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THE DISTRIBUTION OF POLYNOMIALS IN MONOTONE

INDEPENDENT ELEMENTS

MARWA BANNA AND PEI-LUN TSENG

Abstract. Building on the work of Arizmendi and Celestino (2021), we derive the ˚-
distributions of polynomials in monotone independent and infinitesimally monotone indepen-
dent elements. For non-zero complex numbers α and β, we derive explicitly the ˚-distribution
of pα,β “ αab ` βba whenever a and b are monotone or infinitesimally monotone indepen-
dent elements. This encompasses both cases of the commutator and anti-commutator. This
approach can be pushed to study more general polynomials. As applications, we derive the
limiting distribution with respect to the partial trace of polynomials in a certain class of
random matrices.

1. Introduction

In non-commutative probability theory, diverse notions of independence arise through
the examination of purely algebraic representations of fundamental concepts in classical
probability theory. Five notions of independence were identified to satisfy natural axioms of
probability: tensor (classical), free, Boolean, monotone, and its mirror image, anti-monotone.
These notions of independence were classified by Speicher [31] and Muraki [23, 24] and also
by Ben Ghorbal and Schürmann [6] in the framework of category theory.

Following Voiculescu’s introduction of the concept of free independence, numerous exten-
sions and generalizations of freeness have arisen within the non-commutative setting. Among
these, one notable generalization is infinitesimal freeness, see [15] and [8]. This extension
has found practical applications in investigating the occurrence of spikes in diverse deformed
random matrix models, as shown in [3, 30, 9]. Consequently, extensions of infinitesimal
Boolean and monotone independence have also been introduced in [27, 17].

Just like the classical counterpart, these notions of independence enable the computation
of probability distributions for sums and products of independent random variables when we
have knowledge of their individual distributions. This is achieved through the corresponding
operations of additive and multiplicative convolutions. For more details, we refer to [36, 35]
for free convolutions, [32, 16] for Boolean convolutions, and [22, 7] for monotone convolu-
tions. Similarly, analogous convolutions, known as infinitesimal additive and multiplicative
convolutions, have been developed in [5, 19, 28, 34] for the free case and [27, 33] for the
Boolean and monotone cases.

Beyond sums and products, there is a keen interest in determining distributions of gen-
eral polynomials in independent variables. A natural starting point involves deriving the
distributions of two particular polynomials: the commutator ipx1x2 ´ x2x1q, and the anti-
commutator, x1x2 `x2x1, for independent variables x1 and x2. While the distribution of the
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commutator in the free setting was derived combinatorially using cumulants in prior works
[25], the distribution of the anti-commutator was only obtained recently in [14, 26]. This is
also the case for Boolean independent variables where the distributions of both the commu-
tator and anti-commutator were determined recently in [21]. Furthermore, the infinitesimal
free and Boolean distributions of commutators and anti-commutators were, under certain
assumptions, derived recently in [21].

On the other hand, distributions of commutators and anti-commutators for monotone
independent variables and infinitesimally monotone independent remain unexplored. One
of our primary objectives in this paper is to address this gap. As polynomials, we study
closely linear spans in Section 3 for which we obtain explicit results. In fact, let pC, ϕq be a

˚-probability space and a, b P C such that Aa ă Åb where Aa is the ˚-algebra generated by
a and Åb is the ˚-algebra generated by b and 1. We determine explicitly in Theorem 3.1 the
˚-distribution of pα,β “ αab` βba, where α and β are non-zero complex numbers. Theorem
3.1 yields for the particular case where ϕpbq “ 0 that for any k ě 1,

ϕppkα,βq “
#a

αβϕpb2qkϕpakq if k is even,

0 if k is odd.

The framework of Theorem 3.1 encompasses both cases of the commutator q “ ipab ´ baq
and anti-commutator p “ ab ` ba and yields for each k ě 1,

ϕppkq “ 1

2
a
ϕpb2q

´
rϕpbq `

a
ϕpb2qsk`1 ´ rϕpbq ´

a
ϕpb2qsk`1

¯
ϕpakq;

ϕpqkq “ 1

2

`
1 ´ p´1qk`1

˘ ´a
ϕpb2q ´ ϕpbq2

¯k

ϕpakq.

Moreover, using the upper triangular technique developed in [34, 27], we extend our results
to the infinitesimal monotone setting where we study linear spans in Section 4 and general
polynomials as described in Remark 4.5.

In the work of Lenczewski [18], random matrix models for asymptotic monotone indepen-
dence with respect to the partial trace were given and were further discussed in [12, 10].
On the other hand, Mingo and Tseng [21] introduced recently a constructive approach for
generating random matrix models for which asymptotic monotone independence holds. We
extend in this paper the utility of our results to derive the distribution of such random
matrices with respect to the partial trace, as elaborated in Section 5.

