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We derive microscopically the Ginzburg-Landau free energy functional for a superconductor in
which the Cooper pairs are formed not only by quasiparticles from the same band, but also by
quasiparticles from different bands. In the simplest case of an s-wave or d-wave pairing in a two-band
system, the order parameter has three components describing two intraband and one interband pair
condensates. The interband pairing-specific terms in the free energy bring about some qualitative
changes in the phase diagram, for example, time-reversal symmetry breaking superconducting states
are stabilized at low temperatures.

I. INTRODUCTION

The properties of multiband, in particular two-band,
superconductors (SCs) have been at the forefront of con-
densed matter physics research since the discovery of su-
perconductivity in MgB2 (Refs. 1 and 2). The list of
materials in which multiband effects are thought to play
an important role also includes Sr2RuO4 (Refs. 3 and
4), NbSe2 (Ref. 5), various heavy-fermion compounds,6,7

iron-based SCs,8,9 doped topological insulators,10,11 su-
perconducting oxide interfaces,12,13 and others.

In the simplest theoretical approach,14,15 the Bardeen-
Cooper-Schrieffer (BCS) model is extended to the two-
band case by assuming that the pairing interaction shells
near the Fermi surfaces in the two bands do not overlap,
so that the Cooper pairs are formed only by the same-
band quasiparticles. In this case, the order parameter in
a one-dimensional (1D) pairing channel, e.g., s-wave or d-
wave, has two components, η1 and η2, which describe the
pair condensates in the two bands. The Cooper pairs can
scatter from one band to the other producing a “Joseph-
son coupling” between the bands, which depends on the
relative phase of the two condensates. It is this coupling
that gives rise to the most spectacular differences from
the single-band case, such as the Leggett modes,16,17

phase solitons,18 and fractional vortices,19 see reviews in
Refs. 20 and 21.

The recent experimental developments have motivated
a further extension of the theory of multiband supercon-
ductivity in which the pairing of quasiparticles from dif-
ferent bands is taken into account. The interband Cooper
pairing can be incorporated into the BCS framework by
assuming that the pairing interaction energy cutoff ϵc
exceeds the band splitting. For realistic band structures
that would likely require a non-phononic mechanism of
pairing. In an alternative approach, one starts with a
real-space pairing between different atomic orbitals in a
crystal lattice and then transforms it into the band repre-
sentation, which in general produces both intraband and
interband pairing terms in the Hamiltonian.22–26

Assuming that the interband pairs are created through
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one or another microscopic mechanism, one can use the
group theory to classify the possible symmetries of the in-
traband and interband gap functions. Such phenomeno-
logical approach has proved to be very useful in the stud-
ies of fermionic superfuilds and superconductors,27–29 al-
lowing one to determine the stable states and possible
structures of the gap nodes even if the microscopic pair-
ing mechanism is not known.

In this paper, we derive the Ginzburg-Landau (GL)
free energy functional for a multiband superconductor
from a microscopic theory. We assume that there are
two bands participating in superconductivity and take
into account both intraband and interband pairing. Our
calculations are based on an extended BCS model, in
which the pairing shell in the momentum space contains
both Fermi surfaces. Although we mostly focus on 1D
pairing channels in a tetragonal SC, which correspond to
1D irreducible representations of the crystal point group
D4h, our approach can be straightforwardly generalized
to other crystal symmetries, higher-dimensional repre-
sentations, and any number of bands. The condensate of
the Cooper pairs formed by the quasiparticles from differ-
ent bands is described by an additional order parameter
component η̃. Therefore, the GL free energy depends
on the three-component order parameter η = (η1, η2, η̃).
This leads to a more complicated structure of the free
energy and a number of novel features, compared to the
intraband-only GL theory.

The paper is organized as follows. In Sec. II, we re-
view the symmetry-based classification of the intraband
and interband gap functions and show, in particular, that
the latter depend crucially on the symmetries of the two
Bloch bands involved in the pairing. In Sec. III, the sym-
metry analysis is applied to a generalized BCS Hamilto-
nian including all possible intraband and interband pair-
ing interactions. In Sec. IV, the GL functional is derived
for the order parameter η, which has two intraband and
one interband components. Some of the effects brought
about by the interband pairing, namely, the emergence
of stable time-reversal (TR) symmetry-breaking states
in a two-band SC, are discussed in Sec. V. Throughout
the paper we use the units in which ℏ = kB = 1, neglect-
ing, in particular, the difference between the quasiparticle
wave vector and momentum.
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II. PAIRING SYMMETRY: GENERAL
ANALYSIS

We consider a centrosymmetric TR-invariant crystal
described by the point group G. External fields and im-
purities are neglected. The exact band states |k, n, s⟩,
which incorporate all effects of the periodic crystal lattice
potential and the electron-lattice spin-orbit (SO) cou-
pling, are twofold degenerate at each wave vector k due
to the combined symmetry C = KI, called conjugation,30

where K is the TR operation and I is the spatial inver-
sion. We use the index n to label the bands and also an
additional index s = 1, 2 to distinguish two orthonormal
Bloch states, |k, n, 1⟩ and |k, n, 2⟩ ≡ C|k, n, 1⟩, within the
same band. In the presence of the SO coupling, the Bloch
states have both spin-up and spin-down components, and
s, called the Kramers index or the conjugation index, is
not the same as the electron spin projection.

The Bloch bands are classified according to the irre-
ducible double-valued corepresentations (coreps) of the
magnetic point group G+CG at the Γ point, see Appendix
A. In a given band, the electron creation operators in the
Bloch states transform under the point-group operations
and TR in the following way:31

gc†k,nsg
−1 =

∑
s′

c†gk,ns′Dn,s′s(g), g ∈ G, (1)

and

c̃†k,ns ≡ Kc†k,nsK
−1 = pn

∑
s′

c†−k,ns′(−iσ̂y)s′s. (2)

Here D̂n(g) is the Γ-point corep matrix in the nth band
and pn = ±1 is the band parity. We use the notation σ̂0
and σ̂ = (σ̂x, σ̂y, σ̂z) respectively for the identity matrix
and the Pauli matrices in the Kramers space.

In this paper, we consider only the point group G =
D4h, which describes the symmetry of numerous impor-
tant superconductors, from the high-Tc cuprates and iron
pnictides to Sr2RuO4. Due to the presence of the inver-
sion symmetry, the Γ-point coreps are either inversion-
even (Γ+) or inversion-odd (Γ−). The magnetic group
D4h + CD4h has four double-valued coreps, Γ±

6 and
Γ±
7 , only Γ+

6 being equivalent to the spin-1/2 corep.32,33

Therefore, Γ+
6 bands are pseudospin bands, while Γ−

6 and
Γ±
7 bands are non-pseudospin bands.
Suppose there are two bands crossing the chemical

potential and participating in superconductivity. The
bands can have the same or different symmetries, i.e.,
correspond to the same or different Γ-point coreps. In
the D4h case, there are ten possible two-band combina-
tions: (Γ+

6 ,Γ
+
6 ), (Γ

+
6 ,Γ

−
6 ), (Γ

+
6 ,Γ

+
7 ), etc. At the mean-

field level, the Hamiltonian in a uniform superconducting
state has the form ĤMF = Ĥ0 + Ĥsc, where

Ĥ0 =
∑
n=1,2

∑
k,s

ξn(k)c
†
k,nsck,ns (3)

describes non-interacting quasiparticles in two twofold
degenerate Bloch bands. The band dispersions ξn(k) =

ξn(−k) are counted from the chemical potential, which is
set equal to the Fermi energy ϵF . Without loss of gener-
ality, we assume that ξ1(k) < ξ2(k) at all k. The pairing
Hamiltonian is given by

Ĥsc =
1

2

∑
nn′

∑
k,ss′

∆nn′,ss′(k)c
†
k,nsc̃

†
k,n′s′ +H.c., (4)

where the operators c̃†k,ns create electrons in TR-

transformed states, see Eq. (2). The intraband pairing

in the nth band is described by the gap functions ∆̂nn,
whereas ∆̂12 and ∆̂21 describe the pairing of quasipar-
ticles from different bands (the interband pairing). The
latter can be included in a general mean-field model on
the same footing as the intraband gap functions. Micro-
scopically, interband pairs appear in a BCS-like model
if the pairing interaction shells near the Fermi surfaces,
which are defined by |ξ1|, |ξ2| ≤ ϵc, overlap, i.e., if the
pairing interaction energy cutoff ϵc exceeds the interband
splitting, see Sec. III.

For each pair of bands, the gap function is a 2 × 2
matrix in the Kramers space, which can be represented
as follows:

∆̂nn′(k) = ψnn′(k)σ̂0 + dnn′(k)σ̂. (5)

By analogy with the standard (single-band) theory of su-
perconductivity, see, for instance, Refs. 28 and 29, one
can call ψnn′ and dnn′ the singlet and triplet compo-
nents, respectively. Note that the factors iσ̂y are absent
from the expression (5), because the gap functions are de-
fined in Eq. (4) as the measures of the pairing between
the quasiparticles in the states |k, n, s⟩ and K|k, n′, s′⟩,
not in |k, n, s⟩ and | − k, n′, s′⟩. This ensures34 that
the Bogoliubov-de Gennes Hamiltonian is a proper first-
quantization Hamiltonian and that the gap functions
have natural transformation properties under the sym-
metry operations. The anticommutation of the fermionic
operators imposes the following constraint:

∆̂nn′(k) = pnpn′ σ̂y∆̂
⊤
n′n(−k)σ̂y, (6)

therefore, ψnn′(k) = pnpn′ψn′n(−k) and dnn′(k) =
−pnpn′dn′n(−k). We see that, while the intraband sin-
glet (triplet) gap functions are necessarily even (odd) in
k, the parity of the interband pairing is not determined
by the anticommutation requirement alone.

Applying Eq. (1) to the pairing Hamiltonian (4), we
find that the symmetry operations from the point group
induce the following transformation of the gap functions:

g : ∆̂nn′(k) → D̂n(g)∆̂nn′(g−1k)D̂†
n′(g). (7)

Thus, the gap transformation properties are nonuniver-
sal, in the sense that they depend on the symmetries
of the bands involved in the pairing. The singlet compo-
nents ψnn′ do not necessarily tranform as scalar functions
of k, while the triplet components dnn′ are not always
pseudovectors. Even the intraband pairing may be af-
fected: it was shown in Ref. 31 that in certain bands



3

in trigonal and hexagonal superconductors the standard
classification of triplet pairing states breaks down, with
profound consequences for the gap nodal structure. Re-
garding the response of the gap functions to TR, it follows
from Eq. (2) that

K : ∆̂nn′(k) → ∆̂†
n′n(k). (8)

To obtain this, we used the antilinearity of the TR oper-

ator and the fact that Kc̃†k,nsK
−1 = −c†k,ns.

A. Order parameter components

According to the Landau theory of phase transitions,
the gap functions, both intraband and interband, must
correspond to the same single-valued irreducible repre-
sentation (irrep) γ of the point group G, which is called
the pairing channel. For G = D4h, there are ten single-
valued irreps of either parity, eight 1D and two two-
dimensional (2D), see Ref. 32. In particular, the 1D
irrep A1g describes the “s-wave” pairing, whereas the
2D irrep Eu describes the “p-wave” pairing. Note that
we use the “chemical” notation for the single-valued ir-
reps corresponding to the pairing channels, reserving the
Γ notation for the double-valued coreps describing the
symmetry of the Bloch bands.

