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Abstract
The understanding of prototropic tautomerism in water and the characterization of solvent effects
on protomeric equilibrium pose significant challenges. Using molecular dynamics simulations
based on state-of-the-art deep learning potential and enhanced sampling methods, we provide
a comprehensive description of all configurational transformations in glycine solvated in water
and determine accurate free energy profiles of these processes. We observe that the tautomerism
between the neutral and zwitterionic forms of solvated glycine can occur by both intramolecular
proton transfer in glycine and intermolecular proton transfer in the contact ion pair (anionic glycine
and hydronium ion) or the separated ion pair (cationic glycine and hydroxide ion).

1 Introduction
Prototropic tautomerism plays a crucial role in determin-
ing the thermodynamic and kinetic properties of amino
acids and their derivatives, and consequently their reac-
tivity and interaction with other biomolecules.1–7 The
simplest amino acid, glycine, can exist in the zwitterionic
[Z], neutral [N], anionic [A] or cationic [C] form (Fig.
1) depending on the pH of the solution,8–10 providing
a simple yet relevant model for the study of tautomeric
behavior. Here we will focus on the transformation of
glycine in water between the [Z] and [N] forms.

Experimental studies have been carried out to determine
the protonation states of glycine under various condi-
tions.9,11,12 It has been found that in the gas phase the [N]
tautomer is the more stable. Under microsolvation condi-
tions,13,14 it has been demonstrated that proton transfer
can occur and the [Z] form is favoured. For fully solvated
glycine,8–11,15 the [Z] tautomer has also been shown to
be more stable than the [N] tautomer. However, little
is experimentally known on the dynamic processes of

transformation from [N] to [Z], and these microscopic
processes can be investigated by theoretical simulations
at the atomic level.

The gas phase experiments have been accompanied by a
number of static calculations.16–18 However, the glycine
tautomerism is difficult to achieve in the gas phase, but it
is facilitated by the dynamics of the water environment
and the fluctuation of the hydrogen bond (HB) network.
In an effort to include water effects, various approaches
have been taken, from describing water as polarizable
continuum models (PCMs),9,10,19–23 to quantum mechan-
ical/molecular mechanical (QM/MM) calculations,23,24

and to the use of reactive force fields.25 Most studies
have come to the same conclusion as experiments, i.e.,
the [Z] tautomer is stable in water. However, only a
few simulations have explored the tautomeric dynamics
of glycine, and revealed the mechanism of short-range
proton transfer, i.e., the transition from [N] to [Z] occurs
intramolecularly or sometimes via a nearby solvent water
molecule.18,24,25 Here we aim at describing the static and
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Figure 1: The schematic diagrams of four glycine states and a water molecule. [Z], [N], [A], and [C] denote
zwitterionic, neutral, anionic, and cationic forms, respectively. Atomic notation is used to distinguish the atoms
present in the molecules of glycine and water. Xy represents the atom X (H or O) that originates from molecule y
(glycine or water).

dynamic behavior of glycine in water taking into account
the full complexity of water dynamics and chemistry. The
most appropriate theoretical framework for such a study
is that of ab initio molecular dynamics (AIMD).18,26–29

Unfortunately, AIMD simulations are computationally
expensive, and this has limited the size of the system stud-
ied and the time scale of the simulations. In pioneering
work, Behler and Parrinello have shown that the cost of ab
initio-quality simulations can be greatly reduced without
compromising accuracy.30 Their solution was to represent
the potential energy surface as a suitably designed neural
network whose inputs are a set of descriptors chosen so as
to best describe the local atomic environment, while en-
forcing the symmetry of the problem and allowing scaling
up to large systems. The neural network is then trained
on a set of DFT (density functional theory) energies and
forces performed on a carefully selected set of configu-
rations. More recently, many variants of this approach
have been proposed, such as Gaussian approximation po-
tential,31 deep potential (DP),32–34 SchNet,35 and other
equivariant approaches.36–38 These developments benefit
greatly from easy access to efficient machine learning
libraries and from efficient neural network training strate-
gies. Here, we use the DP model to perform molecular
dynamics (MD) simulations, which has proven its useful-
ness in many applications, including the studies of water
and reactions in water.39–44

During the DP model training, it is important to present
the network with an appropriate set of configurations,
especially when we want to study reactive processes such
as the protonation and deprotonation of glycine. Since
these processes take place on a time scale that is much
larger than the one accessible to standard MD simulations,
the use of enhanced sampling methods is necessary to
sample such rare events. Here we employ the recently de-
veloped on-the-fly probability enhanced sampling (OPES)

method,45,46 which is an evolution of metadynamics.47,48

Like many other enhanced sampling methods, OPES uses
collective variables (CVs) to accelerate the fluctuations
that eventually lead to the reactive process. In this work
we adapt the Voronoi CVs introduced by Grifoni et al.49,50

so as to be able to simultaneously describe the [Z], [N],
[A], [C] forms of glycine and the intermediate structures
connecting these forms.

Then we follow the deep Kohn-Sham (DeePKS)51–54 strat-
egy to efficiently build a very accurate training dataset.
In particular, we want to perform simulations in which
the energies and forces are as accurate as those predicted
by the hybrid meta-GGA functional M06-2X, which has
been shown to give an accurate representation of the
thermochemistry and kinetics of main group elements.55

However, the computational cost of performing single
point calculations at the M06-2X level for the current
system is too high. In simple terms, the way DeePKS
gets around this difficulty is to train a neural network that
expresses the difference 𝐸𝛿 between the target energy
and the baseline energy. In our case the target energy
is 𝐸M06−2X, and the baseline energy 𝐸PBE is from the
cheaper GGA functional PBE.56 The 𝐸𝛿 is calculated as
the sum of atomic energy differences, determined using
a neural network that takes atomic coordinates, density
matrices, and orbitals as inputs. The remarkable finding
is that to train 𝐸𝛿 only a very small number of training
data are needed. Once the PBE-based DeePKS model is
trained, energy is calculated from 𝐸PBE + 𝐸𝛿 , and forces
can be driven from the energy. The energies and forces
generated using such a DeePKS model will have an ac-
curacy close to that of the full M06-2X calculation at a
much lower cost, and will be used to train the DP model.

We use the generated DP model to explore the tautomeric
free energy landscape of glycine in water, and find that
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transitions between the [N] and [Z] forms of glycine can
occur via multiple proton transfer (PT) processes.