Our approach builds upon the work of Arizmendi and Celestino [1] who study distributions
of polynomials with cyclic monotone elements. The notion of cyclic monotone independence
was introduced by Collins, Hasebe, and Sakuma [11] to describe the joint limiting spectral
distribution of some pairs of matrices. They derived spectral formulas for certain polyno-
mials of degree 2 and 3 in cyclic monotone elements, including the commutator and anti-
commutator. In [1], Arizmendi and Celestino offered a novel approach for finding spectral
distributions for polynomials in cyclic monotone elements. A pivotal aspect of their method
lies in the observation that many polynomials can be expressed as the p1, 1q-entry of matrix
products, allowing for the derivation of the distribution by examining the corresponding
product matrices. Building on this idea, we extend this approach to study polynomials in
monotone independent elements. Moreover, this approach can be further pushed to investi-
gate more general polynomials which lead to computing the precise distributions of a wide
range of polynomials in random matrices as Proposition 5.4.
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2. Preliminaries

2.1. Monotone Independence. A non-commutative probability space (or ncps for short)
is a pair pC, ϕq such that C is a unital algebra and ϕ is a linear functional on C that ϕp1q “ 1.
Moreover, a ncps pC, ϕq is called a ˚-probability space if we further assume C is a ˚-algebra
and ϕpa˚aq ě 0 for all a P C.

For a1, . . . , ak P C, the ˚-distribution of ta1, . . . , aku is the set of all possible joints moments

µa1,...,ak “ tϕpam1

i1
¨ ¨ ¨ amn

in
q | n ě 1, 1 ď i1, . . . , in ď k and m1, . . . , mn P t1, ˚uu.

Definition 2.1. Suppose that pC, ϕq is a ˚-probability space, and A and B are ˚-subalgebras
of C that are not necessarily unital. We say that pA,Bq is monotone independent and write
A ă B if

ϕpb0a1b1 ¨ ¨ ¨ anbnq “ ϕpa1 ¨ ¨ ¨ anqϕpb0qϕpb1q ¨ ¨ ¨ϕpbnq,(2.1)

for all a1, . . . , an P A, b1, . . . , bn´1 P B and b0, bn are either 1 or elements in B.

For two sets A1 and A2 of elements in C, we say pA1, A2q is monotone independent and

write A1 ă A2 if A1 ă Å2 where A1 is the ˚-algebra generated by A1 and Å2 is the ˚-algebra
generated by A2 and 1.

Remark 2.2. Note that under the notion of monotone independence of pair algebras pA1,A2q,
we usually don’t consider A1 to be unital; otherwise, for all a P A2, we have

ϕpanq “ ϕp1 ¨ a ¨ 1 ¨ a ¨ ¨ ¨ 1 ¨ aq “ ϕpaqnϕp1 ¨ 1 ¨ ¨ ¨ 1 ¨ 1q “ ϕpaqn,

which is not the case that we are interested in.

2.2. Infinitesimally Monotone Independence. Let pC, ϕq be a ˚-probability space and

ϕ1 : C Ñ C be a linear functional such that ϕ1p1q “ 0 and ϕpa˚q “ ϕpaq for all a P C. Then
we call the triple pC, ϕ, ϕ1q an infinitesimal ˚-probability space.

For a1, . . . , ak P C, the infinitesimal ˚-distribution of ta1, . . . , aku is the pair pµa1,...,ak , µ
1
a1,...,ak

q
where µa1,...,ak is the ˚-distribution of ta1, . . . , aku and

µ1
a1,...,ak

“ tϕ1pam1

i1
¨ ¨ ¨ amn

in
q | n ě 1, 1 ď i1, . . . , in ď k and m1, . . . , mn P t1, ˚uu.
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Definition 2.3. Let pC, ϕ, ϕ1q be an infinitesimal ˚-probability space and let A and B be ˚-
subalgebras of C that are not necessary unital. We say that pA,Bq is infinitesimally monotone
independent and write A ăăă B if

ϕpb0a1b1 ¨ ¨ ¨ anbnq “ ϕpa1 ¨ ¨ ¨ anqϕpb0qϕpb1q ¨ ¨ ¨ϕpbnq,
ϕ1pb0a1b1 ¨ ¨ ¨ anbnq “ ϕ1pa1 ¨ ¨ ¨ anqϕpb0qϕpb1q ¨ ¨ ¨ϕpbnq

`ϕpa1 ¨ ¨ ¨ anq
nÿ

j“0

ϕpb0q ¨ ¨ ¨ϕpbj´1qϕ1pbjqϕpbj`1q ¨ ¨ ¨ϕpbnq,

for all a1, . . . , an P A, b1, . . . , bn´1 P B and b0, bn are either 1 or elements in B.

For two sets A1 and A2 in C, we say that pA1, A2q is infinitesimally monotone independent

and write A1 ăăă A2 if A1 ăăă Å2 with A1 being the ˚-algebra generated by A1 and Å2 be the
˚-algebra generated by A2 and 1.

Note that the infinitesimal monotone independence can be understood as monotone inde-
pendence with amalgamation. To be precise, let pC, ϕ, ϕ1q be an infinitesimal ˚-probability
space and define

rC “
! „

a a1

0 a

 ˇ̌
ˇa, a1 P C

)
, rC “

! „
c c1

0 c

 ˇ̌
ˇc, c1 P C

)
.

