE is positive, that is, when the reward was better
than predicted. Likewise, when the reward was worse than
predicted, the action probability is lowered.

The TD-error is a measure for the accuracy of the reward-
prediction, acting as RPE. Given its importance, it is used to
update both the actor and the critic, by acting as a reinforce-
ment signal (Sutton and Barto 2018).

Eligibility Traces (ET). The algorithm just described is
known as TD(0). It is impractical when dealing with delayed
rewards in an online setting, since value estimates need to be
updated backwards in order to factor in temporal dependen-
cies. ETs are a way of factoring-in future rewards. The idea
is to keep a running average of each synapse’s contribution
to the network’s output. This can be thought of as a short-
term memory, paralleling the long-term one represented by
the synapse weights. ETs unify and generalize Monte-Carlo
and TD methods (Sutton and Barto 2018).

Particularly, TD(λ) makes use of ETs. Weight updates are
computed by multiplying the trace with the TD-error δ. By
accumulating the gradients of the state-value function, each
weight’s contribution is recorded. The trace eθ decays with
factor γλ where γ is the discount factor:

eθt = γλ eθt−1 +∇θv̂θt(st)

θt+1 ← θt + ηθ δt e
θ
t

(2)

Since we use a parameterized linear-function approxima-
tion v̂θ(st)=w⊤st, with parameters w as in the original
TD(λ), the gradient of the loss with respect to w, is simply
∇wv̂θ = st. A later refinement of linear TD(λ) called True
online TD(λ) (Seijen and Sutton 2014; Sutton and Barto
2018), improves the accuracy of updates done to the value
function. The resulting trace is called a ”dutch” trace. Here,
calculating the TD-error can be done without using the same
set of weights twice. Hyperparameter α couples the rate of
change of the ET with the optimization step size.

δt = rt + γv̂θt(st+1)− v̂θt−1
(st)

eθt = γλeθt−1 + αst−1 − αγλ
[
eθ⊤t−1st−1

]
st−1

θt+1 = θt + δte
θ
t + α

[
θ⊤t−1st−1 − θ⊤t st−1

]
st−1

(3)

Linear TD methods come with provable convergence guar-
antees (Sutton and Barto 2018). However, the simplicity of
the function approximator fails at accurately representing
complex functions needed for solving harder tasks. Replac-
ing the linear functions with non-linear DNNs can introduce
inaccuracies in the optimization. However in practice, multi-
layer perceptrons (MLPs) can lead to satisfactory results,
e.g. on the Atari benchmarks (Daley and Amato 2020).

The Biological-Optimization Algorithm
The optimization algorithm in RTRRL computes the gra-
dients of the synaptic weights, in a biologically plausible

fashion. This has to be done for the Meta-RL RNN, in an
efficient online fashion as discussed in Section . For this
purpose, RTRRL is using the RFLO algorithm. However,
to asses the loss in precision of RTRRL while using RFLO,
we also plug RTRL and BPTT in our algorithm, instead of
RFLO. In Figure 2, we show how the gradients are passed
back to each state of the Meta-RL RNN for RFLO.

Real-Time Recurrent Learning (RTRL). RTRL was
proposed as an RNN online-optimization algorithm for in-
finite horizons (Williams and Zipser 1989). This is made
possible by estimating the gradient of network parameters
in each step, and computing an estimate of the error-vector
during the feedforward computation. As in stochastic gradi-
ent descent, using a small learning rate η can mitigate the
noise introduced by estimating the true gradient. One big
advantage of RTRL-based algorithms, is that the computa-
tion time of an update-step is constant in the number of task
steps. Nonetheless, RTRL has a much worse computation
complexity than BPTT, and is therefore not used in practice.

The update rule used in RTRL is derived as follows. Given
a dataset consisting of the multivariate time-series xt ∈RI

of inputs and yt ∈RO of labels, we want to minimize some
loss function Lθ =

∑T
t=0 Lθ(xt, yt) by gradient descent.

This is achieved by taking small steps in the direction of the
negative gradient of the total loss:

∆θ = −η∇θLθ = −η
T∑

t=0

∇θLθ(t) (4)

We can compute the gradient of the loss at each individual
step as ∆θ(t) = ∇θLθ(t) = ∇θŷt∇ŷtLθ(t) with ŷt being
the output of the RNN at timestep t. A common choice in su-
pervised learning is the MSE Lθ(t) =

1
2 ⟨εt, εt⟩ where εt =

ŷ(t)− y(t) ∈ RO and ∇ŷt
Lθ(t) = εt. When employing an

RNN with linear output mapping the gradient of the model
output can be further expanded into∇θR ŷt = ∇θRht∇hz

ŷt.
RTRL is defined for the special class of Neural ODEs dis-
cussed in the previous section.

We calculate the gradient of the Neural ODE unit’s acti-
vation with respect to the parameters θ, recursively. To this
end, we define the immediate Jacobian J̄t =∇θf(xt, ht),
with ∇θ being the partial derivative with respect to θ, and
the approximate Jacobian trace Ĵt, We will denote the total
derivative of f wrt. θ as d

dθf(xt, ht).

Ĵt+1 :=
d

dθ
ht+1 =

d

dθ
(ht + f(xt, ht))

=
d

dθ
ht +

d

dθ
f(xt, ht)

= Ĵt +∇θf(xt, ht) +
d

dθ
ht∇htf(xt, ht)

= Ĵt + J̄t + Ĵt∇htf(xt, ht)

= Ĵt (I+∇ht
f(xt, ht)) + J̄t

(5)

The last row defines the Jacobian trace recurrently, in terms
of the immediate Jacobian and a linear combination of the
past trace Ĵt∇ht

f(xt, ht), allowing to calculate it in parallel

to the forward computation of the RNN. When taking an
optimization step we can calculate the actual gradients as:

∆θ(t) = Ĵt∇ht
Lθ(t) = ĴtW

⊤
outεt (6)

Being online, RTRL is biologically plausible in the time do-
main. However, the error signal W⊤εt still assumes weight
transport and so do the gradients communicated within the
Neural ODE Ĵt∇htf(xt, ht).

