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Majorana networks, whose vertices represent localized Majorana modes and edges correspond
to bilinear mixing amplitudes between them, provide a unified framework for describing the low
energy physics of several interesting systems; examples include Kitaev magnets, SU(2) symmetric
Majorana spin liquds, and proposed platforms for topological quantum computing using Majorana
modes. Such networks are known to exhibit topologically protected collective Majorana modes if the
combinatorial problem of maximum matchings (maximally-packed dimer covers) of the underlying
graph has unmatched vertices (monomers), as is typically the case if the network is disordered.
These collective Majorana modes live in “R-type regions” of the disordered graph, which host
the unmatched vertices (monomers) in any maximum matching and can be identified using the
graph theoretical Gallai-Edmonds decomposition. Here, we focus on vacancy disorder (site dilution)
in general (nonbipartite) two dimensional lattices such as the triangular and Shastry-Sutherland
lattices, and study the random geometry of suchR-type regions and their complements, i.e., “P-type
regions” from which monomers are excluded in any maximum matching of the lattice. These R-type
and P-type regions are found to display a sharply-defined Gallai-Edmonds percolation transition
at a critical vacancy density ncrit

v that lies well within the geometrically percolated phase of the
underlying disordered lattice. For nv < ncrit

v , R-type regions percolate but there is a striking lack
of self-averaging even in the thermodynamic limit, with the ensemble average being macroscopically
different from the properties of individual samples: Each sample has exactly one infinite cluster,
which is of type R (P) in a weakly nv-dependent fraction f < 1 (1−f < 1) of the samples. Since the
underlying disorder is uncorrelated and f is neither 0 nor 1 in the thermodynamic limit throughout
the low-nv phase, this unusual behavior may be viewed (from the perspective of the percolation of
collective Majorana modes) as an apparent violation of the zero-one law that is typically expected
to hold for percolation with uncorrelated disorder.

I. INTRODUCTION

Several condensed matter systems are believed to host
zero-energy Majorana modes which represent protected
ground state degeneracies associated with defects or
boundaries [1–8]. Their presence is usually taken to be
a signature of the non-trivial topology of the underlying
many body ground state [9]. When there are many such
Majorana modes, it is natural to model the resulting low
energy physics in terms of a Majorana network [10–13],
with Hamiltonian

HMajorana = i
∑
⟨rr′⟩

arr′ηrηr′ , (1)

defined on a graph whose vertices r host localized Majo-
rana modes represented by Majorana operators ηr and
edges ⟨rr′⟩ correspond to purely imaginary antisym-
metric mixing amplitudes iarr′ between these modes.
In addition, this framework also captures the low-
temperature physics of several interesting systems whose
low-energy quasiparticle spectrum is captured exactly or
well-approximated by a Hamiltonian of this type written
in terms of Majorana fermion operators ηr. Examples
of the latter include Kitaev magnets [14–20] and SU(2)
symmetric Majorana spin liquds [21].

In the context of proposed platforms for topological
quantum computing using such Majorana modes [22–24],
the Majorana modes on the vertices of the network are
the computational resource, and and the bilinear interac-
tions associated with the edges of the network represent

non-idealities that can degrade the performance of any
protocol that aims to exploit these Majorana modes for
computation. In the context of Kitaev magnets, there
is an exact lattice-level mapping between the quantum
magnet and the Majorana network [14–20]. In other ex-
amples, the connection is less explicit. For instance, for
Majorana spin liquid states in general, the description
in terms of a Majorana network relies on a parton de-
scription of the low energy physics of the Hamiltonian,
and can include the effects of interactions between the
Majorana fermions [21]. In all these contexts, the effects
of quenched disorder are important at low energies and
temperatures.
Do such networks as a whole exhibit collective zero-

energy Majorana excitations that are robust to small
perturbations of the network? The answer can have
important implications. For instance, in the context
of quantum computing, such collective Majorana modes
could themselves potentially serve as a resource for quan-
tum computing. Such collective Majorana modes are
also associated with emergent local moments and low-
temperature Curie tails in the susceptibility of SU(2)
symmetric Majorana spin liquids [20].
Curiously enough, the apparently unconnected com-

binatorial problem of maximum matchings [25] or,
equivalently, the classical statistical mechanics of the
maximally-packed dimer model, provides a precise answer
to this question [26]. In a matching, one matches vertices
of a graph with a partner chosen from among its adjacent
vertices, with the proviso that no two matched vertices
share a partner. Equivalently, one places a dimer on

ar
X

iv
:2

31
1.

05
63

4v
1 

 [
co

nd
-m

at
.d

is
-n

n]
  2

4 
O

ct
 2

02
3



2

a) b)

FIG. 1. Snapshots of two different samples of the diluted
triangular lattice, both with L = 5000 and nv = 0.48. In each
sample, the vertices belonging to the largest R-type region
are colored brown, those belonging to the second-largest R-
type region are colored bright pink, those belonging to the
largest P-type region are colored cyan, those belonging to the
second-largest P-type region are colored green, and those not
belonging to any of these four clusters are left uncolored. a)
The sample on the left has one very large R-type region that
appears to almost span the whole sample. In comparison,
the largest two P-type regions are both small. The second-
largest R-type region is even smaller. (b) The sample on the
right has completely different morphology, with the largest
P-type region almost spanning the whole lattice, the largest
and second-largest R-type regions being rather small, and the
second-largest P-type region being the smallest of the four
regions displayed. See Sec. IVA for details.

some of the edges of the graph, with the proviso that no
two dimers touch at a vertex. A maximum matching is
then a matching with the fewest possible number of un-
matched vertices, i.e. a maximally-packed dimer cover of
the graph, with the least possible number of monomers.

The statistical mechanics of such maximally-packed
dimer models enters the picture as a result of the fol-
lowing observation: A Majorana network has collective
topologically protected zero-energy Majorana excitations
whenever the maximum matchings of the corresponding
graph have unmatched vertices, as is typically the case
if the graph is disordered [26–28]. Indeed, the number of
linearly independent collective Majorana modes of this
type is exactly equal to the number of monomers in any
maximally packed dimer cover of the graph. Recent work
[26] has also used the graph theoretical Gallai-Edmonds
decomposition [25, 29, 30] to characterise the spatial pro-
file of these collective Majorana modes by demonstrating
that they live in so-called “R-type regions” of the disor-
dered graph, which host the monomers of any maximally-
packed dimer cover of the graph. This may be viewed as
a generalization of the previously-established connection
between topologically protected zero energy states in the
spectrum of the tight-binding model on disordered bipar-
tite lattices and such monomer-carrying R-type regions
of the lattice [31].

Here, we focus on vacancy disorder (site dilution)
in general (nonbipartite) two dimensional lattices such
as the triangular and Shastry-Sutherland lattices, and

study the random geometry of such R-type regions and
their complements, i.e. “P-type regions” from which
monomers are excluded in any maximum matching of
the lattice. The results of our study reveal an interesting
and unusual instance of a percolation phenomenon [32–
35]: We find that R-type and P-type regions have a
sharply-defined Gallai-Edmonds percolation transition at
a critical vacancy density ncrit

v that lies well within the
geometrically percolated phase of the underlying disor-
dered lattice. For nv < ncrit

v , there is a striking lack
of self-averaging even in the thermodynamic limit: In
a nonzero (weakly nv-dependent) fraction f < 1 of the
samples, all P-type regions are small and there is one
infinite R-type region. In the remaining fraction 1 − f
of the samples, all R-type regions are small, and there is
one infinite P-type region.