Finally, let rϕ : rC Ñ rC be the linear functional defined by

rϕ
´ „

a a1

0 a

 ¯
“

„
ϕpaq ϕ1paq ` ϕpa1q
0 ϕpaq


.

Then the triple p rC, rC, rϕq forms a rC-valued probability space (see [34]). The correspondence
to independence with amalgamation is illustrated by the following theorem by Perales and
Tseng [27].

Theorem 2.4. Let pC, ϕ, ϕ1q be an infinitesimal ˚-probability space and let A and B be
˚-subalgebras of C that are not necessarily unital. Then pA,Bq is infinitesimally monotone

independent if and only if p rA, rBq is monotone independent with respect to rϕ where

rA “
! „

a a1

0 a

 ˇ̌
ˇa, a1 P A

)
and rB “

! „
a a1

0 a

 ˇ̌
ˇa, a1 P B

)
.

2.3. Random Matrices for Monotone independence.

Definition 2.5. Let pCn, ϕnqn be a sequence of ncps and pan, bnq be a pair of elements in Cn
for each n. We say that the sequence pan, bnqn is asymptotically monotone independent with
respect to ϕn if there exist a ncps pC, ϕq and elements a, b P C with a ă b such that pan, bnq
converges to pa, bq in distribution; that is,

lim
nÑ8

ϕnpppan, bnqq “ ϕpppa, bqq for any polynomial p

and a ă b with respect to ϕ.

We present the random matrix model given by Lenczewski [18] where asymptotic monotone
independence holds with respect to the partial trace. Let AN be an N ˆ N random matrix
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and N0 ď N be a fixed natural number. AN can be represented as a composition of four
block matrices in the following manner:

AN “
„
Ap1,1q Ap1,2q

Ap2,1q Ap2,2q


,

where Ap1,1q corresponds to a square submatrix of size N0 ˆN0, A
p2,2q to a square submatrix

of size pN ´ N0q ˆ pN ´ N0q, Ap1,2q to a submatrix of size N0 ˆ pN ´ N0q, and Ap2,1q to a
submatrix of size pN ´ N0q ˆ N0. The partial trace ψN of AN is then defined by

(2.2) ψNpAN q :“ 1

N0

pE ˝ TrN0
qpAp1,1q

N q

where TrN0
is the non-normalized trace. Here we note that the partial trace ψN depends on

N0. Lenczewski showed that if AN and BN are independent GUE matrices, then (TAN
, BNq

is asymptotically monotone independent with respect to ψN where

TAN
“

„
0 Ap1,2q

Ap2,1q 0


.

In [21], Mingo and Tseng considered the notion of infinitesimal freeness and showed a
method for utilizing infinitesimal idempotents to construct monotone independent random
matrix models. By this construction, they recover the random matrix models in [18] as
particular cases. We illustrate this construction for the reader’s convenience and start by
recalling some notation.

Let pC, ϕ, ϕ1q be an infinitesimal probability space, and let j P C be an infinitesimal
idempotent element, that is, ϕpjkq “ 0 for all k ě 1 and j “ j2. Assume furthermore that
ϕ1pjq ‰ 0 and let A be a unital subalgebra of C that is infinitesimally free from tju. Finally,
define

ψpaq “ 1

ϕ1pjqϕ
1pajq for all a P C,

and note that ψpaq “ ϕpaq for all a P A. It is clear that ψ is a linear functional on C with
ψp1q “ 1, and hence, pC, ψq is a ncps. Finally, set jp´1q :“ j and jp1q :“ 1 ´ j, and define
JapAq to be the algebra generated by

tjpε1qa1j
pε2qa2 ¨ ¨ ¨ jpεk´1qak´1j

pεkq | k ě 0, ε1, . . . , εk P t˘1u with ε1 ‰ ¨ ¨ ¨ ‰ εk, a1, . . . , ak P Au.
We refer to [15, 19] for more details on infinitesimal free independence and recall now the
following result in [21, Theorem 5.5].

Theorem 2.6. Suppose A and B are unital subalgebras of C such that tA,Bu are infinites-
imally free from j in pC, ϕ, ϕ1q. If A and B are free with respect to ϕ, then pJapAq,Bq is
monotone independent with respect to ψ.

Let us recall a natural framework of an infinitesimal ˚-probability space for random ma-

trices. Let A
p1q
N , . . . , A

pkq
N be N ˆ N random matrices, and consider the linear map ϕN on

CxX1, . . . , Xky, the algebra of polynomials in k non-commuting indeterminates, defined by

ϕNppq “ 1

N
pE ˝ TrNq

`
ppAp1q

N , . . . , A
pkq
N q

˘
.