In general, RTRL has complexityO(n4) in the number of
neurons n compared to O(n2) for BPTT (considering fixed
horizon). However, a computationally more efficient version
for sparse RNNs was proposed by Menick et al. (2020).

Random-Feedback Local Online Learning (RFLO). A
biologically plausible descendant of RTRL is RFLO (Mur-
ray 2019). This leverages the Neural ODE of simple CT-
RNNs in order to simplify the RTRL update substantially,
dropping all parts that are biologically implausible. RFLO
improves biological plausibility of RTRL in two ways:

1. Weight transport during error backpropagation is avoided
by using feedback alignment.

2. Locality of gradient information is ensured by dropping
all non-local terms from the gradient computation.

The CT-RNN above with N hidden states, I inputs, and
activation φ, can be simplified by considering a combined
weight matrix W ∈ RN×X and a vector ξ ∈ RZ , where
Z = I +N +1. Each neuron has a time-constant τ ∈RN

and the next state ht+1 ∈ RN is computed as follows:

ht+1 = ht +
1

τ
(−ht + φ(Wξt)) ξt =

[
xt

ht

1

]
∈ RZ (7)

where xt is the input at time t, and the 1 concatenated to
ξt accounts for the bias. The output ŷt ∈ RO is given by a
linear mapping ŷt = Woutht. The latent space follows the
Neural ODE τ ḣ = −ht + φ(Wξt).

RFLO leverages the state-update expression in order to
simplify the RTRL update. For brevity, we only show the
resulting update rule. A derivation is in the appendix.

ĴW
t+1 ≈ (1− 1

τ
) ĴW

t +
1

τ
φ′(Wξt)

⊤ξt (8)

Weight transport is avoided by using feedback alignment for
propagating gradients. Parameter updates are computed as
∆W (t) = ĴW

t Bεt using a fixed random matrix B. Effec-
tive learning is still achievable with this simplified version as
shown in (Murray 2019; Marschall, Cho, and Savin 2020).

While RTRL complexity is O(n4) in the number of
neurons, RFLO has the same complexity as backpropaga-
tion O(n2). The reader is referred to (Murray 2019) and
Marschall, Cho, and Savin (2020) for a detailed comparison
between RTRL and RFLO.

Putting All Pieces Together
Having described each piece of our RTRRL approach, we
now proceed discussing how RTRRL puts them together.
Algorithm 1 shows the outline of the RTRRL approach. In-
tuitively, the approximate Jacobian Ĵt is computed at each

TD Error TD Error

POMDP

RNN state

Linear
Critic Linear Actor

Observations

Figure 2: Schematics showing how gradients are passed back to each state of the RNN. The network consists of Linear TD(λ)
and a shared RNN body. Gradients with respect to actor and critic losses are propagated back towards ht and ht−1 respectively.

RNN step, and combined with the TD-error of True online
TD(λ) to update the RNN weights. We follow the Meta-RL
approach delineated in (Wang et al. 2018) feeding in the pre-
vious action and reward to the RNN body alongside the ob-
servation at each step. π and v̂ are the Actor and Critic func-
tions parameterized by θA and θC .

We train the Actor and Critic using TD(λ) and take small
steps in direction of the action probability and value estimate
respectively. The gradients for each function are accumu-
lated by means of additive eligibility traces eA,C with λ de-
cay. Additionally, the gradients are passed back to the single
layer RNN, parameterized by θR, through random feedback
matrices BA and BC respectively. A third, combined eligi-
bility trace eR is maintained for the RNN, summarizing the
combined gradient. For improved exploration, we also com-
pute the gradient of the action distribution’s entropy H(π)
and add it to the gradient of the policy objective. When us-
ing RFLO the passing back of the gradients is done via ran-
domly initialized fixed backwards matrices BA,C . This way
we arrive at a biologically-plausible algorithm.

The Jacobian in Algorithm 1 can also be computed using
RTRL. This reduces the variance in the gradients at a much
higher computational cost. Similarly, we can choose to prop-
agate back to the RNN by using the forward weights as in
backpropagation. However, we found that the biologically
plausible feedback alignment works just as well.

RTRRL Neuron Model. We use the simplified CT-RNN
of the previous section for the RNN body, where we com-
pute the Jacobian Ĵt by using RTRL or RFLO as explained
above. Extending RFLO, we derive an update rule for the
time-constant parameter τ . Again, the full derivation of this
Jacobian can be found in Appendix :

Ĵτ
t+1 ≈ Ĵτ

t (1−
1

τ
) +

1

τ2
(ht − φ(Wξt)) (9)

RTRRL Hyperparameters. The hyperparameters that
can be tuned for individual environments are γ, λA,C,R,
αA,C and α. Our approach does not introduce any new ones

over True online TD(λ) other than lambda and learning rate
for the RNN. A detailed list of all hyperparameters and
RTRRL implementation details are given in the Appendix.

Experiments
We evaluate the feasibility of our RTRRL approach by
testing it on the popular RL benchmarks, provided by the
gymnax (Lange 2022) and brax (Freeman et al. 2021)
python packages. The tasks comprise fully and partially ob-
servable MDPs, with discrete and continuous actions.

The gymnax package implements a range of popular
classic and modern control tasks used to benchmark neural-
network policies. As baselines we consider TD(λ) with Lin-
ear Function Approximation, and Proximal Policy Opti-
mization (PPO) (Schulman et al. 2017), with BPTT for the
LSTM and CT-RNN models. Our implementation of PPO
is based on purejaxrl (Lu et al. 2022). For each envi-
ronment, we trained a Meta-RL network with 32 recurrent
neurons for either a maximum of 50 million steps or until 20
subsequent epochs showed no improvement.

Our results show that RTRRL with RFLO, as discussed in
previous sections, as the default, can often outperform PPO
that relies on BPTT. In Table 1 we summarize all our results
for the experiments explained in the remainder of this sec-
tion. The column ”RFLO CT-RNN” corresponds to RTRRL
as defined above, but we have also included for comparison,
results for RTRRL, where RTRL replaces RFLO. The values
presented in the table are the median and standard-deviation
of the best evaluation episodes, experienced throughout the
training of 5 runs per environment and algorithm.

