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Uncertainty-Aware Bayes’ Rule and Its Applications
Shixiong Wang

Abstract—Bayes’ rule has enabled innumerable powerful al-
gorithms of statistical signal processing and statistical machine
learning. However, when there exist model misspecifications in
prior distributions and/or data distributions, the direct applica-
tion of Bayes’ rule is questionable. Philosophically, the key is to
balance the relative importance of prior and data distributions
when calculating posterior distributions: if prior (resp. data) dis-
tributions are overly conservative, we should upweight the prior
belief (resp. data evidence); if prior (resp. data) distributions
are overly opportunistic, we should downweight the prior belief
(resp. data evidence). This paper derives a generalized Bayes’
rule, called uncertainty-aware Bayes’ rule, to technically realize
the above philosophy, i.e., to combat the model uncertainties
in prior distributions and/or data distributions. Simulated and
real-world experiments on classification and estimation showcase
the superiority of the presented uncertainty-aware Bayes’ rule
over the conventional Bayes’ rule: In particular, the uncertainty-
aware Bayes classifier, the uncertainty-aware Kalman filter,
the uncertainty-aware particle filter, and the uncertainty-aware
interactive-multiple-model filter are suggested and validated.

Index Terms—Bayes’ Rule, Uncertainty Awareness, Entropy
Method, Signal Processing, Machine Learning.

I. INTRODUCTION

A. Background

Bayes’ rule (or Bayes’ theorem) has countless successful
applications in statistical signal processing and statistical ma-
chine learning such as Kalman filter, particle filter, Bayesian
hypothesis testing, naive Bayes classifier, Bayesian optimiza-
tion, Bayesian bandits, and Bayesian networks. Consider a
data-generating distribution pθ0

(y) parametrized by unknown
θ0 ∈ Θ ⊆ Rd where Θ is the parameter space. We aim
to estimate the true value θ0 using n collected samples
{y1,y2, . . . ,yn} ⊂ Y from pθ0

(y) where Y ⊆ Rm is the
domain of pθ0(y). Bayes’ rule

p(θ|y) ∝ p(θ) · p(y|θ), ∀y ∈ Y, ∀θ ∈ Θ (1)

suggests the law of calculating the posterior distribution
p(θ|y) after observing the sample y using the likelihood
function θ 7→ p(y|θ) := pθ(y) and the prior distribution
p(θ). Philosophically, the prior distribution p(θ) encodes our
prior belief that θ ∈ Θ is the true value and the likelihood
function p(y|θ) indicates our y-data evidence that θ is the
true value; therefore, the posterior distribution p(θ|y) denotes
our integrated posterior belief that θ is the true value. For a
quick review of Bayes’ rule, see, e.g., [1].

B. Problem Statement and Literature Review

In using the conventional Bayes’ rule (1), the fundamental
assumption is that the data distribution y 7→ p(y|θ) for every
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θ ∈ Θ and the prior distribution p(θ) are accurate: that is,
the true value θ0 is indeed a realization of p(θ) and the data
{y1,y2, . . . ,yn} are indeed sampled from pθ0

(y). However,
this assumption is highly untenable in practice, and as a result,
the performance of algorithms relying on the conventional
Bayes’ rule (1) significantly degrades: For illustrations and
justifications from the general Bayesian statistics community,
see, e.g., [2]–[6]; for those from the Bayesian statistical signal
processing community, see, e.g., [7]–[10].

Facing the model uncertainties before applying Bayes’ rule,
one way is to improve the modeling accuracy and reduce such
uncertainties, for example, by replacing Gaussian distributions
with Student’s t distributions when outliers exist [5, Chap. 17],
and the other is to withstand the model uncertainties with
robust methods, for example, using noninformative priors [2],
using robust data distributions [11, Chaps. 4 and 5], [12],
[13], or modifying the Bayes’ rule itself (e.g., α-posterior)
[14, Sec. 6.8.5 and Sec. 8.], [6], [15]. While it is not always
practically easy to improve the modeling accuracy (because
additional information is required, e.g., the knowledge that
Student’s t distributions can model measurement outliers),
robust methods are attractive to practitioners. According to
[11, Sec. 15.2],

the key to the robust design is to balance the relative
importance between the prior distribution (i.e., prior
belief) and the data distribution (i.e., likelihood
function, data evidence).

To clarify further, if the prior distribution is uncertain (i.e.,
unreliable), we modify (i.e., reduce or increase) the contri-
bution of the prior distribution to the posterior distribution;
likewise, if the data distribution is uncertain, we modify the
contribution of the data distribution to the posterior distribu-
tion. This idea has been empirically/theoretically validated and
technically implemented in, e.g., [16], where the maximum
entropy scheme is employed to diminish the importance of
prior distributions or data distributions, and in, e.g., [14,
Sec. 6.8.5 and Sec. 8.], where the α-posterior scheme1 is
employed to manage the importance of the data distributions
using an α-power operator (the importance of the data distri-
butions is reduced if 0 < α < 1 and remains unchanged if
α = 1).

However, the maximum entropy scheme is computationally
complex: we prefer a computationally simpler scheme that has
almost the same computational burden as the conventional
Bayes’ rule and the α-posterior scheme. To clarify further,
we prefer a Bayes-rule-like formula that can function as the
maximum entropy scheme. In addition, both the maximum
entropy scheme and the α-posterior scheme cannot techni-
cally augment the importance of prior distributions and data

1The α-posterior is defined as pα(θ|y) ∝ p(θ) · pα(y|θ), α > 0; cf. (1).
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distributions: they can only diminish the importance of prior
distributions and/or data distributions because as robust (i.e.,
conservative) methods, they tend to downweight the informa-
tion (from prior belief or data evidence) at hands. Nevertheless,
when the prior belief (resp. data evidence) is obtained in a
conservative manner, it is beneficial if we can upweight the
information from the prior belief (resp. data evidence).

In summary, a generalized Bayes’ rule that can balance the
relative importance between prior belief and data evidence
is expected. Furthermore, the new Bayes’ rule can not only
downweight prior brief and data evidence but also upweight
them when required, in a computationally efficient manner.

C. Contributions

This paper mathematically formalizes and generalizes the
philosophy in [11, Sec. 15.2], and an uncertainty-aware
Bayes’ rule is derived. The generalization roots in moving
to an uncertainty-aware design from the robust design in
[11, Sec. 15.2]. Uncertainty awareness is more general than
robustness because when the information (i.e., prior belief
or data evidence) is believed to be opportunistic, we need
to pursue robustness and downweight the information. In
contrast, when the information is believed to be conservative,
we need to abandon robustness and upweight the information.

The contributions of this paper can be itemized as follows.
1) We propose a new interpretation method of the conven-

tional Bayes’ rule (1); see Lemma 1.
2) We propose an uncertainty-aware Bayes’ rule pg(θ|y) ∝

pβ(θ) · pα(y|θ), called (α, β)-posterior, where α, β ∈
[0,∞], that generalizes the conventional Bayes’ rule (1);
see Theorem 1 and Definition 2.

3) We show that for some values of α and β, the uncertainty-
aware Bayes’ rule can technically reflect the robustness
(i.e., conservatism) philosophy in [11, Sec. 15.2], that
is, to function as the maximum entropy scheme and the
α-posterior scheme (i.e., downweighting the prior belief
and/or data evidence). For other values, the uncertainty-
aware Bayes’ rule can reflect the opportunism philosophy
and upweight the prior belief and/or data evidence. For
details, see Theorems 2 and 3, and Insights 1 and 2.

4) We show that an α-scaled (resp. β-scaled) nominal distri-
bution pαθ (y) [resp. pβ(θ)], after normalization, is closer
to the true distribution pθ0

(y) [resp. p0(θ)] than the
original nominal distribution pθ(y) [resp. p(θ)] for some
α ≥ 0 (resp. β ≥ 0), which can justify the superiority
of the proposed (α, β)-posterior over the conventional
Bayes’ posterior; see Theorem 4.

5) Applications of the (α, β)-posterior in machine learning
and signal processing (e.g., classification and estimation)
are discussed; see Subsection II-F. In addition, the power
of the (α, β)-posterior on both simulated and real-world
data sets is empirically validated; see Section III.

D. Notations

Random and deterministic quantities are denoted by upright
and italic symbols (e.g., y and y), respectively. Let Rd denote

the d-dimensional real space. We use py(y) to denote the prob-
ability density (resp. mass) function of y if y is continuous
(resp. discrete); when it is clear from the contexts, p(y) is used
as a shorthand for py(y). Let Ent p(y) denote the entropy of
the distribution p(y): i.e., Ent p(y) :=

∫
p(y) · − ln p(y)dy.2

Let KL [q(θ) ∥p(θ) ] define the Kullback–Leibler divergence
of q(θ) from p(θ). The Gaussian distribution with mean µ and
covariance Σ is denoted as N (µ,Σ) and its density function
as N (·;µ,Σ). The running index set induced by integer r is
denoted as [r] := {1, 2, . . . , r}.

II. MAIN RESULTS

This paper limits the presentation to the elementary proba-
bility theory and avoids using measure-theoretic languages.
In addition, throughout the paper, we assume that density
functions exist (with respect to the Lebesgue measure) and
take values on [0,∞). To reduce the presentation length, the
main results are only given under probability density functions;
for probability mass functions, one may just change integrals
to sums. (Simplified proofs for discrete cases are possible since
probability masses take values on [0, 1].) To reduce notational
clutter, we implicitly mean y ∈ Y and θ ∈ Θ throughout the
paper, unless otherwise stated.