Such percolation phenomena, that is, sharply defined
phase transitions (as a function of the strength of the
disorder) in the end-to-end connectivity of a random
medium [32–35], have been the focus of many decades
of work in physics as well as in probability theory. It
is therefore interesting to pause for a moment and ask
where and how the Gallai-Edmonds percolation transi-
tion identified here fits into this body of knowledge. With
this in mind, we use the remainder of this introductory
discussion to provide some context for the striking be-
havior identified here.

Since the underlying quenched disorder is completely
uncorrelated, it is tempting to view this lack of self-
averaging from the vantage point of Bernoulli percola-
tion, i.e. a phase transition in the end-to-end connec-
tivity of a random medium in which the quenched dis-
order is completely uncorrelated in space. When viewed
in this way, our percolated phase appears to violate the
Kolmogorov zero-one law that applies to Bernoulli perco-
lation, whereby the probability of having an infinite clus-
ter in the thermodynamic limit cannot take on any value
other than zero or one at any dilution [35, 36]. However,
such an analogy misses an important feature of Gallai-
Edmonds percolation: Although the disorder is indeed
uncorrelated, the R or P labels of the vertices are cer-
tainly not uncorrelated. In fact, since these labels are de-
termined by the structure of maximum matchings of the
disodered lattice [25, 26], their correlations are related in
a complicated way to the monomer and dimer correla-
tion functions of the maximally-packed dimer model on
the disordered lattice.

Another instructive comparison is with Dulmage-
Mendelsohn percolation [31], i.e. percolation of R-type
regions, constructed using Dulmage and Mendelsohn’s
structure theory [25] for bipartite graphs, in site-diluted
bipartite lattices. In this case, R-type regions come in
two flavours, RA-type regions in which all the monomers
live only on A-sublattice sites of the lattice, and RB-
type regions in which all the monomers live only on B-
sublattice sites of the lattice. In two dimensions with site
dilution, there seems to be no percolated phase. Instead,
there is an incipient percolation transition of R-type re-
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FIG. 2. The sample-averaged density of monomers w of
the largest geometric cluster G of site-diluted triangular and
Shastry-Sutherland lattices is nonzero in the thermodynamic
limit. It decreases monotonically with decreasing dilution
concentration nv. See Sec. IVA for details.

gions as nv → 0, causing their size to grow as n−ν
v in

this limit; here ν ≈ 5.1 is the universal correlation length
exponent characterizing this incipient criticality.

In contrast, on the three-dimensional cubic lattice,
there are two percolated phases at successively lower val-
ues of nv, with all P-type clusters being small in both
phases [31]. In the first of these phases, each sample
has two infinite clusters in the thermodynamic limit, one
RA-type and the other RB-type. In the second of these
phases, each sample has only one infinite R-type clus-
ter in the thermodynamic limit, and this cluster sponta-
neously breaks the statistical bipartite symmetry of the
random lattice by being either RA-type or RB-type with
equal probability [31].

Thus, this phase also exhibits a lack of self-averaging.
But this lack of self-averaging in the bipartite case is
of a more familiar kind that is associated with all in-
stances of spontaneous symmetry breaking in the ther-
modynamic limit, with the only slight subtlety being that
the symmetry being spontaneously broken is a statistical
bipartite symmetry of the ensemble of diluted lattices.
Indeed, one can plausibly make an analogy between this
phase and the Fortuin-Kastelyn cluster representation of
the Z2 symmetry broken low-temperature phase of the
usual nearest neighbor ferromagnetic Ising model [37–
41]. In this representation of the low temperature spon-
taneously magnetized phase, there is exactly one infinite
cluster, but the spin label of this infinite cluster can be
either +1 or −1. Clearly, the behavior identified here is
qualitatively different from this, since there is no such
symmetry between R-type and P-type clusters.

These comparisons with the usual expectations for
Bernoulli percolation, the known behavior in the clus-
ter representation of the usual nearest neighbor ferro-
magnetic Ising model, and with the behavior seen ear-
lier in Dulmage-Mendelsohn percolation underscore the

genuinely unusual nature of the Gallai-Edmonds perco-
lation phenomena identified here. The rest of this article
is devoted to a detailed account of these findings. In
Sec. II, we review the Gallai-Edmonds theory and pro-
vide a summary of recent work [26] that uses this theory
to identify regions of the graph that host topologically
protected collective Majorana modes of the correspond-
ing Majorana network Hamiltonian. Sec. IV is devoted
to the results of our detailed computational study of the
random geometry of R-type and P-type regions in site-
diluted triangular and Shastry-Sutherland lattices. We
conclude with a brief discussion of interesting directions
for future work.

II. REVIEW: THE GALLAI-EDMONDS
THEOREM AND COLLECTIVE MAJORANA

MODES

The structure theory of Gallai and Edmonds [25, 29,
30], provides a characterization of any graph by exploit-
ing invariant aspects of the structure of maximum match-
ings (maximally-packed dimer covers) of the graph. Here,
we review this structure theory of general graphs, fo-
cusing only on those aspects with direct implications
for the questions of interest to us. Following Ref. [26],
we also review the decomposition of the graph into the
R-type and P-type regions, and summarize earlier re-
sults on the significance ofR-regions for the identification
of topologically-protected collective Majorana modes of
Majorana networks.

A. The Gallai-Edmonds decomposition

This theory, applicable to general graphs, provides a
three-way classification of the vertices of the graph, into
vertices labeled even (e-type), odd (o-type), and unreach-
able (u-type), along with a set of guarantees about the
adjacency relations among these different types of ver-
tices and a set of guarantees about which vertex types can
be matched with each other in any maximum matching,
and which vertices can remain unmatched in a maximum
matching.
To obtain these labels, one has to first construct any

one maximum matching, which can be done efficiently us-
ing the celebrated Edmonds’ “blossoms algorithm” [30].
These vertex labels can then be obtained using another
iteration of the same Edmonds algorithm, starting with
the maximum matching that has already been found.
Their designations have to do with whether the vertex
in question can be reached along an alternating path
(with alternate edges not occupied by dimers and al-
ternate edges occupied by dimers) starting from an un-
matched vertex (monomer) of a maximum matching, and
if they can be reached in this manner, whether they can
be reached by some alternating path of even length start-
ing from a monomer. Vertices which cannot be reached
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FIG. 3. The sample-averaged total mass density of R-type regions, mR
tot, is nonzero and size-independent in the large L limit.