If for all p P CxX1, . . . , Xky, ϕppq :“ limNÑ8 ϕN ppq exists as well as ϕ1ppq “ limNÑ8 ϕ
1
Nppq

where ϕ1
Nppq :“ NrϕN ppq ´ ϕppqs, then pϕ, ϕ1q is said to be the asymptotic infinitesimal law

of tAp1q
N , . . . , A

pkq
N u.
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We recall now real and complex Wigner matrices and consider certain assumptions on their
moments. We will provide applications of our main results to polynomials in such matrices in

Section 5. We denote byWN the NˆN Hermitian matrix defined byWN “ 1?
N

pW pNq
i,j q1ďi,jďN

with W
pNq
i,j “ ĎW pNq

j,i for j ą i. For each N P N, pW pNq
i,j q1ďiďjďN is a family of independent

random variables such that the diagonal entries are real-valued centered random variables
with common variance, say s2. For real Wigner matrices, we assume that off-diagonal entries
are real-valued variables satisfying for all i ă j:

ErW pNq
i,j s “ 0 and Er|W pNq

i,j |2s “ σ2.

For the complex Wigner matrices, we assume that the off-diagonal entries are complex-

valued and satisfy, in addition to the above conditions, ErpW pNq
i,j q2s “ 0 for all i ă j. It

is well-known that the limiting spectral distribution of a Wigner matrix is the semicircular
distribution. Since the latter is compactly supported, this is equivalent to the convergence
of the moments, i.e., for all k ě 1,

lim
NÑ8

1

N
pE ˝ TrNqpW k

N q “
#
Cm if k “ 2m is even,

0 if k is odd,

where Cm is the m-th Catalan number. Moreover, a family of independent real or complex
Wigner matrices is known to be asymptotically free with respect to ϕN , see for instance

[2][Theorem 5.4.2]. Now assuming furthermore that for i ă j, Er|W pNq
i,j |4s “ α and

sup
NPN

sup
1ďiďkďN

Er|W pNq
i,j |ℓs ă 8 for all ℓ P N,

then Au [3] proved that that WN has an infinitesimal distribution generalizing the result of
[13] for matrices whose entries are identically distributed. Moreover, Au proves that a family
of independent Wigner matrices satisfying the above moment conditions is asymptotically
infinitesimally free from finite rank matrices. Indeed, Lemma 3.4 and Corollary 3.11 in [3]
yield the following:

Theorem 2.7. Let pW piq
N qiPI be a family of independent N ˆ N real or complex Wigner

matrices satisfying the above moment conditions and denote by E
pj,kq
N the unit matrix in the

pj, kq-th coordinate. Then for any fixed N0, pW piq
N qiPI and pEpj,kq

N q1ďj,kďN0
are asymptotically

infinitesimally free with respect to pϕN , ϕ
1
Nq.

We note that in a more recent paper, Au proves asymptotic infinitesimal freeness for a
more general class of matrices, see [4, Proposition 3.6].

It is noteworthy that the limit operators of pEpj,jq
N q1ďjďN0

are infinitesimal idempotents.
Consequently, we can construct many asymptotically monotone independent random matrix
models by combining Theorem 2.6 and Theorem 2.7. In particular, choose AN and BN

to be asymptotically free and asymptotically infinitesimally free from jN “ řN0

j“1
E

j,j
N . It

is easy to see that ψN p¨q “ 1

ϕ1

N
pjN qϕ

1
Np¨jN q is the partial trace in (2.2) and that TAN

“
jNAN p1 ´ jNq ` p1 ´ jN qANjN . This yields that pTAN

, BNq is asymptotically monotone
independent with respect to the partial trace. Moreover, the limiting distribution of TAN

with respect to ψN can then be computed following [21, Proposition 5.3] which, whenever
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AN and jN are asymptotically infinitesimally free, yields that

lim
NÑ8

ψNpT k
AN

q “

$
&
%

”
lim
NÑ8

`
pE ˝ TrNqpA2

Nq ´ pE ˝ TrNqpAN q2
˘ık{2

if k is even,

0 if k is odd,
(2.3)

where trN denotes the normalized trace.

3. Distribution of Polynomials in Monotone Independent Elements

In this section, we extend the approach in [1] to the monotone setting and study distri-
butions of polynomials in monotone independent elements. For two monotone independent
elements a and b, we start by studying distributions of linear spans of ab and ba for which we
derive explicit expressions. As particular cases, we determine the distributions of the com-
mutator and anti-commutator. Then, in Remark 3.5, we discuss more general polynomials
in monotone independent elements.

The Linear Span of ab and ba. Let pC, ϕq be a ˚-probability space. For any a and b in C,
we denote by pα,β :“ pα,βpa, bq, the linear span of ab and ba, given by pα,β “ αab ` βba for
some non-zero complex numbers α and β.

We recall that for a given x P A, we set Ax to be the ˚-algebra generated by x, and Åx to
be the ˚-algebra generated by x and 1.