Discrete Actions. For discrete actions, the outputs of the
actor are the log probabilities for each action, and past ac-
tions fed to the RNN are represented in one-hot encoding.
In Table 1 we report results for experiments on the clas-
sical Acrobot and CartPole benchmarks but also for
the bsuite environments (Osband et al. 2020) including
DeepSea, MemoryChain and UmbrellaChain, that
are specifically tailored to test individual aspects of RL tasks

Model Linear TD(λ) RTRL CTRNN RFLO CTRNN PPO CTRNN PPO LSTM
Environment

MemoryChain-4 * 0.07±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
MemoryChain-8 * 0.07±0.03 1.00±0.00 1.00±0.28 1.00±0.00 1.00±0.00
MemoryChain-16 * 0.12±0.04 1.00±0.36 0.87±0.42 1.00±0.00 1.00±0.00
DeepSea-4 0.99±0.00 0.99±0.42 0.99±0.31 0.99±0.00 0.99±0.00
DeepSea-8 0.99±0.48 0.99±0.31 0.99±0.42 0.99±0.00 0.00±0.54
DeepSea-16 -0.00±0.42 0.99±0.46 0.99±0.51 0.00±0.00 0.00±0.00
Acrobot -500.00±0.00 -80.97±187.54 -86.72±227.18 -471.40±221.84 -84.14±180.65
CartPole-vel * 454.55±26.52 500.00±0.00 500.00±0.00 112.11±40.38 138.37±31.41
CartPole-pos * 55.87±1.18 137.36±177.76 500.00±122.30 70.76±11.42 56.15±82.74
MetaMaze 15.30±40.00 17.20±12.94 19.60±13.49 10.80±1.34 10.40±1.04
DiscountingChain 1.10±0.05 1.04±0.04 1.10±0.04 1.10±0.00 1.10±0.00
UmbrellaChain 0.83±0.31 1.19±0.59 1.09±0.60 1.04±0.12 1.03±0.12
PointRobot 0.82±0.51 1.20±0.42 1.40±0.27 0.44±0.05 0.42±0.07
Reacher 115.47±17.68 118.70±8.59 118.77±10.66 16.72±0.91 17.27±1.01
Swimmer 96.56±4.91 87.69±10.96 110.72±62.50 30.76±1.74 29.05±1.97
MountCarCont-vel * -41.88±14.85 -1.31±13.16 -20.00±35.18 -1079.70±167.95 -1126.11±212.34
MountCarCont-pos * -46.91±13.71 1.23±7.27 -59.54±38.86 -1071.67±36.35 -1077.49±114.22

Table 1: Summary of RTRRL experiments: Numbers reported are the median reward and the standard deviation for 5 runs
(larger is better), a ” ∗ ” marks POMDPs. ”RFLO CTRNN” denotes our biologically plausible instantiation of RTRRL. In each
case, the best validation reward achieved throughout training was used. On average, RTRRL arguably achieves the best and
most balanced results.

such as exploration and memory capacity. Additionally we
included the MetaMaze environments that was introduced
by Miconi, Clune, and Stanley (2018) and to test Meta-RL
algorithms. As one can see, RTRRL performs best in av-
erage, followed by RTRRL with RTRL, as the second best
algorithm.

Continuous Actions. To obtain a stochastic policy, a com-
mon trick is to use a probability distribution parameterized
by the model output. A natural choice is to use a Gaussian
whose mean and standard-deviation are outputs of the neu-
ral network. Assuming i.i.d. action components, the network
output has to be in R2U where U is the size of the action
vector. An action is obtained by sampling from the distribu-
tion. Reparametrization allows for obtaining the probability
of the selected continuous action and subsequently comput-
ing the gradient of log π[a] in policy-gradient algorithms.
In practice, clipping the magnitude of policy gradients to
≤ 1, in order to avoid exploding gradients that occur when
the variance of the action distribution becomes very small,
worked best. The continuous action environments included
in our experiments, and whose results are illustrated in Ta-
ble 1 were MountCarCont, PointRobot, Reacher
and Swimmer. Moreover, they also included environments
implemented in brax, such as, mujoco.

Masked Observations. We took the classical CartPole
MDP and transformed it into a POMDP by masking out
parts of the observation. We consider observations that only
contain the positions (x, θ) or the velocities (ẋ, θ̇), called
CartPole-pos and CartPole-vel respectively. The
same was done with MountainCarContinuous. Our
results show that, when observing positions only, RFLO is

the only method able to properly solve this task.
In a similar fashion, we masked observations for the con-

tinuous action brax environments. We only kept even en-
tries of the observation, discarding odd ones, to create a
POMDP. These physical simulations are computationally
demanding which is why we only report the best evalua-
tion epoch for RTRRL after tuning compared to the tuned
PPO baselines that were provided by the package authors.
The best rewards are 2720.03 (2386.09) for Ant, 2030.10
(2317.57) for Halfcheetah and 1026.78 (1072.85) for
Hopper with the tuned baselines in parenthesis, respec-
tively. A plot of the learning curves for the runs in question
can be found in Appendix . As one can see form these re-
sults, RTRRL performs on-par with PPO with BPTT, which
used batched experiences and handpicked best hyperparam-
eters.

Deep Exploration. Exploration versus exploitation is a
trade-off, central to all agents learning a task online. The
DeepSea environment included in bsuite (Osband et al.
2020) is tailored to benchmark the ability of RL algorithms
to explore in unfavourable environments. At each step, the
agent has to decide on one of two actions which randomly
map to left and right in a way that is fixed at each position. A
small negative reward is given when the action leading right
was chosen and a large positive reward is given at the end of
each episode, if the agent chose right each time. The agent
is required to explore to reach the rightmost position albeit
receiving negative rewards when moving towards it. We give
results for exponentially increasing task length.