2 Computational methods
2.1 Potential model generation
2.1.1 Building training datasets

Key to the potential model training is the construction of
appropriate training datasets. As discussed in the Intro-
duction section, we need to train two potential models:
One is the DP model to be used in molecular dynamics
simulations for investigating the glycine tautomerism in
water; the other is the PBE-based DeePKS model with
the accuracy approaching the M06-2X functional to be
used in the labeling of the DP training datasets. In either
case we use pure water and solvated glycine configura-
tions (see Table S1 in the SI). These configurations are
generated in multiple independent MD simulations with
enhanced sampling to generate as much uncorrelated data
as possible and to include reactive processes. The details
of the MD simulations are given below.

The numbers of configurations in the training sets of
the two models are much different due to the difference
between the descriptors. The similarities are that the two
model descriptors all satisfy the physical symmetry and
the locality. The differences are that the neural network
descriptors in the DP model contain only the angular
and radial atomic environment, while the descriptors of
the DeePKS model additionally include density matrices
projected on the atomic orbitals and satisfy the gauge
invariance symmetry.33,52,54 This means that only a few
hundred configurations are needed to train the DeePKS
model. In contrast, more than tens of thousands of con-
figurations are needed for training the DP model to have
an accurate modeling of the reactive process. Finally, a
total of 300 and 55,498 configurations are collected in the
DeePKS and DP model training datasets, respectively.

2.1.2 DFT calculations

To prepare DeePKS training datasets and all test datasets,
the M06-2X55 energies and forces are calculated using
the CP2K57 package. In the calculations, the Goedecker-
Teter-Hutter pseudopotentials58,59 are used together with
a quadruple-zeta valence basis set with polarization60

(QZV3P). The multi-grid level utilizes a plane-wave cut-
off of 1000 Ry for the total density and 70 Ry for the
Kohn-Sham orbitals. To accelerate the convergence of
self-consistent field (SCF) iterations, the auxiliary density
matrix method61 is utilized.

2.1.3 DeePKS model training

The DeePKS model is then generated using an iterative
approach, in which we alternately train the network of
the correction term from the PBE baseline to the M06-
2X target using the DeePKS-kit51–53 package, and solve
the resulting DeePKS model in ABACUS.54,62,63 In the
ABACUS calculations, the optimized norm-conserving
Vanderbilt64 pseudopotentials are used together with nu-
merical atomic orbital65 basis. The kinetic energy cutoff
is set at 100 Ry, and the SCF convergence threshold for
the density error is 1 × 10−7 Ry.

The above iterations are no longer needed once the
DeePKS model has been trained. One performs single
point calculations based on the PBE functional corrected
with the 𝐸𝛿 term to obtain total energies and forces. Rel-
ative to an independent set of testing data obtained by
performing ordinary M06-2X/QZV3P calculations, the
PBE-based DeePKS model shows root mean square errors
(RMSEs) of 0.53 and 0.61 meV/atom for the energies and
of 43 and 52 meV/Å for the forces, where we distinguish
between errors relative to pure water and solvated glycine
systems. In terms of efficiency, the PBE-based DeePKS
model saves about an order of magnitude in time com-
pared to using the standard M06-2X functional (Table S3
in the SI).

2.1.4 DP model training

The DP model is then trained in the DeePMD-kit34,66

package using the training dataset of M06-2X quality
generated as described above. As discussed earlier, at
this stage we needed 55,498 configurations for an ac-
curate result. Then, the trained DP model is examined
by testing the prediction on an independently generated
dataset containing 6,020 configurations for which stan-
dard M06-2X energy and force calculations have been
performed. The DP model exhibits energy RMSEs of
0.79 and 1.72 meV/atom and atomic force RMSEs of 58
and 63 meV/Å for water and solvated glycine systems,
respectively, suggesting that the DP model has achieved a
level of precision comparable to M06-2X. Compared to
an M06-2X functional based simulation, the DP model is
five orders of magnitude faster (Table S3).

2.2 Molecular dynamics simulations
2.2.1 MD simulation for the training dataset
generation

The configurations required to train the DeePKS and DP
models are sampled from MD simulations using CP2K57

as the driver. To speed up the sampling, we use the
semi-empirical GFN1-xTB67 to derive potential energy
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surface. This GFN1-xTB method has a lower compu-
tational cost, but is still accurate enough to describe
the structures of different glycine forms in water. The
simulations are performed in constant volume constant
temperature (NVT) ensemble with a time step of 1.0 fs.
The temperature of 300 K is enforced using the velocity
rescaling thermostat68 with a damping time of 0.2 ps.

2.2.2 DPMD simulation for studying glycine
tautomerism

To study the glycine tautomerism in water, deep potential
molecular dynamics (DPMD) simulations are performed
using the LAMMPS69 software. Before the formal simu-
lation, we have investigated the size effect by placing a
glycine molecule in varying amounts of water. Based on
the convergence test result (Fig. S9), the system C (Table
S1) with one glycine molecule in 128 H2O molecules is
used in the final DPMD simulation to strike a balance
between efficiency and precision. In order to sufficiently
sample all possible tautomeric processes, simulations are
run for 30 ns in the NVT ensemble with an integration
time step of 1.0 fs. The temperature is controlled at 300
K using again the velocity rescaling thermostat with a
damping time of 0.04 ps.

2.3 Enhanced sampling settings
2.3.1 Bias potential

The OPES method using collective variables (CVs) is
employed in both MD simulations for constructing the
datasets and the DPMD simulation of glycine tautomerism.
The CVs s(R), which are functions of atomic coordinates
(R), skilfully capture the slow modes associated with rare
events. During MD simulations, the potential energy
(𝑈 (R)) of the system is modified by adding the exter-
nal bias potential (𝑉 (s)) through the utilization of the
PLUMED70 plugin. Specifically, 𝑉 (s) at the 𝑛th step in
OPES45,46 is defined by:

𝑉𝑛 (s) = (1 − 1
𝛾
) 1
𝛽

log( 𝑃𝑛 (s)
𝑍𝑛

+ 𝜖) (1)

where 𝛽 = 1/𝑘𝐵𝑇 is the inverse Boltzmann factor. Prob-
ability 𝑃(s) is the unbiased marginal distribution, and
parameter 𝑍 is the normalization factor. Bias factor
𝛾 = 𝛽Δ𝐸bias ensures the reshaping of the original proba-
bility. The regularization term 𝜖 = 𝑒−𝛾/(1−1/𝛾) not only
guarantees a positive argument for the logarithm, but
also imposes a bias constraint, thereby limiting sampling
within the specified region of interest. In particular, the
bias update is carried out every 500 steps with the adaptive
kernel width, and the value of Δ𝐸bias is set at 35 kJ/mol.