Theorem 3.1. Assume that Aa ă Åb, then for each k ě 1, we have for any k P N,

ϕppkα,βq “ ϕpakq
2k`1γ

”
ppα ` βqx` γqk`1 ´ ppα` βqx´ γqk`1

ı

where x “ ϕpbq and γ “
a

pα ´ βq2ϕpbq2 ` 4αβϕpb2q.
Remark 3.2. Note that by monotone independence, the ˚-distribution of pα,β depends on
the distribution of b only through its first and second moments ϕpbq and ϕpb2q. Now, if we
assume that ϕpbq “ 0, then for any k ě 1,

ϕppkα,βq “ 1

2

a
αβϕpb2qkϕpakq ` p´1qk

2

a
αβϕpb2qkϕpakq “

#a
αβϕpb2qkϕpakq if k is even,

0 if k is odd.

Furthermore, if a is an even operator, then we have the ˚-distribution of pα,β is a mere scaling
of the distribution of a.

Note that, as a direct consequence, we obtain the ˚-distribution of anti-commutators and
commutators in monotone independent variables by taking pα, βq “ p1, 1q or pα, βq “ pi,´iq
respectively. More precisely, we obtain the following moment expressions.

Corollary 3.3. Consider a, b P C such that Aa ă Åb. Let p “ ab ` ba and q “ ipab ´ baq,
then for each k ě 1,

ϕppkq “ 1

2
a
ϕpb2q

´
rϕpbq `

a
ϕpb2qsk`1 ´ rϕpbq ´

a
ϕpb2qsk`1

¯
ϕpakq;

ϕpqkq “ 1

2

`
1 ´ p´1qk`1

˘ ´a
ϕpb2q ´ ϕpbq2

¯k

ϕpakq.
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In order to derive explicit expressions for the distributions of spans of ab and ba, we
prove first the following proposition that plays a crucial role in bridging the gap between
matrices with monotone entries and the distribution of polynomials. For a given algebra D,
we represent the unital ˚-algebra generated by D as D̊.

Proposition 3.4. Let pC, ϕq be a ˚-probability space. Suppose that A and B are ˚-
subalgebras of C such that A ă B̊. Consider Ak “ rapkq

i,j si,jPrns P MnpAq for each k “ 1, . . . , m

and Bs “ rbpsq
i,j si,jPrns P MnpBq for each s “ 0, 1, . . . , m. Then we have

pTrn b ϕqpD0A1B1A2B2 ¨ ¨ ¨Bm´1AmDmq “ pTrn b ϕqpD1
0
A1B

1
1
A2B

1
2

¨ ¨ ¨B1
m´1

AmD
1
mq

where D0 “ In or B0, Dm “ In or Bm, B1
k “

´
ϕpbpkq

i,j qi,jPrns

¯
P MnpCq, for each k, and

D1
0

“ In or B1
0
, D1

m “ In or B1
m.

Proof. Without loss of generality, we may assume D0 “ In and Dm “ Bm (the proof of all
other cases are similar). Note that by monotone independence with respect to ϕ, we obtain

pTrn b ϕqpA1B1A2B2 ¨ ¨ ¨AmBmq

“
ÿ

i1,...,i2mPrns
ϕ

´
a

p1q
i1,i2

b
p1q
i2,i3

a
p2q
i3,i4

b
p2q
i4,i5

¨ ¨ ¨ apmq
i2m´1,i2m

b
pmq
i2m,i1

¯

“
ÿ

i1,...,i2mPrns
ϕ

´
a

p1q
i1,i2

ϕpbp1q
i2,i3

qap2q
i3,i4

ϕpbp2q
i4,i5

q ¨ ¨ ¨ apmq
i2m´1,i2m

ϕpbpmq
i2m,i1

q
¯

“ pTrn b ϕqpA1B
1
1
A2B

1
2

¨ ¨ ¨AmB
1
mq.

l

Having this in hand, we are ready to prove the above results.

Proof of Theorem 3.1. Let

B0 “
„
α b

0 0


, A “

„
a 0

0 a


, and B1 “

„
b 0

β 0


.

Then it is obvious that B0AB1 “ Diagpαab ` βba, 0q. Note that following Proposition 3.4,
for any k ě 1, we have

ϕppkα,βq “ pTr2 b ϕq
`
pB0AB1qk

˘

“ pTr2 b ϕq
`
B0pAB1B0qk´1AB1

˘

“ pTr2 b ϕq
˜„

α ϕpbq
0 0

 ˆ„
a 0

0 a

 „
αϕpbq ϕpb2q
αβ βϕpbq

˙k´1 „
a 0

0 a

 „
ϕpbq 0

β 0

¸

“ pTr2 b ϕq
˜„

ak 0

0 ak

 „
α ϕpbq
0 0

 ˆ„
αϕpbq ϕpb2q
αβ βϕpbq

˙k´1 „
ϕpbq 0

β 0

¸
.