The classic control environment Acrobot, too, requires
extensive exploration. A double pendulum starting in hang-
ing position is set into motion by controlling the middle

Algorithm 1: Real-Time Recurrent Reinforcement Learning

Require: Linear policy: πθA(a|h)
Require: Linear value function: v̂θC (h)
Require: CT-RNN body: RNNθR([o, a, r], h, Ĵ)

θA, θC , θR ← Randomly initialize parameters
BA, BC ← Randomly initialize feedback matrices
h, eA, eC , eR ← 0
o← Reset Environment
h, Ĵ ←RNNθR([o,0, 0], h,0) ▷ RFLO to compute Ĵ
v ← θ⊤Ch
while not done do
π ← πθA(h)
a← Sample(dist)
o,R← Take action a in Environment
h′, Ĵ ′ ←RNNθR [o, a, r], h, Ĵ)
gC ← BC1 ▷ feedback alignment
gA ← BA∇h[ln π[a] + ηHH(π)]
eC ← γλCeC + αh− αγλ

[
e⊤Ch

]
h

eA ← γλAeA +∇θA [ln π[a] + ηHH(π)]

eR ← γλReR + Ĵ(gA + gC)
v′ ← θ⊤Ch

′

δ ← R+ γv′ − v ▷ TD error
θC ← θC + δeC + α

[
v − θ⊤Ch

]
h

θA ← θA + αAδeA
θR ← θR + αRδeR
v ← v′, h← h′, Ĵ ← Ĵ ′

end while

joint. The outer segment has to be elevated above a certain
height, located above the anchor of the inner segment. Fig-
ure 3 shows the median rewards of 5 runs over the number
of environment steps. We find that RTRRL with RFLO finds
a solution significantly faster than the other methods hinting
at superior exploration of our RTRRL approach.

Memory Length. We tested the memory capacity of our
RTRRL models by learning to remember the state of a bit
for an extended number of steps. The MemoryChain en-
vironment can be thought of as a T-maze, known from be-
havioural experiments with mice. Here, a long corridor leads
up to a T-section. Each mouse is given a queue at the en-
trance to the corridor, indicating on which path leaving the
T-section it will find food (Osband et al. 2020).

The experiment tests if the model can remember the
state of a bit for a fixed number of time steps. Increas-
ing the number of steps increases difficulty. We conducted
MemoryChain experiments with 32 neurons, again with
exponentially increasing task length. A boxplot of the results
is shown in figure 4. With this experiments we wanted to an-
swer the question of how RTRL, RFLO, and BPTT compare
to each-other. The results show that using approximate gra-
dients hampers somewhat memory capacity. Quite surpris-
ingly, RTRRL trained with RTRL, outperformed PPO with
LSTMs of the same size that were trained with BPTT.

Related Work
Ladosz et al. (2022) extended DQNs by adding a neural net-

Figure 3: Median reward of 5 runs on Acrobot. The key to
solving this environment is exploration. RNNs trained with
RFLO solve it quicker than when trained with BPTT.

work head called MOHN, that is subject to Hebbian learn-
ing using eligibility traces. Their algorithm significantly out-
performs vanilla DQN on confounding POMDPs although
slowing down execution time by 66%. However, this work
uses back-propagation in its optimization engine.

Ororbia and Mali (2022) introduced a biologically plau-
sible model-based RL framework called active predicitve
coding that enables online learning of tasks with extremely
sparse feedback. Their algorithm combines predictive cod-
ing and active inference, two concepts grounded in neuro-
science. Network parameters are trained with Hebbian up-
dates and surrogate losses. This is quite different from our
work.

The work of Johard and Ruffaldi (2014) uses a cascade-
correlation algorithm with two eligibility traces, that starts
from a small neural network and grows it sequentially. This
is a very interesting alternative to backpropagation, and it
is claimed to be biologically plausible. The two eligibility
traces approximate the gradient of the discounted reward,
in a connectionist actor-critic setting. The method outper-
forms regular policy-gradient methods on the CartPole envi-
ronment. However, it only considers feed-forward networks.

In his Master’s Thesis, Chung (2019) introduces a net-
work architecture similar to RTRRL that consists of a re-
current backbone and linear TD heads. Convergence for the
RL algorithm is proven assuming the learning rate of the
RNN being magnitudes below those of the heads. Albeit the
similarity in network structure, gradients were nonetheless
computed using biologically implausible BPTT.

An interesting approach to reduce the complexity of
RTRL was proposed by Javed et al. (2023). Similar to the
cascade-correlation approach used in Johard and Ruffaldi
(2014), they train a recurrent neural network constructively,
that is one neuron at a time, keeping preceding neuron’s pa-
rameters fixed. This way the RTRL complexity is reduced to
the one of BPTT. However, this work does not consider RL.

Recently, Irie, Gopalakrishnan, and Schmidhuber (2023)
investigated the practical performance of RTRL-based recur-
rent RL on a set of memory tasks in 3D. They used LSTMs
modified to allow for efficient RTRL updates, and were able
to show an improvement over training with BPTT when used
in the framework of IMPALA (Espeholt et al. 2018). The

Figure 4: Boxplots of the Rewards of 10 runs on MemoryChain per type of plasticity for increasing memory lengths. BPTT
refers to PPO with LSTM, RFLO and RTRL denote the variants of RTRRL and LocalMSE is a naive approximation to RTRL.

main aim of this work was thus to improving RTRL in the
context of LSTMs.

A similar idea was explored by Zucchet et al. (2023),
who show that independent modules of complex-valued lin-
ear recurrent units (LRUs) allow for efficient computation
of RTRL updates. Their architecture can be generalized to
multi-layer networks setting it apart from other related work.
However, their model renounces biological plausibility by
restricting the recurrent connections to be diagonal.

Finally, a great number of recent publications deal with
training recurrent networks of spiking neurons (RSNNs).
(Bellec et al. 2020; Taherkhani et al. 2020; Pan et al. 2023)
The different approaches to train RSNNs in a biologically
plausible manner do mostly rely on discrete spike events,
for example in spike-time dependent plasticity (STDP). The
e-prop algorithm introduced by Bellec et al. (2020) stands
out as the most similar to RFLO. It features the same com-
putational complexity and has been shown to be capable of
solving RL tasks, albeit only for discrete action spaces.