Notably, the "explore" variant of OPES (OPES-explore)
is used in the configuration collection of datasets due to

its ability to accelerate the exploration of phase space,
while the OPES is performed to generate well-converged
free energies during the final DPMD simulation. The
reason is that the ways of estimating the probability dis-
tribution are different in the OPES and OPES-explore
methods, although the idea of defining the bias poten-
tial is similar. Specifically, unbiased probability 𝑃(s) is
estimated on-the-fly using weighted kernel density estima-
tion (KDE) in OPES, while the well-tempered probability
𝑝WT(s) (∝ [𝑃(s)] 1

𝛾 ) is estimated based on averaged KDE
in OPES-explore.45,46

2.3.2 Collective variables

Proton can diffuse through water via the Grotthuss mecha-
nism,44,71,72 in which it is not a well-specified proton that
moves, but rather a charge defect that migrates through
the water hydrogen network. Thus a CV that is used
to describe proton diffusion has to be able to identify
charge defects without making reference to a specific set
of atomic coordinates. In the present case, several charge
defects are possible: the –NH3

+ and –COO− groups in
glycine, and the two water self-ions (hydronium H3O+

and hydroxide OH−). To identify automatically these
charge defects we follow the strategy of References49,50

and tessellate the space with Voronoi polyhedra centered
on the O and N atoms. We then sum the charge contained
in each polyhedron. If the charge in a polyhedron is
different from zero, we attribute the charge defect to the
atom N or O that is at the polyhedron center, and we
distinguish the O defects according to whether they are
centered on water or glycine oxygen (Ow and Og in Fig.
1).

To count the number of H atoms 𝑛𝑖 centered on O or N
atom 𝑖, we use the formula

𝑛𝑖 =
NumH∑︁
𝑗=1

𝑒−𝜆 |R𝑖−R 𝑗 |∑NumO&N
𝑚=1 𝑒−𝜆 |R𝑚−R 𝑗 |

(2)

where the first sum is over all H atoms with index 𝑗 , and 𝑚
is the index of Voronoi centers. The parameter 𝜆 regulates
the smoothness of the function.

The charge defect number 𝛿𝑖 of the Voronoi center 𝑖 is
calculated by subtracting the reference number 𝑛0

𝑖 (the
original proton number connecting to the atom at the
polyhedron center) from H number 𝑛𝑖

𝛿𝑖 = 𝑛𝑖 − 𝑛0
𝑖 (3)

where we take 𝑛0
𝑖 = 2 for the water oxygen (Ow) and the

glycine nitrogen (N), while for the carboxylic oxygens
(Og) we set 𝑛0

𝑖 =
1
2 on account of the symmetry between

two oxygen atoms.
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As the system is neutral overall, the [C] and [A] forms of
glycine are compensated by OH− and H3O+, respectively.
Then, to distinguish between the [C]−OH− pair, [Z]&[N]
states and [A]−H3O+ pair, we define a CV s𝑝 that can
identify these protonation states, by combining the charge
defects of both glycine and water.

s𝑝 =
NumOw∑︁
𝑖=1

𝛿𝑖 + 2(
NumN∑︁
𝑗=1

𝛿 𝑗 +
NumOg∑︁
𝑘=1

𝛿𝑘) (4)

where s𝑝 ≈ 1 for [C]−OH− , s𝑝 ≈ −1 for [A]−H3O+, and
s𝑝 ≈ 0 in the other two cases. Since s𝑝 cannot distinguish
the [Z] and [N] forms, we introduce another CV s𝑑 to
estimate the charge-charge distance that is capable of
separating the two cases. The s𝑑 is measured in terms
of the distances between Ow and N and between Ow and
Og, as well as the average distance between N and Og, as
follows:

s𝑑 = −
NumOw∑︁
𝑖=1

NumN∑︁
𝑗=1

𝑟𝑖, 𝑗𝛿𝑖𝛿 𝑗 −
NumOw∑︁
𝑖=1

NumOg∑︁
𝑘=1

𝑟𝑖,𝑘𝛿𝑖𝛿𝑘

−
NumN∑︁
𝑗=1

NumOg∑︁
𝑘=1

𝑟 𝑗 ,𝑘𝛿 𝑗𝛿𝑘

(5)

where 𝑟 is the modulus distance between the two Voronoi
centers. The CV s𝑑 will approximately be 0 and 3 Å
in the [N] and [Z] forms, respectively, and will become
larger than ~3 Å in the other two cases.

During the OPES simulations, both CVs s𝑝 and s𝑑 use
the value of 𝜆 = 5 so as to have a smoother definition of
the Voronoi polyhedra.

Since H3O+ and OH− can be present in water, we have
added configurations related to the autoionization process
of water into our training datasets. In the potential training
process we use the CV

s𝑎 =
NumOw∑︁
𝑖=1

𝛿2
𝑖 (6)

to promote the self ionization processes, and s𝑎 varies
from 0 to 2.

The CV s𝑎 is supplemented by a CV s𝑡 that represents
the distance between H3O+ and OH−:

s𝑡 = −
NumOw∑︁
𝑖=1

NumOw∑︁
𝑗>𝑖

𝑟𝑖, 𝑗𝛿𝑖𝛿 𝑗 (7)

While s𝑡 can distinguish between the pure water state
(s𝑡 ≈ 0) and autoionization state (s𝑡 > 0), it is hardly to
identify the initial proton transfer which corresponds to a
s𝑡 value nearly concentrated around zero. Therefore, we

use a piecewise logarithmic function:

s′𝑡 =
{

log(s𝑡 + 𝜖), 0 ≤ s𝑡 < 1
s𝑡 − 1 + log(1 + 𝜖), s𝑡 ≥ 1

(8)

where 𝜖 = 0.03 is a regularization parameter.

2.3.3 Free energy calculation

After the DPMD simulation, the free energy surface (FES)
along a given CV can be calculated as follows:

𝐹 (s) = − 1
𝛽

log 𝑃(s) (9)

In the regime where the bias is quasi-static, 𝑃(s) can be
reweighted45 as an average over the biased ensemble.