For each pair of bands, the gap function can be repre-
sented as a linear combination of the matrix basis func-
tions of the d-dimensional irrep γ as follows:

∆̂nn′(k) =

d∑
a=1

ηann′ ϕ̂ann′(k). (9)

The expansion coefficients ηann′ here play the role of the
order parameter components and are found by minimiz-
ing the free energy of the superconductor. Transforma-

tion of the 2 × 2 matrix basis functions ϕ̂ann′(k) under
the point group operations follows immediately from Eq.
(7):

g : ϕ̂ann′(k) → D̂n(g)ϕ̂
a
nn′(g−1k)D̂†

n′(g)

=

d∑
b=1

ϕ̂bnn′(k)Dγ,ba(g), (10)

where D̂γ(g) is the d×d representation matrix. In partic-
ular, the basis functions in a 1D pairing channel satisfy
the following equation:

D̂n(g)ϕ̂nn′(g−1k)D̂†
n′(g) = χγ(g)ϕ̂nn′(k), (11)

where χγ(g) is the character of g in the irrep γ. Similarly
to Eq. (5), the basis functions can be represented as sums
of the “singlet” and “triplet” components, the former
containing the identity matrix σ̂0 and the latter – the
Pauli matrices σ̂.

Explicit expressions for the basis functions can be
found by solving Eq. (10), subject to several additional

constraints. First, it follows from the anticommutation
condition (6) that

ϕ̂ann′(k) = pnpn′ σ̂yϕ̂
a,⊤
n′n(−k)σ̂y. (12)

Second, our crystal has an inversion center, so we can
put g = I in Eq. (10) and obtain:

pnpn′ ϕ̂ann′(−k) = Pγ ϕ̂
a
nn′(k), (13)

where Pγ ≡ χγ(I) = ±1 is the parity of the pairing
channel γ (not to be confused with the band parities p1
and p2). Combining Eqs. (12) and (13), we see that

ϕ̂ann′(k) = Pγ σ̂yϕ̂
a,⊤
n′n(k)σ̂y. Therefore, the statement

that an even pairing (Pγ = +1) is purely singlet, i.e.,
the basis functions contain only σ̂0, whereas an odd pair-
ing (Pγ = −1) is purely triplet, i.e., the basis functions
contain only σ̂, is true only for the intraband functions

ϕ̂ann(k). For the interband gap functions, both the singlet
and triplet components can be present simultaneously
without violating the Pauli principle, with the parity of

ϕ̂ann′(k) determined by the relative parity of the bands,
see the examples in Secs. II B and IIC below.

The final constraint on the basis functions is obtained
using the response to TR. According to Eq. (8),

K : ϕ̂ann′(k) → ϕ̂a,†n′n(k). (14)

Note that K2 = 1 when acting on the gap functions and
the basis functions. It follows from Eqs. (10) and (14)

that, for a given pair of bands, the set {ϕ̂ann′(k), ϕ̂
a,†
n′n(k)}

with a = 1, ..., d forms the basis of a 2d-dimensional
single-valued corep of the magnetic point group G+KG,
which is derived from the irrep γ. The corep matrices
are given by

D̂(g) =

(
D̂γ(g) 0

0 D̂∗
γ(g)

)
, D̂(K) =

(
0 1̂d

1̂d 0

)
,

where 1̂d is the d× d unit matrix. According to Refs. 32
and 33, coreps or magnetic groups are classified into three
cases, A, B, or C, which determine whether or not the
TR symmetry leads to an additional degeneracy and also
the type of this degeneracy. In Case A, there is no ad-
ditional degeneracy, i.e., the corep is reducible, whereas
the TR symmetry brings about additional degeneracy of
the “doubling” type in Case B and of the “pairing” type
in Case C. One can show that all coreps for the point
group D4h are Case A. Therefore, the set of the TR-

transformed basis functions ϕ̂a,†n′n(k) is the same as as the

set of ϕ̂ann′(k), and one can put

ϕ̂ann′(k) = ϕ̂a,†n′n(k), (15)

for all pairs of bands.
Returning to the order parameter components, it fol-

lows from Eqs. (6) and (12) that

ηann′ = ηan′n. (16)
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Therefore, the superconducting state corresponding to a
d-dimensional pairing channel in an N -band supercon-
ductor is described by N(N + 1)d/2 independent order
parameter components, of which Nd characterize the in-
traband pair condensates and N(N − 1)d/2 – the inter-
band ones. In the two-band case, the order parameter
has 3d components: ηa11, η

a
22, and η

a
12.

Using Eqs. (7) and (10), we see that under the point
group operations the order parameter transforms as fol-
lows:

g : ηann′ →
d∑

b=1

Dγ,ba(g)η
b
nn′ . (17)

This means that the structure of the GL free energy de-
pends only on the pairing channel γ, but not on the sym-
metry of the electron bands participating in the pairing.
The latter affects only the matrix structure and the mo-
mentum dependence of the basis functions. Finally, it
follows from Eqs. (8) and (15) that

K : ηann′ → ηa,∗nn′ , (18)

i.e., the action of TR on the order parameter is equiv-
alent to complex conjugation. In a TR-invariant super-
conducting state, all components of the order parameter
are real.

B. Example: s-wave pairing

The s-wave pairing channel corresponds to the identity
irrep A1g. Here and below we assume a quasi-2D band
structure, i.e., set k = (kx, ky). The gap functions (9)

take the form ∆̂nn′(k) = ηnn′ ϕ̂nn′(k), where n, n′ = 1, 2.
The pairing channel is even (Pγ = 1), therefore, accord-
ing to Eqs. (12), (13), and (15), the intraband basis

functions are given by ϕ̂nn(k) = αn(k)σ̂0, where αn are
real and even in k. The interband basis functions can be
sought in the form

ϕ̂12(k) =
ˆ̃
ϕ(k) = α̃(k)σ̂0 + iβ̃(k)σ̂,

ϕ̂21(k) =
ˆ̃
ϕ†(k) = α̃(k)σ̂0 − iβ̃(k)σ̂,

(19)

where the real functions α̃ and β̃ are even (odd) in k for
the bands of the same (opposite) parity.

The momentum dependence of α1,2, α̃, and β̃ is found
from the point-group constraint (11) with χγ(g) = 1 for
all g, which should be solved for each pair of bands. The
intraband basis functions are just real invariant scalars,
satisfying αn(g

−1k) = αn(k), so one can put α1,2(k) = 1
without loss of generality. In contrast, the interband ba-
sis functions depend on the symmetries of the bands in-
volved in the pairing and are listed in Table I, see Ap-
pendix B for the details of the calculation.

Introducing the shorthand notation

η1 ≡ η11, η2 ≡ η22, η̃ ≡ η12 = η21, (20)

TABLE I: Momentum dependence of the s-wave interband
pairing in a quasi-2D crystal with G = D4h (a is a real con-
stant). First column: the Γ-point coreps of the bands partic-
ipating in the pairing.

ˆ̃
ϕ(k)

(Γ±
6 ,Γ

±
6 ), (Γ

±
7 ,Γ

±
7 ) σ̂0 + akxky(k

2
x − k2

y)σ̂z

(Γ±
6 ,Γ

∓
6 ), (Γ

±
7 ,Γ

∓
7 ) kxσ̂x + kyσ̂y

(Γ±
6 ,Γ

±
7 ) (k2

x − k2
y)σ̂0 + akxkyσ̂z

(Γ±
6 ,Γ

∓
7 ) kxσ̂x − kyσ̂y

the intraband and interband gap functions take the fol-
lowing form:

∆̂11(k) = η1α1(k)σ̂0, ∆̂22(k) = η2α2(k)σ̂0,

∆̂12(k) = η̃[α̃(k)σ̂0 + iβ̃(k)σ̂],

∆̂21(k) = η̃[α̃(k)σ̂0 − iβ̃(k)σ̂].

(21)

The order parameter components η1, η2, and η̃ are found
by minimizing the free energy of the superconductor, see
Sec. IV.

We see from Eq. (21) that, while the structure of
the intraband gap functions is standard for the singlet
isotropic pairing, the interband gap functions exhibit un-
conventional features such as a nonzero triplet compo-
nent and the parity which depends on the relative parity
of the bands. For example, for the opposite-parity bands
(Γ±

6 ,Γ
∓
6 ) or (Γ

±
7 ,Γ

∓
7 ), we have

∆̂12(k) = iη̃(kxσ̂x + kyσ̂y), (22)

which looks like a p-wave gap function, but in fact re-
mains invariant under all elements of the point group,
i.e., correspons to the identity irrep A1g. In particular,

we have I : ∆̂12(k) → p1p2∆̂12(−k) = ∆̂12(k), according

to Eq. (7). The imaginary factor in ∆̂12 ensures that
η̃ → η̃∗ under the TR operation.

C. Example: p-wave pairing

For the p-wave pairing channel, which corresponds to
the 2D irrep Eu of D4h, the gap functions (9) take the

form ∆̂nn′(k) =
∑

a=1,2 η
a
nn′ ϕ̂ann′(k). The pairing chan-

nel is odd (Pγ = −1) and, according to Eqs. (12),
(13), and (15), the intraband basis functions are given

by ϕ̂ann(k) = βa
n(k)σ̂, where βa

n are real and odd in k.
The interband basis functions can be sought in the form

ϕ̂a12(k) =
ˆ̃
ϕa(k) = iα̃a(k)σ̂0 + β̃a(k)σ̂,

ϕ̂a21(k) =
ˆ̃
ϕ†a(k) = −iα̃a(k)σ̂0 + β̃a(k)σ̂,

where the real functions α̃a and β̃a are odd (even) in k
for the bands of the same (opposite) parity.

The momentum dependence of βa
1,2, α̃a, and β̃a is

found from Eq. (10), which should be solved for each
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TABLE II: Momentum dependence of the p-wave interband
pairing in a quasi-2D crystal with G = D4h (a is a real con-
stant). First column: the Γ-point coreps of the bands partic-
ipating in the pairing.

(
ˆ̃
ϕ1(k),

ˆ̃
ϕ2(k))

(Γ±
6 ,Γ

±
6 ), (Γ

±
7 ,Γ

±
7 ) (iakyσ̂0 + kxσ̂z, −iakxσ̂0 + kyσ̂z)

(Γ±
6 ,Γ

∓
6 ), (Γ

±
7 ,Γ

∓
7 ) (σ̂y,−σ̂x)

(Γ±
6 ,Γ

±
7 ) (iakyσ̂0 + kxσ̂z, −iakxσ̂0 + kyσ̂z)

(Γ±
6 ,Γ

∓
7 ) (σ̂y,−σ̂x)

pair of bands. For the intraband basis functions, one can
put β1

n(k) = (0, 0, kx) and β2
n(k) = (0, 0, ky). The in-

terband basis functions depend on the symmetries of the
bands involved in the pairing and are listed in Table II.

Introducing the shorthand notation

η1,a ≡ ηa11, η2,a ≡ ηa22, η̃a ≡ ηa12 = ηa21,

where a = 1, 2, the intraband and interband gap func-
tions corresponding to the p-wave pairing take the fol-
lowing form:

∆̂11(k) = (η1,1kx + η1,2ky)σ̂z,

∆̂22(k) = (η2,1kx + η2,2ky)σ̂z,

∆̂12(k) = η̃1
ˆ̃
ϕ1(k) + η̃2

ˆ̃
ϕ2(k),

∆̂21(k) = η̃1
ˆ̃
ϕ†1(k) + η̃2

ˆ̃
ϕ†2(k).

(23)

The order parameter has six components: the intraband
ones η1 = (η1,1, η1,2) and η2 = (η2,1, η2,2), and the inter-
band ones η̃ = (η̃1, η̃2), which can be found by minimiz-
ing the GL free energy of the superconductor.

The structure of the intraband gap functions in Eq.
(23) is standard for a quasi-2D p-wave pairing. In con-
trast, the interband gap functions look unusual, because
they essentially depend on the symmetries of the bands
and either contain a nonzero singlet component or are
even in k. The latter possibility, namely, ∆̂12(k) =

η̃1σ̂y − η̃2σ̂x = ∆̂21(k), is realized for any combination
of the opposite-parity bands.