However, it develops large sample to sample fluctuations below a threshold value of nv. (a) The figure on the left zooms in on
this behavior in the vicinity of this threshold for the triangular lattice (b) The figure on the right zooms in on the corrresponding
threshold for the Shastry-Sutherland lattice. The bottom panels of (a) and (b) display histograms that represent our numerical
estimate of the corresponding probability distribution P (mR

tot) at representative values of nv above and below this threshold.
From these histograms, it is clear that the large sample to sample fluctuations seen below the threshold are actually caused by
a bimodality in this probability distribution, as evidenced by two widely separated narrow peaks. This bimodality should be
contrasted with the single peak seen above the threshold. See Sec. IVA for details.

are labeled u-type, those that can be reached by an even-
length alternating path labeled e-type, and all other ver-
tices labeled o-type.

Primary among the useful guarantees provided by the
Gallai-Edmonds theorem is the fact that this labeling
does not depend on which maximum matching one starts
with. In addition, it is guaranteed that e-type and u-type
vertices cannot be adjacent to each other. Further, dele-
tion of all edges between e-type and o-type vertices causes
the e-type vertices to organize into distinct connected
components, each of which contains an odd number of
vertices. These odd-cardinality components are guaran-
teed to have a certain structure: they are built out of
an odd cycle by attaching odd-length “ears” to it. In
the remainder of this paper we slur over the (unimpor-
tant for our purposes) minor distinction between these
odd-cardinality components and the “blossoms” that ap-
pear in most descriptions of Edmonds’ algorithm, and
use “odd-cardinality components” and “blossoms” inter-
changeably to always refer to the connected components
defined by the edge-deletion protocol given here.

In any maximum matching, u-type vertices are always
matched to other u-type vertices, each o-type vertex
is always matched with some other e-type vertex, and
monomers of any maximum matching can only live on e-
type vertices. Further, each odd-cardinality component
(blossom) has exactly zero or one monomer on it in any
maximum matching. Whether this monomer number is
zero or one in any given maximum matching depends
on whether an odd vertex is matched into the blossom
or not. Further, given a blossom, one can always find a
maximum matching that places a monomer on one of the

vertices in that blossom

B. R-type regions, P-type regions, and collective
Majorana modes

In Ref. [26], this structure theory of Gallai and Ed-
monds was used to establish the presence of a certain
number of collective topologically protected Majorana
modes of HMajorana (Eq. 1) in specific regions of a dis-
ordered Majorana network; these regions were dubbed
R-type regions.
Their construction is straightforward: Delete all edges

that connect any o-type vertex to any o-type or u-type
vertices. The surviving edges only connect u-type ver-
tices to each other, or e-type vertices to each other, or
o-type vertices to e-type vertices. In the resulting graph,
the e-type and o-type vertices form connected compo-
nents; these are the R-type regions of the original graph.
Similarly, the u-type vertices form their own connected
components; these define the P-type regions of the orig-
inal graph. In this way, the entire graph is decomposed
into a set of non-overlapping (not sharing vertices) R-
type and P-type regions.
Each R-type region identified in this way is comprised

of some number of odd-cardinality components (blos-
soms) Nb(R) containing only e-type sites and links be-
tween them, and some number of o-type sites No(R)
to which these blossoms are connected (as noted ear-
lier, there are no direct links between two odd-cardinality
components). The Gallai-Edmonds theorem guarantees
that the imbalance I(R) ≡ Nb(R) − No(R) is positive
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FIG. 4. Each sample of (a) the site-diluted triangular lat-
tice with nv = 0.48 (b) the Shastry-Sutherland lattice with
nv = 0.417 is labeled R-type or P-type based on whether
it contributes to the right peak or left peak respectively in
the histogram of mR

tot in Fig. 3, where mR
tot is the total mass

of R type regions in the largest geometric cluster G of the
lattice scaled by the mass mG of this geometric cluster. (a)
For R-type samples, the probability distribution PR(mP

tot) of
mP

tot, the total mass of P-type regions in G scaled by mG ,
has a single peak at a small L-independent value of mP

tot, (b)
For P-type samples, the probability distribution PP(m

P
tot) of

mP
tot has a single peak at a much larger L-independent value

of mP
tot. See Sec. IVA for details.

for any R-type region, and that the blossoms of each R-
type region host a total of exactly I(R) monomers in
any maximum matching of the graph, with each individ-
ual blossom hosting no more than one monomer. Thus,
from the point of view of the maximum matchings of
the graph, the R-type regions are the monomer-carrying
regions of the graph.

The basic result of Ref. [26] is that each such R-type
region hosts exactly I(R) = Nb(R)−No(R) > 0 linearly
independent collective topologically protected Majorana
modes of the corresponding Majorana network. These
modes have wavefunctions that are supported on all the
e-type sites of the R-type region. One way to see why
this is the case is as follows: If we restrict the network
Hamiltonian to an individual blossom, the matrix of mix-
ing amplitudes is a pure imaginary antisymmetric matrix
of odd dimension. Such a matrix generically must have
one topologically protected zero eigenvector. Thus, each
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FIG. 5. Each sample of the site-diluted triangular lattice with
nv = 0.48 is labeled R-type or P-type based on whether it
contributes to the right peak or left peak respectively in the
histogram of mR

tot in Fig. 3, where mR
tot is the total mass

of R type regions in the largest geometric cluster G of the
lattice scaled by the mass mG of this geometric cluster. (a)
For R-type samples, the probability distribution PR(nR) of
nR, the number of distinct R-type regions scaled by the mass
mG of the largest geometric cluster, has a single peak at an
L-independent small value of nR, while the probability distri-
bution PR(nP) of nP , the number of the distinct P-type re-
gions scaled bymG , has a single peak at a large L-independent
value of nP . (b) For P-type samples, the role of nP and nR
is interchanged relative to R-type samples. See Sec. IVA for
details.

blossom, if disconnected from the rest of the graph, hosts
one topologically protected collective Majorana mode.
These will generically mix with each other and be de-
stroyed when the nonzero mixing amplitudes connecting
the blossoms to the odd vertices are reinstated. How-
ever, one can look for linear combinations that survive
this mixing. To do this, one has to impose No(R) con-
straints on Nb(R), which allows I(R) combinations to
survive.

We close this discussion with a comment about a spe-
cial case that has been studied earlier: When the Majo-
rana network is bipartite, i.e. the graph corresponding
to HMajorana of Eq. 1 has a bipartition of vertices into
two classes A and B, such that vertices belonging to
A only have edges connecting them to vertices belong-
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FIG. 6. Each sample of the site-diluted triangular lattice
with nv = 0.48 is labeled R-type or P-type based on whether
it contributes to the right peak or left peak respectively in
the histogram of mR

tot in Fig. 3, where mR
tot is the total mass

of R type regions in the largest geometric cluster G of the
lattice scaled by the mass mG of this geometric cluster. (a)
For R-type samples, the probability distribution PR(mR

max)
of mR

max, the mass of the largest R-type region scaled by the
mass mG of the largest geometric cluster, has a single peak at
an L-independent large value of mR

max, while the probability
distribution PR(mP

max) of mP
max, the mass of the largest P-

type region scaled by mG , has a single peak at a small value
of mP

max which decreases with increasing L (b) For P-type
samples, the behavior of mP

max and mR
max is interchanged rel-

ative to the behavior in R-type samples. See Fig. 4 also. See
Sec. IVA for details.

ing to B and vice-versa, the wavefunctions of topologi-
cally protected collective Majorana modes of the network
can be constructed from the zero modes of an equivalent
tight-binding Hamiltonian with purely real hopping am-
plitudes on the same graph.