𝑃(s) = ⟨𝛿[s − s(R)]𝑒𝛽𝑉 (s)⟩𝑉
⟨𝑒𝛽𝑉 (s)⟩𝑉

(10)

See the supporting information for the full simulation
workflow and more computational details.

3 Results and discussion
3.1 Free energy surfaces
The converged FES is plotted in Fig. 2a as a function of
the two CVs s𝑝 and s𝑑 , which reflect the glycine proto-
nation state and the charge-charge distance, respectively.
The minima corresponding to state [N] and state [Z] are
easily identified. Less evident is the presence of two other
metastable states, [A] and [C]. Their existence can be
made more clear if we project the free energy along the
CV s𝑝 as shown in Fig. 2b. In this one-dimensional
representation, the [N] and [C] forms cannot be resolved
and are part of one single central minimum, but clearly
two local minima that correspond to [A] and [C] can be
detected, and these states lie higher in energy relative
to the minimum by 44.1 kJ/mol ([A]) and 49.2 kJ/mol
([C]), respectively. To facilitate reading the result in a one
dimensional projection, we also plot the FES along the
CV s𝑑 (Fig. 2c). In this projection, [A] and [C] cannot
be identified, while the [Z] and [N] states are now clearly
visible. The energy difference between the lowest free
energy [Z] state and the [N] state is 32.6 kJ/mol, in good
agreement with experiments, which have reported values
ranging from 30.4 kJ/mol to 32.1 kJ/mol.73–75

It is interesting to analyze in some detail the nature of the
[A] and [C] states. Because of the requirement that the
system must be neutral, the charged glycine protomers in
these two states are accompanied by a counterion, which
is H3O+ in [A] and OH− in [C]. The behavior of these two
ion pairs is different; in [A] the hydronium remains close
to the glycine, while in [C] the ion pair can separate more
easily. This different behavior is reflected in the different
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Figure 2: Free energy profiles. a. Two-dimensional FES as a function of the glycine protonation coordinate s𝑝
and the charge-charge distance s𝑑 . b and c. One-dimentional projections of the FES along the CVs s𝑝 and s𝑑 . The
standard deviations of one-dimentional FESs are represented by transparent colors.

s𝑑 distributions. The s𝑑 distribution in [C]−OH− pair is
much broader than that of [A]−H3O+ pair, and as a con-
sequence the FES exhibits a slight left-right asymmetry
of Fig. 2a.

3.2 Prototropic tautomerism pathways
We now analyze the pathways leading from [N] to [Z]. We
have identified three possible proton transfer pathways
as shown in Fig. 3a,b. The most obvious is a direct
intramolecular proton transfer (Intra-PT), which is consis-
tent with the gas phase studies.76–78 The –NH2 group first
rotates so that its lone pair helps to accept the –COOH
proton to form the ammonium group –NH3

+, which later
rotates to assume a more stable [Z] conformation.

In addition to the direct route, there are two other pathways
in which the proton is transferred via a Grotthuss-like
mechanism44,71,72 with the aid of the water molecules in
the solvent. These two mechanisms have either [A] or
[C] as an intermediate; in the first case, a contact ion pair
[A] − H3O+ is formed, whereas in the second one passes
through the separated ion pair [C] − OH− .

In the anionic pathway, the carboxylic proton is transferred
to a nearby solvent water, which transfers a positive charge
to another water molecule via a Zundel intermediate to
end up on the glycine, forming the ammonium group
of the [Z] state. This H3O+ mediated proton transfer
(H3O+-PT) process is also found at the microhydration
limit of glycine-water clusters.18,76,77

Similar but different is the new pathway that leads from
[N] to [Z] via an intermediate [C]−OH− pair mediated
proton transfer (OH−-PT). The first step is the transfer
of a proton from a water molecule to the amine group
of glycine to form an ammonium cation and an OH−

ion. The OH− ion is then solvated in water and diffuses
a relatively long distance via a Grotthuss mechanism,
eventually ending up back at the glycine to abstract the
carboxylic proton to form the [Z] protomer and a water
molecule.

The reason for the distinct charge-charge distance behavior
comes from the different amphipathy of H3O+ and OH−

ions as depicted in Fig. 3c,d, where the distance between
the contact ion pair [A] − H3O+ is in the short range (<
~4.5 Å), while the distance between the separated ion
pair [C] − OH− is in the relatively long range (> ~4.5
Å). Since glycine disrupts the HB network of water and
provides a hydrophobic environment, H3O+ tends to stay
in proximity to glycine due to its hydrophobic O atom.
Compared to H3O+, the O atom in OH− is hydrophilic
and can easily form HB with surrounding water molecules
as HB acceptors,44,79 resulting in a more extensive HB
network around OH− . This indicates that OH− can dif-
fuse further away from glycine towards the outer water
solvation shell compared to H3O+, and thus the outer
solvation shell of glycine is involved in the prototropic
tautomerism and cannot be ignored.
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Figure 3: Three tautomeric pathways. a. Continuous sampling processes of tautomeric pathways with the CVs s𝑝
and s𝑑 , where the color bar represents the relative simulation time. b. Trajectories of [N]−[Z] tautomerism along the
Intra-PT, H3O+-PT, and OH−-PT pathways. The molecular configurations involved in the reaction pathways are
highlighted in the sphere models, and other surrounding water molecules are shown in the transparent stick models.
c. The distribution of the CV s𝑑 , i.e., intermolecular charge-charge distance (no intramolecular distance in the [A]
and [C] cases). d. The hydrogen-bond schematic diagrams of H3O+ and OH− ions near [A] and [C].
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Note that experimental investigations75 on the glycine
protonation reactions were mostly conducted in the water
with glycine concentrations falling within the interval of
0.03-0.25 M at room temperature. The present simulation
results are obtained based on a neutral aqueous simulation
system with a little bit higher glycine concentration of
0.43 M. Nevertheless, as documented in the literature,
the solubility of glycine in water spans a range of 0.36-
0.56 M,80 and therefore the present simulation ensures a
solvated glycine molecule. In addition, it is noteworthy
that the discovery of reaction pathways involving ion
pairs in the simulation, accompanied by the presence of
H3O+ or OH− in the aqueous environment, indicates an
instantaneous change of the pH, leading to values of 0.4
or 13.6, respectively. Under the present simulated con-
dition, we have clearly delineated three distinct [N]−[Z]
tautomerization pathways for the first time, elucidated the
roles and characters of [C]−OH− and [A]−H3O+ ion pairs
in these processes, and indicated a way by which the pH
of the solution can influence the protomeric equilibrium.
This potentially have broader applicability in chemistry,
biology, engineering and other proton transfer processes.
We look forward to the upcoming advanced experiments
that will serve to validate our findings. It is also important
to emphasize that the quantitative results of these experi-
ments will depend on the glycine concentration and, more
interestingly, the pH of the system.