III. FULL PAIRING HAMILTONIAN

The symmetry analysis of the mean-field gap functions
can be straightforwardly extended to the full Hamilto-
nian describing the pairing interaction in the basis of the
exact band states. We have Ĥ = Ĥ0 + Ĥint, where Ĥ0 is
given by Eq. (3) and

Ĥint =
1

2V
∑
kk′q

∑
nisi

V n1n2n3n4
s1s2s3s4 (k,k′; q)

×c†
k+ q

2 ,n1s1
c̃†
k− q

2 ,n2s2
c̃k′− q

2 ,n3s3ck′+ q
2 ,n4s4 (24)

is the pairing Hamiltonian, ni = 1, 2 is the band index,
and si = 1, 2 is the Kramers index. The Cooper pair-
ing takes place between the quasiparticles in the states

FIG. 1: The Fermi surfaces in the bands 1 and 2 within the
BCS pairing shell (the shaded annulus).

|k + q/2, n1, s1⟩ and K|k − q/2, n2, s2⟩, see Eq. (4).
The center-of-mass momentum of the pairs is equal to
q. Quasiparticles from different bands can form a pair
with q = 0 if they have mismatched energies within the
interaction energy shell, see below.
Guided by a considerable precedent in the theory of un-

conventional superconductivity,28,29 we make the follow-
ing assumptions about the interaction function V . First,
we neglect its dependence on the pair center-of-mass mo-
mentum q (taking this dependence into account can lead
to some interesting consequences, see Ref. 35, which are
not considered here). Second, we assume, in the spirit
of the BCS theory, that only the quasiparticles inside a
pairing shell near the Fermi surface participate in the
pairing. In the two-band case, the Fermi surface consists
of two or more sheets corresponding to the solutions of
the equations ξ1(k) = 0 and ξ2(k) = 0, and

V̂ n1n2n3n4(k,k′) ∝ θ(ϵc − |ξni
(k)|)θ(ϵc − |ξn2

(k)|)
×θ(ϵc − |ξn3(k

′)|)θ(ϵc − |ξn4(k
′)|), (25)

where θ(x) is the Heaviside step function and ϵc is the
energy cutoff. Therefore, the interband pairing is present
only if the BCS shells in the two bands overlap, i.e., if

ϵc >
Eb
2
, Eb = max

k
|ξ2(k)− ξ1(k)|.

The third assumption is that the momentum dependence
of the pairing interaction inside the BCS shell can be
represented in a factorized form:

V n1n2n3n4
s1s2s3s4 (k,k′) = −1

2
Vn1n2,n3n4

×
d∑

a=1

ϕan1n2,s1s2(k)ϕ
a,∗
n4n3,s4s3(k

′), (26)

where Vn1n2,n3n4
are the dimensional coupling constants

and ϕ̂ann′(k) are the 2 × 2 matrix basis functions of the
d-dimensional pairing channel γ introduced in Sec. IIA.
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To make analytical progress, we use the following band
dispersions:

ξ1(k) = ξ(k)− Eb
2
, ξ2(k) = ξ(k) +

Eb
2
, (27)

where Eb > 0 is the band splitting, which satisfies

Eb < 2ϵc ≪ ϵF . (28)

Under these assumptions, the Cooper pairing, both in-
traband and interband, takes place within a “thick” mo-
mentum shell containing both Fermi surfaces, as shown
in Fig. 1. The BCS cutoffs in Eq. (25) take the same
form in both bands and also appear in the basis func-

tions as ϕ̂ann′(k) ∝ θ(ϵc − |ξ(k)|). The relative strength
of the intraband and interband pairing is controlled by
the coupling constants.

The smallness of the superconducting energy scales
compared to the Fermi energy allows one to transform
the momentum integrals that appear in the calculations
below as follows:∫

d2k

(2π)2
(...) = NF

∫ ϵc

−ϵc

dξ ⟨(...)⟩ , (29)

where NF =
∫
k
δ[ξ(k)] is the density of states (DoS)

corresponding to ξ(k) and the angular brackets denote
the average over the constant-energy surface ξ(k) = 0.
It should be noted that only the assumption that both
Fermi surfaces are inside the same BCS shell is crucial
for our analysis. The assumption ϵc ≪ ϵF facilitates
analytical calculations but can be relaxed, e.g., one can
extend the energy cutoff to the bandwidth if needed.

One can use Eqs. (1) and (10) to show that the fac-
torized form (26) of the pairing interaction ensures that
the Hamiltonian is invariant under the point group oper-
ations: gĤintg

−1 = Ĥint. The coupling constants satisfy
the constraints

Vn1n2,n3n4
= V ∗

n4n3,n2n1
, (30)

which follows from the Hermiticity of Ĥint, and also

Vn1n2,n3n4 = Vn2n1,n3n4 = Vn1n2,n4n3 , (31)

which follows from the anticommutation of the fermionic
operators. The final set of constraints,

Vn1n2,n3n4
= V ∗

n2n1,n4n3
, (32)

comes from the requirement that the Hamiltonian is in-
variant under TR, i.e., KĤintK

−1 = Ĥint, after Eq. (15)
is taken into account. Combining Eqs. (30), (31), and
(32), we see that the coupling constants for all band com-
binations are real and have the following symmetry prop-
erties:

Vn1n2,n3n4 = Vn2n1,n3n4 = Vn1n2,n4n3 = Vn3n4,n1n2 .
(33)

Therefore, in the two-band case there are six independent
coupling constants: V11,11, V22,22, V11,22, V11,12, V12,12,
and V12,22, the last three describing the pairing of quasi-
particles from different bands. The constants V11,11 and
V22,22 describe the intraband pairing in the bands 1 and
2, respectively, whereas V11,22 describes the pair scat-
tering (the Josephson coupling) between different bands.
In Appendix C, we calculate the coupling constants in a
simple model of the pairing interaction which is local is
real space.

A. Gap equations

In the remainder of the paper, we focus on the 1D
pairing channels, exemplified by the s-wave pairing, see
Sec. II B. The order parameter has three components,
two intraband and one interband, see Eq. (20), which
can be written in a compact form as

η(r) =

 η1(r)

η2(r)

η̃(r)

 , η(q) =
1

V

∫
d2r η(r)e−iqr.

We shall also use the following shorthand notation for
the six independent coupling constants:

V11,11 = V11, V22,22 = V22, V11,22 = V12,

V11,12 = Ṽ13, V22,12 = Ṽ23, V12,12 = Ṽ33,

which can be combined into a real positive-definite sym-
metric matrix

Ŵ =

 V11 V12 Ṽ13
V12 V22 Ṽ23
Ṽ13 Ṽ23 Ṽ33

 . (34)

To describe the “usual” two-band superconductor with-
out the interband pairing, all quantities with a tilde,
namely, Ṽ13, Ṽ23, Ṽ33, and η̃, should be set to zero.

In a uniform superconducting state, we have η(q) =
ηδq,0 and, according to Appendix D, the self-consistency
equations for the gap functions take the following form:

Ŵ−1η =
1

2
T
∑
m

∫
d2k

(2π)2
tr

(
∂Ĝ−1

∂η∗ Ĝ
)
, (35)

where ωm = (2m+ 1)πT is the fermionic Matsubara fre-
quency and
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Ĝ−1(k, ωm) =


iωm − ξ1(k) −∆̂11(k) 0 −∆̂12(k)

−∆̂†
11(k) iωm + ξ1(k) −∆̂†

21(k) 0

0 −∆̂21(k) iωm − ξ2(k) −∆̂22(k)

−∆̂†
12(k) 0 −∆̂†

22(k) iωm + ξ2(k)

 (36)

is the inverse Green’s function. The intraband and in-
terband gap functions are given by Eq. (21). The mo-
mentum integrals is Eq. (35) and everywhere below are
understood to include the cutoff, as in Eq. (29).

Since all 2× 2 Kramers blocks in the matrix (36) com-
mute with each other, its inverse can be calculated an-
alytically producing a system of three coupled nonlinear
equations for the order parameter components: η1

η2
η̃

 = T
∑
m

∫
d2k

(2π)2
Ŵ

 Θ1(k, ωm)

Θ2(k, ωm)

2Θ̃(k, ωm)

 , (37)

where

Θ1 =
η1α

2
1(ω

2
m + ξ22 + |∆2|2)− η̃2η∗2α1α2g

2

ω4
m + 2Pω2

m +Q
,

Θ2 =
η2α

2
2(ω

2
m + ξ21 + |∆1|2)− η̃2η∗1α1α2g

2

ω4
m + 2Pω2

m +Q
,

Θ̃ =
η̃g2(ω2

m + ξ1ξ2 + |∆̃|2)− η1η2η̃
∗α1α2g

2

ω4
m + 2Pω2

m +Q
.

Other notations are as follows:

∆n(k) = ηnαn(k),

∆̃(k) = η̃g(k), g =

√
α̃2 + β̃2,

P =
1

2

(
ξ21 + |∆1|2 + ξ22 + |∆2|2

)
+ |∆̃|2,

Q = r21 + r22 + r23,

and

r1 = ξ1ξ2 − |∆1∆2|+ ∆̃2,

r2 = ξ1|∆2|+ ξ2|∆1|, (38)

r3 =
√
2g2 [|∆1∆2||η̃|2 − Re (∆1∆2η̃∗,2)].

As a side note, the inverse Green’s function (36) can
also be used to obtain the energies E(k) of the Bogoli-
ubov quasiparticles in the bulk, by solving the equation
det Ĝ−1(k, ωm)|iωm→E+i0 = 0. In this way, we find that
the Bogoliubov spectrum consists of four twofold degen-
erate branches ±E±, where

E±(k) =

√
P (k)±

√
P 2(k)−Q(k). (39)

The upper Bogoliubov excitation branch E+ is fully
gapped in the superconducting state, but the lower

branch E− vanishes at the wave vector k if r1(k) =
r2(k) = r3(k) = 0, corresponding to a gap node. For
a detailed investigation of the nodal structure of super-
conductors with the interband pairing, see Refs. 36 and
37.

In the general case, i.e., when the intraband and in-
terband coupling constants are present in the matrix Ŵ ,
all three components of η are nonzero. In the limit of
purely intraband pairing, we have Ṽ13 = Ṽ23 = Ṽ33 = 0
and η̃ = 0, so that the Eq. (37) is reduced to the follow-
ing form: (

η1
η2

)
=

(
V11 V12
V12 V22

)(
I1
I2

)
, (40)

where

In =
1

2
ηn

∫
d2k

(2π)2
α2
n

tanh(
√
ξ2n + |∆n|2/2T )√
ξ2n + |∆n|2

.

These are the standard gap equations for a two-band su-
perconductor with the intraband pairing and the inter-
band Josephson coupling characterized by V12 (Ref. 14).
The phase transition is of the second order and the crit-
ical temperature Tc is found from the linearized version
of Eq. (40).

The gap equations (37) remain invariant under a si-
multaneous rotation of the phases of the order parameter
components η1, η2, and η̃ by the same amount. There-
fore, η̃ can be set to be real positive, but η1 and η2 can
be complex:

η1 = |η1|eiφ1 , η2 = |η1|eiφ2 . (41)

In a TR-invariant superconducting state, all three com-
ponents are real and φ1,2 = 0 or π. Stable states that
break TR symmetry are also possible, see Sec. V.

Due to its complexity, the system of the nonlinear gap
equations (37) with all the coupling constants present is
not the most convenient starting point for studying the
physics of our superconductor. For this reason, below we
use the Ginzburg-Landau formalism, i.e., assume that
the phase transition is of the second order and that the
free energy in the vicinity of the critical temperature Tc
can be expanded in powers of the order parameter η(r)
and its gradients.
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IV. GINZBURG-LANDAU FREE ENERGY

We focus on a two-band s-wave superconductor, with
the intraband and interband gap functions discussed in
Sec. II B. Generalization to other pairing channels is
straightforward. The GL free energy density FGL =
F2 + F4 near the superconducting phase transition can
be derived using the effective action formalism. Since
the technical steps are more or less standard, they are
relegated to Appendix D.