Such topologically protected zero modes of bipartite
hopping models also have an interesting description in
graph theoretical terms, constructed using the Dulmage-
Mendelsohn decomposition of bipartite graphs. This has
been explored in some detail in previous work [31], and
our results can be viewed as a natural generalization of
these ideas to the case of general Majorana networks,
with no bipartite restriction. From this point of view, our
results in the triangular lattice case make for an interest-
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FIG. 7. The R-type or P-type character of a particular sam-
ple is encoded in the value of the variable σ, with σ = 1 for
R-type samples and σ = 0 for P-type samples. The parity of
mG , i.e. whether the number of sites in the largest geometric
cluster G is even or odd is encoded in the value of the variable
τ , with τ = 0 for even parity and τ = 1 for odd parity. The
connected correlation function C(σ, τ), computed by averag-
ing over 6000 to 20000 random samples (with a smaller num-
ber of samples for the largest size and vice versa) is shown in
the figure. We see that our data is consistent with a vanishing
C(σ, τ) (within our error bars), indicating that the R-type or
P-type character of a sample is uncorrelated with the parity
of mG . See Sec. IVA for details.

ing contrast with the previous results on the square lat-
tice. For one may view the triangular lattice as a square
lattice in which one has introduced additional nearest
neighbor links corresponding to one set of diagonals. We
discuss this further in Sec. IVA

III. COMPUTATIONAL METHODS AND
OBSERVABLES

Motivated by the recent results reviewed in the pre-
vious section, we study the random geometry of Gallai-
Edmonds clusters, i.e. R-type and P-type regions, of
two-dimensional site-diluted lattices. The bulk of our
numerical results are for L × L triangular and Shastry-
Sutherland lattices with periodic boundary conditions
and L ranging from L = 10, 000 to L = 26000 in both
cases. The dilution is uncorrelated, and parameterized by
a dilution fraction nv that represents the density of static
(quenched) vacancies. Although our results are all within
the geometrically percolated phase of the original lattice,
the lattice itself can have several distinct connected com-
ponents in some samples. To minimize finite-size effects,
we focus attention on the largest connected component
of the underlying diluted lattice, and study the random
geometry of the Gallai-Edmonds decomposition of this
component. We have typically averaged over three to
ten thousand thousand such samples at each value of nv

(with a smaller number of samples at the larger sizes).
In addition to yielding accurate estimates of various self-
averaging quantities, this also allows us to obtain reli-



7

a)

0.4800 0.4805 0.4810 0.4815
nv

0.7

0.8

0.9

1.0
P

cr
os

s
Triangular

L=10000

L=14000

L=18000

L=22000

L=26000

0.4805 0.4810

0.95

1.00

b)

0.4178 0.4183 0.4188
nv

0.7

0.8

0.9

1.0

P
cr

os
s

Shastry-Sutherland
L=10000

L=14000

L=18000

L=22000

L=26000

0.4177 0.4183

0.95

1.00

FIG. 8. (a,b) Pcross is the probability that there exists a Gallai-Edmonds cluster (either a R-type region or a P-type region)
in G (the largest geometrically connected component of the diluted lattice) which wraps around the torus in two independent
directions. Our data reveals threshold behavior in Pcross, with the threshold getting sharper with increasing system size. On
the low-dilution side of this threshold, Pcross saturates to a size-independent value of Pcross ≈ 1. On the high-dilution side of
this threshold, Pcross decreases monotonically with increasing size L. The inset zooms in on the vicinity of the threshold, and
shows that curves corresponding to various sizes L all cross at a critical dilution ncrit

v ≈ 0.4807 [ncrit
v ≈ 0.4182] on the triangular

[Shastry-Sutherland] lattice. See Sec. IVB for details.

able information about the probability distributions of
quantities that have anomalously large sample-to-sample
fluctuations.

For the diluted lattices under study, we find that
a breadth-first search (BFS) based implementation of
Edmonds’ matching algorithm performs better than a
depth-first search (DFS) based implementation when we
prune branches of the search tree to increase efficiency.
We found that it is more efficient to start the search of
augmenting paths with one monomer at a time rather
than multiple monomers. Our BFS implementation re-
lies on the version of Edmonds algorithm given by Moret
and Shapiro [42] and uses the union-find data structure of
Tarjan [43].In addition, we have also incorporated a few
heuristics for the speed up of the matching algorithm;
these are taken from the implementation published by
Kececioglu and Pecqueur [44]. For instance, to increase
the efficiency, an array of unmatched vertices is main-
tained at all times to help begin the search of augmenting
paths.

Using this implementation of Edmonds’ algorithm, we
proceed to obtain data along a grid of vacancy densities
nv by using the maximum matching found earlier at an
adjacent value of nv as the initial matching configura-
tion for the algorithm. For the initial value of nv in our
grid, a random matching was taken as an initial match-
ing configuration. The data discussed in this paper was
obtained by moving up in a grid of nv values.

After identifying a maximum matching of the lattice at
a given vacancy concentration, we rerun the blossom al-
gorithm to get the decomposition of sites into even, odd
and unreachable sites. Then, starting from monomers,
we buildR-type regions using a burning algorithm. After
R-type regions, P-type regions are made using a similar
burning algorithm. Once this is done at a given vacancy

concentration, we move to the next higher vacancy con-
centration with existing matching as the initial condition.
This process is then repeated to generate many random
configurations to do the disorder averaging of the quan-
tities, which we will describe next, measured during the
burning of R-type and P-type regions.
As we have already reviewed, the physics of topolog-

ically protected collective Majorana modes is controlled
by the size and morphology of the R-type regions, and
the structure of P-type regions has no direct role in this
physics. However, when it comes to understanding the
interesting dilution dependence of the random geometry
of these regions, it turns out to be useful to define and
study both types of regions on an equal footing by keep-
ing track of several different observables. We turn now
to the definition of these observables.
Let G be the largest geometrically connected compo-

nent of the lattice at a given dilution nv and mG be its
mass (number of sites). To minimize finite-size effects
associated with small bits of the lattice split off from
the largest connected component G, we use the Gallai-
Edmonds labeling of vertices of G, and focus on its de-
composition into a complete non-overlapping set of R-
type and P-type regions.
For the simplest gross characterization of the structure

of Gallai-Edmonds clusters, it is useful to study the nv

dependence of the fraction of vertices of G that carry
R-type and P-type labels. To this end, we define.

mR
tot =

1

mG

∑
Ri∈G

mRi
,

mP
tot =

1

mG

∑
Pi∈G

mPi
, (2)

where the sum in the definition of mR
tot (m

P
tot) is over R-
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FIG. 9. Data for Pcross(nv, L), the probability that there
exists a GE cluster ∈ G that wraps around the torus in two
independent directions for two dimensional L × L samples,
for various L and nv collapses onto a single scaling curve
when plotted against the scaling variable (nv − ncrit

v )L1/ν .
See Sec. IVB for details

type (P-type) regions Ri (Pi) contained in G, and mRi

(mPi
) are their respective masses (total number of ver-

tices contained in the cluster).