4 Conclusion
In summary, the present study provides novel insights
into the prototropic tautomerism of glycine in water and
covers all possible configurational transformations using
an accurate description of the interaction potential and a
thorough sampling of the potential energy surface. We
discover three pathways for tautomerization between the
neutral and zwitterionic forms of solvated glycine; one is
via intramolecular proton transfer in glycine, the second
one involves short-range intermolecular proton transfer
in the contact ion pair between anionic glycine and hy-
dronium ion, and the third one has the aid of long-range
intermolecular proton transfer in the separated ion pair
between cationic glycine and hydroxide ion. In the two
intermolecular proton transfer pathways, the observed
remarkably distinct charge-charge distance of the inter-
mediate ion pairs is attributed to the different amphipathy
of water self-ions.

The combination of our computational technologies, in-
cluding DeePKS, DeePMD, OPES, and Voronoi CVs, not
only deepens our understanding of glycine tautomerism
in water, but also provides a comprehensive framework
and methodology for facilitating further research into the
intricate dynamics of proton transfer.
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DeePKS model training
The DeePKS model employs descriptors derived from the projected density matrices, necessitating a predefined set
of projectors with a maximum angular momentum of 2. The number of Bessel functions is determined by the radial
and wavefunction cutoffs, specifically 5 Bohr and 100 Ry, respectively. The number of neurons is set to [32, 32, 32]
in hidden layers and the non-linear activation function between hidden layers is "gelu". The train step is set to 10
thousand with a learning rate of 10−4 to 10−7. A weighted mean square loss function LDeePKS is applied to energy
and atomic forces.

LDeePKS =
��𝐸M06−2X − 𝐸DeePKS (𝜑𝑖 |𝑤)

��2 + 𝑝
��FM06−2X − FDeePKS (𝜑𝑖 |𝑤)

��2 (S1)

Energy and force are determined by the Hamiltonian. The total Hamiltonian of the DeePKS model (�̂�DeePKS) is
expressed as follows:

�̂�DeePKS = �̂�PBE + �̂� 𝛿 (S2)

where �̂�DeePKS incorporates a correction term (�̂� 𝛿) that is added onto the baseline functional (�̂�PBE). 𝜑𝑖 is the
eigenstate of Hamiltonian �̂�DeePKS depending on the correction term �̂� 𝛿 . �̂� 𝛿 is determined by projected density
matrices, localized orbitals, and the DeePKS descriptor. �̂�DeePKS after adding �̂� 𝛿 corresponds to different ground
states, so the model training and SCF solution are performed in turn, iterating until convergence.1,2 �̂�DeePKS

is approximately equal to the M06-2X Hamiltonian (�̂�M06−2X) when the wave function is converged, then the
corresponding energy and force can be solved. In addition, 𝑤 is the neural network parameter. 𝑝 is the pre-factor to
balance the errors.

DP model training
The descriptor of Deep Potential Smooth Edition (DeepPot-SE) is used,3,4 where the embedding net size is set to
[25, 50, 100] per layer and the non-linear activation function between hidden layers is "tanh". The submatrix size in
the embedding net is set to 16. A neighbor atom cutoff radius of 6.0 Å with smoothing beginning at 0.5 Å, and the
maximum neighbor number of [H,O,N,C] is [85, 45, 1, 2]. The fitting net is connected after the embedding net,
with a size of [240, 240, 240] per layer and the non-linear activation function between hidden layers is "tanh". The
ResNet5 architecture is built between the fitting net. The train step is set to 10 million with a learning rate of 10−3 to
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10−8. A weighted mean square loss function LDP is applied to energy and atomic forces.

LDP =
𝑝𝑒
𝑁

��𝐸DeePKS − 𝐸DP (𝑤)
��2 + 𝑝 𝑓

3𝑁

∑︁
𝑖𝛼

��𝐹DeePKS
𝑖𝛼 − 𝐹DP

𝑖𝛼 (𝑤)
��2 (S3)

where 𝑁 is the number of atoms. 𝑝𝑒 and 𝑝 𝑓 are the pre-factor of energy 𝐸 and force 𝐹, respectively. 𝑤 is the neural
network parameter. 𝐹𝑖𝛼 means the force of the atom 𝑖 along the 𝛼th direction.

Derivatives of collective variables
When adapting Voronoi CVs (s(R)) to distinguish glycine states, it is important to note that these CVs can be derived
with respect to the atomic coordinates (R), as indicated in the following equation S4:

𝜕𝑉 (s)
𝜕R =

𝜕𝑉 (s)
𝜕s(R)

𝜕s(R)
𝜕R (S4)

where the implementation of the first term 𝜕𝑉 (s)
𝜕s(R) has been completed within the PLUMED6 plugin, we will proceed

to describe the second term 𝜕s(R)
𝜕R in detail and make corresponding changes to the code. For clarity and ease of

understanding, we will focus on the relatively complicated part of the Voronoi CVs, as represented by the following
equation S5. If there is a need to obtain derivatives for other CVs (s𝑝 , s𝑑 , s𝑎, and s𝑡 ), such calculations can be easily
achieved by applying the derivative chain rule.

s(R) =
∑︁

𝑖∈group
𝛿𝑖 (S5)

Next, we will illustrate the process using the example of distinguishing autoionization in pure water without any
prior information. In this scenario, all O atoms act as Voronoi centers and form a defined group. To identify the
protonation states of all O atoms, all nearby H atoms around the target O𝑖 atom (labeled as O𝑖 →Hall) and all nearby
O atoms around the target H 𝑗 atom (labeled as O𝑖 →H 𝑗 →Oall) are searched.

In O𝑖 →Hall stage, if H 𝑗 (selected in Hall) is a neighbor of a given target O𝑖 , the derivative for H 𝑗 coordinate is
governed by the following equation S6. For simplicity, some small terms are ignored.