The terms quadratic in the order parameter have the
form

F2 = η†Âη +K1|∇η1|2 +K2|∇η2|2 + K̃|∇η̃|2. (42)

The temperature dependence enters only the uniform
terms through

1

NF
Â(T ) = Λ̂−1 −

 L(T ) 0 0

0 L(T ) 0

0 0 2L̃(T )

 , (43)

where

Λ̂ = NF Ŵ =

 λ11 λ12 λ̃13
λ12 λ22 λ̃23
λ̃13 λ̃23 λ̃33

 (44)

is a symmetric matrix of the dimensionless coupling con-
stants, with Ŵ given by Eq. (34), and

L(T ) = ln

(
2eCϵc
πT

)
,

L̃(T ) = ln

(
2eCϵc
πT

)
+Ψ

(
1
2

)
− ReΨ

(
1

2
− i

Eb
4πT

)
,

(45)
where C ≃ 0.577 is Euler’s constant and Ψ(z) is the
digamma function. We assume that the intraband
and interband basis functions are normalized as follows:
⟨α2

1(k)⟩ = ⟨α2
2(k)⟩ = ⟨g2(k)⟩ = 1. Note that L diverges

at T → 0, which corresponds to the standard logarithmic
singularity in the intraband Cooper channel, whereas L̃
does not diverge, since the singularity in the interband
Cooper channel is cut off by the band splitting. The
gradient terms in Eq. (42) are discussed in Sec. IVB
below.

The expressions (42) and (43) are valid only if the cou-
pling constants form an invertible matrix. In the purely
intraband limit, we have λ̃13 = λ̃23 = λ̃33 = 0 and the
matrix Λ̂ is singular. In this case, η̃ identically vanishes
and the uniform terms in Eq. (42) take the from

F2 = α1(T )|η1|2 + α2(T )|η2|2 + γ(η∗1η2 + c.c.), (46)

where

α1(T ) =

[
λ22

λ11λ22 − λ212
− L(T )

]
NF ,

α2(T ) =

[
λ11

λ11λ22 − λ212
− L(T )

]
NF ,

γ = − λ12
λ11λ22 − λ212

NF .

Thus, the usual GL theory for a two-band superconduc-
tor with the Josephson coupling between the bands is
recovered.38–40 The opposite case of a purely interband
pairing (only λ̃33 ̸= 0) is discussed in Sec. IVA2.

A. Critical temperature

In general, all six coupling constants in the matrix (44)
are nonzero. Phenomenologically, they are constrained
only by the requirement that Λ̂ is real and positive-
definite, which means, in particular, that the diagonal
elements are all positive. The off-diagonal elements can
have either sign.
At sufficiently high temperatures, the matrix Â is

positive-definite and the minimum of the free energy is
achieved at η = 0, i.e., in the normal state. As the tem-
perature is lowered, one of the eigenvalues of Â changes
sign, so that the critical temperature Tc of the second-
order phase transition into a uniform superconducting
state is found by solving the equation

det Â(T ) = 0. (47)

It can be shown that the maximum critical tempera-
ture corresponds to the state in which all three compo-
nents of the order parameter are nonzero, see Appendix
E. In other words, if all coupling constants are nonzero,
then the normal-state instability towards the general su-
perconducting state (η1, η2, η̃) occurs at a higher tem-
perature than the instability towards a reduced state
(η1, η2, 0). This can be interpreted as an “enhancement”
of superconductivity by the interband pairing.

At given coupling constants, the onset of supercon-
ductivity is controlled by the interband splitting Eb. We
observe that

dTc
dEb

= −∂(det Â)/∂Eb
∂(det Â)/∂T

∣∣∣∣
T=Tc

.

The denominator here is positive, while for the numerator
we obtain from Eqs. (43) and (45):

∂

∂Eb
det Â = tr

(
adj Â

∂Â

∂Eb

)
=

1

2πT
(A11A22 −A2

12) ImΨ′
(
1

2
− i

Eb
4πT

)
,

where adj Â is the adjugate matrix. The function
ImΨ(1/2 − ix) is positive at all x > 0 and it follows
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from Sylvester’s criterion that the principal minors of Â,
including A11A22 −A2

12, are positive at Tc. Therefore,

dTc
dEb

< 0, (48)

i.e., increasing the band splitting Eb always suppresses the
critical temperature, regardless of all other parameters
of the system, including the relative magnitudes of the
intraband and interband coupling constants.

After some straightforward manipulations, Eq. (47)
takes the form

AL2 − 2BL+ 1 = 0, (49)

where

A = λ11λ22 − λ212

+
2(λ11λ̃

2
23 + λ22λ̃

2
13 − 2λ12λ̃13λ̃23)L̃

1− 2λ̃33L̃
,

B =
λ11 + λ22

2
+

(λ̃213 + λ̃223)L̃

1− 2λ̃33L̃
.

A closed-form expression for the critical temperature can
be obtained only in the limit Tc ≪ Eb. Using the asymp-
totic form Ψ(z) ≃ ln z at z → ∞ (Ref. 41), we find that

L̃ attains a finite temperature-independent value:

L̃0 ≡ L̃(0) = ln
2ϵc
Eb

≥ 0. (50)

Now the equation (49) can be easily solved, with the
following result:

Tc =
2eCϵc
π

e−1/λ, λ = B +
√
B2 −A. (51)

We assume that all six dimensionless coupling constants
in Eq. (44) are small in magnitude and that λ ≪ 1,
which corresponds to the weak-coupling limit, in which
Tc ≪ Eb < 2ϵc.
The effects of the interband pairing, which are con-

tained in the last terms in A and B, depend on the
six coupling constants and also on the band splitting Eb,
making it difficult to characterize them by a simple single
parameter. To make progress, we assume that either all
six coupling constants have the same order of magnitude
(which they do if the pairing is local in real space, see
Appendix C), or the three “interband” constants differ
from the three “intraband” ones by a factor

ω̃ =
max(|λ̃13|, |λ̃23|, λ̃33)
max(λ11, λ22, |λ12|)

. (52)

Another dimensionless parameter that appears in A and
B,

ρ̃ = max(|λ̃13|, |λ̃23|, λ̃33) L̃0, (53)

can be used as a measure of the effect of the band split-
ting. It is reasonable to assume that ρ̃≪ 1 in the weak-
coupling theory, the assumption that would break down
only if the band splitting is exponentially small compared
to ϵc.

1. Dominant intraband pairing

If the last terms in A and B represent small corrections
then the critical temperature is largely determined by the
intraband coupling constants. In terms of the parameters
(52) and (53), this corresponds to ω̃ρ̃≪ 1, in which case

λ = λ0[1 +O(ω̃ρ̃)], (54)

where

λ0 =
λ11 + λ22

2
+

√(
λ11 − λ22

2

)2

+ λ212

is the effective coupling constant in a two-band super-
conductor without interband pairing. If ω̃ ≪ 1, then
Tc → Tc0 + 0, where Tc0 = (2eCϵc/π)e

−1/λ0 is the
“intraband-only” critical temperature.
At fixed coupling constants, the critical tempera-

ture of the three-component superconducting state η =
(η1, η2, η̃) is suppressed by increasing the band split-

ting, until at Eb = 2ϵc we have L̃0 = 0, the interband
component disappears altogether, and the phase tran-
sition takes place at Tc0 into the reduced state with
η = (η1, η2, 0). Further increasing Eb does not affect the
critical temperature, because the pairing shells in the two
bands no longer overlap.

2. Dominant interband pairing

The extreme limit of a purely interband pairing is re-
alized when the only nonzero coupling constant is λ̃33, so
that ω̃ → ∞. Then, the order parameter has only one
component η̃ and the critical temperature equation (49)
takes the following form:

L̃(T ) =
1

2λ̃33
.

Since maxT L̃(T ) = L̃0 + O(1), the last equation does

not have a solution if λ̃33L̃0 ≪ 1. Therefore, the purely
interband superconductivity is completely suppressed by
a sufficiently large band splitting, which is is analogous
to the paramagnetic pair breaking by a strong magnetic
field in the usual BCS case,42,43 with Eb playing the role of
the Zeeman magnetic field. At λ̃33L̃0 ≪ 1, a nonuniform
interband superconductivity of the FFLO type44,45 is also
suppressed.
Let us now suppose that the intraband coupling con-

stants are nonzero but small compared with the inter-
band ones, so that ω̃ρ̃≫ 1. In this case, all three compo-
nents of the order parameter are nonzero and the critical
temperature is given by Eq. (51), with the effective cou-
pling constant

λ = 2(λ̃213 + λ̃223)L̃0. (55)

If λ̃13 = λ̃23 = 0, then λ and therefore Tc vanish, in agree-
ment with the complete suppression of superconductivity
in the purely interband limit.
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B. Gradient terms

The coefficients in the gradient energy can be evaluated
at the critical temperature, with the following result, see
Appendix D for details:

K1 =
7ζ(3)NFw1

16π2T 2
c

, K2 =
7ζ(3)NFw2

16π2T 2
c

,

K̃ =
7ζ(3)NF w̃

8π2T 2
c

f1

(
Eb

4πTc

)
,

(56)

where ζ(3) ≃ 1.20 is the Riemann zeta function, wn =
⟨α2

nv
2
x⟩ = ⟨α2

nv
2
y⟩, w̃ = ⟨g2v2x⟩ = ⟨g2v2y⟩, and

f1(x) = − 1

14ζ(3)
ReΨ′′

(
1

2
− ix

)
. (57)

This function is plotted in Fig. 2. In particular, in the
limit of a large band splitting, Eb ≫ Tc, using the asymp-
totics f1(x) ∝ −1/x2 at x ≫ 1 (Ref. 41), we find that

the coefficient K̃ is much smaller than K1 and K2:

|K̃|
K1,2

∼ T 2
c

E2
b

. (58)

Note that K̃ becomes negative at a sufficiently large band
splitting (changing sign at Eb/Tc ≃ 3.82, see Fig. 2),
which indicates a possible instability towards a nonuni-
form superconducting state even at zero external mag-
netic field. Let us see if such an instability indeed takes
place.

It follows from Eq. (42) that the critical temperature
of a continuous phase transition into a nonuniform state
is found from the equation det Â(T, q) = 0, where

Â(T, q) = Â(T ) +

 K1q
2 0 0

0 K2q
2 0

0 0 K̃q2

 , (59)

where Â is given by Eq. (43). Therefore,

dTc
dx

∣∣∣∣
q=0

= − ∂(det Â)/∂x

∂(det Â)/∂T

∣∣∣∣
q=0

, x = q2. (60)

The denominator here is positive, because the matrix Â
is positive-definite at temperatures above Tc, while for
the numerator we have

∂(det Â)

∂x

∣∣∣∣
q=0

= (A11A22 −A2
12)K̃

+(A22A33 −A2
23)K1 + (A11A33 −A2

13)K2, (61)

where the matrix elements of Â are taken at T = Tc.
A nonuniform superconducting state has a higher crit-

ical temperature than the uniform one if the derivative
(60) is positive. Since the coefficients multiplying K1,

K2, and K̃ on the right-hand side of Eq. (61) are noth-

ing but the principal minors of Â, which are all positive
at Tc, the uniform superconducting state is unstable near
Tc if K̃ < 0 and

|K̃| > K1(A22A33 −A2
23) +K2(A11A33 −A2

13)

A11A22 −A2
12

.

In view of Eq. (58), this last condition is difficult to satify
for a large band splitting. Although one cannot rule out
that the nonuniform instability may be present in some
fine-tuned ranges of the parameters, we shall not further
investigate this possibility here.