Discussion
We introduced real-time recurrent reinforcement learning
(RTRRL), a new approach to solving discrete and contin-
uous control tasks for POMDPs, in a biologically plausible
fashion. RTRRL consists of three parts: 1) A Meta-RL RNN
architecture, implementing on its own a nested RL algo-
rithm, 2) A TD(λ) actor-critic algorithm exploiting temporal
difference and dutch eligibility traces, to train the weights
of the Meta-RL network, and 3) A biologically plausible,
random-feedback local-online (RFLO) real-time optimiza-
tion algorithm, for computing the weight gradients.

We compared RTRRL with popular, but biologically
implausible RL algorithms that use BPTT or RTRL for
gradient-computation. Our results show, that using approxi-
mate gradients as in RFLO, still finds satisfactory solutions,
and in some cases, it even improves on the state of the art.
Particularly, RTRRL outperformed PPO with BPTT, when
solving tasks requiring exploration in unfavourable environ-
ments.

Although the results presented in this paper are empir-
ically convincing, some limitations have to be discussed.
The algorithm generally suffers from a larger variance due

to an effective batch size of 1. A possible improvement of
RTRRL might be achieved, by using batched experience re-
play, which has become a standard in RL. However, this has
to be done in a way, that preserves biological plausibility.

RTRRL is grounded in neuroscience and adequately ex-
plains how biological neural networks learn to act in un-
known environments. The network structure resembles the
interplay of dorsal and ventral striatum of the basal ganglia,
featuring global RPEs found in dopaminergic pathways pro-
jecting from the ventral tegmental area and the substantia
nigra zona compacta to the striatum and cortex (Wang et al.
2018). The role of dopamine as RPE was established exper-
imentally by Wise (2004) who showed that dopamine is re-
lease upon receiving an unexpected reward, reinforcing the
recent behavior. However, dopamine is also released in re-
sponse to a conditioned stimulus, before receiving the actual
reward. If then the expected reward is absent, dopamine lev-
els will drop below baseline - a negative reinforcement sig-
nal. Dopaminergic synapses are usually located at the den-
dritic stems of glutamate synapses (Kandel 2013) and can
therefore effectively mediate synaptic plasticity.

More specifically, the ventral striatum would correspond
to the critic in RTRRL and the dorsal striatum to the ac-
tor, with dopamine axons targeting both the ventral and
dorsal compartmens (Sutton and Barto 2018). The axonal
tree of dopaminergic synapses is represented by the back-
ward weights in RTRRL. Dopamine subsequently encodes
the TD-error as RPE, which is used to update both the actor
and the critic. RTRRL can therefore be seen as a model of
reward-based learning taking place in the human brain.

References
Bartunov, S.; Santoro, A.; Richards, B. A.; Marris, L.; Hin-
ton, G. E.; and Lillicrap, T. 2018. Assessing the Scalability
of Biologically-Motivated Deep Learning Algorithms and
Architectures. arXiv:1807.04587 [cs, stat].
Behrens, T. E. J.; Muller, T. H.; Whittington, J. C. R.; Mark,
S.; Baram, A. B.; Stachenfeld, K. L.; and Kurth-Nelson, Z.
2018. What Is a Cognitive Map? Organizing Knowledge for
Flexible Behavior. Neuron, 100(2): 490–509.
Bellec, G.; Scherr, F.; Subramoney, A.; Hajek, E.; Salaj, D.;

Legenstein, R.; and Maass, W. 2020. A Solution to the
Learning Dilemma for Recurrent Networks of Spiking Neu-
rons. Nature Communications, 11(1): 3625.
Chung, W. 2019. Two-Timescale Networks
for Nonlinear Value Function Approximation.
https://era.library.ualberta.ca/items/d0665ad5-a222-4911-
a20e-72d4f7916821.
Daley, B.; and Amato, C. 2020. Reconciling λ-
Returns with Experience Replay. 1810.09967.
Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih,
V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning,
I.; Legg, S.; and Kavukcuoglu, K. 2018. IMPALA: Scal-
able Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures. 1802.01561.
Freeman, C. D.; Frey, E.; Raichuk, A.; Girgin, S.; Mordatch,
I.; and Bachem, O. 2021. Brax – A Differentiable Physics
Engine for Large Scale Rigid Body Simulation.
Funahashi, K.-i.; and Nakamura, Y. 1993. Approximation of
Dynamical Systems by Continuous Time Recurrent Neural
Networks. Neural Networks, 6(6): 801–806.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Comput., 9(8): 1735–1780.
Irie, K.; Gopalakrishnan, A.; and Schmidhuber, J. 2023.
Exploring the Promise and Limits of Real-Time Recurrent
Learning. 2305.19044.
Javed, K.; Shah, H.; Sutton, R.; and White, M. 2023. Scal-
able Real-Time Recurrent Learning Using Sparse Connec-
tions and Selective Learning. arxiv:2302.05326.
Johard, L.; and Ruffaldi, E. 2014. A Connectionist Actor-
Critic Algorithm for Faster Learning and Biological Plausi-
bility. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), 3903–3909. Hong Kong, China:
IEEE. ISBN 978-1-4799-3685-4.
Kandel, E. R. 2013. Principles of Neural Science. New
York; Toronto: McGraw-Hill Medical. ISBN 978-0-07-
139011-8.
Ladosz, P.; Ben-Iwhiwhu, E.; Dick, J.; Ketz, N.; Kolouri, S.;
Krichmar, J. L.; Pilly, P. K.; and Soltoggio, A. 2022. Deep
Reinforcement Learning With Modulated Hebbian Plus Q-
Network Architecture. IEEE Transactions on Neural Net-
works and Learning Systems, 33(5): 2045–2056.
Lange, R. T. 2022. gymnax: A JAX-based Reinforcement
Learning Environment Library.
Lillicrap, T. P.; Cownden, D.; Tweed, D. B.; and Akerman,
C. J. 2014. Random Feedback Weights Support Learning in
Deep Neural Networks. arXiv:1411.0247 [cs, q-bio].
Lillicrap, T. P.; and Santoro, A. 2019. Backpropagation
through Time and the Brain. Current Opinion in Neurobiol-
ogy, 55: 82–89.
Lu, C.; Kuba, J.; Letcher, A.; Metz, L.; Schroeder de Witt,
C.; and Foerster, J. 2022. Discovered Policy Optimisation.
Advances in Neural Information Processing Systems, 35:
16455–16468.
Marschall, O.; Cho, K.; and Savin, C. 2020. A Unified
Framework of Online Learning Algorithms for Training Re-
current Neural Networks. Journal of Machine Learning Re-
search, 21(135): 1–34.