Another simple overall characterization is in terms of
the total number NR (NP) of R-type (P-type) regions
belonging to G, and the total number W of monomers in
any maximum matching of G. We define the correspond-
ing number densities as

nR = NR/mG ,

nP = NP/mG ,

w = W/mG . (3)

For a somewhat more detailed characterization of the
structure of R and P type regions, we also keep track of
their radius of gyration R. Since we work with periodic
boundary conditions in both directions, this is tricky to
measure efficiently unless defined in a suitable way. This
issue has been discussed in the earlier literature, and we
follow the definition and procedure suggested in Ref. [45];
this is also consistent with the approach used in an earlier
study of the Dulmage-Mendelsohn percolation [31].

In studies of geometric percolation, it is conventional
to define a correlation function C(r, r′) that takes on the
value C = 1 if r and r′ belong to the same cluster, and
C = 0 otherwise [33]. The corresponding correlation
length ξ is then related to the root mean square radius
of gyration of the clusters, with each cluster of mass m
weighted by m2 when calculating the mean [33]. With
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FIG. 10. χ, the susceptibility associated with sample-
averaged geometric correlation function C(r−r′) in L×L two
dimensional samples, saturates to an L independent value in
the low-dilution phase. Data for χ(L, nv) when scaled by L−η

crosses at ncrit
v . See Sec. IVB for details.

this in mind, we also define:

ξ2 =

〈∑
i∈G m2

iR
2
i∑

i∈G m2
i

〉
,

ξ2R =

〈∑
Ri∈G m2

Ri
R2

i∑
Ri∈G m2

Ri

〉
,

ξ2P =

〈∑
Pi∈G m2

Pi
R2

i∑
Pi∈G m2

Pi

〉
. (4)

Here, the sum over i ∈ G in the definition of ξ is over all
Gallai-Edmonds clusters (both P-type and R-type) be-
longing to the largest geometric cluster G, while the corre-
sponding sum in the definition of ξR (ξP) is restricted to
all R-type (all P-type) Gallai-Edmonds regions belong-
ing to G. The radius of gyration Ri that appears in the
above is again defined and measured as in Ref. [45]. As a
result, these definitions of correlation lengths do not cor-
respond exactly to the quantity one would have obtained
from the correlation function C(r, r′). However, when
clusters are large, they behave in the same way, and the
definition suggested in Ref. [45] is computationally much
more efficient.
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We also find it instructive to study the statistics of the
largest R-type and P-type clusters in each sample by
recording their radii of gyration RR

max and RP
max, IR

max,
the number of collective Majorana modes or monomers
that live in the largest R-type region, and mR

max and
mP

max, the masses of the largest R and P type regions in
G, the largest geometric cluster, scaled by mG , the mass
of G. In addition, we keep track of the susceptibility χ
corresponding to the correlation function C(r, r′):

χ =
1

L2

∑
r,r′

⟨C(r, r′)⟩

=
1

L2

〈∑
i∈G

m2
i .

〉
(5)

Anticipating percolation-like behaviour of R-type and
P-type regions, we have also measured various wrapping
probabilities [46–48] that are sensitive to the presence of
large clusters. The first of these is Pcross, the probability
that a sample has a Gallai-Edmonds cluster that (either
R-type or P-type) wraps around the torus in two in-
dependent directions, i.e. a cluster characterized by two
linearly independent winding vectors. The other quantity
we keep track of is Psingle, the probability that a sample
does not have any cluster that wraps around the torus
in two independent directions, but does have a Gallai-
Edmonds cluster that wraps around the periodic sample
only in one direction.

IV. COMPUTATIONAL RESULTS

With these definitions in hand, we now present the
results of our computational study of the structure of
R-type and P-type regions in the largest geometrically
connected component G of randomly site-diluted trian-
gular lattice and Shastry-Sutherland lattices. In order
to provide a clear description of the rather unusual be-
havior of these Gallai-Edmonds clusters, we focus in the
main text on a minimal set of observables that lead us
to unambiguous conclusions about the large-scale geom-
etry, relegating many other pieces of supporting evidence
to an appendix that can be consulted for further details.

A. Thermodynamic densities

We start with the most basic question and ask if
w = ⟨W/mG⟩ is finite in the thermodynamic limit of
large linear size L, and if yes, how this monomer density
changes with the dilution nv for the triangular and the
Shastry-Sutherland lattice. We find that the ensemble
average ⟨w⟩ over our ensemble of diluted samples is in-
deed nonzero in the thermodynamic limit, and appears
to decrease smoothly with decreasing nv. This is in some
ways unremarkable in itself and could have been antici-
pated: The fact that w is nonzero in every sample in the

0 1
(nv − 0.48068)L1/ν

0.1

0.3

χ
/L

2−
η

Triangular

−2 0
(nv − 0.4182)L1/ν
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η
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ν = 1.5
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L = 10000

L = 14000
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FIG. 11. The susceptibility χ(L, nv), associated with the
sample-averaged correlation function C(r−r′) in L×L two di-
mensional samples, when scaled by L2−η and plotted against
the scaling variable (nv − ncrit

v )L1/ν , for appropriate choice
of ν and η, collapses onto a single curve. See Sec. IVB for
details.

thermodynamic limit actually follows from simple local
constructions of monomer-carrying regions of the type
discussed in Ref. [49] for the triangular lattice. These
regions are formed by a cluster of vacancies at specific
relative positions, and since this can occur with nonzero
probability in any part of the sample, the density w must
be nonzero in the thermodynamic limit.
Such explicit constructions are of course too crude to

obtain an actual quantitative estimate of ⟨w⟩; rather they
can only suggest that ⟨w⟩ decreases with decreasing nv.
Our computational results demonstrate that this is in-
deed the case. In Fig. 2, we show the nv dependence of
⟨w⟩ in a small window of nv, a window in which other
quantities show interesting behavior (as we discuss be-
low). Although we have only displayed data in a rela-
tively narrow range of nv in Fig. 2, we have checked that
this smooth and monotonic decrease continues down to
much lower values of nv as well.
Next, we ask some basic questions related to the geom-

etry of R-type and P-type regions of the lattice, which
we construct as indicated earlier using the e-type, u-type
and o-type labels obtained from the Gallai-Edmonds de-
composition. We begin with examiningmR

tot, the fraction
of sites occupied by R-type regions. From the upper pan-
els of Fig. 3, we see that this quantity is nonzero in the
thermodynamic limit and has only a very mild nv de-
pendence; again the displayed data is in a narrow range
of nv, but we have checked this continues to be the case
at lower values of nv. The most striking feature of the
data in Fig. 3 is clearly not its nv dependence. Rather,
it is the noisy nature of the displayed data below some
threshold value of nv.
We emphasize that data at all nv displayed in Fig. 3