𝜕s(R)
𝜕RH 𝑗

≈
∑︁
𝑖∈O

∑︁
𝑗∈H

−𝜆 𝑒
−𝜆

���RO𝑖 −RH 𝑗

���
∑

𝑚∈O 𝑒
−𝜆

���RO𝑚−RH 𝑗

���

1 − 𝑒

−𝜆
���RO𝑖 −RH 𝑗

���
∑

𝑚∈O 𝑒
−𝜆

���RO𝑚−RH 𝑗

���


RH 𝑗 − RO𝑖��RO𝑖 − RH 𝑗

�� (S6)

if H 𝑗 (selected in Hall) is a neighbor of a non-target Voronoi center O𝑛 (𝑛 ≠ 𝑖), the derivative for H 𝑗 coordinate is
given by the following equation S7. For simplicity, some small terms are ignored.

𝜕s(R)
𝜕RH 𝑗

≈
∑︁
𝑖∈O

∑︁
𝑗∈H

−𝜆 𝑒
−𝜆

���RO𝑛−RH 𝑗

���
∑

𝑚∈O 𝑒
−𝜆

���RO𝑚−RH 𝑗

���

0 − 𝑒

−𝜆
���RO𝑖 −RH 𝑗

���
∑

𝑚∈O 𝑒
−𝜆

���RO𝑚−RH 𝑗

���


RH 𝑗 − RO𝑛��RO𝑛 − RH 𝑗

�� (S7)

In O𝑖 →H 𝑗 →Oall stage, if O𝑖 (selected in Oall) is a neighbor of H 𝑗 , the derivative for O𝑖 coordinate is governed by
the following equation S8.
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if O𝑘 (selected in Oall, 𝑘 ≠ 𝑖) is a neighbor of H 𝑗 , the derivative for O𝑘 coordinate is given by the following equation
S9.
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�� ≈ 0 (S9)

At this point, all derivatives with respect to the coordinates have been determined. In addition, we incorporate the
neighbor list function, which efficiently searches for nearby atoms, reducing the computational complexity from
O(𝑁 [Oall ×Hall ×Oall]) to O(𝑁 [Oall ×Hneighbor ×Oneighbor]). In particular, a neighbor list with a cutoff 2.4 Å is set,
updated at each step, to search for atoms in groups.
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Polarization calculation
In the realm of polarization analysis, a well-established formalism extensively relies on the utilization of maximally
localized Wannier functions (MLWFs).7,8 In a molecular or condensed matter system, polarization arises due to the
separation of positive and negative charges. It can be characterized by the dipole moment, which is a measure of the
overall charge distribution within the system. When dealing with finite systems, the dipole 𝝁 of the glycine molecule
can be calculated as follows:9,10

𝝁 = 𝑒
©
«
∑︁
𝑖∈H

R𝑖 + 4
∑︁
𝑗∈C

R 𝑗 + 5
∑︁
𝑘∈N

R𝑘 + 6
∑︁
𝑙∈O

R𝑙 − 2
∑︁
𝑚∈W

R𝑚
ª®
¬

(S10)

where 𝑒 represents the electronic charge. The positions of the nuclei (H, C, N, and O) and the MLWF centers (W) of
glycine are considered in the calculation. Each nucleus without outer valence electrons (H, C, N, and O) carries a
positive charge of 1, 4, 5, and 6, respectively. Additionally, each MLWF center is associated with 2 valence electrons.
The MLWF centers are determined through the calculation in CP2K.11 The structures of solvated glycine are obtained
from the enhanced sampling trajectory of system A (Table S1). The remaining settings are kept consistent with the
DFT labeling for the DeePKS dataset.

Other computational details
Hydrogen bond (HB) analysis is performed using the MDAnalysis12,13 library, where the distance cutoff between
the donor and the acceptor is 3.5 Å, and the donor-hydrogen-acceptor angle cutoff is set to 140°. To compare
the explicit solvation effect, the glycine clusters are also modeled using the implicit solvation model (SMD)14 at
the M06-2X/def2-TZVP level15–17 in the Gaussian.18 The simulation results are visualized using the VMD19 and
Matplotlib20 packages. The diffusion coefficient is calculated from the mean square displacement (MSD) using
Einstein’s relation. The diffusion coefficient of water is 2.36 ± 0.09 × 10−9 m2/s at 300 K, which is consistent with
experiments (~2.3 × 10−9 m2/s). The general simulation workflow (Fig. S1) comprises six steps mentioned in
manuscript.

Solvation and polarization
Notably, the ongoing research into the minimum number of water molecules required to stabilize the [Z] form has
remained controversial, with debates ranging from two to ten water molecules, and means that effective treatment and
accurate description of the solvent effect remains a crucial and challenging task.21–28 We discuss the solvation and
polarization of glycine in the SI, which in turn fine-tune the thermodynamics and dynamic behavior.29

The gradual expansion of the solvent shell is studied by the radial distribution function (RDF)30,31 to understand the
structural distribution between glycine and water molecules, as depicted in the Fig. S17a. In the region of the first
solvent shell (FSS), the RDFs of Og − Ow display a peak shift between 2.4 and 2.8 Å in the [A]↔[N] or [Z]↔[C]
path, which is relative to the protonation of the –COO− group. The situation is similar to the protonation of the –NH2
group in the [A]↔[Z] or [N]↔[C] path, where the RDFs of N − Ow have a peak shift between 2.5 and 2.9 Å. In the
outer solvent shell (OSS), RDFs show slight changes between 3.6 Å and 6 Å depending on changes in FSS. Minimal
variations are observed beyond the homogeneous region that extends beyond 6 Å, suggesting that FSS predominantly
influences the solvation of glycine, and this is also supported by the THz spectra.32

In the FSS, the [Z], [N], [A], and [C] forms are associated with approximately 12, 11, 10, and 12 water molecules,
and exhibit 5.4, 4.1, 6.2, and 3.4 HBs, respectively (Fig. S17b). Compared to other forms, the stability of the [Z]
form can be attributed to the greater abundance of water molecules within the FSS and the formation of a more
extensive HB network, which also contribute to the polarization of [Z].