A. Generalized Bayes’ Rule

We begin with the notion of likelihood distribution.
Definition 1 (Likelihood Distribution): Let

ly(θ) :=
p(y|θ)∫
p(y|θ)dθ

, ∀y (2)

denote the likelihood distribution of θ induced by the like-
lihood function θ 7→ p(y|θ) evaluated at the sample y.
When it is clear from the contexts, we suppress the notational
dependence on y and use l(θ) as a shorthand for ly(θ). □

The likelihood distribution l(θ) is a y-parametric distribu-
tion of θ. A direct result of Definition 1 is that the posterior
distribution p(θ|y) given by the conventional Bayes’ rule (1)
can also be expressed as

p(θ|y) ∝ p(θ) · l(θ). (3)

The lemma below gives an interpretation of the origin of
the Bayes’ rule (3).

Lemma 1 (Conventional Bayes’ Rule): The posterior distri-
bution p(θ|y) given by the Bayes’ rule (1) [or (3)] solves

min
q(θ)

KL [q(θ) ∥p(θ) ] + KL [q(θ) ∥l(θ) ] + Ent q(θ). (4)

Proof: See Appendix A. □
Lemma 1 suggests that the posterior distribution p(θ|y)

is an entropy-regularized ( 12 ,
1
2 )-KL-barycenter of the prior

distribution p(θ) and the likelihood distribution l(θ); in-
tuitively, p(θ|y) is a minimum-entropy distribution that is
simultaneously close to both the prior distribution (i.e., prior
belief) and the likelihood distribution (i.e., y-data evidence).

2Unless otherwise stated, in this paper, when we mention entropy, we mean
the differential entropy for continuous distributions and the Shannon entropy
for discrete ones.
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We generalize the optimization problem (4) to

min
q(θ)

α1 KL [q(θ) ∥p(θ) ] + α2 KL [q(θ) ∥l(θ) ] + α3 Ent q(θ),

(5)
where α1, α2, and α3 are weights. To let q(θ) be close to p(θ)
and l(θ), without loss of practicality, the following assumption
is imposed.

Assumption 1: We assume that 0 ≤ α1 <∞, 0 ≤ α2 <∞,
and −∞ < α3 <∞. □

Depending on whether to pursue the maximum or minimum
entropy of q(θ), α3 can take any finite value on the whole
real line R. We term the distribution solving the generalized
problem (5) the generalized Bayes’ posterior distribution.

Theorem 1 (Generalized Bayes’ Rule): The generalized
posterior distribution pg(θ|y) solving (5) is given by

pg(θ|y) ∝ p
α1

α1+α2−α3 (θ) · l
α2

α1+α2−α3 (θ), (6)

or equivalently,

pg(θ|y) ∝ p
α1

α1+α2−α3 (θ) · p
α2

α1+α2−α3 (y|θ), (7)

when α3 < α1 + α2, provided that the right-hand-side terms
are integrable on Θ. When α3 = α1 + α2, pg(θ|y) is an
arbitrary distribution supported on the set Θ∗ where

Θ∗ := argmax
θ

α1 ln p(θ) + α2 ln l(θ) (8)

contains all weighted maximum a-posteriori estimates.
Proof: See Appendix B. □

In Theorem 1 and throughout this paper, we only consider
the case where α3 ≤ α1 +α2 for technical simplicity; see the
proof of Theorem 1 for details. Eq. (8) can be understood as an
(α1, α2)-weighted maximum posterior estimation. Motivated
by the generalized posterior distribution in (6), we give the
definition of the (α, β)-posterior.

Definition 2 ((α, β)-Posterior): The (α, β)-posterior in-
duced by the prior distribution p(θ) and the likelihood dis-
tribution l(θ) is defined as

pg(θ|y) ∝ pβ(θ) · lα(θ), (9)

where 0 ≤ α, β <∞, if the right-hand-side term is integrable
on Θ. When α and β are infinity, the (α, β)-posterior pg(θ|y)
is defined as an arbitrary distribution supported on Θ∗ where
Θ∗ := argmaxθ α1 ln p(θ) + α2 ln l(θ). □

Note that, compared with (6), β := α1

α1+α2−α3
∈ [0,∞)

and α := α2

α1+α2−α3
∈ [0,∞), if α3 < α1 + α2. When α3 ↑

(α1 + α2), α and β simultaneously tend to infinity.
Remark 1: If α3 ≥ 0 is additionally required, then α+β ≥ 1

must be appended in Definition 2. On the other hand, if we
allow α1 and α2 to be negative, then β and α can be negative
as well. Negative values for α1 (resp. α2) imply that q(θ)
is expected to be far away from p(θ) [resp. l(θ)]. Without
loss of practicality, this paper focuses on the specifications in
Assumption 1. □

Below we give several motivational examples of the gener-
alized Bayes’ rule (6) or (9); the first two are well-established
in existing literature of Bayesian statistics.

Example 1 (Conventional Bayes’ Posterior): The conven-
tional Bayes’ rule (1) [resp. (3)] is a special case of the gen-
eralized Bayes’ rule (7) [resp. (6) or (9)] when α1 = α2 = α3

or α = β = 1. □
Example 2 (α-Posterior): When α2 = α3 and α1 > 0, (6)

reduces to
pg(θ|y) ∝ p(θ) · l

α2
α1 (θ). (10)

By letting α := α2

α1
, we obtain the α-posterior

pg(θ|y) ∝ p(θ) · lα(θ), (11)

where 0 ≤ α < ∞. When α1 = 0, pg(θ|y) is an arbitrary
distribution supported on Θ∗ where Θ∗ := argmaxθ ln l(θ)
contains all maximum likelihood estimates. □

The α-posterior in (11) is a well-established proposal in
Bayesian statistics; see, e.g., [14, Sec. 6.8.5 and Sec. 8.6], [6],
[15]. Given 0 < α < 1 and several other technical regularity
conditions (e.g., Θ∗ is a singleton), α-posteriors can be shown
to have posterior consistency (see [14, Thm. 6.54, Ex. 8.44]
and [15]), asymptotic normality (see [6, Thm. 1]), and ro-
bustness against likelihood-model misspecifications (see [6,
Sec. 4]); however, these conditions might be practically re-
strictive.

Example 3 (β-Posterior): When α1 = α3 and α2 > 0, (6)
reduces to

pg(θ|y) ∝ p
α1
α2 (θ) · l(θ). (12)

By letting β := α1

α2
, we obtain the β-posterior3

pg(θ|y) ∝ pβ(θ) · l(θ), (13)

where 0 ≤ β < ∞. When α2 = 0, pg(θ|y) is an arbitrary
distribution supported on Θ∗ where Θ∗ := argmaxθ ln p(θ)
contains all maximum prior estimates. □

Compared with the α-posterior in Example 2 that modifies
the likelihood distribution l(θ), the β-posterior modifies the
prior distribution p(θ).

Example 4 (γ-Posterior): When α1 = α2 and 2α1 > α3,
(6) reduces to

pg(θ|y) ∝ p
α1

2α1−α3 (θ) · l
α1

2α1−α3 (θ), (14)

By letting γ := α1

2α1−α3
, we obtain the γ-posterior4

pg(θ|y) ∝ pγ(θ) · lγ(θ), (15)

where 0 ≤ γ < ∞. When 2α1 = α3, pg(θ|y) is an arbitrary
distribution supported on Θ∗ where Θ∗ := argmaxθ ln p(θ)+
ln l(θ) contains all usual maximum a-posteriori estimates. □

Compared with the α-posterior and the β-posterior, the γ-
posterior modifies both the prior distribution and the likelihood
distribution.

Example 5 (α-Likelihood): When α1 = 0 and α2 > α3, (6)
reduces to

pg(θ|y) ∝ l
α2

α2−α3 (θ). (16)

By letting α := α2

α2−α3
, we obtain the α-likelihood

pg(θ|y) ∝ lα(θ), (17)

3To differentiate with the α-posterior, we name it using β.
4To differentiate with the α- and β-posterior, we name it using γ.
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where 0 ≤ α < ∞. When α2 = α3, pg(θ|y) is an arbitrary
distribution supported on Θ∗ where Θ∗ := argmaxθ ln l(θ)
contains all maximum likelihood estimates. □

In the generalized Bayes’ posterior (17) induced by the
α-likelihood lα(θ), the prior distribution p(θ) is completely
ignored. To clarify further, we only trust the likelihood distri-
bution with the confidence level α and absolutely distrust the
prior distribution.

Example 6 (α-Prior): When α2 = 0 and α1 > α3, (6)
reduces to

pg(θ|y) ∝ p
α1

α1−α3 (θ). (18)

By letting α := α1

α1−α3
, we obtain the α-prior

pg(θ|y) ∝ pα(θ), (19)

where 0 ≤ α < ∞. When α1 = α3, pg(θ|y) is an arbitrary
distribution supported on Θ∗ where Θ∗ ∈ argmaxθ ln p(θ)
contains all maximum prior estimates. □

In the generalized Bayes’ posterior (19) induced by the
α-prior pα(θ), the likelihood distribution l(θ) is completely
ignored. To clarify further, we only trust the prior distribu-
tion with the confidence level α and absolutely distrust the
likelihood distribution.