was obtained by averaging over the same number of sam-
ples at each nv (with a larger number of samples at
smaller sizes and vice versa). So the reason for the noisy
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FIG. 12. (a,b) ⟨Rmax⟩/L, the scaled radius of gyration (scaled with the system size L) of the largest Gallai-Edmonds cluster
(either a R-type region or a P-type region) in G (the largest geometrically connected component of the diluted lattice) grows
as the dilution nv is reduced. In the vicinity of the crossover visible in the probability Psingle (see Fig. 14) of a Gallai-Edmonds
cluster to wrap around the torus in exactly one direction, ⟨Rmax⟩ also shows non-monotonic crossover behavior. At the critical
point identified earlier (see Fig. 8) via the threshold behavior of Pcross, the probability for a cluster to wrap around the torus in
two independent directions, ⟨Rmax⟩/L also shows a well-defined crossing, with curves corresponding to different sizes crossing
at the critical dilution ncrit

v ≈ 0.4807 [ncrit
v ≈ 0.4182] on the triangular [Shastry-Sutherland] lattice. The color-coded insets

zoom in on the crossover region (in green) and on this critical region (in pink). See Sec. IVB for details.

character of the data at lower values of nv is not poorer
sampling of the disorder ensemble. Rather, it is a dra-
matic change in the distribution of mR

tot. This is evident
from the lower panels of Fig. 3. Below a threshold value
of nv, m

R
tot has a bimodal distribution, with two sharply-

defined and well-separated peaks. This separation be-
tween the peaks indicates a macroscopic difference in the
morphology of the corresponding samples (since mR

tot, as
defined by us, is an intensive fraction or density), a dif-
ference that survives in the thermodynamic limit.

To understand this better, we now separate samples
by asking which of the two peaks each sample belongs
to. This is unambiguous because the peaks are well-
separated even at the smallest size we study. Samples
belonging to the peak with larger mR

tot are labeled R-
type, and those in the peak with smaller mR

tot are labeled
P-type. With this separation in place, we now examine
the statistics of other observables within each of these
two groups of samples.

When analyzed in this manner, the data paints a very
clear picture: For instance, we see that samples with a
high value of mR

tot always have a low value of mP
tot and

vice-versa; this is shown both for the triangular lattice
and the Shastry-Sutherland lattice in Fig. 4 for represen-
tative values of dilution in the bimodal regime. Thus,
there is a two-peak structure in the histogram of mP

tot

which is perfectly anti-correlated with the corresponding
feature in the histogram of mR

tot.

We find a similar dichotomy in the behavior of nR and
nP in the two groups of samples on both lattices in this
bimodal regime, with R-type samples having a signifi-
cantly higher value of nP and a significantly lower value
of nR compared to P-type samples. Thus, the distribu-

tions of nR and nP also have two well-separated peaks,
with R-type samples contributing solely to one peak and
P-type samples contributing only to the other peak. This
is illustrated in Fig. 5 for the case of the triangular lattice
at one representative value of the dilution in this bimodal
regime.

At the risk of belaboring what is perhaps already ob-
vious by now, we also study the histogram of mR

max and
mP

max in both groups of samples. Again, we find per-
fectly correlated bimodal behavior. In R-type samples
the histogram of mR

max has a single peak at a fairly large
L-independent value. The same is true of mP

max in P-
type samples. However, the histogram of mR

max in P-type
samples displays a peak at a very low value, which contin-
uously shifts to even lower values with increasing L. The
behavior of mP

max in R-type samples is analogous. This is
illustrated in Fig. 6 for the triangular lattice, again at the
same representative value of nv in this bimodal regime.

From this data analysis, we thus have a clear picture
of a somewhat remarkable phenomenon: the morphol-
ogy of R-type and P-type regions shows a complete lack
of self-averaging even in the thermodynamic limit, when
the dilution nv lies below a threshold. Additional nu-
merical evidence that provides further details about the
bimodal distributions of mP

tot, nR, and nP is shown in
the Appendix in Fig. 16, 17 and 18.

Having established this unusual lack of self-averaging,
we now proceed to rule out the most obvious possibil-
ity for its underlying cause. We have in mind here the
parity of mG , i.e. whether the total number of sites in
the largest geometric component G is odd or even. Fig. 7
shows the connected correlation function of the variables
σ and τ . Here, the R-type or P-type character of a par-
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FIG. 13. Data for the dimensionless ratio Rmax(nv, L)/L,
where Rmax(nv, L) is the sample-averaged radius of gyration
of the largest GE cluster in G for two dimensional L×L sam-
ples, for various L and nv collapses onto a single scaling curve
when plotted against the scaling variable (nv−ncrit

v )L1/ν . See
Sec. IVB for details.

ticular sample is encoded in the value of the variable σ,
with σ = 1 forR-type samples and σ = 0 for P-type sam-
ples. Similarly, the parity of mG is encoded in the value
of the variable τ , with τ = 0 for even parity and τ = 1
for odd parity. From the results displayed in Fig. 7, we
see that our data for the connected correlation function
C(σ, τ) is consistent with vanishingly small correlations
(within our error bars). Hence, the parity of the largest
geometric cluster G plays no role in the bimodality of var-
ious observables. Further, since mR

max (mP
max) appears to

saturate to a nonzero value in the thermodynamic limit
of R-type (P-type) samples, the threshold at which this
bimodality sets in appears to reflect some kind of unusual
percolation transition.

B. Gallai-Edmonds percolation

To pin this down, we turn now to a study of the proba-
bility Pcross, the probability that there is a cluster (either
R-type region or P-type region) that wraps in two inde-
pendent directions around the torus. We find, as shown
in Fig. 8 that there is a sharply-defined value ncrit

v of
the dilution at which the curves corresponding to dif-
ferent sizes all cross each other. This is the expected
behavior at a critical point, and we identify this crossing
point with the location of the Gallai-Edmonds percola-
tion transition.

Next, we ask if this sharply-defined critical value also
corresponds to a corresponding signature of a percola-
tion transition in the susceptibility χ. We find that χ/L2

tends to a nonzero value in the large L limit for nv well
below ncrit

v . This is clear from Fig. 10. Further, we find
that curves of χ/L2−η cross at a threshold value of dilu-
tion that is within errors the same as the previous esti-
mate of ncrit

v , where η is the anomalous exponent which
takes on the value η ≈ 0.09(2). This is shown in inset of

Fig. 10.

We now ask if data for Pcross and χ in the vicinity
of this threshold displays finite-size scaling behavior. To
this end, we construct the scaling variable (nv−ncrit

v )L1/ν

where ν is the correlation length exponent, and ask if
all our data for the nv dependence of Pcross at various
sizes L in the vicinity of this threshold collapses onto a
single scaling curve for some choice of ν. We find that
this is indeed the case, for ν ≈ 1.45(5) [ν ≈ 1.50(5)]
on triangular [Shastry-Sutherland] lattice. This is shown
in Fig. 9. Next we check if the data at various L for
χ/L2−η also crosses at the same critical dilution for some
value of η. We find that this is indeed the case, with
η ≈ 0.09(2) as displayed in Fig. 10. In addition, we find
that this quantity collapses onto a single scaling curve
in the vicinity of ncrit

v when plotted against the scaling
variable (nv − ncrit

v )L1/ν , with ν ≈ 1.50(7) for both the
lattices. In Fig. 11 we see that this is indeed the case.