Menick, J.; Elsen, E.; Evci, U.; Osindero, S.; Simonyan, K.;
and Graves, A. 2020. Practical Real Time Recurrent Learn-
ing with a Sparse Approximation. In International Confer-
ence on Learning Representations.
Miconi, T.; Clune, J.; and Stanley, K. O. 2018. Differentiable
Plasticity: Training Plastic Neural Networks with Backprop-
agation.
Mujika, A.; Meier, F.; and Steger, A. 2018. Approximat-
ing Real-Time Recurrent Learning with Random Kronecker
Factors. arxiv:1805.10842.
Murray, J. M. 2019. Local Online Learning in Recurrent
Networks with Random Feedback. eLife, 8: e43299.
Ni, T.; Eysenbach, B.; and Salakhutdinov, R. 2022. Recur-
rent Model-Free RL Can Be a Strong Baseline for Many
POMDPs. arxiv:2110.05038.
Ororbia, A.; and Mali, A. 2022. Active Predicting Coding:
Brain-Inspired Reinforcement Learning for Sparse Reward
Robotic Control Problems. arxiv:2209.09174.
Osband, I.; Doron, Y.; Hessel, M.; Aslanides, J.; Sezener, E.;
Saraiva, A.; McKinney, K.; Lattimore, T.; Szepesvari, C.;
Singh, S.; Roy, B. V.; Sutton, R.; Silver, D.; and Hasselt,
H. V. 2020. Behaviour Suite for Reinforcement Learning.
Pan, W.; Zhao, F.; Zeng, Y.; and Han, B. 2023. Adap-
tive Structure Evolution and Biologically Plausible Synaptic
Plasticity for Recurrent Spiking Neural Networks. Scientific
Reports, 13(1): 16924.
Roth, C.; Kanitscheider, I.; and Fiete, I. 2018. Kernel RNN
Learning (KeRNL). In International Conference on Learn-
ing Representations.
Rusu, S. I.; and Pennartz, C. M. A. ???? Learning, Mem-
ory and Consolidation Mechanisms for Behavioral Control
in Hierarchically Organized Cortico-Basal Ganglia Systems.
30.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347.
Seijen, H.; and Sutton, R. 2014. True Online TD(Lambda).
In Proceedings of the 31st International Conference on Ma-
chine Learning, 692–700. PMLR.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. A Bradford Book. ISBN 0-262-03924-
9.
Taherkhani, A.; Belatreche, A.; Li, Y.; Cosma, G.; Maguire,
L. P.; and McGinnity, T. M. 2020. A Review of Learning
in Biologically Plausible Spiking Neural Networks. Neural
Networks, 122: 253–272.
Tallec, C.; and Ollivier, Y. 2017. Unbiased Online Recurrent
Optimization. arxiv:1702.05043.
Wang, J. X.; Kurth-Nelson, Z.; Kumaran, D.; Tirumala, D.;
Soyer, H.; Leibo, J. Z.; Hassabis, D.; and Botvinick, M.
2018. Prefrontal Cortex as a Meta-Reinforcement Learning
System. Nature Neuroscience, 21(6): 860–868.
Werbos, P. 1990. Backpropagation through Time: What It
Does and How to Do It. Proceedings of the IEEE, 78(10):
1550–1560.

Williams, R. J.; and Zipser, D. 1989. A Learning Algorithm
for Continually Running Fully Recurrent Neural Networks.
Neural Computation, 1(2): 270–280.

Wise, R. A. 2004. Dopamine, Learning and Motivation. Na-
ture Reviews Neuroscience, 5(6): 483–494.

Zenke, F.; and Neftci, E. O. 2021. Brain-Inspired Learn-
ing on Neuromorphic Substrates. Proceedings of the IEEE,
109(5): 935–950.

Zucchet, N.; Meier, R.; Schug, S.; Mujika, A.; and Sacra-
mento, J. 2023. Online Learning of Long-Range Dependen-
cies. arxiv:2305.15947.

Derivation of update equations
Consider a CT-RNN that has N hidden states and I inputs,
activation φ and a combined weight matrix W ∈ RN×X

where Z = I +N +1. Each neuron has a time-constant
τ ∈RN and the next state ht+1 ∈ RN is computed as fol-
lows:

ht+1 = ht +
1

τ
(−ht + φ(Wξt)) ξt =

[
xt

ht

1

]
∈ RZ

where xt is the input at time t, and 1 concatenated to ξt
accounts for the bias. The output ŷt ∈ RO is given by a
linear mapping ŷt = Woutht. The latent space follows the
ODE τ ḣ = −ht + φ(Wξt).

RFLO leverages the state-update expression in order to
simplify the RTRL update. For this we expand the gradient
of f in equation 5. Note that previous work on RFLO kept
the time constant τ fixed and trained the recurrent weights
W only, hence the restricted ĴW in the equation:

ĴW
t+1 =

d

dW
ht +

d

dW
f(xt, ht)

=
d

dW
ht +

d

dW

1

τ
(−ht + φ(Wξt))

=
d

dW
ht(1−

1

τ
) +

d

dW

1

τ
φ(Wξt)

= (1− 1

τ
) ĴW

t +
1

τ
∇Wφ(Wξt)

+
1

τ
ĴW
t ∇ht

φ(Wξt)

(10)

In order to achieve biological plausibility, RFLO boldly
drops the last summand, since it requires horizontal gradi-
ent communication. The partial derivative of the activation
is simply∇Wφ(Wξt) = φ′(Wξt)

⊤ξt where φ′ is the point-
wise derivative of the activation function φ:

ĴW
t+1 ≈ (1− 1

τ
) ĴW

t +
1

τ
φ′(Wξt)

⊤ξt (11)

We analogously derive the RFLO update for τ . Again we
drop the communicated gradients Ĵτ

t ∇ht
φ(Wξt) and arrive

at the expression for Ĵτ .