Example 7 (α-Pooled Posterior): When α3 = 0, (6) reduces
to

pg(θ|y) ∝ p
α1

α1+α2 (θ) · l
α2

α1+α2 (θ). (20)

By letting α := α1/(α1 + α2), we obtain the α-pooled-
posterior

pg(θ|y) ∝ pα(θ) · l1−α(θ), (21)

where 0 ≤ α ≤ 1. □
An engineering application of (21) is reported in social

learning [17, Eq. (7)], [18, Eq. (10)]. The α-pooled-posterior
in (21) is a α-log-linear pooling [19], [20] of the prior
distribution p(θ) and the likelihood distribution l(θ), which is
an alternative of the linear pooling rule αp(θ) + (1− α)l(θ).
The log-linear pooling rule is standard in Bayesian statistics
for fusing multiple priors (from multiple experts) to obtain
an integrated prior [19]. However, the α-pooled-posterior
in (21) claims that the likelihood distribution can also be
used as a “prior” where the collected data y serve as an
expert. (But this data-driven expert does not insist on his/her
opinion due to randomness of y; he/she is a flexible expert;
instead, conventional non-data-driven experts are stubborn.) In
addition, from (5), we can see that when α3 = 0, the entropy
regularizer is removed. Therefore, it is natural to imagine that
the α-pooled posterior in (21) has larger entropy than the
conventional Bayes’ posterior p(θ|y).

From Examples 1-7, we can see that the (α, β)-posterior,
compared to the conventional Bayes’ posterior (when α =
β = 1), defines general fusing rules of the prior distribution
p(θ) and the likelihood distribution l(θ); we refer to the law
of defining the (α, β)-posterior as the generalized Bayes’ rule.

B. Properties of Generalized Bayes’ Rule

The definition of the (α, β)-posterior motivates us to study
the properties of α-scaled distributions.

Definition 3 (α-Scaled Distribution): The α-scaled distribu-
tion h(α)(θ) induced by the distribution h(θ) is defined as

h(α)(θ) =
hα(θ)∫
hα(θ)dθ

, (22)

for 0 ≤ α <∞, if
∫
hα(θ)dθ exists. □

As the definition implies, h(α)(θ) ≡ h(θ) for every α if
h(θ) is a uniform distribution on a finite support set Θ.

Inspired by (5), we investigate the relation between the
entropy of h(α)(θ) and that of h(θ). We start with examining
the entropy of h(α)(θ).

Theorem 2: Suppose that h(θ) is not a uniform distribution.
The function α 7→ Enth(α)(θ) is monotonically decreasing in
α on [0,∞).

Proof: See Appendix C. □
Let E(α) denote the entropy difference evaluated at α ∈

[0,∞):
E(α) := Enth(α)(θ)− Enth(θ). (23)

Theorem 2 implies that E(α) is monotonically decreasing in
α on [0,∞). In addition, it is obvious to see that E(0) > 0 and
E(1) = 0. As a result, the following corollary is immediate.

Corollary 1: If 0 ≤ α < 1, then h(α)(θ) has larger entropy
than h(θ); if 1 < α < ∞, then h(α)(θ) has smaller entropy
than h(θ). □

A visual illustration of the entropy difference E(α) when
h(θ) is discrete is given in Fig. 1.

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0

0.2

Fig. 1. The entropy difference E(α) := Enth(α)(θ) − Enth(θ) against
α; h(θ) is a randomly generated 50-atom discrete distribution.

When h(θ) is continuous, a concrete example for Corollary
1 is as follows.

Example 8: Consider an one-dimensional zero-mean Gaus-
sian density function h(θ) ∝ e−

1
2

θ2

σ2 where σ2 is the variance.

The α-scaled distribution is h(α)(θ) ∝ e
− 1

2
θ2

σ2/α . There-
fore, h(α)(θ) is a Gaussian density function with variance
σ2/α. When 0 < α < 1, we have σ2/α > σ2 and
therefore Enth(α)(θ) > Enth(θ); when α > 1, we have
σ2/α < σ2 and therefore Enth(α)(θ) < Enth(θ). Note
that Enth(α)(θ) = 1

2 ln(2πσ
2/α) + 1

2 , while Enth(θ) =
1
2 ln(2πσ

2) + 1
2 . □

Theorem 2 and Corollary 1 collectively imply the following
useful insight.

Insight 1 (Uncertainty Awareness in Posterior): The α-
scaling operation controls the entropy (i.e., the uncertainty
or our trust level) of h(α)(θ). Therefore, the (α, β)-posterior
pg(θ|y) ∝ pβ(θ) · lα(θ) balances the relative importance
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between the prior distribution p(θ) and the likelihood dis-
tribution l(θ). If we think that the likelihood (resp. prior)
distribution is overly opportunistic, we use an α (resp. β) such
that Ent l(α)(θ) [resp. Ent p(β)(θ)] is increased compared to
Ent l(θ) [resp. Ent p(θ)]; in contrast, if we think that the
likelihood (resp. prior) distribution is overly conservative, we
use an α (resp. β) such that Ent l(α)(θ) [resp. Ent p(β)(θ)] is
reduced compared to Ent l(θ) [resp. Ent p(θ)]. To be specific,
if we do not trust much about the likelihood distribution (resp.
the prior distribution), we use 0 ≤ α < 1 (resp. 0 ≤ β < 1) if
it is overly opportunistic, and use α > 1 (resp. β > 1) if it is
overly conservative. □

Next, we study the closeness to h(θ) from h(α)(θ).
Theorem 3: The closeness to h(θ) from h(α)(θ), i.e.,

KL
[
h(θ)

∥∥∥h(α)(θ)
]
,

is a monotonically increasing function if 1 < α < ∞ and a
monotonically decreasing function if 0 ≤ α < 1. In addition,
it is a convex function in α on [0,∞).

Proof: See Appendix D. □
A visual illustration of Theorem 3 when h(θ) is discrete is

given in Fig. 2.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

Fig. 2. A visual illustration of the closeness KL
[
h(θ)

∥∥h(α)(θ)
]

to h(θ)

from h(α)(θ); h(θ) is a randomly generated 50-atom discrete distribution.

A concrete example for Theorem 3 when h(θ) is continuous
is as follows.

Example 9: We continue studying the setup in Example 8.
As a result, we have

KL
[
h(θ)

∥∥∥h(α)(θ)
]
= −1

2
ln (α) +

α

2
− 1

2
, α > 0.

The derivative of KL
[
h(θ)

∥∥h(α)(θ)
]

with respect to α is
1
2 (1 −

1
α ), which is positive if α > 1 and negative if 0 <

α < 1; the second-order derivative is 1
2α2 > 0. Therefore,

KL
[
h(θ)

∥∥h(α)(θ)
]

is monotonically decreasing when 0 <
α < 1 and monotonically increasing when α > 1. In addition,
KL

[
h(θ)

∥∥h(α)(θ)
]

is convex. □
Theorem 3 implies the following useful insight.
Insight 2 (Level of Uncertainty): The more α deviates from

1, the farther to h(θ) from h(α)(θ). Therefore, in (α, β)-
posterior, the more we trust the prior distribution p(θ) [resp.
the likelihood distribution l(θ)], the closer the value of β (resp.
α) should be to 1. □

Insights 1 and 2 collectively suggest the usage of the (α, β)-
posterior in balancing the relative importance between the

prior knowledge and the data evidence. Next, we show an-
other property of the (α, β)-posterior that enables its practical
usefulness. Let h0(θ) be the true distribution and h(θ) the
nominal distribution serving as an estimate of h0(θ). The
theorem below states that there exists some α > 0 such that
the α-scaled nominal distribution h(α)(θ) can be closer to the
true distribution h0(θ) than the original nominal distribution
h(θ).

Theorem 4: Let h0(θ) be a distribution defined on Θ.
Suppose that h(θ) is not a uniform distribution. For every
h0 and h where h0 ̸= h, there exists α ≥ 0 such that

KL
[
h0(θ)

∥∥∥h(α)(θ)
]
< KL [h0(θ) ∥h(θ) ] . (24)

Proof: See Appendix E. □
Theorem 4 indicates that, if a proper α is given, h(α) can be

a better (i.e., a more accurate) surrogate of h0 than h. However,
the parameter α cannot be theoretically specified because
it depends on the underlying true but unknown distribution
h0(θ). The example below provides an intuitive demonstration
of Theorem 4.

Example 10: Consider h0 = [0.2, 0.8], h = [0.4, 0.6], and
α = 2. We have h(2) = [0.3, 0.7], which is closer to h0 than
h. For another case, consider h0 = [0.4, 0.6], h = [0.2, 0.8],
and α = 0.6. We have h(0.6) = [0.3, 0.7], which is closer to
h0 than h. Third, we consider a continuous case. Let h0(θ) =
N (θ; 0, σ2

0) and h(θ) = N (θ; 0, σ2). For any α > 0, we have
h(α)(θ) = N (θ; 0, σ2/α). If we choose α := σ2/σ2

0 , we have
h(α)(θ) = h0(θ); note that α can be either larger or smaller
than one. □

Theorem 4 justifies the potential that the proposed (α, β)-
posterior can outperform the conventional Bayes’ rule in
practice; however, the optimal parameters (α, β) cannot be
theoretically specified because they depend on true prior dis-
tribution and data-generating distribution, which are unknown.