Thus, we have a fairly consistent picture of a criti-
cal point at ncrit

v ≈ 0.48068(2) [ ncrit
v ≈ 0.41820(5)] on

triangular [Shastry-Sutherland] lattice that separates a
high-dilution phase in which all R-type and P-type re-
gions are small from a low-dilution phase in which each
sample has one infinite cluster, which can either be an R-
type cluster or an infinite P-type cluster, on triangular
[Shastry-Sutherland] lattice. This critical point is char-
acterized by exponents ν ≈ 1.45(9) and η ≈ 0.09(2) on
both lattices. Curiously, this estimate of ν is quite close
to (but not consistent with) the exact value of the corre-
lation length exponent ν = 4/3 at the ordinary geometric
percolation transition in two dimensions [50–53]. In con-
trast, our value of η is very different from the value of
the corresponding anomalous exponent η = 5/24 at the
geometric percolation transition in two dimensions.

Although this scaling analysis appears to be fairly con-
clusive, we note that the scaling collapse appears to de-
teriorate rather rapidly on the high-dilution side of the
transition. To dig a little deeper into the underlying rea-
son, we now study the nv dependence of ⟨Rmax⟩, the en-
semble average of the radius of gyration of the largest
Gallai-Edmonds cluster (either an R-type region or a
P-type region). As nv is decreased towards ncrit

v , we
find that ⟨Rmax⟩ has interesting non-monotonic nv de-
pendence at values of nv outside the critical scaling win-
dow of the previously identified critical point at ncrit

v . In
this range of nv, ⟨Rmax⟩/L for each L has a local max-
imum, with the value of nv corresponding to this local
maximum shifting to lower dilution with increasing size.
This is evident from the data displayed in Fig. 12. It is
this unusual non-monotonic dependence that appears to
limit the range of validity of the finite-size scaling form
for nv above ncrit

v .

Since χ/L2 decreases with increasing L in this range
of nv, it is clear that this region does not exhibit per-
colation in the conventional sense (i.e. does not have
an infinite Gallai-Edmonds cluster in the thermodynamic
limit). Nevertheless, the fact that the peak height at the
local maximum of ⟨Rmax⟩/L in Fig. 12 appears to be
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FIG. 14. Psingle is the probability that there exists a Gallai-Edmonds cluster (either a R-type region or a P-type region) in G
(the largest geometrically connected component of the diluted lattice) which wraps around the torus in exactly one direction.
Our data reveals threshold behavior in Psingle, with the threshod getting sharper with increasing system size. Psingle vanishes
with increasing size on the low-dilution side of this threshold. On the high-dilution side, it displays more complex non-monotonic
behavior: As one approaches the threshold from above, Pwrap first develops a peak at an approximately size-independent value
less than 1. The position of this peak is L-dependent, and shifts to lower values of dilution with increasing size. By comparing
this behavior to the behavior seen earlier in the probability Pcross for a cluster to wrap simultaneously in two independent
directions (see Fig. 8), we conclude that this crossover behavior is associated with the wrapping characteristics of large clusters
when they first form: Below this crossover, large clusters are more likely to wrap around two independent directions of the
torus, while above this crossover, clusters are too small to wrap in even one direction. The actual critical point that corresponds
to the threshold behavior seen in Pcross (see Fig. 8) is at lower values of nv, and occurs in a regime in which Psingle decreases
with nv. The inset zooms in on the vicinity of this critical point, and shows that curves corresponding to various sizes L all
cross at a critical dilution ncrit

v ≈ 0.4807 [ncrit
v ≈ 0.4182] on the triangular [Shastry-Sutherland] lattice. See Sec. IVB for details.

close to saturating at the largest value of L accessed in
our study suggests this behavior is associated with some
other large-scale property of the Gallai-Edmonds clusters
in this regime.

To explore this further, we now examine the behavior
of Psingle, the probability that the sample has no Gallai-
Edmonds cluster that wraps around the torus in two in-
dependent directions, but has a Gallai-Edmonds cluster
that wraps around the torus in exactly one direction. We
find that Psingle displays a well-defined maximum in the
range of nv that corresponds to the non-monotonic be-
havior and local maximum of ⟨Rmax⟩/L. This maximum
shifts to lower and lower values of nv as L is increased.
The corresponding data is displayed in Fig. 14.

This, coupled with the fact that χ/L2 decreases with
increasing L in this regime, indicates that this regime is
characterized by clusters that are large in terms of their
linear dimension (as characterized by the radius of gy-
ration), which are able to wrap around the torus in one
direction, but do not have a mass that scales with L2.
The picture is thus in terms of ribbon-like clusters that
develop as a precursor to the actual percolation tran-
sition at a lower value of dilution ncrit

v . This appears
more of a crossover phenomenon that precedes (on the
high-dilution side) the actual percolation transition of
Gallai-Edmonds clusters. Nevertheless, we caution that
the range of sizes available to us does not make it possible
to completely rule out the possibility that this is a dis-
tinct thermodynamic phase that flanks the low-diluted
percolated phase.

Independent of this, we do find that curves for Psingle

corresponding to different values of L also cross at the
critical dilution ncrit

v corresponding to the actual perco-
lation transition. This is seen more clearly in the inset
of Fig. 14. In the vicinity of this crossing point, we also
find that Psingle displays finite-size scaling behavior, with
a value of ν ≈ 1.45(7) [ν ≈ 1.50(7)], on the triangular
[Shastry-Sutherland] lattice, consistent with all other es-
timates of ν obtained from other observables. This is
shown in Fig. 15.
We have also examined the behavior of ⟨mmax⟩, the en-

semble average of the mass of the largest Gallai-Edmonds
cluster (either R-type or P-type region) in a sample,
as well as the behavior of the correlation length ξ de-
fined earlier. We find that these two show a clear signa-
ture of the percolation transition at ncrit

v ≈ 0.48068(2)
[ncrit

v ≈ 0.41820(5)] on triangular [Shastry-Sutherland]
lattice and display finite-size scaling behavior with expo-
nents ν = 1.50(5) and η = 0.09(2) consistent within er-
rors with the estimates for these exponents obtained from
the observables studied above on both the lattices. The
corresponding data and analysis is relegated to Figs. 19,
20, 21 and 22 in the Appendix.

V. OUTLOOK

The unusual percolation transition identified here leads
to several natural and interesting questions, and it is per-
haps useful to close with a brief discussion of some of
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exists a GE cluster ∈ G that wraps around the torus in one
independent direction only for two dimensional L×L samples,
for various L and nv collapses onto a single scaling curve when
plotted against the scaling variable (nv −ncrit

v )L1/ν .Sec. IVB
for details.

them although we are not in a position to answer them
here. These questions are of two types, one having to do
with the actual wavefunctions of the topologically pro-
tected collective Majorana modes of disordered Majorana
networks, and the other having to do with aspects of the
Gallai-Edmonds decomposition of the corresponding dis-
ordered graph.