We observe that for all x, y P C,

„
αx y

αβ βx


“ SDS´1 where

D “
„ pα`βqx´γ

2
0

0
pα`βqx`γ

2


, S “

„ pα´βqx´γ

2αβ

pα´βqx`γ

2αβ

1 1


, S´1 “

«
´αβ

γ

γ`pα´βqx
2γ

αβ

γ

γ´pα´βqx
2γ

ff
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and γ “
a
ϕpbq2pα´ βq2 ` 4αβϕpb2q. Then

„
α x

0 0

 „
αx y

αβ βx

k´1 „
x 0

β 0



“
„ pα´βqx´γ

2β
` x

pα´βqx`γ

2β
` x

0 0

 «
ppα`βqx´γqk´1

2k´1 0

0
ppα`βqx`γqk´1

2k´1

ff «
´pβ2`αβqx`βγ

2γ
0

pβ2`αβqx`βγ

2γ
0

ff

“ 1

2k`1γ

”
ppα ` βqx´ γqk p´pα ` βqx` γq ` ppα ` βqx` γqk ppα ` βqx` γq

ı „
1 0

0 0


.

Thus, we complete the proof by concluding that

ϕppkα,βq “ ϕpakq
2k`1γ

”
ppα ` βqx` γqk`1 ´ ppα ` βqx´ γqk`1

ı
.

l

Remark 3.5. Let pC, ϕq be a ˚-probability space. Let p be any polynomial generated by

elements of A and B with A ă B̊. Note that p can be expressed in the form

p “
nÿ

j“1

bjyjb
1
j

where n ě 1, b1, b
1
1
, . . . , bn, b

1
n P algpB, 1Cq, y1, . . . , yn P Q with Q being the set defined by

(3.1) Q “ ta0b1a1 ¨ ¨ ¨ bkak | k ě 0, a0, . . . , ak P A and b1, . . . , bk P Bu.
To soothe the notation, we write ỹ “ a0ϕpb1qa1 ¨ ¨ ¨ϕpbkqak whenever y “ a0b1a1 ¨ ¨ ¨ bkak for
some a1, . . . , ak P A and b1, . . . , bk P B. Then by monotone independence, we get for any
m P N,

(3.2) ϕppmq “
ÿ

j1,...,jmPrns
ϕpỹj1 ¨ ¨ ¨ ỹjmqϕpbj1qϕpb1

j1
bj2qϕpb1

j2
bj3q ¨ ¨ ¨ϕpb1

jm´1
bjmqϕpb1

jm
q.

We provide in the following proposition an example to demonstrate how to compute the
law of a given polynomial.

Proposition 3.6. Suppose pC, ϕq is a ˚-probability space, and a, b1, b2, c1, and c2 are elements

in C such that ptau, tb1, b2, c1, c2uq is monotone independent. Assume ϕpb1q “ b̃1, ϕpb2q “
b̃2, ϕpc1q “ c̃1, ϕpc2q “ c̃2, and

ϕpbibjq “

$
’&
’%

b1,1 if pi, jq “ p1, 1q,
b2,2 if pi, jq “ p2, 2q,
b1,2 if pi, jq “ p1, 2q or p2, 1q.

We set p “ b1ac1ab1 ` b2ac2ab2. Then the distribution of p is

αµa2δϑ`ζ ` p1 ´ αqµa2δϑ´ζ

where µa2 is the distribution of a2, δ denotes the dirac measure, α “ 1

2ζ
pζ ´ ϑ` c̃1b̃

2

1
` c̃2b̃

2

1
q

with

ϑ “ 1

2
pb2,2c̃2 ` b1,1c̃1q and ζ “ 1

2

b
pb2,2c̃2 ´ b1,1c̃1q2 ` 4b2

1,2c̃2c̃1.
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Proof. By Remark 3.5, we have

ϕppkq “ ϕ
´

rb1 ¨ aϕpc1qa ¨ b1 ` b2 ¨ aϕpc2qa ¨ b2sk
¯

“
2ÿ

j1,...,jk“1

ϕpaj1 ¨ ¨ ¨ ajkqϕpbj1qϕpbj1bj2qϕpbj2bj3q ¨ ¨ ¨ϕpbjk´1
bjkqϕpbjkq

where a1 “ ϕpc1qa2 and a2 “ ϕpc2qa2. Note that for all pj1, . . . , jkq P r2sk,
ϕpaj1 ¨ ¨ ¨ ajkq “ ϕpa2kqϕpcj1qϕpcj2q ¨ ¨ ¨ϕpcjkq.

Thus, if for each i P r2s, we set α
piq
1

“ ϕpbiq, and

α
piq
k “

ÿ

j1,...,jk´1Pr2s
ϕpbi ¨ bj1qϕpbj1bj2q ¨ ¨ ¨ϕpbjk´2

bjk´1
qϕpbjk´1

qϕpcj1qϕpcj2q ¨ ¨ ¨ϕpcjk´1
q for k ě 2

then we obtain

ϕppkq “ ϕpa2kqαk where αk :“ ϕpb1qϕpc1qαp1q
k ` ϕpb2qϕpc2qαp2q

k .