C. Quartic terms

According to Appendix D, the uniform fourth-order
terms in the free energy density have the following form:

F4 = β1|η1|4 + β2|η2|4 + β̃1|η1|2|η̃|2 + β̃2|η2|2|η̃|2

+β̃3|η̃|4 + β̃4(η1η2η̃
∗,2 + c.c.), (62)

with

β1 = β0⟨α4
1⟩, β2 = β0⟨α4

2⟩,

β̃1 = 4β0f2

(
Eb

4πTc

)
⟨α2

1g
2⟩,

β̃2 = 4β0f2

(
Eb

4πTc

)
⟨α2

2g
2⟩, (63)

β̃3 = 2β0f1

(
Eb

4πTc

)
⟨g4⟩,

β̃4 = 2β0f3

(
Eb

4πTc

)
⟨α1α2g

2⟩.

Here

β0 =
7ζ(3)NF

16π2T 2
c

,

f1(x) is given by Eq. (57), and the functions

f2(x) =
1

14ζ(3)x
ImΨ′

(
1

2
− ix

)
(64)

and

f3(x) =
1

7ζ(3)x2

[
ReΨ

(
1

2
− ix

)
−Ψ

(
1

2

)]
(65)

are plotted in Fig. 2.
Generically, β1 and β2 are of the same order of magni-

tude: β1 ∼ β2 ∼ β0. In the limit of a large band splitting
(Eb ≫ Tc), we use the asymptotics f2(x) ∝ 1/x2 and
f3(x) ∝ lnx/x2 (Ref. 41) and find that the coefficients
in the terms involving the interband pairing are smaller
than β1,2:

β̃1,2
β0

∼ T 2
c

E2
b

,
|β̃3|
β0

∼ T 2
c

E2
b

,
β̃4
β0

∼ T 2
c

E2
b

ln
Eb
Tc
.
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FIG. 2: The functions f1,2,3(x) which determine the depen-
dence of the GL free energy coefficients on the band splitting
Eb, see Eqs. (56) and (63), with x = Eb/4πTc. Note that
f1(x) changes sign at x ≃ 0.30.

Note that, similarly to K̃, the coefficient β̃3 changes
sign at Eb/Tc ≃ 3.82, so that one could ask whether a
first-order transition into the interband-only state η =
(0, 0, η̃) can preempt the second-order transition into the
general state in which all three components of the order
parameter are nonzero. It is easy to see that the answer
is negative, since the interband-only state does not sat-
isfy the gap equations (37) if all coupling constants are

present. In the purely interband limit, in which only Ṽ33
is nonzero, superconductivity is completely suppressed
by the large band splitting, see Sec. IVA2.

D. Discussion

Putting our results together, the GL free energy of a
two-band superconductor with interband pairing has the
following form:

FGL = F2 + F4, (66)

where

F2 = α1|η1|2 + α2|η2|2 + γ(η∗1η2 + c.c.)

+α̃|η̃|2 + γ̃1(η
∗
1 η̃ + c.c.) + γ̃2(η

∗
2 η̃ + c.c.)

+K1|∇η1|2 +K2|∇η2|2 + K̃|∇η̃|2 (67)

and F4 is given by Eq. (62). The coefficients in the
uniform quadratic terms are given by

αn = [(Λ̂−1)nn − L(T )]NF ,

α̃ = [(Λ̂−1)33 − 2L̃(T )]NF ,

γ = (Λ̂−1)12NF , γ̃n = (Λ̂−1)n3NF .

We see that, while αn changes sign at the temperature
Tn = (2eCϵc/π) exp[−(Λ̂−1)nn], the temperature depen-

dence of α̃ is negligible if Eb ≫ Tc, when L̃(T ) ≃ L̃0, see
Eq. (50). Therefore, in the large band splitting limit, α̃
is just a positive constant, which is consistent with the

fact that superconductivity is completely suppressed in
the interband-only case, see Sec. IVA2.
From the symmetry point of view, the phenomenolog-

ical GL free energy can contain many more terms than
those listed in Eqs. (67) and (62). Namely, any com-
bination of the order parameter components and their
gradients which is (i) real, (ii) invariant under all op-
erations of the point group, and (iii) invariant under a
simultaneous rotation of the phases of η1, η2, and η̃, can
appear in FGL. For example, such quartic terms as

η21η
∗,2
2 + c.c., η2nη̃

∗,2 + c.c., |η̃|2(η1η∗2 + c.c.),

are all allowed by symmetry, as are the gradient terms

(∇η1)
∗(∇η2) + c.c., (∇ηn)

∗(∇η̃) + c.c..

Our microscopic derivation shows that, in order to obtain
any of these additional terms, one has to go beyond the
extended BCS framework.
A two-band superconductor with interband pairing

is characterized by a three-component order parameter
η = (η1, η2, η̃), so it is natural to ask how our results
compare with the GL energy for a three-band supercon-
ductor without interband pairing. In the latter case, the
order parameter also has three components, η1, η2, and
η3, which describe the intraband pair condensates in each
of the bands, and the free energy density is given by a
straightforward extension of the standard two-band GL
theory:

F 3−band
GL =

3∑
n=1

[
αn|ηn|2 +Kn|∇ηn|2 + βn|ηn|4

]
+
∑
n ̸=n′

γnn′(η∗nηn′ + c.c.), (68)

see, e.g., Refs. 20, 21, and 46. The differences between
Eqs. (66) and (68) can summarized as follows. In Eq.
(67), only the intraband coefficients α1 and α2 essen-
tially depend on temperature, but not α̃, in contrast to
Eq. (68), in which all three coefficients α1,2,3 are T -
dependent. In the gradient terms in Eq. (67), the coeffi-

cient K̃ becomes negative and much smaller than K1 and
K2 in the large band splitting limit, whereas all three gra-
dient terms in F 3−band

GL are positive and generally com-
parable in magnitude. Finally, the fourth-order terms
(62) have a more complicated structure than those in
Eq. (68). This leads to a rich variety of stable supercon-
ducting states, including those that break TR symmetry,
see the next section.

V. TR SYMMETRY-BREAKING STATES

The GL free energy expansion (66) is quantitatively
valid in the vicinity of the critical temperature Tc, where
it can be used to show that η ∝ (Tc−T )1/2, with all three
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components real, see Appendix F. In this section, we as-
sume that the physics of our superconductor at temper-
atures much lower than Tc can also be captured, at least
qualitatively, by the free energy (66), which is treated in
the London approximation. Namely, we fix the order pa-
rameter magnitudes and minimize FGL only with respect
to the relative phases of the order parameter components.

Setting η̃ to be real positive and using Eq. (41), the
uniform phase-dependent terms in the free energy density
take the following form:

Fphase = J cos(φ1 − φ2) + J̃1 cosφ1 + J̃2 cosφ2

+J̃3 cos(φ1 + φ2), (69)

where

J = 2γ|η1||η2|, J̃1 = 2γ̃1|η1|η̃, J̃2 = 2γ̃2|η2|η̃,
J̃3 = 2β̃4|η1||η2|η̃2.

The first term in Eq. (69) has the form usual for two-
band superconductors, with J corresponding to the inter-
band Josephson coupling, whereas the remaining terms
describe the effects of the interband pairing. If the lat-
ter is neglected, then there are only two uniform stable
states: φ1−φ2 = π for J > 0 and φ1−φ2 = 0 for J < 0,
both of which preserve TR symmetry. It follows from the
results of the previous section that J̃3 is positive, whereas
J , J̃1, and J̃2 can have either sign.

Before we proceed with finding the stable minima of
the free energy (69), we note that TR symmetry-breaking
states have been extensively studied in three-band super-
conductors with only intraband pairing.46–48 The three-
band London energy obtained from Eq. (68) depends on
the condensate phases φ1 and φ2 in two of the bands (one
can set the phase in the third band to zero) and looks

similar to Eq. (69), but with J̃3 = 0. The TR symmetry-
breaking states in the three-band model can be realized
when the order parameter phases are “frustrated”, i.e.,
when sign(JJ̃1J̃2) > 0.

To make analytical progress, we assume that the in-
traband parameters are the same in both bands, so that
J̃1 = J̃2. Writing Fphase = |J |f(φ1, φ2), we have to min-
imize the following function:

f(φ1, φ2) = σ cos(φ1 − φ2) + p(cosφ1 + cosφ2)

+q cos(φ1 + φ2), (70)

where σ = sign(J) and

p =
J̃1
|J |

=
J̃2
|J |

, q =
J̃3
|J |

> 0.

If (φ1, φ2) is a critical point of f , then (φ1 + π, φ2 + π)
is a critical point of f with p replaced by −p. Therefore,
when analyzing the minima of f , one can focus on p ≥ 0.
The effects of the interband pairing are described by the
parameter q. At q = 0, TR symmetry-breaking states
are only possible for σ > 0.

The critical points of f are found from the equations{
σ sin(φ1 + φ2)− p sinφ1 + q sin(φ1 + φ2) = 0,

σ sin(φ1 − φ2)− p sinφ2 − q sin(φ1 + φ2) = 0.
(71)

In addition to the trivial solutions φ1, φ2 = 0 or π, which
correspond to TR invariant states, these equations can
also have nontrivial solutions, in which the phases are
different from 0 and π. It can be shown, see Appendix
G, that all nontrivial critical points must satisfy the con-
ditions

φ1 = φ2 or φ1 = −φ2. (72)

The critical point (φ1, φ2) is a local minimum of the free
energy if the Hessian matrix

Ĥf =

(
f11 f12
f12 f22

)
, fij =

∂2f

∂φi∂φj
, (73)

is positive-definite, i.e., if f11 > 0 and f11f22 − f212 > 0.
The stability analysis of the critical points is done below,
separately for J > 0 and J < 0.

A. J > 0

According to the discussion above, it is sufficient to
consider the following four critical points of f , at p ≥ 0
and q ≥ 0:

I : φ1 = φ2 = π, fI = 1− 2p+ q,

II : φ1 = 0, φ2 = π, fII = −1− q,

III : φ1 = φ2, cosφ1 = − p

2q
, fIII = 1− q − p2

2q
,

IV : φ1 = −φ2, cosφ1 = −p
2
, fIV = −1 + q − p2

2
.

Here we also listed the energies at the critical points. The
superconducting states I and II are TR invariant, whereas
the states III and IV break TR symmetry. Calculating
the Hessian matrix (73), we obtain the conditions for the
critical points to be local minima of the free energy (70):

I : p > 2, 0 ≤ q <
p

2
,

II : q >
p2

4
,

III : p > 2,
p

2
< q <

p2

4
,

IV : 0 < p < 2, 0 ≤ q <
p2

4

(74)

Since the regions of local stability for different states do
not overlap, there is only one stable state at each p and
q, see the phase diagram in Fig. 3. The only exception is
at q = p2/4, when the free energy (70) has a whole line
of degenerate minima, instead of isolated critical points,
see Appendix G.
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FIG. 3: Stable states of the free energy (70) for J > 0. The
states I and II are TR invariant, while the states III and IV
break TR symmetry. The black lines correspond to the con-
tinuous phase transitions between isolated stable minima. At
the blue line, the minima of Eq. (70) are infinitely degener-
ate, as shown in Figs. 4 and 5.

FIG. 4: The line of continuously degenerate minima of the
free energy (70) at q = p2/4 and p < 2. The empty and filled
circles show the states II and IV, respectively.

The state I is continuously transformed into the states
III and IV at q = p/2 and p = 2, respectively. Regarding
the transition line q = p2/4, the states II and IV are both
located on this line at p < 2, see Fig. 4, while the states
II and III are both located on this line at p > 2, see Fig.
5. Although the infinite degeneracy of the ground states
at q = p2/4 can possibly have interesting implications for
the critical behaviour, we leave investigating those for a
future work.

FIG. 5: The line of continuously degenerate minima of the
free energy (70) at q = p2/4 and p > 2. The empty and filled
circles show the states II and III, respectively.

B. J < 0

It is sufficient to consider the following four critical
points of f , at p ≥ 0 and q ≥ 0:

I : φ1 = φ2 = π, fI = −1− 2p+ q,

II : φ1 = 0, φ2 = π, fII = 1− q,

III : φ2 = φ1, cosφ1 = − p

2q
, fIII = −1− q − p2

2q
,

IV : φ2 = −φ1, cosφ1 = −p
2
, fIV = 1 + q +

p2

2
.