C. Generalized Bayes’ Rule for Multiple Samples

When we have more than one sample, e.g., n i.i.d. samples
{y1,y2, . . . ,yn}, we can straightforwardly generalize (5) to

min
q(θ)

α3 Ent q(θ) + α1 KL [q(θ) ∥p(θ) ] +

α2

n

n∑
i=1

KL [q(θ) ∥lyi
(θ) ] .

(25)

The solution of (25) is given in the corollary below.
Corollary 2 (Multi-sample Generalized Bayes’ Rule): The

generalized Bayes’ posterior solving (25) for n i.i.d. samples
is given by

pg(θ|y1, . . . ,yn) ∝ p
α1

α1+α2−α3 (θ) ·

[
n∏

i=1

l
1
n
yi(θ)

] α2
α1+α2−α3

,

(26)
if α1 + α2 > α3, provided that the right-hand-side term is
integrable on Θ. When α1 +α2 = α3, pg(θ|y1, . . . ,yn) is an
arbitrary distribution supported on the set Θ∗ where

Θ∗ := argmax
θ

α1 ln p(θ) + α2 ·
1

n

n∑
i=1

ln lyi(θ) (27)
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contains all weighted maximum posterior estimates; if further
α1 = 0, (27) reduces to maximum likelihood estimation. □

The (α, β)-posterior in Definition 2 under n i.i.d. samples,
induced by (26), can be rewritten as

pg(θ|y1, . . . ,yn) ∝ pβ(θ) ·
n∏

i=1

l
α
n
yi(θ), 0 ≤ α, β ≤ ∞. (28)

Examples 1-7 can be restated accordingly; we do not repeat
here.

As the data size increases (i.e., n ↑ ∞), data-evidence
becomes dominating and we can therefore let α1 depend on
n and α1,n → 0 as n → ∞. An example of α1,n can
be α1,n := 1/n, or 1/n2 for a faster vanishing rate. As a
result, pg(θ|y1, . . . ,yn) is asymptotically equal to an α-scaled
likelihood distribution; cf. Example 5.

D. Generalized Bayes’ Rule for Multiple Priors and Samples

We can further extend (25) when multiple priors are present:

min
q(θ)

α3 Ent q(θ) + α1

[
m∑
i=1

βi ·KL [q(θ) ∥pi(θ) ]

]
+

α2

[
1

n

n∑
i=1

KL [q(θ) ∥lyi(θ) ]

]
,

(29)

where m priors p1(θ), p2(θ), . . . , pm(θ) are available with
weights β1, β2, . . . , βm, respectively; βi ∈ [0, 1] for every
i ∈ [m] and

∑m
i=1 βi = 1.

The solution of (29) is given in the corollary below.
Corollary 3 (Multi-prior-multi-sample Generalized Bayes’

Rule): The generalized Bayes’ posterior solving (29) for m
priors and n i.i.d. samples is given by

pg(θ|y1, . . . ,yn) ∝[
m∏
i=1

pβi

i (θ)

] α1
α1+α2−α3

·

[
n∏

i=1

l
1
n
yi(θ)

] α2
α1+α2−α3

,
(30)

if α1 + α2 > α3, provided that the right-hand-side term is
integrable on Θ. When α1 +α2 = α3, pg(θ|y1, . . . ,yn) is an
arbitrary distribution supported on the set Θ∗ where

Θ∗ := argmax
θ

α1

m∑
i=1

βi · ln pi(θ)+α2

n∑
i=1

1

n
· ln lyi(θ) (31)

contains all weighted maximum posterior estimates. □
The (α, β)-posterior in Definition 2 under m priors and n

i.i.d. samples, induced by (30), can be rewritten as

pg(θ|y1, . . . ,yn) ∝
m∏
i=1

pβ·βi

i (θ) ·
n∏

i=1

l
α
n
yi(θ),

0 ≤ α, β ≤ ∞.
(32)

Examples 1-7 can be restated accordingly; we do not repeat
here.

E. Illustrating Examples

In this subsection, we provide some illustrating examples
of the α-scaled distribution and the (α, β)-posterior. First,
we visualize the α-scaled distribution h(α)(θ) when h(θ) is
discrete; see Fig. 3. As we can see, when 0 ≤ α < 1, the
probabilities become more balanced, while when α > 1, they
become more unbalanced.

1 2 3
Supports

0

0.2

0.4

0.6

0.8

1

Fig. 3. A 3-atom discrete distribution h(y) and induced h(α)(y) with
different α ∈ {0.5, 2}. Under α = 0.5, Enth(α)(y) > Enth(y) (i.e.,
the former has more balanced masses, while the latter has more unbalanced
masses). Under α = 2, Enth(α)(y) < Enth(y).
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(a) (0, 2.5)-posterior

0 5 10
0

0.1

0.2

0.3

0.4

0.5

(b) (0.25, 0.25)-posterior

0 5 10
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0.1

0.2

0.3

0.4

0.5

(c) (0.25, 0.5)-posterior

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

(d) (0.5, 2)-posterior

0 5 10
0

0.2

0.4

0.6

(e) (1.5, 2)-posterior

0 5 10
0

0.2

0.4

0.6

0.8

(f) (2, 2)-posterior

Fig. 4. Illustrating examples of (α, β)-posterior. The prior distribution is
p(θ) := N (θ; 0, 1). The likelihood distribution is ly:=5(θ) := N (θ; 5, 1).

Next, we visualize the (α, β)-posterior, compared with the
conventional Bayes’ posterior. We focus on a mean estimation
problem where θ0 is the true mean of the random variable y.
We suppose that the prior distribution is p(θ) := N (θ; 0, 1).



7

The likelihood function is θ 7→ N (y; θ, 1); if we assume
that the measurement is y := 5, the likelihood distribution is
therefore l(θ) := N (θ; 5, 1). The visualizations of the (α, β)-
posterior, under different value pairs of (α, β), are given in
Fig. 4.

As motivational examples, we only interpret the first three
sub-figures. In Fig. 4(a), α = 0 means that the likelihood
distribution is absolutely unreliable and the data evidence is
completely ignored. Therefore, the (0, 2.5)-posterior distribu-
tion tends to overlap with the prior distribution. Moreover,
because β = 2.5 > 1, the specified prior distribution is thought
to be overly conservative and we propose to increase its
concentration. In Fig. 4(b), α = β = 0.5 means that both the
prior distribution and the likelihood distribution are believed
to be overly opportunistic, and therefore, we propose to reduce
their concentration. As a result, the (0.25, 0.25)-posterior
distribution has larger entropy than the conventional Bayes’
posterior distribution. In Fig. 4(c), since α = 0.25 < 0.5 = β,
both the prior distribution and the likelihood distribution are
thought to be opportunistic, but the prior distribution is thought
to be less opportunistic than the likelihood distribution.

F. Examples of Application

The generalized (or uncertainty-aware) Bayes’ rule (9),
i.e., the (α, β)-posterior, has several potential applications in
statistical machine learning and statistical signal processing.
We specifically discuss classification and estimation problems.
Suppose that the true joint distribution is p0(y,θ), the true
prior distribution is p0(θ), and the true likelihood distribution
is l0,y(θ) under the measurement y. Let the nominal prior
distribution and the nominal likelihood distribution be p(θ)
and ly(θ), respectively.

1) Bayesian Classification: Classification is a fundamen-
tal component of statistical machine learning. Let Θ :=
{1, 2, 3, . . . , c} be a categorical set where the integer c is finite.
The Bayes classifier based on the conventional Bayes’ rule is

θ̂(y) := argmax
θ∈Θ

log p0(θ) + log l0,y(θ). (33)

In practice, however, the true distributions p0(θ) and l0,y(θ)
are unknown. By employing the nominal distributions p(θ)
and ly(θ), the generalized Bayes classifier based on the (α, β)-
posterior (9) can be obtained as

θ̂g(y) := argmax
θ∈Θ

β log p(θ) + α log ly(θ), (34)

which is equivalent, in the sense of the same classifier, to

θ̂g(y) := argmax
θ∈Θ

(1− λ) log p(θ) + λ log ly(θ), (35)

for λ := α/(α+β). As we can see, for classification problems,
the (α, β)-posterior with α, β ∈ [0,∞) has the same effect as
the (λ, 1 − λ)-posterior with λ ∈ [0, 1]; cf. Example 7; only
the ratio α/β matters.

2) Bayesian Estimation: Estimation aims to infer an un-
known parameter θ based on measured data y. It is of
particular importance in statistical signal processing. Upon

collecting y, the Bayes estimator based on the conventional
Bayes’s rule is

θ̂(y) :=

∫
θp0(θ|y)dθ, (36)

where p0(θ|y) ∝ p0(θ,y) is the true Bayes’ posterior distri-
bution. In practice, however, the true distributions p0(θ) and
l0,y(θ) are unknown. By employing the nominal distributions
p(θ) and ly(θ), the generalized Bayes estimator based on the
(α, β)-posterior (9) can be obtained as

θ̂g(y) :=

∫
θpg(θ|y)dθ. (37)

3) Other Examples: In this subsection, we discuss other
applications of the (α, β)-posterior. First, we give an example
of application in statistical signal processing.