The most basic question regarding the mode wavefunc-
tions is of course the question of their localization prop-
erties within a single R-type region. Since each R-type
region Ri hosts Ii linearly independent such modes, the
basis independent way of asking this question is to study
the localization length of the imaginary part of the Green
function. Is the correlation length of this Green function
small compared to the typical size of R-type regions in
a R-type sample in the low-dilution phase? If not, does
the bimodality identified here lead to signatures in some
physical observable that is sensitive to this correlation
length? The answer is not obvious at all, since we have
already seen that this bimodality or lack of self-averaging
in the low-dilution phase has no discernible effect on the
overall thermodynamic density w of these modes (this is
evident from the fact that the histogram of w has a single
well-defined peak even when there are two pronounced
and macroscopically separated peaks in the histogram of
mR

max for instance).
Another question that arises immediately is the rela-

tion between the unusual low-dilution phase identified
here on the triangular lattice, and the large-scale struc-
ture of the Dulmage-Mendelsohn decomposition of the
site-diluted square lattice in the corresponding dilution
range. In the square lattice case, RA and RB type re-
gions that host the monomers of maximum matchings
and topologically protected zero modes of bipartite hop-
ping problems grow in spatial extent as nv is reduced,
but never percolate except in the limit nv → 0. This

unusual incipient percolation phenomenon also occurs on
the honeycomb lattice, and to that extent, appears to
be universal. Importantly, P-type regions appear to play
no role in it at all, in the sense that their size remains
small in this limit (of course, the entire pure sample is
P-type at nv = 0, so this statement is only true when the
thermodynamic limit is taken keeping nv fixed at a small
but nonzero value). The question then is: How does this
regime, with incipient percolation of RA and RB regions
and microscopically small P-type regions go over to the
unusual percolated phase found here on the triangular
lattice when one randomly starts adding in some of the
additional diagonal links needed to convert the square
lattice into a triangular lattice? If the fraction of diago-
nal links added is denoted by x, then is there a critical
value xc at which there is a percolation transition as a
function of x? (with nv kept fixed in this low-dilution
regime).

The third and equally immediate question has to do
with the nature of the critical point. Based on the com-
parison of our results on the triangular and Shastry-
Sutherland lattice, one may conclude that the large-
scale behavior in the critical region is certainly universal.
As mentioned earlier, our estimate of the corresponding
correlation length exponent ν = 1.45(7) of the Gallai-
Edmonds percolation transition is, quite close to (but not
consistent with) the exact value of the correlation length
exponent ν = 4/3 at the ordinary geometric percolation
transition in two dimensions [50–53]. In contrast, our
value of η is very different from the value of the corre-
sponding anomalous exponent η = 5/24 at the geometric
percolation transition in two dimensions. This raises the
questions: Is there a different continuum field theory de-
scription of the Gallai-Edmonds percolation transition?
Does the Gallai-Edmonds critical point exhibit conformal
invariance like the usual percolation transition in two di-
mensions?

These are some of the interesting questions that are
brought to the fore by our study, and we hope to return
to them in future work.
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ADDITIONAL NUMERICAL EVIDENCE
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FIG. 16. The sample-averaged total mass density of P-type regions, mP
tot, is nonzero and size-independent in the large L limit.

However, it develops large sample to sample fluctuations below a threshold value of nv. (a) The figure on the left zooms in on
this behavior in the vicinity of this threshold for the triangular lattice (b) The figure on the right zooms in on the corresponding
threshold for the Shastry-Sutherland lattice. The bottom panels of (a) and (b) display histograms that represent our numerical
estimate of the corresponding probability distribution P (mP

tot) at representative values of nv above and below this threshold.
From these histograms, it is clear that the large sample to sample fluctuations seen below the threshold are actually caused by
a bimodality in this probability distribution, as evidenced by two widely separated narrow peaks. This bimodality should be
contrasted with the single peak seen above the threshold. See Sec. IVA for details.
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FIG. 17. (a, b) The mean number density of R-type regions, nR, of the Gallai-Edmonds decomposition is size-independent in
large L limit and decreases as we decrease dilution concentration nv. However, it develops large sample to sample fluctuations
below a threshold value of nv. (a) The figure on the left zooms in on this behavior in the vicinity of this threshold for the
triangular lattice (b) The figure on the right zooms in on the corresponding threshold for the Shastry-Sutherland lattice.
The bottom panels of (a) and (b) display histograms that represent our numerical estimate of the corresponding probability
distribution P (nR) at representative values of nv above and below this threshold. From these histograms, it is clear that the
large sample to sample fluctuations seen below the threshold are actually caused by a bimodality in this probability distribution,
as evidenced by two widely separated narrow peaks. This bimodality should be contrasted with the single peak seen above the
threshold.See Sec. IVA for details.
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FIG. 18. (a, b) The mean number density of P-type regions, nP , of the Gallai-Edmonds decomposition is size-independent in
large L limit and decreases as we decrease dilution concentration nv. However, it develops large sample to sample fluctuations
below a threshold value of nv. (a) The figure on the left zooms in on this behavior in the vicinity of this threshold for the
triangular lattice (b) The figure on the right zooms in on the corresponding threshold for the Shastry-Sutherland lattice.
The bottom panels of (a) and (b) display histograms that represent our numerical estimate of the corresponding probability
distribution P (nP) at representative values of nv above and below this threshold. From these histograms, it is clear that the
large sample to sample fluctuations seen below the threshold are actually caused by a bimodality in this probability distribution,
as evidenced by two widely separated narrow peaks. This bimodality should be contrasted with the single peak seen above the
threshold.See Sec. IVA for details.
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FIG. 19. mmax, the mass of the largest Gallai-Edmonds region inside G (the largest geometric cluster) in units of mG , the mass

of G, saturates to an L independent value in the low-dilution phase. When scaled by L−η/2, it shows a clear crossing at ncrit
v .

See Sec. IVB for details.
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FIG. 20. Data for the dimensionless ratio ξ/L, where ξ is the correlation length associated with sample-averaged geometric
correlation function C(r − r′) in an L × L sample, shows a clear crossing at the critical dilution. In addition, it shows non-
monotonic behavior very similar to that of Rmax/L on the high-dilution side of the crossing. See Sec. IVB for details.
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FIG. 21. Data for the dimensionless ratio ξ/L, where ξ is the
correlation length associated with sample-averaged geometric
correlation function C(r − r′) in an L × L sample, collapses
onto a single scaling curve when plotted against the scaling
variable (nv − ncrit

v )L1/ν for a suitable choice of ncrit
v and ν.

See Sec. IVB for details.
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FIG. 22. Figure shows ⟨mmax⟩, the average mass of the largest
Gallai-Edmonds region in the largest geometric cluster G,
scaled by mG , the mass of G. We see that when our data for
mmax is scaled by L−eta/2 and plotted versus (nv−ncrit

v )L1/ν ,
for appropriate choice of ν and η, it collapses onto a single
scaling curve. See Sec. IVB for details.
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