In full solution, the [Z] form exhibits an average dipole moment of 16.3 ± 0.8 D, whereas in its isolated form,
the dipole moment amounts to only 12.6 ± 0.5 D (Fig. S17c). These results align with previous calculation.31

Remarkably, when exclusively considering the FSS, a dipole moment of 15.4 ± 0.7 D is emulated, effectively
mirroring the characteristic polarization of the [Z] form. The [N] form, whether in a gaseous phase or within an
aqueous environment, exhibits dipole moments typically ranging from 1.6-2.3 D. This is attributed to the non-ionized
state of both the amino and carboxyl groups in the [N] form. In contrast, the presence of water molecules in the FSS
mainly stabilizes the charged –COO− and –NH3

+ groups in the [Z] form, leading to an augmentation of the overall
dipole moment.
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Specifically, the average distribution value of the electron pair (represented by maximally localized Wannier centers
(MLWCs)7,8) surrounding OH

g is approximately 0.15 Å smaller than that of N, and the electron pairs near OH
g exhibit

greater localization compared to that near N (Fig. S17d). This indicates that –COO− primarily influences the larger
dipole moment as opposed to –NH3

+, due to the higher electronegativity of OH
g .
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Table S1: Details of the simulation systems. systems A and B are used for building dataset, as well as system C are
used for conducting molecular dynamics simulations and subsequent data analysis.

System Usage Box size (Å3) No. of H2O No. (Molar) of glycine

A Training, testing dataset 12 × 12 × 12 54 1 (1.03 M)
B Training, testing dataset 12 × 12 × 12 58 0
C Final MD and analysis 15.8 × 15.8 × 15.8 128 1 (0.43 M)

Table S2: A convergence test of the single point calculation. The plane-wave cutoff test of DFT labeling for the
DeePKS dataset. The calculation of Δ𝐸 involves subtracting previous energy in order to determine the difference,
for example, Δ𝐸 (700Ry, 60Ry) = 𝐸 (700Ry, 60Ry) − 𝐸 (600Ry, 60Ry), Δ𝐸 (800Ry, 60Ry) = 𝐸 (800Ry, 60Ry) −
𝐸 (700Ry, 60Ry) and so on.

Cutoff (Ry) Rel_Cutoff (Ry) Δ𝐸 (a.u.) Δ𝐸 (a.u./atom)

600 60 Basis1 Basis1/atom
700 60 −3.23 × 10-3 −1.88 × 10-5

800 60 5.44 × 10-4 3.16 × 10-6

900 60 −5.89 × 10-5 −3.43 × 10-7

1000 60 −9.65 × 10-5 −5.61 × 10-7

1100 60 8.75 × 10-8 5.09 × 10-10

1000 60 Basis2 Basis2/atom
1000 70 1.29 × 10-7 7.51 × 10-10

1000 80 −2.20 × 10-9 −1.28 × 10-11

1000 90 4.00 × 10-10 2.33 × 10-12

1000 100 1.00 × 10-10 5.82 × 10-13

1000 110 3.00 × 10-10 1.74 × 10-12

Table S3: The runtime of calculations. DFT labelling and DeePKS labelling are performed on CPU processor with
parallelization, where the runtime is for a configuration to complete a self-consistent field iteration. The runtime of
DPMD simulation with OPES on GPU is also given.

Step System Machine Time

DFT labeling for the DeePKS dataset A 24-core CPU 40 min/frame
DFT labeling for the DeePKS dataset B 24-core CPU 35 min/frame
DeePKS labeling for the DP dataset A 24-core CPU 5 min/frame
DeePKS labeling for the DP dataset B 24-core CPU 4 min/frame

DPMD simulation with OPES A 1 Tesla V100 70 timesteps/s
DPMD simulation with OPES C 1 Tesla V100 12 timesteps/s
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Table S4: The component of the datasets and the accuracy of the models. The number of configurations in the
train and testing datasets for systems A and B (the DeePKS training datasets and all test datesets are performed by
M06-2X/QZV3P, and the DP training datasets are performed by the DeePKS models). The root mean square errors
(RMSEs) for the DeePKS and DP models on the test data sets are also given.

Infomation DeePKS (syst. A) DeePKS (syst. B) DP (syst. A) DP (syst. B)

training dataset 150 150 42,248 13,250
testing dataset 205 165 5,560 460

𝐸RMSE (meV/atom) 0.53 0.61 0.79 1.72
𝐹RMSE (meV/Å) 43 52 58 63
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Figure S1: Simulation workflow in detail. The comprehensive workflow includes enhanced sampling, DFT labeling,
DeePKS iteration, DeePKS labeling, DP training, and DPMD with OPES for efficient and accurate exploration of
glycine tautomerism in water.

Figure S2: The distribution of the configuration in the training dataset. The configurational distribution with
respect to (a) glycine protonation (s𝜆=5

𝑝 ) and charge-charge distance (s𝜆=5
𝑑 ), (b) glycine protonation (s𝜆=8

𝑝 ) and number
of self-ions (s𝜆=8

𝑎 ). The origin of Contours is attributed to the utilization of free energy reweighting. The training
dataset contains sufficient coverage of a satisfactory phase space using the Voronoi CVs.
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Figure S3: Error distribution of the DeePKS model on the testing dataset of glycine in water (system A). (a)
The distribution of 𝐸DeePKS − 𝐸min with respect to 𝐸DFT − 𝐸min. (b) Left: the distribution of |𝐸DeePKS − 𝐸DFT |
with respect to 𝐸DFT − 𝐸min. (c) Right: the histogram of |𝐸DeePKS − 𝐸DFT |. (d) The distribution of 𝐹DeePKS with
respect to 𝐹DFT. (e) Left: the distribution of |𝐹DeePKS − 𝐹DFT | with respect to 𝐹DFT. (f) Right: the histogram of
|𝐹DeePKS − 𝐹DFT |. Here, 𝐸DFT and 𝐹DFT are the energy and force calculated by the M06-2X functional; 𝐸DeePKS and
𝐹DeePKS are the energy and force performed by the present DeePKS model; and 𝐸min is the minimum absolute energy
in the testing dataset.