We observe that for each l ě 2,

α
p2q
l “ ϕpb2b1qϕpc1qαp1q

l´1
` ϕpb2b2qϕpc2qαp2q

l´1
“ b1,2c̃1α

p1q
l´1

` b2,2c̃2α
p2q
l´1
,

which when iterated we obtain for each l ě 3,

α
p2q
l “ b1,2c̃1α

p1q
l´1

` b1,2c̃1b2,2c̃2α
p1q
l´2

` b2
2,2c̃

2

2
α

p2q
l´2

“ b1,2c̃1

´
α

p1q
l´1

` b2,2c̃2α
p1q
l´2

` b2
2,2c̃

2

2
α

p1q
l´3

¯
` b3

2,2c̃
3

2
α

p2q
l´3

“ b1,2c̃1

´
α

p1q
l´1

`
l´3ÿ

j“1

b
j
2,2c̃

j
2
α

p1q
l´pj`1q

¯
` bl´2

2,2 c̃
l´2

2
pb1,2b̃1c̃1 ` b2,2b̃2c̃2q.

Using the expression obtained for α
p2q
k´1

, we have get for any k ě 2,

α
p1q
k “ ϕpb1b1qϕpc1qαp1q

k´1
` ϕpb1b2qϕpc2qαp2q

k´1

“ b1,1c̃1α
p1q
k´1

` b1,2c̃2α
p2q
k´1

“ b1,1c̃1α
p1q
k´1

` b2
1,2c̃1

´
c̃2α

p1q
k´2

`
k´4ÿ

j“1

b
j
2,2c̃

j`1

2
α

p1q
k´j´2

` bk´3

2,2 c̃
k´2

2
b̃1

¯

` b1,2b
k´2

2,2 c̃
k´1

2
b̃2.

Then we observe

α
p1q
k ´ b2,2c̃2α

p1q
k´1

“ b1,1c̃1α
p1q
k´1

` pb2
1,2 ´ b2,2b1,1qc̃2c̃1αp1q

k´2
,

and hence we obtain the following linear homogeneous recurrences

α
p1q
k ´ pb2,2c̃2 ` b1,1c̃1qαp1q

k´1
` pb2,2b1,1 ´ b2

1,2qc̃2c̃1αp1q
k´2

“ 0.

Thus by solving the characteristic equation x2 ´ pb2,2c̃2 ` b1,1c̃1qx` pb2,2b1,1 ´ b2
1,2qc̃2c̃1 “ 0,

we have x “ ϑ˘ ζ as a solution with

ϑ “ 1

2
pb2,2c̃2 ` b1,1c̃1q and ζ “ 1

2

b
pb2,2c̃2 ´ b1,1c̃1q2 ` 4b2

1,2c̃2c̃1.
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This yields that

α
p1q
k “ s

p1q
1

pϑ ` ζqk ` s
p1q
2

pϑ ´ ζqk

for some constants s
p1q
1

and s
p1q
2

that determined by the initial conditions, and similarly

α
p2q
k “ s

p2q
1

pϑ ` ζqk ` s
p2q
2

pϑ ´ ζqk

for some constants s
p2q
1

and s
p2q
2

. Hence, putting the above terms together, we infer that for
any k ě 1,

αk “ pb̃1c̃1sp1q
1

` b̃2c̃2s
p2q
1

qpϑ` ζqk ` pb̃1c̃1sp1q
2

` b̃2c̃2s
p2q
2

qpϑ ´ ζqk.

Now we observe that α0 “ 1 and α1 “ c̃1b̃
2

1
` c̃2b̃

2

2
. Thus,

#
b̃1c̃1psp1q

1
` s

p1q
2

q ` b̃2c̃2psp2q
1

` s
p2q
2

q “ 1

b̃1c̃1rsp1q
1

pϑ` ζq ` s
p1q
2

pϑ´ ζqs ` b̃2c̃2rsp2q
1

pϑ ` ζq ` s
p2q
2

pϑ ´ ζqs “ c̃1b̃
2

1
` c̃2b̃

2

2
.

As a result, we obtain

b̃1c̃1s
p1q
1

` b̃2c̃2s
p2q
1

“ 1

2ζ
pζ ´ ϑ` c̃1b̃

2

1
` c̃2b̃

2

2
q

b̃1c̃1s
p1q
2

` b̃2c̃2s
p2q
2

“ 1

2ζ
pζ ` ϑ´ c̃1b̃

2

1
´ c̃2b̃

2

2
q

by solving a system of equations which concludes the proof by obtaining for any k ě 1,

ϕppkq “ ϕpa2kqαk

“ ϕpa2kq
2ζ

pζ ´ ϑ ` c̃1b̃
2

1
` c̃2b̃

2

2
qpϑ ` ζqk ` ϕpa2kq

2ζ
pζ ` ϑ´ c̃1b̃

2

1
´ c̃2b̃

2

2
qpϑ ´ ζqk.

l

4. Distribution of Polynomials in Infinitesimally Monotone Independent

Elements

Let pC, ϕ, ϕ1q be an infinitesimal ˚-probability space and consider its associated rC-valued

probability space p rC, rC, rϕq, described in Subsection 2.2. Note that by Theorem 2.4 and

the fact that rC is commutative, we extend our approach to the framework of p rC, rC, rϕq.
This allows passing directly many results on ˚-distributions of polynomials in monotone
independent variables to the infinitesimal setting.