Ĵτ
t+1 = Ĵτ

t −
d

dτ

1

τ
ht +

1

τ
φ(Wξt)

= Ĵτ
t −∇τ

1

τ
ht − Ĵτ

t ∇ht

1

τ
ht +

d

dτ

1

τ
φ(Wξt)

= Ĵτ
t (1−

1

τ
) +

1

τ2
ht +∇τ

1

τ
φ(Wξt)

+ Ĵτ
t ∇ht

1

τ
φ(Wξt)

= Ĵτ
t (1−

1

τ
) +

1

τ2
ht −

1

τ2
φ(Wξt)

+ Ĵτ
t ∇ht

1

τ
φ(Wξt)

(12)

Implementation Details
Upon acceptance, we will publish our code on GitHub. Log-
ging of experiments is implemented for Aim 1 or Weights
& Biases 2 as backend. Our implementation is highly con-
figurable and allows for many tweaks to the base algorithm.
Available options include gradient clipping, learning rate de-
cay, epsilon greedy policy, delayed RNN parameter updates
and many more. Please refer to table 2 and the Readme.md
in the code folder for a list of configurables. Table 2 summa-
rizes the hyperparameters of RTRRL. We kept them at the
listed default values for all our experiments.

Algorithm 2 repeats RTRRL with if-cases for RTRL with-
out feedback alignment for demonstrative purposes. The al-
gorithm can be divided into 4 distinct steps that are depicted
in figure 5. When developing the algorithm, we had to fig-
ure out the proper order of operations. Figure 6 is a flowchart
that was created to help understand at what point the eligibil-
ity traces are combined with the TD-error and approximate
Jacobian, to form the parameter updates.

Since not using batched experiences, our algorithm un-
surprisingly suffers from large variance and in some cases
catastrophic forgetting ensues. Using an exponentially de-
caying learning rate for the RNN can help ins such cases but
for simplicity we chose to make our experiments without
this fix. Since a biologically plausible agent should retain its
capability of reacting to shifts in the environment, the adapt-
ability of our algorithm would be tainted as the learning rate
of the RNN approaches 0. Nonetheless, RTRRL most of the
time converges to an optimal solution without the use of de-
caying learning rates.

Neuron Model. The simplified CT-RNN outlined in the
paper is taken from (Murray 2019). Our code allows for in-
creasing the number of steps k = dt−1 when solving the
underlying Ordinary Differential Equation with the forward
Euler method. More steps lead to a more expressive model
meaning you can get away with fewer neurons, but also to
increased computational complexity. In our experiments we
kept k = 1 for simplicity.

1https://aimstack.readthedocs.io/
2httpbs://wandb.ai/

 2. Act

3. Compute TD-error

 4. Update using TD-error and Approximate Jacobian

 1. Step RNN

TD-error

Env Step

RTRL

(one-hot)

Figure 5: RTRRL can be devided into 4 parts that are repeated throughout training.

POMDP state

TD Error

Online AC steps

Linear Actor-Critic

RNN state

TD Error

Figure 6: Flowchart depicting the computations done throughout one RTRRL step.

More experiments
Memory Length
We tested the memory capacity of our RTRRL models by
learning to remember the state of a bit for an extended num-
ber of steps. The experiment is explained in section . Figure
4 shows the rewards of 10 runs each as boxplots. We also
included a naive approximation to RTRL we call LocalMSE

that only uses the immediate Jacobian for updates. Looking
at the boxplot we can clearly see that RTRL outperforms the
other methods and that RFLO is situated at a middle ground
between LocalMSE and RTRL in terms of memory capacity.

Description Symbol Value
number of neurons n 32
discount factor γ 0.99
Actor learning rate αA 1e-2
Critic learning rate αC 1.0
RNN learning rate αR 1e-3
entropy rate ηH 1e-5
Actor eligibility decay λA 0.9
Critic eligibility decay λC 0.9
RNN eligibility decay λR 0.9
patience in epochs 20
maximum environment steps 50 mil.
optimizer SGD
batch size 1
learning rate decay 0
action epsilon 0
update period 1
gradient norm clip 1.0
normalize observations False

Table 2: Hyperparameters of RTRRL and values used.

Figure 7: CT-RNNs are solving an Ordinary Differential
Equation. In general, any solver may be used. When us-
ing forward Euler, dt = k−1 is a hyperparameter that de-
termines the number of solver steps and subsequently the
accuracy of the solution.

Physics Simulation
For this set of experiments we created POMDPs with con-
tinuous actions by masking the observations of three dif-
ferent brax environments. For each environment, we ran
hyperparameter tuning for at least 10 hours and picked the
best performing run. Figure 8 shows the evaluation rewards
achieved throughout the learning process for RTRRL and the
PPO baseline that was provided by the package.

Biological implausibility of BPTT
Here, we elaborate further on the objections to biological
plausibility of Backpropagation-Through Time.