Figure S4: Error distribution of the DeePKS model on the testing dataset of water (system B). (a) The distribution
of 𝐸DeePKS − 𝐸min with respect to 𝐸DFT − 𝐸min. (b) Left: the distribution of |𝐸DeePKS − 𝐸DFT | with respect to
𝐸DFT − 𝐸min. (c) Right: the histogram of |𝐸DeePKS − 𝐸DFT |. (d) The distribution of 𝐹DeePKS with respect to 𝐹DFT. (e)
Left: the distribution of |𝐹DeePKS − 𝐹DFT | with respect to 𝐹DFT. (f) Right: the histogram of |𝐹DeePKS − 𝐹DFT |.
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Figure S5: Error distribution of the DP model on the testing dataset of glycine in water (system A). (a) The
distribution of 𝐸DP − 𝐸min with respect to 𝐸DFT − 𝐸min. (b) Left: the distribution of |𝐸DP − 𝐸DFT | with respect to
𝐸DFT − 𝐸min. (c) Right: the histogram of |𝐸DP − 𝐸DFT |. (d) The distribution of 𝐹DP with respect to 𝐹DFT. (e) Left:
the distribution of |𝐹DP − 𝐹DFT | with respect to 𝐹DFT. (f) Right: the histogram of |𝐹DP − 𝐹DFT |. Here, 𝐸DFT and
𝐹DFT are the energy and force calculated by the M06-2X functional; 𝐸DP and 𝐹DP are the energy and force performed
by the present DP model; and 𝐸min is the minimum absolute energy in the testing dataset.

Figure S6: Error distribution of the DP model on the testing dataset of water (system B). (a) The distribution of
𝐸DP − 𝐸min with respect to 𝐸DFT − 𝐸min. (b) Left: the distribution of |𝐸DP − 𝐸DFT | with respect to 𝐸DFT − 𝐸min. (c)
Right: the histogram of |𝐸DP − 𝐸DFT |. (d) The distribution of 𝐹DP with respect to 𝐹DFT. (e) Left: the distribution of
|𝐹DP − 𝐹DFT | with respect to 𝐹DFT. (f) Right: the histogram of |𝐹DP − 𝐹DFT |.
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Figure S7: The CV profiles with time. The evolution of glycine protonation (s𝜆=5
𝑝 ) and charge-charge distance

(s𝜆=5
𝑑 ), with each configuration assigned a color code according to the corresponding simulation time represented

in the color bar. The sampling shows a discernible tendency to resemble the ’Maple Leaf’ and ’U’ shapes, and is
multiple traversals of all possible configurations.
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Figure S8: The CV profiles with bias. The evolution of (a) glycine protonation (s𝜆=5
𝑝 ) and (b) charge-charge distance

(s𝜆=5
𝑑 ) over simulation time, with each configuration assigned a color code according to the corresponding bias value

represented in the color bar. Based on extensive enhanced sampling, the bias approximately reaches a quasi-static
state.

Figure S9: The one-dimensional free energy and free energy differences of different glycine forms. The free
energy profiles with respect to CVs (a) s𝑝 , (b) s𝑑 , and (c) s𝑎, where 128 and 54 represent the number of H2O with a
glycine molecule. The inclusion of 128 H2O takes into account sufficient size effects and enables converged free
energy compared to 54 H2O. The free energy differences (kJ/mol) among glycine in [Z], [N], [A], and [C] forms
under (d) explicit water solvation as simulated in this work [DPMD+OPES], (e) implicit water model [QM+SMD],
and (f) gas phase [QM]. If we consider the implicit solvation of glycine, only quantitative results can be obtained,
suggesting that the interactions ignored by implicit solvation models influence the stabilization of glycine. The QM
calculation employed the chemical model method of M06-2X/def2-TZVP.
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Figure S10: Two-dimensional free energy surface (FES). FES with respect to glycine protonation (s𝜆=8
𝑝 ) and

number of self-ions (s𝜆=8
𝑎 ). There is a H3O+ with [A] states (s𝜆=8

𝑎 ≈ 1), an OH− with [C] state (s𝜆=8
𝑎 ≈ 1), and no ion

in [N] or [Z] state (s𝜆=8
𝑎 ≈ 0).

Figure S11: The standard deviation of free energy surfaces. Two-dimensional (b) free energy error with respect
to glycine protonation (s𝜆=5

𝑝 ) and charge-charge distance (s𝜆=5
𝑑 ), and (c) free energy error with respect to glycine

protonation (s𝜆=8
𝑝 ) and number of self-ions (s𝜆=8

𝑎 ).
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Figure S12: Atom notations are used to denote the atoms present in the molecules of glycine and water. Xy represents
the atom X (H or O) that originates from molecule y (glycine or water). Specifically, for the –COO− group, Oc (Of)
designates O that is close to (far from) N. Similarly, for the –COOH group, OH (On) denotes O that does (does not)
form a covalent bond with H. And HN (HO) represents the H bonded to N (O).

Figure S13: Configurational distribution. The distribution of glycine in (a) neutral [N] and (b) cationic [C] forms as
a function of the bond (N-OH

g ) and the angle (CN-OH
g -HO

g ) as shown in the schematic diagram of molecular structures.
The color bars depict the density of configuration numbers.
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Figure S14: Configurational distribution. The distribution of glycine in (a) neutral [N] and (b) anionic [A] forms
as a function of the bond (the average of two CO-HN

g bond lengths) and the angle (the average of two CO-N-HN
g

angles) as shown in the schematic diagram of molecular structures. The color bars depict the density of configuration
numbers.

Figure S15: Configurational distribution. The distribution of glycine in (a) zwitterionic [Z] and (b) cationic [C]
forms as a function of the angle (the average of three HN

g -N-HN
g angles) and the dihedral (the minimum of three

CO-CN-N-HN
g dihedrals) as shown in the schematic diagram of molecular structures. The color bars depict the density

of configuration numbers.
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Figure S16: Hydrogen bond of self-ions. The schematic representation of (a) donor (Dn) and acceptor (Ac) sites in
the neutral [N] form. The presence of (b) hydroxide (OH−) with [C] form, and (c) hydronium (H3O+) with anionic
[A] form in water. The number of donor for (d) OH− and (e) H3O+, and the number of acceptor for (f) OH− and (g)
H3O+ are displayed as a function of charge-charge distance (s𝜆=5

𝑑 ).
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Figure S17: The solvation and polarization of glycine. a, RDF profiles with respect to glycine transformations for
the pairs of particles comprising Og-Ow and N-Ow targeted atoms. The region within a specified cutoff distance of 3.6
Å is defined as the FSS of glycine and the external region is described as the OSS. b, The number of water molecules
and total HB number of glycine in the FSS. c, The change of the glycine dipole moment in gas phase (GAS), FSS,
and full solvent (SOL), where the molecular structures of glycine in gas phase and FSS are those obtained from the
fully solvated glycine by removing corresponding water molecules. d, The violin plots represent the distributions of
the distances between the nuclei (N and OH

g ) of fully solvated glycine and the MLWCs, where the lines represent the
mean value.
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