Calculating the Hessian matrix (73), we obtain that the
states II and IV do not correspond to minima of the free
energy (70) at p, q ≥ 0, and that the stability conditions
for the other two states are given by

I : 0 ≤ q <
p

2
,

III : q >
p

2
,

(75)

as shown in Fig. 6. At the transition line q = p/2,
the TR invariant superconducting state I is continuously
transformed into the TR symmetry-breaking state III.

The results for the three-band model with intraband-
only pairing are reproduced if one puts q = 0. We see
that even a small nonzero q, corresponding to a small
nonzero J̃3 in Eq. (69), produces qualitative changes
in the phase diagrams, both at J > 0 and J < 0. In
particular, if J < 0 then the superconducting state is TR
invariant at q = 0 and all p, because of the absence of
“frustration” in the order parameter phases. However, at
any nonzero q, a TR symmetry-breaking state with φ1 =
φ2 ̸= 0 or π appears in the phase diagram at sufficiently
small p.
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FIG. 6: Stable states of the free energy (70) for J < 0. The
state I is TR invariant, while the state III breaks TR symme-
try.

VI. CONCLUSIONS

We presented a microscopic derivation of the GL free
energy in a two-band superconductor with all possible
Cooper pairings between the bands. Assuming a 1D pair-
ing channel, the order parameter has three components:
the intraband ones, η1 and η2, which describe the pair
condensates in the two bands, and also the interband
one, η̃, which describes the pairs composed of the quasi-
particles from different bands. Our expression for the GL
free energy differs significantly from the previously stud-
ied three-band GL functionals with intraband-only order
parameters, both in the temperature dependence of the
coefficients and in the structure of the quartic terms.

For the GL energy derivation we used the extended
BCS model, in which the pairing interaction energy cut-
off exceeds the band splitting, so that the Fermi surfaces
in both bands are located within the same pairing shell
in the momentum space. In its general form this model is
characterized by six coupling constants, which is reduced
to three if one neglects the interband pairing (the latter
limit corresponds to the usual two-band SC model). We
showed that the superconducting critical temperature Tc
increases in the presence of the interband pairing and
is suppressed by the band splitting. Due to the large
number of parameters, we had to focus on some limit-
ing cases to achieve analytical progress. In particular, a
closed-form expression for Tc is available only if one as-
sumes that the latter is the smallest energy scale in the
system, much smaller than the band splitting Eb.

The superconducting state that emerges immediately
below Tc has a real order parameter and, therefore, is
TR invariant. By treating the uniform terms in the GL
energy in the London approximation, we found that a
variety of TR symmetry-breaking states become stable
at lower temperatures. The fourth-order terms specific
to the interband pairing give rise to qualitative changes
in the phase diagram, compared to a three-band super-
conductor with intraband-only pairing.
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Appendix A: Symmetry of the Bloch states

In the presence of the electron-lattice SO coupling, the
conjugate Bloch states are spinors which have both spin-
up and spin-down components:

⟨r|k, n, 1⟩ = 1√
V

(
uk,n(r)

vk,n(r)

)
eikr,

⟨r|k, n, 2⟩ = 1√
V

(
−v∗k,n(−r)

u∗k,n(−r)

)
eikr,

(A1)

where V is the system volume and the Bloch factors
uk,n(r) and vk,n(r) have the same periodicity as the crys-
tal lattice. The states |k, n, 1⟩ and |k, n, 2⟩ form the basis
of an irreducible double-valued corepresentation (corep)
of the magnetic point group of the wave vector k. The
full symmetry group of k is “magnetic”, because it con-
tains the antiunitary conjugation operation C. A detailed
review of magnetic groups and their coreps can be found,
e.g., in Refs. 49 and 33. If the crystal point group is G,
then the magnetic group at the Γ point is G = G + CG.
If the Γ-point corep is equivalent to the spin-1/2 corep,
then the band is called a “pseudospin band”. In general,
the Bloch states at the Γ point do not transform as the
pure spin states due to the presence of additional orbital
factors, and we have a “non-pseudospin” band.
If the nth band transforms at the Γ point according

to a 2D double-valued corep described by 2× 2 matrices
D̂n(g), then one can construct the Bloch bases at k ̸= 0
using the following prescription:31

g|k, n, s⟩ =
∑
s′

|gk, n, s′⟩Dn,s′s(g), (A2)

where g ∈ G is either a proper rotation R or an improper
rotation IR. Starting with any wave vector k in the fun-
damental domain of the Brillouin zone, the expression
(A2) defines the Bloch states at the wave vector gk. In

a pseudospin band, one can put D̂n(g) = D̂(1/2)(R) for

all g, where D̂(1/2) is the spinor representation of rota-
tions. In this case, Eq. (A2) reproduces the Ueda-Rice
convention,50 which is widely used in theory of uncon-
ventional superconductivity. In a non-pseudospin band,
the Γ-point corep is not equivalent to the spin-1/2 corep,

i.e., D̂n(g) ̸= D̂(1/2)(R) for some g.
Setting g = I in Eq. (A2), we have I|k, n, s⟩ = pn| −

k, n, s⟩, where pn = ±1 is the parity of the nth band.
Since the TR operation can be written as K = CI, we
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have

K|k, n, 1⟩ = pn| − k, n, 2⟩,
K|k, n, 2⟩ = −pn| − k, n, 1⟩,

(A3)

where we used the fact that C2 = −1 when acting on the
spin-1/2 wave functions. The transformation rules (1)
and (2) follow immediately from Eqs. (A2) and (A3).

Appendix B: Interband s-wave pairing

The group D4h is generated by the rotations C4z and
C2y, and by the inversion I. The corep matrices have the
form31–33

D̂Γ6
(C4z) = D̂(1/2)(C4z), D̂Γ6

(C2y) = D̂(1/2)(C2y),

D̂Γ7
(C4z) = −D̂(1/2)(C4z), D̂Γ7

(C2y) = D̂(1/2)(C2y).

Note that D̂Γ7 is not equivalent to D̂(1/2), reflecting the
fact that Γ7 is a non-pseudospin corep. In the s-wave
pairing channel, the point-group constraint (11) takes the
following form:

D̂n(g)ϕ̂nn′(g−1k)D̂†
n′(g) = ϕ̂nn′(k). (B1)

Using the expression D̂(1/2),†(R)σ̂µD̂
(1/2)(R) =∑3

ν=1Rµν σ̂ν , where R̂ is the 3 × 3 rotation ma-
trix, we obtain that the singlet and triplet interband
components satisfy the following equations:

α̃(k) = ±α̃(C−1
4z k), α̃(k) = α̃(C−1

2y k),

β̃(k) = ±C4zβ̃(C
−1
4z k), β̃(k) = C2yβ̃(C

−1
2y k).

(B2)

The upper signs are realized in the (Γ6,Γ6) or (Γ7,Γ7)
bands, while the lower signs – in the (Γ6,Γ7) bands.
Some components of the interband pairing vanish iden-

tically for symmetry reasons. According to Eq. (B2),
the C2z invariance constraint for α̃ has the form α̃(k) =
α̃(C−1

2z k) for all band combinations. However, the C2z

rotation acting on 2D wave vectors is equivalent to in-
version: α̃(C−1

2z k) = α̃(−k). Therefore, α̃ = 0 if the

bands have opposite parity. Similarly, we have β̃(k) =

C2zβ̃(C
−1
2z k) = C2zβ̃(−k) for all band combinations.

Therefore, β̃x = β̃y = 0 if the bands have the same parity,

and β̃z = 0 if the bands have opposite parity.
One can easily find the lowest-order polynomial solu-

tions of the equations (B2). For instance, for the pairs
of opposite-parity bands (Γ±

6 ,Γ
∓
6 ) or (Γ±

7 ,Γ
∓
7 ) we have

α̃ = β̃z = 0, while β̃ = (β̃x, β̃y) is an odd function of k

satisfying β̃(k) = gβ̃(g−1k), with g = C4z or C2y. The

simplest solution is β̃(k) = k, which produces the gap
functions (22). In a similar fashion, one can obtain all
other expressions in Table I.

Appendix C: Local attractive interaction

The origin of the interband pairing terms in Eq. (24)
can be illustrated using a simple model of an attractive
local interaction in a crystal without the SO coupling. In
real space, we have

Ĥint = −υ
∫
d2r ψ†

↑(r)ψ
†
↓(r)ψ↓(r)ψ↑(r), (C1)

with the coupling constant υ > 0 and the field operators
given by

ψ↑(r) =
1√
V
∑
k,n

eikruk,n(r)ck,n1,

ψ↓(r) =
1√
V
∑
k,n

eikrpnuk,n(r)ck,n2.
(C2)

Here we used the expressions (A1) and the fact that in
the absence of the SO coupling, one can put vk,n = 0.
The lattice-periodic Bloch factors uk,n satisfy the sym-
metry relations u∗k,n(r) = u−k,n(r) and uk,n(−r) =

pnu−k,n(r), which, taken together with Eq. (2), make
sure that Kψ↑(r)K

−1 = ψ↓(r) and Kψ↓(r)K
−1 =

−ψ↑(r). For simplicity, we assume that the orbital wave
functions at the Γ point in both bands correspond to the
identity irrep Γ+

1 of D4h. This means that p1 = p2 = 1
and, if the spin is included, then both bands correspond
to the pseudospin double-valued corep Γ+

6 .
Substituting Eq. (C2), neglecting the “umklapp” con-

tributions, and using the identity

c†k+q/2,n1c̃
†
k−q/2,n′1 = c†−k+q/2,n′2c̃

†
−k−q/2,n2,

the interaction Hamiltonian (C1) can be brought to the
form (24) with

V n1n2n3n4
s1s2s3s4 (k,k′; q) = −υ

2
δs1s2δs3s4

×
〈
u∗k+q/2,n1

uk−q/2,n2
u∗k′−q/2,n3

uk′+q/2,n4

〉
c
, (C3)

where ⟨(...)⟩c denotes the average over the crystal unit
cell. The momentum dependence of the pairing interac-
tion in the band representation originates from that of
the Bloch factors, which in turn can be found using the
standard k · p perturbation theory. The leading contri-
butions to the pairing interaction near the Γ point are
obtained by substituting uk,n(r) → un(r) ≡ uk=0,n(r)
in Eq. (C3):

V n1n2n3n4
s1s2s3s4 = −υ

2
δs1s2δs3s4 ⟨un1un2un3un4⟩c+(...). (C4)

Here u1(r) and u2(r) are the Bloch factors, which are real
and invariant under all symmetry operations from D4h,
and the ellipsis stands for the momentum-dependent
terms, which we neglect.
It is easy to see that the pairing interaction (C4) has

the factorized form (26), with the basis functions given
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by ϕ̂nn′ = σ̂0. This obviously corresponds to the s-wave
pairing channel, with

α1(k) = α2(k) = α̃(k) = 1, β̃(k) = 0,

see Sec. II B. For the coupling constants, we obtain:

V11,11 = υ⟨u41(r)⟩c, V22,22 = υ⟨u42(r)⟩c,
V11,22 = υ⟨u21(r)u22(r)⟩c,

V11,12 = υ⟨u31(r)u2(r)⟩c, V12,22 = υ⟨u1(r)u32(r)⟩c,
V12,12 = υ⟨u21(r)u22(r)⟩c.

All six independent coupling constants are nonzero and
generically have the same order of magnitude. In the
model (C1), the momenta of the band electrons are al-
lowed to take any values in the first Brillouin zone, so
that the interaction energy cutoff is given by the band-
width.