Example 11 (Uncertainty-Aware Particle Filter): Suppose
that Θ is a finite discrete set containing r points (each point
is known as a particle): i.e., Θ := {θ1,θ2, . . . ,θr}. For each
particle θi, i ∈ [r], the likelihood evaluated at the measurement
y is assumed to be p(y|θi). Further, we suppose that the
prior distribution is p := [p1, p2, . . . , pr] and the y-likelihood
distribution (recall Definition 1) is l := [l1, l2, . . . , lr]. Then
the generalized Bayes’ posterior, i.e., the (α, β)-posterior, of
particles is equal to

pg(θi|y) ∝ pβi · l
α
i , ∀i ∈ [r].

The above formula leads to the uncertainty-aware particle filter
for dynamic stochastic nonlinear systems. □

Second, we give an example of application in statistical
machine learning. It is shown that the uncertainty-aware Max-
imum A-Posteriori (MAP) estimation can lead to the popular
ridge regression.

Example 12 (Uncertainty-Aware MAP Estimation): We con-
sider a nonlinear regression model y = f(x;θ) + ϵ where
y ∈ R is the response, x ∈ Rm is the feature vector,
ϵ ∼ N (0, 1) is the regression error, and θ is the parameter
vector. Supposing the prior distribution of θ is N (0, Id), upon
the collection of the data (y,x), the MAP estimator of θ is

min
θ∈Θ

[y − f(x;θ)]2 + θ⊤θ.

By using the (α, β)-posterior rule, the uncertainty-aware MAP
estimator of θ can be written as

min
θ∈Θ

α[y − f(x;θ)]2 + βθ⊤θ.

By letting λ := β/α, we have the λ-ridge regression

min
θ∈Θ

[y − f(x;θ)]2 + λθ⊤θ.

Therefore, the popular ridge regression method in statistical
machine learning can be interpreted as an uncertainty-aware
MAP estimation. □

Third, we discuss an example of application that is popular
in both statistical signal processing and statistical machine
learning.

Example 13 (Uncertainty-Aware Bayesian Model Averag-
ing): Suppose that we have r models to account for a signal
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processing or a machine learning problem. Let the prior dis-
tribution of models be p := [p1, p2, . . . , pr] and the likelihood
distribution (recall Definition 1) be l := [l1, l2, . . . , lr]. Then
the generalized Bayes’ posterior, i.e., the (α, β)-posterior, of
models is equal to

pg(θi|y) ∝ pβi · l
α
i , ∀i ∈ [r].

The above formula induces the uncertainty-aware Bayesian
model averaging method. □

G. Hyper-Parameter Tuning

This subsection discusses the determination methods for
the hyper-parameters (α, β) in practice. The main purpose
is to find some (α, β) such that the (α, β)-posterior can
outperform the conventional Bayes’ posterior; cf. Theorem
4. Suppose that the collected history data set is Dt :=
{(θ1,y1), (θ2,y2), . . . , (θt,yt)}.

Let ω := [α, β]⊤ denote the parameter vector of an (α, β)-
posterior and f(ω) the loss function of using the (α, β)-
posterior for a specific application, where f : R2

+ → R.
We assume that ω takes values on [0, τ ]2 where τ > 1
is a bounded positive real number (for example, τ = 5).
The optimal parameter tuning for ω can be formulated as a
minimization problem

min
ω∈[0,τ ]2

f(ω). (38)

Examples of f(ω) are given below.
Example 14 (Classification): For classification problems, the

loss function is the misclassification probability, i.e.,

f(ω) :=

∫ ∫
I{θ ̸=θ̂g,ω(y)} · p0(y,θ)dydθ, (39)

where I{·} denotes the indicator function and the generalized
classifier θ̂g,ω(y) is defined in (34). Note that θ̂g(y) in (34)
depends on ω. If the classification method in (35) is employed,
we have the cost function

f(λ) :=

∫ ∫
I{θ ̸=θ̂g,λ(y)} · p0(y,θ)dydθ, λ ∈ [0, 1]

since the classifier defined in (35) is parameterized by λ. □
Example 15 (Estimation): For estimation problems, the loss

function in the mean squared error (MSE) sense can be written
as

f(ω) :=

∫ ∫
[θ − θ̂g,ω(y)]

⊤[θ − θ̂g,ω(y)] · p0(y,θ)dydθ,
(40)

where the generalized estimator θ̂g,ω(y) is defined in (37).
Note that θ̂g(y) in (37) depends on ω. □

In practice, however, the loss function f(ω) is unknown due
to the unavailability of p0(y,θ). Based on the historical data
Dt, we can use data-driven estimate f̂(ω) as a surrogate of
f(ω). For instance,

f̂(ω) =
1

t

t∑
i=1

I{θi ̸=θ̂g,ω(yi)} (41)

in Example 14 and

f̂(ω) =
1

t

t∑
i=1

[θi − θ̂g,ω(yi)]
⊤[θi − θ̂g,ω(yi)] (42)

in Example 15. When the training data set Dt is sufficiently
large, f̂(ω) can be a point-wisely good estimate of f(ω).

In the following, we suggest two methods for tuning ω.
Since (38) is a low-dimensional optimization problem with
at most two variables on a hyper-cube domain [cf. (35) and
(37)], both methods can be statistically and computationally
efficient; for empirical validation, see experiments in Section
III.

1) Grid Search: For simplicity in operation, we can gener-
ate a two-dimensional uniform grid Ωgrid on [0, τ ]2 to obtain
discrete empirical evaluations f̂(ω) for ω ∈ Ωgrid ⊂ [0, τ ]2;
note that (1, 1) should be included in Ωgrid. Then, we solve

(α∗, β∗) = argmin
ω∈Ωgrid

f̂(ω) (43)

to obtain the best parameter pair (α∗, β∗). Since (1, 1) ∈ Ωgrid,
f̂([α∗, β∗]⊤) ≤ f̂([1, 1]⊤). Namely, the loss under the pro-
posed (α, β)-posterior is no larger than that under the usual
Bayes’ posterior. This can empirically but sufficiently validate
the advantage of the (α, β)-posterior over the conventional
Bayes’ posterior.

2) Surrogate Optimization: The grid search method can-
not pursue the global optimality on [0, τ ]2. Considering the
optimization problem (38) and its characteristics (i.e., f is
unknown but some noisy evaluations f̂ are available), we can
leverage the surrogate optimization frameworks, for example,
radial-basis-function surrogate optimization [21], Gaussian-
process surrogate optimization (i.e., Bayesian optimization)
[22], [23]. To put it simply, surrogate optimization uses as few
as possible noisy evaluations f̂(ω) to learn the true function
f(ω) in an online manner, and simultaneously search for the
globally optimal minimizer(s) ω∗ such that f(ω∗) ≤ f(ω) for
all ω on [0, τ ]2.

III. CONCRETE APPLICATIONS

The generalized (or uncertainty-aware) Bayes’ rule (9) can
give birth to several uncertainty-aware Bayesian machine
learning methods and uncertainty-aware Bayesian signal pro-
cessing methods. As demonstrations and without loss of gen-
erality, in this section, we focus on naive Bayes classification
problems in machine learning and state estimation (i.e., state
filtering) problems of dynamic stochastic state-space systems
in signal processing. The main purpose is to show the existence
of (α, β) such that the (α, β)-posterior can outperform the
conventional Bayes’ posterior; cf. Theorem 4. All the source
data and codes are available online at GitHub: https://github.
com/Spratm-Asleaf/Bayes-Rule. The experimental results are
obtained by a Lenovo laptop with 16G RAM and 11th Gen
Intel(R) Core(TM) i5-11300H CPU @ 3.10GHz.

A. Bayesian Classification: Text and Image Classification
We consider two real-world classification problems. One is

a natural-language text classification problem, while the other
is a medical image classification problem.

https://github.com/Spratm-Asleaf/Bayes-Rule
https://github.com/Spratm-Asleaf/Bayes-Rule
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1) IMDB Dataset: We investigate the performances of the
generalized Bayes classifier in (35) on the IMDB dataset
containing movie reviews [24, Sec. 4.3.2]. This problem is also
known as text-based sentiment analysis where we determine
whether a review of a movie is positive or negative. The multi-
nomial naive Bayes classification algorithm with Laplacian
smoothing is employed; that is, the features are distributed
according to multinomial distributions because movie reviews
are typically represented as word vector counts, and the
features are assumed to be conditionally independent given
the target class; see [25].

For every sample size L in {50, 100, 250, 500, 1000, 2000,
5000, 10000}, we conduct 500 independent Monte–Carlo tests.
In detail, in each Monte–Carlo trial, we randomly select L
samples from the IMDB dataset, of which 80% are training
samples and 20% are testing samples. For each Monte–Carlo
test, the radial-basis-function surrogate optimization on [0, 1] is
employed to find the empirically optimal hyper-parameter λ in
(35);5 the testing performance, which is a function of λ, serves
as the loss function in (38) to be minimized. The surrogate-
optimization-based search process starts with λ = 0.5 (i.e.,
the conventional Bayes classifier) so that the performance of
the generalized Bayes classifier (35) is at least as good as that
of the conventional Bayes classifier. The experimental results
are shown in Fig. 5.
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(a) Monte–Carlo-Averaged Accuracy
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(b) Grid Search (Step Size = 0.001)
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(c) Surrogate Optimization on [0, 1]

Fig. 5. Experimental results on the IMDB data set. (a): The classification
accuracy against sample size L, averaged over 500 Monte–Carlo episodes.
(b): The grid search for λ with step size of 0.001 in a Monte–Carlo trial
when L = 100. (c): The visual illustration of the surrogate optimization
process for λ on [0, 1]; the found optimal value is λ = 0.016753.