Fully online. The computation of updates should not de-
pend on alternating forward and backward phases. Conceiv-
ably, such phases could be implemented using pacemaker
neurons. However, there must not be any freezing of values,
which occurs in BPTT. Furthermore, parallel streams of ex-

Algorithm 2: Real-Time Recurrent Reinforcement Learning
with accumulate eligibility traces and RTRL

Require: Linear policy: π(a|h, θA)
Require: Linear value function: v̂(h, θC)
Require: CT-RNN body: RNN([o, a, r], h, Ĵ , θR)
θA, θC , θR ← Randomly initialize parameters
if RFLO then
BA, BC ← Randomly initialize feedback matrices

end if
h, eA, eC , eR ← 0
o← Reset Environment
h, Ĵ ←RNN([o,0, 0], h, θR)
v ← v̂(h, θC)
while not done do

logits← π(h, θA)
a← Sample(logits)
o,R← Take action a in Environment
h′, Ĵ ′ ←RNN([o, a, r], h, Ĵ , θR)
v′ ← v̂(h′, θC)
δ ← R+ γv′ − v
eC ← γλCeC +∇θC v̂
eA ← γλAeA +∇θA [lnπ[a] + ηHEnt(π)]
if RTRL then
eR ← γλReR +∇h[v̂ + lnπ[a] + ηHEnt(π)]

else if RFLO then
gC ← BC1
gA ← BA∇logits[lnπ[a] + ηHEnt(π)]
eR ← γλReR + gC + gA

end if
θC ← θC + αCδeC
θA ← θA + αAδeA
θR ← θR + αRĴδeR
v ← v′, h← h′, Ĵ ← Ĵ ′

end while

perience, such as in batched environments of modern DRLs,
violate this constraint, as a biological agent can only interact
with the singular environment in which it is situated.

No weight transport. Synapses that propagate back error
signals cannot have their strength mirroring the strength of
forward synapses. This is heavily violated by backpropaga-
tion since backward pathways need access to, and utilize,
parameters that were used in the forward pass.

No horizontal gradient communication. Individual neu-
rons xk are very likely unable to communicate exact acti-
vation gradients ∇wij

xk(t), with respect to the synaptic pa-
rameters wij , to other neurons that are not in their vicinity.
In other words, intermediate (source) neurons should not be
able to tell other (target) neurons how each of the synaptic
weights of the source influence the dynamics of the target,
nor vice-versa.

Biological Interpretation of RTRRL
Real-Time Recurrent Reinforcement Learning is a model of
goal-directed behaviour learning and training of reflexes in
animals, located in the human basal ganglia (Rusu and Pen-
nartz). It comprises a scalar-valued global reward signal that

Figure 8: Evaluation rewards for environments from the brax package that where masked as described in section to make
them POMDPs. Shown are the best run for RTRRL and the tuned baseline shipped with the package.

can be interpreted as dopaminergic synapses, a value esti-
mator (critic) and motor output (actor).

Dopamine and Learning
Dopamine is a neurotransmitter found in the central nervous
system of mammals. It is widely agreed upon that dopamine
plays an important role in rewards and reinforcement. The
molecule is released by specialized neurons located primar-
ily in two areas of the brain: the substantia nigra zona com-
pacta (SNc) and the ventral tegmental area (VTA). (Wise
2004) These neurons have large branching axonal arbors
making synapses with many other neurons - mostly in the
striatum and the pre-frontal cortex. Those synapses are usu-
ally located at the dendritic stems of glutamate synapses and
can therefore effectively influence synaptic plasticity. (Sut-
ton and Barto 2018)

Whenever receiving an unexpected reward, dopamine is
released which subsequently reinforces the behavior that led
to the reward. However, if the reward is preceded by a condi-
tioned stimulus, it is released as soon as the stimulus occurs
instead of when receiving the expected reward. If then the
expected reward is absent, levels will drop below baseline
representing a negative reinforcement signal. (Wise 2004)
Various experiments have shown that dopamine is crucial
for stamping in response-reward and stimulus-reward asso-
ciations which in turn is needed for motivation when con-
fronted with the same task in the future. Particularly, moder-
ate doses of dopamine antagonists (neuroleptics) given to a
live animal will reduce motivation to act. Habitual responses
decline progressively in animals that are treated with neu-
roleptics. (Wise 2004)

Ternary Synapses
Hetero-synaptic plasticity is a type of synaptic plasticity
that involves at least three different neurons. Usually, a sen-
sory neuron is forming a synapse with a motor neuron. A
third so called facilitating neuron also forms a synapse at
the same spot and so is able to influence the signal trans-

mission between the sensory and the motor neuron. A his-
toric example is found in the gill-withdrawal reflex circuitry
of Aplysia (Kandel 2013). The RPE signalling, facilitating
inter-neuron strengthens the motor response (withdrawing
the gill) when a negative reward (shock) is experienced or
expected. RTRRL could be implemented in biological neu-
ral networks with ternary synapses where the facilitating
synapses are projecting back from the TD-error computing
inter-neuron.

Brain Structures

There is ample evidence that certain brain structures are im-
plementing actor-critic methods. The striatum is involved
in motor and action planning, decision-making, motivation,
reinforcement and reward perception. It is also heavily in-
nervated by dopamine axons coming from the VTA and
the SNc. It is speculated that dopamine release in the ven-
tral striatum ”energizes the next response” while it acts
by stamping in the procedural memory trace in the dor-
sal striatum ”establishing and maintaining procedural habit
structures” (Wise 2004). Subsequently, the ventral striatum
would correspond to the critic and the dorsal striatum to
the actor of an RL algorithm (Sutton and Barto 2018).
Dopamine would then correspond to the TD-error which is
used to update both the actor and the critic. As dopamine
neuron axons target both the ventral and dorsal striatum,
and dopamine appears to be critical for synaptic plasticity,
the similarities are evident. Furthermore, the TD-error and
dopamine levels are both encoding the RPE: they are high
whenever an unexpected reward is received and they are low
(or negative in case of the TD-error) when an expected re-
ward does not occur. (Sutton and Barto 2018) These similar-
ities could be beneficial for RL as well as for Neuroscience
as advances in either field could lead to new insights that are
beneficial to the other.

Figure 9: The basal ganglia are located at the base of
the forebrain and play a major role in motivation and be-
havioural learning. Source: Wikimedia, Leevanjackson3

Timing comparison
In order to compare wall-clock time, we did a quick perfor-
mance test for RTRRL with CT-RNN and PPO with LSTM.
In both cases we trained for 5000 steps, with 32 units and
a batch size of 1, on a machine with a single GeForce RTX
2070 GPU. For both cases, we repeated the test 3 times and
calculated the average time per step of the algorithm. Our
results were 7,58 ms / step for PPO-LSTM and 7,49 ms /
step for RTRRL-CTRNN. Please note that these results may
not carry over to larger model or batch sizes.