Appendix D: Derivation of the GL functional

We derive the free energy of the two-band supercon-
ductor with interband pairing using the effective bosonic
action formalism.51 The starting point is the representa-
tion of the partition function in the form of a Grassmann
functional integral:

Z = Tr e−βĤ

=

∫
DcDc̄ e−

∫ β
0

dτ [
∑

k,ns c̄k,ns∂τ ck,ns+H0(τ)+Hint(τ)],

where β = 1/T . The fermionic fields ck,ns(τ) and
c̄k,ns(τ) are labelled by the band index n = 1, 2 and
the Kramers index s = 1, 2. The Hamiltonian is given by
Eqs. (3) and (24).

Using the factorized expression (26) for the pairing in-
teraction in a d-dimensional pairing channel, we intro-
duce the pair fields

B̄a
nn′(q, τ) =

1

V
∑
k,ss′

ϕann′,ss′(k)c̄k+q/2,ns˜̄ck−q/2,n′s′ ,

Ba
nn′(q, τ) =

1

V
∑
k,ss′

ϕa,∗n′n,s′s(k)c̃k−q/2,nsck+q/2,n′s′ ,

where a = 1, ..., d and the “time-reversed” fermionic fields
are defined in the same way as the corresponding opera-
tors, i.e., c̃k,ns(τ) = pn

∑
s1
c−k,ns1(τ)(−iσ̂y)s1s, see Eq.

(2). Note that B̄a
nn′ = B̄a

n′n and Ba
nn′ = Ba

n′n, according
to the anticommutation condition (12). The interaction
part of the action takes the following form:

Sint = −V
4

∫ β

0

dτ
∑
q,a

(B̄a
11, B̄

a
22, 2B̄

a
12)Ŵ

 Ba
11

Ba
22

2Ba
12

 ,

where Ŵ is given by Eq. (34).
Next, we use the Hubbard-Stratonovich transforma-

tion to decouple the interaction part:

e−Sint ∝
∫ ∏

a

D2ηa11D2ηa22D2ηa12 e
−Seff,0

× exp

[
−V
2

∫ β

0

dτ
∑
q,a

∑
nn′

(ηann′B̄a
nn′ + ηa,∗nn′B

a
nn′)

]
.

Here ηa11(q, τ), η
a
22(q, τ), and ηa12(q, τ) = ηa21(q, τ) are

complex bosonic fields, which can be interpreted as the
fluctuating order parameter components, and

Seff,0

= V
∫ β

0

dτ
∑
q,a

(ηa,∗11 , η
a,∗
22 , η

a,∗
12 )Ŵ−1

 ηa11
ηa22
ηa12

 . (D1)

In order for the bosonic integral to be well-defined, the
matrix of the coupling constants Ŵ has to be positive-
definite.
Introducing eight-component fermionic fields

C(k, τ) = (ck11, ck12, ˜̄ck11, ˜̄ck12, ck21, ck22, ˜̄ck21, ˜̄ck22)
⊤,

we arrive at the following expression for the partition
function:

Z ∝
∫

D2η e−Seff,0[η
∗,η]

×
∫

D2c exp

(
1

2

∫ β

0

dτ C̄Ĝ−1C

)
. (D2)

Here and below we use the shorthand notation η for the
set of fields ηa11, η

a
22, and η

a
12. In the fermionic action, the

summation over the momenta as well as over the band,
Kramers, and Nambu indices is implied, and the Green’s
operator is given by

Ĝ−1
kns,k′n′s′ =

 δkk′

[
−δnn′δss′

∂

∂τ
− ϵnn′,ss′(k)

]
−∆nn′,ss′

(
k + k′

2
,k − k′, τ

)
−∆∗

n′n,s′s

(
k + k′

2
,k′ − k, τ

)
δkk′

[
−δnn′δss′

∂

∂τ
+ ϵ̄nn′,ss′(k)

]
 , (D3)
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where

ϵ̂nn′(k) = δnn′ξn(k)σ̂0,

ˆ̄ϵnn′(k) = pnpn′ σ̂y ϵ̂
⊤
n′n(−k)σ̂y = δnn′ξn(k)σ̂0,

and the dynamical gap function fields have the form

∆̂nn′(k, q, τ) =

d∑
a=1

ηann′(q, τ)ϕ̂ann′(k).

Calculating the Grassmann integral in Eq. (D2), we ob-
tain Z ∝

∫
D2η e−Seff [η

∗,η], where

Seff [η
∗,η] = Seff,0[η

∗,η]− 1

2
Tr ln Ĝ−1 (D4)

is the effective bosonic action, with “Tr” denoting the
trace in the kτ -space and the matrix trace with respect
to the band, Kramers, and Nambu indices.

The order parameter components in an equilibrium su-
perconducting state correspond to the static solutions
η(q) of the saddle-point equations δSeff/δη

∗ = 0. Using
Eqs. (D1) and (D3), the saddle-point action has the form
Seff = βF , where

F = V
∑
q,a

(ηa,∗11 , η
a,∗
22 , η

a,∗
12 )Ŵ−1

 ηa11
ηa22
ηa12


−1

2
T
∑
m

Tr ln
(
Ĝ−1
0 − Σ̂

)
(D5)

is the free energy. In the second term, the summa-
tion is carried out over the fermionic Matsubara fre-
quency ωm = (2m + 1)πT , “Tr” stands for the trace
in the momentum, band, Kramers, and Nambu spaces,
Ĝ−1
0 (k,k′;ωm) = δkk′ Ĝ−1

0 (k, ωm), where

Ĝ−1
0 (k, ωm) =

(
ĝ−1
1 (k, ωm) 0

0 ĝ−1
2 (k, ωm)

)
(D6)

is the inverse matrix Green’s function in the normal state,
with

ĝ−1
n (k, ωm) =

(
iωm − ξn(k) 0

0 iωm + ξn(k)

)
⊗ σ̂0,

and the superconducting pairing is described by the self-
energy matrix

Σ̂(k,k′) =

(
Σ̂11(k,k

′) Σ̂12(k,k
′)

Σ̂21(k,k
′) Σ̂22(k,k

′)

)
, (D7)

where

Σ̂nn′(k,k′)

=

 0 ∆̂nn′

(
k + k′

2
,k − k′

)
∆̂†

n′n

(
k + k′

2
,k′ − k

)
0

 .

The gap functions here are 2×2 matrices in the Kramers
space:

∆̂nn′(k, q) =

d∑
a=1

ηann′(q)ϕ̂ann′(k). (D8)

The order parameter can be transformed into the coor-
dinate representation as follows: η(r) =

∑
q η(q)e

iqr.

In a uniform superconducting state, we have η(q) =
ηδq,0, where η is found from the self-consistency equa-
tions ∂F/∂η∗ = 0. Taking the thermodynamic limit
V → ∞, we obtain from Eq. (D5):

Ŵ−1

 ηa11
ηa22
ηa12

 = T
∑
m

∫
d2k

(2π)2

 Θa
11

Θa
22

Θa
12

 , (D9)

where

Θa
nn′(k, ωm) =

1

2
tr

(
∂Ĝ−1

∂ηa,∗nn′
Ĝ
)
,

Ĝ−1(k, ωm) = Ĝ−1
0 (k, ωm) − Σ̂(k), and “tr” stands for

the 8×8 matrix trace in the band, Kramers, and Nambu
spaces. The critical temperature Tc of the phase tran-
sition into a uniform superconducting state marks the
emergence of a nonzero solution of the coupled nonlin-
ear equations (D9). In the case of the s-wave pairing,

Ĝ(k, ωm) can be calculated in a closed form and we ar-
rive at the gap equations (37).
In the general case, we retain the q-dependence of the

order parameter, assume that the phase transition at
temperature Tc is of the second order, and expand the
second term in Eq. (D5) in the vicinity of Tc in powers

of Σ̂, i.e., in powers of the order parameter components.
In this way, we obtain: F = FN +FGL, where FN is the
normal-state free energy and FGL is the GL energy:

FGL[η
∗,η] = F (0)

2 + F (1)
2 + F4 + ..., (D10)

with F (0)
2 given by the first term in Eq. (D5) and

F (1)
2 =

1

2

∑
k,q

∑
n1,2

tr
[
∆̂n1n2

(k, q)∆̂†
n1n2

(k, q)
]

×T
∑
m

Gn1
(k+, ωm)Ḡn2

(k−, ωm). (D11)

Here “tr” stands for the trace in the Kramers space,

Gn(k, ωm) =
1

iωm − ξn(k)
,

Ḡn(k, ωm) =
1

iωm + ξn(k)
= −Gn(−k,−ωm)

(D12)

are the normal-state Green’s functions, and k± = k ±
q/2. The gap functions are given by Eq. (D8) and we
obtain:

F (1)
2 = −V

∑
q,ab

∑
n1,2

Cab
n1n2

(q)ηan1n2
(q)ηb,∗n1n2

(q), (D13)
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where

Cab
n1n2

(q) =
1

2V
∑
k

tr
[
ϕ̂an1n2

(k)ϕ̂b,†n1n2
(k)
]

×T
∑
m

Gn1
(k+, ωm)Gn2

(−k−,−ωm) (D14)

= Cab
n1n2

(0) +Kab
n1n2,ijqiqj +O(q4)

is the static pair propagator, or the Cooperon. The terms
linear in q vanish, because the basis functions have a defi-
nite parity for all band combinations, while the quadratic

terms produce the GL gradient energy.

In the fourth-order term F4, we neglect the q-
dependence of the Green’s functions, as well as that of
the basis functions, and obtain:

F4 =
V
2

∑
qi,ai

∑
ni

Ba1a2a3a4
n1n2n3n4

δq1+q3,q2+q4

×ηa1
n1n2

(q1)η
a2,∗
n2n3

(q2)η
a3
n3n4

(q3)η
a4,∗
n4n1

(q4), (D15)

where

Ba1a2a3a4
n1n2n3n4

=
1

2V
∑
k

tr
[
ϕ̂a1
n1n2

(k)ϕ̂a2,†
n3n2

(k)ϕ̂a3
n3n4

(k)ϕ̂a4,†
n1n4

(k)
]

×T
∑
m

Gn1
(k, ωm)Gn2

(−k,−ωm)Gn3
(k, ωm)Gn4

(−k,−ωm). (D16)

It is easy to check, using Eq. (15), that the Cooperons
satisfy Cab

n1n2
(q) = Cba

n2n1
(q) and that Ba1a2a3a4

n1n2n3n4
is invari-

ant under a simultaneous cyclic permutation of the lower
and upper indices. The expressions (D13) and (D15) can
be used to derive the GL energy for any pairing symmetry
in a SC with any number of bands. In this general case,
the free energy depends on N(N+1)d/2 order parameter
components ηann′ , such that ηann′ = ηan′n.

1. 1D pairing in a two-band SC

If the pairing corresponds to a 1D irrep of the point
group, then we can drop the index a and obtain from Eq.
(D13) the following expression for the quadratic terms in
the GL energy:

F2 = F (0)
2 + F (1)

2 = V
∑
q

η†(q)L̂(q)η(q), (D17)

where

L̂(q) = Ŵ−1 −

 C11(q) 0 0

0 C22(q) 0

0 0 2C12(q)

 (D18)

and Cnn′ are the pair propagators:

Cnn′(q) =
1

4

∫
d2k

(2π)2
tr
[
ϕ̂nn′(k)ϕ̂†nn′(k)

]
× tanh[ξn(k+)/2T ] + tanh[ξn′(k−)/2T ]

ξn(k+) + ξn′(k−)
.

The intraband basis functions are given by ϕ̂nn(k) =
αn(k)σ̂0 and the interband ones – by Eq. (19).