As sample size L becomes larger, the nominal distributions
p(θ) and ly(θ) get closer to the true distributions p0(θ)
and l0,y(θ), respectively. Therefore, the conventional Bayes
classifier tends to obtain the best classification accuracy as L
increases; cf. Fig. 5(a). In Figs. 5(b) and 5(c), the parameter
tuning process is visualized for a Monte–Carlo trial when

5See MATLAB’s surrogateopt function at https://mathworks.com/help/
gads/surrogateopt.html.

L = 100. Since the found optimal λ = 0.016753, any hyper-
parameter pair of (α, β) in (34) such that α/(α + β) =
0.016753 is optimal. Both two tuning methods find the best
accuracy of 0.7. The average running times of the two tuning
methods, against sample size L, are shown in Fig. 6. Note
that the larger the testing sample size, the more running time
is needed to calculate the empirical performance (41).
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Fig. 6. Average running times of the two tuning methods against sample size
L. The time difference of the two tuning methods remains about 1.5 seconds
for every L. The running time of grid search depends on the step size (NB:
the smaller the step size, the larger the maximum accuracy, but the slower the
running speed), while that of surrogate optimization depends on the maximum
allowed iteration count (NB: the larger, the larger, but the slower).

2) UCI Breast Cancer Dataset: We examine the perfor-
mances of the generalized Bayes classifier in (35) on the
UCI breast cancer dataset [26]. This is an image-classification-
based medical diagnosis problem. The Gaussian naive Bayes
classification algorithm is employed; that is, the features
are distributed according to Gaussian distributions, and the
features are assumed to be conditionally independent given
the target class; see [25].

Since there are only 569 instances in this data set, we use
all of them in the experiment. We conduct 500 independent
Monte–Carlo tests. In each Monte–Carlo trial, 80% of the 569
instances are randomly drawn to serve as training samples,
while the remaining 20% are testing samples. The radial-
basis-function surrogate optimization on [0, 1] is employed
to find the empirically optimal hyper-parameter λ in (35);
the testing performance, which is a function of λ, serves as
the loss function in (38) to be minimized. The surrogate-
optimization-based search process starts with λ = 0.5 (i.e.,
the conventional Bayes classifier) so that the performance of
the generalized Bayes classifier (35) is at least as good as that
of the conventional Bayes classifier. The experimental results
are shown in Fig. 7(a). In a Monte–Carlo trial, both parameter
tuning methods find the best accuracy of 0.9027; see Figs.
7(b) and 7(c).

B. Bayesian Estimation: State Estimation
From the perspective of applied statistics, state estimation

problems can be interpreted as sequential Bayesian inference.
Briefly speaking, state estimation aims to estimate the un-
known (i.e., unobservable) state vector xk at the discrete
time step k using the known (i.e., observable) measurement
set Yk := (y1,y2, . . . ,yk) and the probabilistic model
pxk,Yk

(xk,Yk); the probabilistic model pxk,Yk
(xk,Yk) is

induced by the stochastic state-space models. The aim of
state estimation is to obtain the posterior state distribution
pxk|Yk

(xk|Yk) or the posterior mean E(xk|Yk).

https://mathworks.com/help/gads/surrogateopt.html
https://mathworks.com/help/gads/surrogateopt.html


10

Generalized Bayes Bayes

0.86

0.88

0.9

0.92

0.94

0.96

A
cc

ur
ac

y

(a) Boxplots of the Accuracies

0 0.2 0.4 0.6 0.8 1

0.885

0.89

0.895

0.9

0.905

A
cc

ur
ac

y

Generalized Bayes
Bayes

(b) Grid Search (Step Size = 0.001)
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(c) Surrogate Optimization on [0, 1]

Fig. 7. Experimental results on the UCI Breast Cancer data set. (a): The
boxplots for the classification accuracies of 500 Monte–Carlo episodes. (b):
The grid search for λ with step size of 0.001 in a Monte–Carlo trial. (c): The
visual illustration of the surrogate optimization process for λ on [0, 1]; the
found optimal value is λ = 0.25. (Running Times: The average running time
for the grid search method is 0.2 seconds and for the surrogate optimization
method is 1.5 seconds.)

1) Uncertainty-Aware Kalman Filter: We consider the state
estimation problem of linear Gaussian state-space models [27,
Chap. 3] {

xk = Fk−1xk−1 +Gk−1wk−1,
yk = Hkxk + vk,

(44)

where, for every time k, the system matrices Fk, Gk, and Hk

are assumed to be known. The process noise vector and the
measurement noise vector are denoted by wk ∼ N (0,Qk) and
vk ∼ N (0,Rk), respectively, and Qk and Rk are assumed to
be known, for every k. For this linear Gaussian system, under
several uncorrelatedness assumptions among x0, {wk}∀k, and
{vk}∀k (see [27, p. 38]), the Kalman filter is the optimal state
estimator in the sense of minimum mean-squared error.

Suppose that at time k − 1, the posterior state distribution
is

x̂k−1|k−1 ∼ N (x̂k−1|k−1,Pk−1|k−1).

At time k, the prior state distribution is

x̂k|k−1 ∼ N (x̂k|k−1,Pk|k−1)

where Pk|k−1 := Fk−1Pk−1|k−1F
⊤
k−1 + Gk−1Qk−1G

⊤
k−1

and x̂k|k−1 := Fk−1x̂k−1|k−1; the measurement distribution
conditioned on state xk is

yk|xk ∼ N (Hkxk,Rk).

Therefore, by applying the (α, β)-posterior rule (9), the prior
state distribution should be modified to

x̂k|k−1 ∼ N (x̂k|k−1, Pk|k−1/β)

and the conditional measurement distribution should be mod-
ified to

yk|xk ∼ N (Hkxk, Rk/α).

Note that for a Gaussian distribution N (µ,Σ), the α-scaled
version is equal to N (µ,Σ/α). As a result, the (α, β)-
uncertainty-aware Kalman filter can be accordingly obtained
by just applying the following two assignment operations in
each Kalman iteration: Pk|k−1 ← Pk|k−1/β and Rk ←
Rk/α, for α, β > 0.

This modification rule is reminiscent of the distributionally
robust state estimation (DRSE) method proposed in [28]; see
also [10, p. 22, p. 53] for intuitive interpretations. Hence,
when 0 < α, β ≤ 1, the (α, β)-uncertainty-aware Kalman
filter is equivalent to distributionally robust state estimation
methods in [28], [29], provided that there are no outliers in
measurements. Since 0 < α, β ≤ 1, Pk|k−1 and Rk are
assumed to be overly opportunistic, and therefore, they need to
be inflated. When α, β ≥ 1, the values of Pk|k−1 and Rk are
reduced, which implies that Pk|k−1 and Rk are assumed to be
overly conservative. However, from the technical derivations
of the DRSE method, the value reduction of Pk|k−1 and
Rk cannot be achieved in the DRSE method. In this sense,
therefore, the (α, β)-uncertainty-aware Kalman filter presented
in this paper generalizes the DRSE method in [28], [29] when
there are no measurement outliers: the former can handle not
only opportunistic cases (by inflating covariances) but also
conservative cases (by reducing covariances), while the latter
can only address opportunistic cases. (NB: To combat op-
portunism is to introduce robustness/conservatism; i.e., robust
methods innately cannot fight against conservatism.)

The experiments of the DRSE method in [10, Chap. 2]
can sufficiently support the practical values of the (α, β)-
uncertainty-aware Kalman filter; just notice the mathematical
equivalence to the DRSE method (when 0 < α, β ≤ 1). We
do not repeat these experiments here.

2) Uncertainty-Aware Particle Filter: The particle filter is
standard to handle the state estimation problem of nonlin-
ear systems [30]. By employing the (α, β)-posterior in (9),
the (α, β)-uncertainty-aware particle filter can be straightfor-
wardly obtained; see Example 11.

As an illustration, we specifically consider the state esti-
mation problem of a one-dimensional nonlinear system model
[16], [30], [31]

xk =
xk−1

2
+

25xk−1

1 + x2k−1

+ 8 cos(1.2k) + wk−1,

yk =
x2k
20

+ 0.5 sin(xk) + vk,

(45)

where for every k, wk ∼ N (0, 10) and vk ∼ N (0, 1); for
every k1 and k2, wk1

and wk2
are uncorrelated, so are vk1

and vk2
; for every k, wk and vk are uncorrelated. As in [16],

we assume that the nominal measurement equation is

yk =
x2k
20

+ vk,

which is slightly different from the true one in (45). Therefore,
in this case, there is a modeling uncertainty in the measure-
ment equation, i.e., in likelihood distributions at every k. As
a result, to combat this model uncertainty and improve the
filtering accuracy, we should use β = 1 and α < 1.

For the purpose of experimental demonstration, we use 50,
100, and 200 particles, respectively, to report the performance
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of the (α, 1)-uncertainty-aware particle filter. The systematic
resampling method is adopted to address particle degeneracy,
and the effective sample size is set to half the number of
particles. Given the number of particles, the experiment is
independently conducted with 500 episodes and each episode
contains 100 time steps. The performance measure, in ev-
ery episode, is the rooted time-averaged mean-squared error
(RTAMSE) along 100 time steps, i.e.,√√√√ 1

100

100∑
k=1

(xk − x̂k)
2

where x̂k denotes the estimate of the true value xk; the overall
performance measure for a given number of particles is the
averaged RTAMSEs of the 500 episodes. The filtering result
of the (α, 1)-uncertainty-aware particle filter is shown in Fig.
8, plotted against the value of α.
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(a) 50 Particles
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Fig. 8. Averaged-RTAMSE performance of the (α, 1)-uncertainty-aware
particle filter, against the value of α. The larger the number of particles, the
smaller the averaged RTAMSE. For a given number of particles, the (α, 1)-
uncertainty-aware particle filter with α ≈ 0.25 works best.

As we can see from Fig. 8, when α < 1 but α is not
close to zero, the (α, 1)-uncertainty-aware particle filter can
outperform the conventional particle filter: This is because
when there exists model uncertainty in the measurement
equation, the likelihood distribution of particles at each time
step tends to be unreliable, and therefore, we need to reduce
the concentration (i.e., reduce the trust level and improve
the entropy) of the likelihood distribution to cope with the
uncertainty. In addition, the results suggest that the superiority
of the (α, 1)-uncertainty-aware particle filter tends to be more
significant as the number of particles decreases: This implies
that the (α, 1)-uncertainty-aware particle filter has the innate
ability to fight against the particle degeneracy issue. When α is
overly small (i.e., close to zero), the (α, 1)-uncertainty-aware
particle filter almost ignores information from the measure-
ments, and therefore, the filter diverges: This indicates that
uncertain information is at least better than no information.

3) Uncertainty-Aware Interactive Multiple Model Filter:
The interactive multiple model (IMM) filter is standard to
handle the state estimation problem of jump linear systems
[32], [33]. By employing the (α, β)-posterior in (9), the
(α, β)-uncertainty-aware IMM filter can be straightforwardly
obtained. One may just imagine the models’ prior weights as
a prior distribution and the models’ likelihoods (evaluated at
a given measurement) as a likelihood distribution; the aim is
to infer the models’ posterior distribution and then compute
the posterior state estimate; see Example 13.

As an illustration, we consider two real-world one-
dimensional multi-model target tracking problems; as claimed
in [34], focusing on only one coordinate does not lose the
generality because the motions of a dynamic target in different
coordinates can be independently tracked. Mathematically, it
is a state estimation problem of a jump linear system model
[35]–[37] xk =

[
1 T
0 1

]
xk−1 +

[
T 2/2
T

]
[ajk−1,k−1 +wk−1]

yk = pk + vk,

where the state vector xk is defined as xk := [pk, sk]
⊤; pk ∈ R

denotes the position, sk ∈ R the speed, and ajk,k ∈ R the
maneuvering acceleration of a moving target at time k; the
positive-integer-valued discrete random variable jk denotes the
system’s operating mode at time k; T > 0 is the sampling time
between two discrete time indices; wk ∈ R is the acceleration
modeling noise and vk ∈ R the sensor’s observation noise at
time k. At time k, the maneuvering acceleration may randomly
take any one of the following values

ajk,k =

 0, jk = 1,
10, jk = 2,
−10, jk = 3,

(46)

i.e., the random variable jk randomly jumps; the diagonal
elements of the transition probability matrix are set to 0.8s
and the non-diagonal ones are set to 0.1s. Therefore, in state
estimation for this jump linear system, at every time k, we
need to jointly estimate the unknown state xk and the system’s
unknown operating mode jk based on the past measurements
{y1, y2, . . . , yk}.

We reuse the real-world data and experimental setups from
[37]: In short, data from usual GPS are to be processed
to obtain higher-accuracy target positions and velocities in
real time, while data from RTK serve as ground truth. The
RTAMSE, for the total K time steps, is computed as√√√√ 1

K

K∑
k=1

(pk − p̂k)2 + (sk − ŝk)2,

where pk (resp. sk) denotes the true value of position (resp.
velocity) at the time k, and p̂k (resp. ŝk) denotes its estimate.
Note that (pk, sk) for every k is provided by RTK. (Some
authors prefer to independently report the RTAMSEs of posi-
tion estimates {p̂k}∀k∈[K] and velocity estimates {ŝk}∀k∈[K],
respectively, because the two dimensions have different numer-
ical scales. However, the author’s experiments suggest that it
introduces no essential influence on the main claims of this
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paper. One may use the shared source codes to verify this
point.)

Track A Slowly-Maneuvering Car: We first track a slowly-
maneuvering car that travels on a road in Beijing, China. The
car and its trajectory are shown in Fig. 9.

(a) car

-0.5 0 0.5 1 1.5 2 2.5
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End

(b) trajectory on a road

Fig. 9. Car and its trajectory (data credit: UniStrong Co., Ltd. and [37]).

The east axis (in the east-north-up coordinate) is investi-
gated [37]. The RTAMSE performance against the values of
(α, β) is shown in Fig. 10.

Fig. 10. Averaged-RTAMSE performance of the (α, β)-uncertainty-aware
IMM filter, against the values of (α, β). The (α, β)-uncertainty-aware IMM
filter with (α, β) = (2, 1.7) works best.

The results suggest that the (α, β)-uncertainty-aware IMM
(IMM-UA) filter with (α, β) = (2, 1.7) works best, under
which the tracking results (RTAMSE) are shown in Table I.

TABLE I
TRACKING RESULTS OF THE CAR: (α, β) = (2, 1.7)

Filter RTAMSE Avg Time Filter RTAMSE Avg Time
IMM 2.30 1.05e-05 IMM-UA 1.69 1.07e-05

Avg Time: Average Execution Time at each time step (unit: seconds).

From Table I, we can see that the value pair of (α, β) =
(2, 1.7) significantly reduces the tracking errors for the car.
This value pair concentrates both the prior distribution (i.e.,
prior model weights) and the likelihood distribution (i.e.,
model likelihoods), which means that one of the three models
in (46) dominates the rest two models most of the time. This
implication coincides with our intuition from Fig. 9(b) that
most of the time k, the model with a1,k = 0 (i.e., constant
velocity and straight-line trajectory) dominates the motion of
the car.

Track A Highly-Maneuvering Drone: We next track a
highly-maneuvering drone that flies following round trajecto-
ries in the air over an open playground, with a flying speed

of about 6m/s during data collection. The drone and parts of
its trajectory are shown in Fig. 11.

(a) drone
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Fig. 11. Drone and its flying trajectory, starting from 10s and ending at 60s
(data credit: Northwestern Polytechnical University and [37]).

The east axis (in the east-north-up coordinate) is investi-
gated [37]. The RTAMSE performance against the values of
(α, β) is shown in Fig. 12.

Fig. 12. Averaged-RTAMSE performance of the (α, β)-uncertainty-aware
IMM filter, against the values of (α, β). The (α, β)-uncertainty-aware IMM
filter with (α, β) = (0.2, 1.2) works best.

The results suggest that the (α, β)-uncertainty-aware IMM
filter with (α, β) = (0.2, 1.2) works best, under which the
tracking results (RTAMSE) are shown in Table II.

TABLE II
TRACKING RESULTS OF THE DRONE: (α, β) = (0.2, 1.2)

Filter RTAMSE Avg Time Filter RTAMSE Avg Time
IMM 0.77 2.71e-05 IMM-UA 0.60 2.85e-05

Avg Time: Average Execution Time at each time step (unit: seconds).

From Table II, we can see that the value pair of (α, β) =
(0.2, 1.2) significantly reduces the tracking errors for the
drone. This value pair improves the entropy (i.e., the spread)
of the likelihood distribution (i.e., the model likelihoods) and
almost does not influence the prior distribution (i.e., the prior
model weights because β = 1.2 ≈ 1), which means that none
of the three models in (46) dominates the rest two models and
the model set in (46) is not complete (viz., more candidate
values for jk and ajk,k are expected; only three values are
not sufficient).6 This implication coincides with our intuition
from Fig. 11(b) that, since the drone highly maneuvers with
acceleration quickly switching between positive values and

6For example, ajk,k := {0,−2.5,−5,−7.5,−10, 2.5, 5, 7.5, 10} should
be better; however, this introduces much more computational loads in IMM
filter. For extensive reading on this point, see [37, Subsec. VI.A.2.; Tab. III].
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negative values, there is no model that dominates the motion
of the drone.

4) Remarks: From our experiments, we found that the grid
search method with the step size of 0.01 is an empirical golden
rule. As for τ such that (α, β) ∈ [0, τ ]2, experiments suggest
that τ ≤ 3 is practically sufficient.

IV. CONCLUSIONS

To combat the potential model misspecifications in prior
distributions (i.e., prior belief) and/or data distributions (i.e.,
data evidence), this paper proposes to generalize the conven-
tional Bayes’ rule to the uncertainty-aware Bayes’ rule. The
uncertainty-aware Bayes’ rule balances the relative importance
of the prior distribution and the likelihood distribution by
simply taking the exponentiation of the prior distribution and
the likelihood distribution. We show that this exponentiation
operator essentially adjusts the entropy (i.e., the concentration,
the spread) of the prior distribution and the likelihood distribu-
tion. Therefore, with different exponents, the prior distribution
and/or the likelihood distribution can be upweighted (i.e., by
reducing the entropy) or downweighted (i.e., by inflating the
entropy) in computing the posterior. Compared to the existing
maximum entropy scheme, the uncertainty-aware Bayes’ rule
does not introduce much additional computational burden be-
cause the exponentiation operation is computationally light. In
addition, compared to the existing maximum entropy scheme
and α-posterior scheme, the uncertainty-aware Bayes’ rule is
able to combat the conservativeness (i.e., upweight the useful
distributional information) of the employed prior distributions
and the likelihood distributions. Simulated and real-world ap-
plications further advocate that both opportunism and conser-
vatism are potentially useful in practice. However, the optimal
parameters (α, β) cannot be theoretically specified because
they depend on true prior distribution and data-generating
distribution, which are unknown in practice. Therefore, the
grid search and surrogate-optimization-based methods can be
used to find the best values empirically.