Using the band dispersions (27) and also Eq. (29), we
obtain:

Cnn(q) =
1

4
NF

∫ ϵc

−ϵc

dξ

ξ

〈
α2
n

(
tanh

ξ+
2T

+ tanh
ξ−
2T

)〉
and

C12(q) =
1

4
NF

∫ ϵc

−ϵc

dξ

ξ

×
〈
g2
(
tanh

ξ+ − Eb/2
2T

+ tanh
ξ− + Eb/2

2T

)〉
,

where ξ±(k) = ξ ± v(k)q/2 and v = ∇kξ is the quasi-
particle velocity. The basis functions are normalized as
follows: ⟨α2

n(k)⟩ = ⟨g2(k)⟩ = 1. To extract from the
above expressions the contributions that logarithmically
diverge at ϵc → ∞, we subtract and add their values for
q = 0 and Eb = 0:

Cnn′(q) = NF ln

(
2eCϵc
πT

)
+ [Cnn′(q)− Cnn′(0)],

where C ≃ 0.577 is Euler’s constant. Due to the fast
convergence, we extend the limits of the ξ-integration in
the bracketed term here to infinity and use the identity

1

4

∫ ∞

−∞

dξ

ξ

(
tanh

ξ + ϵ

2T
+ tanh

ξ − ϵ

2T
− 2 tanh

ξ

2T

)
= Ψ

(
1

2

)
− Re Ψ

(
1

2
+ i

ϵ

2πT

)
,

where Ψ(z) is the digamma function.41

In this way, we obtain the following expressions for the
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intraband Cooperons expanded in powers of q:

1

NF
Cnn(q) = ln

(
2eCϵc
πT

)
− 7ζ(3)

16π2T 2

〈
α2
n(vq)

2
〉
+O(q4), (D19)

where ζ(s) is the Riemann zeta function, with ζ(3) ≃
1.20. Similarly, for the interband Cooperon we have

1

NF
C12(q) = ln

(
2eCϵc
πT

)
+Ψ

(
1

2

)
− ReΨ

(
1

2
− i

Eb
4πT

)
+

1

32π2T 2
ReΨ′′

(
1

2
− i

Eb
4πT

)〈
g2(vq)2

〉
+O(q4). (D20)

By symmetry, the only nonzero angular averages here are
given by ⟨α2

nv
2
x⟩ = ⟨α2

nv
2
y⟩ = wn and ⟨g2v2x⟩ = ⟨g2v2y⟩ =

w̃. Substituting the expressions (D19) and (D20) into
Eq. (D18) and taking the thermodynamic limit V → ∞,
we finally obtain F2 =

∫
d2r F2, with the energy density

given by Eq. (43).

From Eq. (D15), the “uniform” quartic terms have the
following form in the coordinate representation: F4 =∫
d2r F4, with the energy density

F4 =
1

2
B1111|η1|4 +

1

2
B2222|η2|4

+2B1112|η1|2|η̃|2 + 2B2221|η2|2|η̃|2

+B1212|η̃|4 +B1122(η1η2η̃
∗,2 + c.c.), (D21)

where

Bn1n2n3n4
=

1

2

∫
d2k

(2π)2
tr
[
ϕ̂n1n2

(k)ϕ̂†n3n2
(k)ϕ̂n3n4

(k)ϕ̂†n1n4
(k)
]

×T
∑
m

1

iωm − ξn1(k)

1

iωm + ξn2(k)

1

iωm − ξn3(k)

1

iωm + ξn4(k)

can be calculated at the critical temperature. Under the
assumptions of Sec. III, it is legitimate to neglect the
energy dependence of the basis functions and calculate
the ξ-integrals with ϵc → ∞ before the Matsubara sums.
For example, in B1212 we have

T
∑
m

∫ ∞

−∞
dξ

1

(iωm − ξ1)2
1

(iωm + ξ2)2

=
πT

2

∑
m

signωm

(ωm − iEb/2)3
=

7ζ(3)

8π2T 2
c

f1

(
Eb

4πTc

)
,

where f1(x) is given by Eq. (57). In this way, we arrive
at Eq. (62).

Appendix E: Properties of Â(T )

The superconducting instability develops at the tem-
perature Tc at which the matrix (43) loses positive def-

initeness. According to Sylvester’s criterion, Â(T ) is
positive-definite if and only if its principal minors δ1 =
A11, δ2 = A11A22 −A2

12, and δ3 = det Â are all positive.
Let us show that, if all coupling constants are nonzero,
then it is δ3 that changes sign first as the temperature is
lowered.

Suppose that at Tc we have δ1 = 0, while δ2 > 0 and
δ3 > 0, so that the phase transition occurs into the re-
duced state (η1, 0, 0). It is easy to see that this is not

possible, because δ2(Tc) = −A2
12 < 0, i.e., a contradic-

tion.
Suppose now that δ2 = 0 at T = Tc, while δ1 > 0

and δ3 > 0, so that the phase transition occurs into the
reduced state (η1, η2, 0). From Schur’s formula, at all
T > Tc we have

δ3 = (A11A22 −A2
12)A33

−(A22A
2
13 +A11A

2
23 − 2A12A13A23).

At T → Tc + 0, the first term on the right-hand side
vanishes, so that |A12| =

√
A11A22, therefore

δ3(Tc) = −
[√

A11A23 − sign (A12)
√
A22A13

]2
< 0.

This contradicts the assumption that δ3 is still positive
at Tc.

Appendix F: Order parameter near Tc

The temperature dependence of the order parameter
components can be found by solving the nonlinear GL
equations. Minimizing the GL functional, see Eqs. (42)
and (62), in the uniform state, we obtain:

Â(T )η = −Q, Q =

 Q1

Q2

Q3

 , (F1)
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where Â is given by Eq. (43) and

Q1 = (2β1|η1|2 + β̃1|η̃|2)η1 + β̃4η̃
2η∗2 ,

Q2 = (2β2|η2|2 + β̃2|η̃|2)η2 + β̃4η̃
2η∗1 ,

Q̃ = (β̃1|η1|2 + β̃2|η2|2 + 2β̃3|η̃|2)η̃ + 2β̃4η1η2η̃
∗.

Above the second-order superconducting transition at Tc,
Eq. (F1) has only the trivial solution η = 0.

We denote the eigenvalues of the real symmetric matrix
Â by α0(T ), α1(T ), and α2(T ), with the corresponding
real eigenvectors v0, v1, and v2 forming an orthonormal
basis. Each of the eigenvectors has two “intraband” and
one “interband” components, e.g., v0 = (v0,1, v0,2, ṽ0)

⊤.

To account for the matrix Â losing positive definiteness
at the phase transition, we assume that α0 changes sign
at Tc:

α0(T ) = a0(T − Tc), a0 > 0, (F2)

whereas α1(Tc), α2(Tc) > 0. The eigenvector v0 is called

the zero mode of Â.
We can expand the order parameter in the eigenbasis

of Â as follows:

η = ψ0v0 + ψ1v1 + ψ2v2. (F3)

To find the temperature dependence of the coefficients
ψ0, ψ1, and ψ2, we substitute the expansion (F3) into
the GL equations (F1), use the orthonormality of the
eigenvectors, and obtain:

αiψi = −viQ(ψ0, ψ1, ψ2), i = 0, 1, 2.

The right-hand sides of these equations are homogeneous
cubic polynomials of ψ0, ψ1, ψ2, and their complex con-
jugates. Assuming ψ0 to be real positive and explicitly
separating the zero-mode contributions, we have

α0ψ0 = −2B0ψ
3
0 + (...),

α1ψ1 = −2B1ψ
3
0 + (...), (F4)

α2ψ2 = −2B2ψ
3
0 + (...),

where

B0 = β1v
4
0,1 + β2v

4
0,2 + β̃3ṽ

4
0

+(β̃1v
2
0,1 + β̃2v

2
0,2 + 2β̃4v0,1v0,2)ṽ

2
0 .

Other coefficients on the right-hand sides of the equations
(F4) can be calculated in the similar fashion.

Introducing the notation τ = (Tc − T )/Tc, we obtain
from Eqs. (F2) and (F4) that just below Tc, i.e., at τ →
0+, the leading temperature dependence of the expansion
coefficients in Eq. (F3) is given by

ψ0 =

√
a0Tc
2B0

τ1/2, (F5)

whereas

ψ1 = −2B1

α1
ψ3
0 ∝ τ3/2, ψ2 = −2B2

α2
ψ3
0 ∝ τ3/2

are much smaller than ψ0. Therefore,

η(T ) =

√
a0(Tc − T )

2B0
v0, T → Tc − 0. (F6)

All three order parameter components depend on tem-
perature in the way that is usual in the Landau theory of
phase transitions, with their relative magnitudes deter-
mined by the zero mode of the matrix Â. Note that η is
real, which means that the TR symmetry is not broken
in the superconducting state immediately below Tc.

Appendix G: Proof of Eq. (72)

Introducing the notations s1,2 = sinφ1,2, and c1,2 =
cosφ1,2, the critical point equations (71) take the follow-
ing form:{

(q + σ)s1c2 + (q − σ)s2c1 = −ps1,
(q − σ)s1c2 + (q + σ)s2c1 = −ps2.

These equations can be “solved” for s1c2 and s2c1, and
we obtain: s21c

2
2 − s22c

2
1 = σ(p2/4q)(s21 − s22), therefore

s21 = s22, unless q = p2/4 at σ = +1 (recall that we
assume p, q ≥ 0). Thus, any isolated critical point of the
function (70) must satisfy the condition

| sinφ1| = | sinφ2|, (G1)

therefore φ2 = ±φ1 or φ2 = ±φ1 + π. One can check
using Eq. (71) that the second possibility is never real-
ized for nontrivial critical points, i.e., for φ1 and φ2 other
than 0 or π.

The condition (G1) can be violated if σ = +1 and
q = p2/4, in which case the minima of the free energy
(70) satisfy

sin(φ1 + φ2) = −2

p
(sinφ1 + sinφ2),

sin(φ1 − φ2) = −p
2
(sinφ1 − sinφ2).

It is easy to see that these two equations are not inde-
pendent (they are “inverse” of each other), so that their
solutions correspond to whole lines, instead of isolated
points, in the (φ1, φ2) plane. These solutions are shown
in Figs. 4 and 5, for p < 2 and p > 2, respectively.
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Rogl, Phys. Rev. Lett. 92, 027003 (2004).

7 M. A. Tanatar, J. Paglione, S. Nakatsuji, D. G. Hawthorn,
E. Boaknin, R. W. Hill, F. Ronning, M. Sutherland, L.
Taillefer, C. Petrovic, P. C. Canfield, and Z. Fisk, Phys.
Rev. Lett. 95, 067002 (2005).

8 M. R. Norman, Physics 1 (2008).
9 P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep.
Prog. Phys. 74, 124508 (2011).

10 L. A. Wray, S.-Y. Xu, Y. Xia, D. Hsieh, A. V. Fedorov, Y.
S. Hor, R. J. Cava, A. Bansil, H. Lin, and M. Z. Hasan,
Nature Phys. 7, 32 (2011).

11 L. Fu and E. Berg, Phys. Rev. Lett. 105, 097001 (2010).
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(2010).
48 Y. Tanaka and T. Yanagisawa, J. Phys. Soc. Jpn. 79,

114706 (2010).
49 C. J. Bradley, B. L. Davies, Rev. Mod. Phys. 40, 359

(1968).
50 K. Ueda and T. M. Rice, Phys. Rev. B 31, 7114 (1985).
51 V. N. Popov, Functional Integrals and Collective Excita-

tions (Cambridge University Press, Cambridge, 1991).

http://arxiv.org/abs/2310.12002

	Introduction
	Pairing symmetry: General analysis
	Order parameter components
	Example: s-wave pairing
	Example: p-wave pairing

	Full pairing Hamiltonian
	Gap equations

	Ginzburg-Landau free energy
	Critical temperature
	Dominant intraband pairing
	Dominant interband pairing

	Gradient terms
	Quartic terms
	Discussion

	TR symmetry-breaking states
	J>0
	J<0

	Conclusions
	Acknowledgments
	Symmetry of the Bloch states
	Interband s-wave pairing
	Local attractive interaction
	Derivation of the GL functional
	1D pairing in a two-band SC

	Properties of (T)
	Order parameter near Tc
	Proof of Eq. (72)
	References