Future papers following this work are expected to inves-
tigate the posterior consistency and asymptotic properties
(e.g., asymptotic normality or non-normality) of the derived
uncertainty-aware Bayes’ rule, i.e., the (α, β)-posterior; cf. [6],
[15]. However, these problems are more mathematically sta-
tistical problems than theoretical signal processing problems,
and therefore, we leave them to mathematical statisticians.

APPENDIX A
PROOF OF LEMMA 1

Proof: According to the variational Bayesian interpreta-
tion of the posterior distribution p(θ|y) in (1) (i.e., maximizing
the evidence lower bound [38, p. 862]), p(θ|y) solves

min
q(θ)

KL [q(θ) ∥p(θ) ] + Eθ∼q(θ)[− ln p(y|θ)].

Let Cy :=
∫
p(y|θ)dθ. The above optimization problem is

equivalent, in the sense of the same minimizer, to

min
q(θ)

KL [q(θ) ∥p(θ) ] + Eθ∼q(θ)

[
− ln

p(y|θ)
Cy

]
,

= min
q(θ)

KL [q(θ) ∥p(θ) ] + Eθ∼q(θ)[− ln l(θ)],

= min
q(θ)

KL [q(θ) ∥p(θ) ] + KL [q(θ) ∥l(θ) ] + Ent q(θ).

This completes the proof. □

APPENDIX B
PROOF OF THEOREM 1

Proof: We have

min
q(θ)

α1 KL [q(θ) ∥p(θ) ] + α2 KL [q(θ) ∥l(θ) ] + α3 Ent q(θ)

= min
q(θ)

∫
q(θ) ln

qα1+α2(θ)

pα1(θ)lα2(θ)qα3(θ)
dθ

= min
q(θ)

∫
q(θ) ln

qα1+α2−α3(θ)

pα1(θ)lα2(θ)
dθ.

When α3 = α1 + α2, any distribution supported on Θ∗

solves the above optimization problem, where Θ∗ contains all
maximizers of ln[pα1(θ)lα2(θ)].

When α3 < α1 + α2, the above optimization problem is
equivalent to

(α1+α2−α3)·min
q(θ)

∫
q(θ) ln

q(θ)

p
α1

α1+α2−α3 (θ) · l
α2

α1+α2−α3 (θ)
dθ,

which is further equivalent, in the sense of the same minimizer,
to

min
q(θ)

KL

[
q(θ)

∥∥∥∥∥p
α1

α1+α2−α3 (θ) · l
α2

α1+α2−α3 (θ)

C

]
,

where C is the normalizer. This completes the proof. □

APPENDIX C
PROOF OF THEOREM 2

Proof: Let Cα :=
∫
hα(θ)dθ. We have

Enth(α)(θ) =

∫
hα(θ)∫
hα(θ)dθ

· − ln
hα(θ)∫
hα(θ)dθ

dθ

=
1

Cα

∫
hα(θ) ·

[
− lnhα(θ) + lnCα

]
dθ

= lnCα +
α

Cα

∫
hα(θ) · − lnh(θ)dθ.

Therefore,

dEnth(α)(θ)

dα
=

α

C2
α

·

{[∫
hα(θ) lnh(θ)dθ

]2
−∫

hα(θ)dθ ·
∫

hα(θ) lnh(θ) lnh(θ)dθ

}
.
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Since hα(θ) ≥ 0 for every α and θ, according to the Cauchy–
Schwarz inequality, we have∫ [√

hα(θ)
]2

dθ

∫ [√
hα(θ) · lnh(θ) · lnh(θ)

]2
dθ

≥
[∫ √

hα(θ) · hα(θ) · lnh(θ) · lnh(θ)dθ
]2

=

[∫
hα(θ) ·

∣∣ lnh(θ)∣∣dθ]2
≥

[∫
hα(y) · lnh(θ)dθ

]2
.

As a result,
dEnth(α)(θ)

dα
≤ 0.

If α ̸= 0, the equality holds if and only if h(θ) is a uniform
distribution. This completes the proof. □

APPENDIX D
PROOF OF THEOREM 3

Before proving Theorem 3, we prepare with the following
lemma.

Lemma 2: If α > 1, then∫
h(α)(θ) lnh(θ)dθ −

∫
h(θ) lnh(θ)dθ > 0;

if α < 1, then∫
h(α)(θ) lnh(θ)dθ −

∫
h(θ) lnh(θ)dθ < 0.

Proof of Lemma 2: Let Cα :=
∫
hα(θ)dθ. Jeffrey’s

divergence (NB: it is symmetric) between h(θ) and h(α)(θ)
can be given as

KL
[
h(α)(θ) ∥h(θ)

]
+KL

[
h(θ)

∥∥h(α)(θ)
]

=

∫
hα(θ)

Cα
ln

hα(θ)

Cα · h(θ)
dθ +

∫
h(θ) ln

Cα · h(θ)
hα(θ)

dθ

=
1

Cα

[ ∫
hα(θ) lnhα(θ)dθ −

∫
hα(θ) lnCαdθ−∫

hα(θ) lnh(θ)dθ
]
+
[ ∫

h(θ) lnCαdθ+∫
h(θ) lnh(θ)dθ −

∫
h(θ) lnhα(θ)dθ

]
=

α− 1

Cα

∫
hα(θ) lnh(y)dθ − lnCα + lnCα+

(1− α)

∫
h(θ) lnh(θ)dθ

= (α− 1)
[ ∫

h(α)(θ) lnh(θ)dθ −
∫

h(θ) lnh(θ)dθ
]

≥ 0.

The equality holds if and only if α = 1. This completes the
proof. □

Now we proceed to the proof of Theorem 3.
Proof of Theorem 3: Let Cα :=

∫
hα(θ)dθ. We have

KL
[
h(θ)

∥∥h(α)(θ)
]

=

∫
h(θ) ln

h(θ)

h(α)(θ)
dθ

=

∫
h(θ) ln

Cα · h(θ)
hα(θ)

dθ

= lnCα + (α− 1)Enth(θ).

Therefore,

dKL
[
h(θ)

∥∥h(α)(θ)
]

dα

=

∫
h(α)(θ) lnh(θ)dθ + Enth(θ)

=

∫
h(α)(θ) lnh(θ)dθ −

∫
h(θ) lnh(θ)dθ.

Then, by Lemma 2, the monotonicity is immediate.
In addition,

d2 KL
[
h(θ)

∥∥h(α)(θ)
]

d2α

=
1

C2
α

{∫
hα(θ)dθ ·

∫
hα(θ) lnh(θ) lnh(θ)dθ−[∫

hα(θ) lnh(θ)dθ

]2 }
≥ 0.

The last inequality is due to the Cauchy–Schwarz inequality;
the equality holds if and only if h(θ) is a uniform distribution;
see Appendix C. This completes the proof. □

APPENDIX E
PROOF OF THEOREM 4

Proof: Let Cα :=
∫
hα(θ)dθ. We have

f(α) := KL [h0(θ) ∥h(θ) ]−KL
[
h0(θ)

∥∥h(α)(θ)
]

=

∫
h0(θ) ln

h0(θ)

h(θ)
dθ −

∫
h0(θ) ln

h0(θ)Cα

hα(θ)
dθ

=

∫
h0(θ) ln

hα(θ)

h(θ)Cα
dθ

= (α− 1)

∫
h0(θ) lnh(θ)dθ − ln

∫
hα(θ)dθ.

Therefore,

df(α)

dα
=

∫
h0(θ) lnh(θ)dθ −

∫
hα(θ) lnh(θ)dθ∫

hα(θ)dθ

=

∫
h0(θ) lnh(θ)dθ −

∫
h(α)(θ) lnh(θ)dθ.

As a result,

df(α)

dα

∣∣∣∣
α=1

=

∫
[h0(θ)− h(θ)] lnh(θ)dθ.

The above display equals to zero if and only if h0(θ)−h(θ) ≡
0 almost everywhere for θ, due to the arbitrariness of h0 and h.
As assumed, we have h0 ̸= h, and therefore, df(α)

dα |α=1 ̸= 0.
In addition,

d2f(α)

dα2

= − 1

C2
α

{∫
hα(θ)dθ ·

∫
hα(θ) lnh(θ) lnh(θ)dθ−[∫

hα(θ) lnh(θ)dθ

]2 }
≤ 0,
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where the last inequality is due to the Cauchy–Schwarz
inequality; the equality holds if and only if h(θ) is a uniform
distribution; see Appendix C.

Since h(θ) is not a uniform distribution, we have d2f(α)
dα2 <

0 for all α ≥ 0. That is, f(α) is strictly concave on [0,∞). In
addition, we have f(1) = 0. Therefore, as long as df(α)

dα |α=1 ̸=
0, there exists α ∈ [0,∞) such that f(α) > 0. Note that f(α)
is continuous in α.

This completes the proof. □
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