For two infinitesimally monotone elements a and b, we start by illustrating, in Section 4,
how this allows us to derive an explicit expression of the infinitesimal distribution of linear
spans of ab and ba, covering the cases of the commutator and anti-commutator. Then,
we discuss in Remark 4.5, more general polynomials in infinitesimal monotone independent
elements.
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Linear spans in ab and ba. The commutativity of rC allows deriving explicit expressions of
the infinitesimal ˚-distribution of linear spans. Let a and b be two elements in C such that
a ăăă b and set A “ Diagpa, aq andB “ Diagpb, bq. Then, by Theorem 2.4, we have that A ă B

with respect to rϕ. We obtain, following the same lines of proof as in Theorem 3.1, the explicit
distribution of the linear span Pα,β :“ Pα,βpA,Bq “ αAB ` βBA for any non-zero complex

numbers α and β. More precisely, setting X “ rϕpBq and Γ “
a

pα ´ βq2 rϕpBq2 ` 4αβ rϕpB2q,
we obtain for each k ě 1,

rϕpP k
α,βq “ rϕpAkqΓ´1

2k`1

”
ppα ` βqX ` Γqk`1 ´ ppα ` βqX ´ Γqk`1

ı
.(4.1)

The key point that enables deriving such an expression following the same lines as in the

scalar case is the fact that rC is commutative, and more precisely, XΓ “ ΓX. Note that by
comparing the p1, 2q-entry of both sides of (4.1), we obtain explicitly the kth moment of pα,β
with respect to ϕ1.

Remark 4.1. Note that we can also compute ϕ1ppkα,βq by formally differentiating ϕppkα,βq
in Theorem 3.1. However, we adopt the method in [34, 27] by translating problems in the

infinitesimal setting to independence over the commutative algebra rC. This methodology
proves beneficial for addressing a range of other problems in infinitesimal independence,
which motivates our choice to illustrate it for computing the infinitesimal distribution.

Theorem 4.2. Let a and b be two elements in an infinitesimal ˚-probability space pC, ϕ, ϕ1q
such that Aa ăăă Åb. For given non-zero complex numbers α and β, let pα,β “ αab ` βba.
Then for each k ě 0,

ϕ1ppkα,βq “ ϕpakq
2k`1γ

«
ppα ` βqϕpbq ` γqk

´
pα ` βq

`
pk ` 1qϕ1pbq ´ ϕpbqω{γ2

˘
` kω{γ

¯

´ ppα ` βqϕpbq ´ γqk
´

pα` βq
`
pk ` 1qϕ1pbq ´ ϕpbqω{γ2

˘
´ kω{γ

¯ff

` ϕ1pakq
2k`1γ

”
ppα ` βqϕpbq ` γqk`1 ´ ppα` βqϕpbq ´ γqk`1

ı
,

where

(4.2) γ “
a

pα´ βq2ϕpbq2 ` 4αβϕpb2q and ω “ pα´ βq2ϕpbqϕ1pbq ` 2αβϕ1pb2q.

Remark 4.3. Note that the infinitesimal ˚-distribution of pα,β only depends on that of a
and on ϕpbq, ϕpb2q, ϕ1pbq and ϕ1pb2q. In the particular case where ϕpbq “ ϕ1pbq “ 0, this
reduces to

ϕ1ppkα,βq “
”k
4
ϕ1pb2qϕpb2qk{2´1ϕpakq ` ϕ1pakqϕpb2qk{2

2

ı
pαβqk{2

´
1 ` p´1qk

¯
.

Again, as a direct consequence of Theorem 4.2, we obtain the infinitesimal ˚-distribution of
anti-commutators and commutators by taking pα, βq “ p1, 1q or pα, βq “ pi,´iq respectively.
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Corollary 4.4. Let p “ ab` ba and q “ ipab ´ baq, then for each k ě 1, we have

ϕ1ppkq “ ϕpakq
4
a
ϕpb2qϕpb2q

«
pϕpbq `

a
ϕpb2qqk

´
2pk ` 1qϕ1pbqϕpb2q ´ ϕ1pb2q

“
ϕpbq ´ k

a
ϕpb2q

‰¯

`pϕpbq ´
a
ϕpb2qqk

´
2pk ` 1qϕ1pbqϕpb2q ´ ϕ1pb2q

“
ϕpbq ` k

a
ϕpb2q

‰¯ff

` ϕ1pakq
2
a
ϕpb2q

´
rϕpbq `

a
ϕpb2qsk`1 ´ rϕpbq ´

a
ϕpb2qsk`1

¯

and

ϕ1pqkq “ ϕpakqk
4

`
1 ` p´1qk

˘ ´a
ϕpb2q ´ ϕpbq2

¯k´2 `
ϕ1pb2q ´ 2ϕpbqϕ1pbq

˘

`ϕ1pakq
2

`
1 ` p´1qk

˘ ´a
ϕpb2q ´ ϕpbq2

¯k

.

Proof of Theorem 4.2. We start by noting that

rϕpP k
α,βq “ rϕ

ˆ„
pkα,β 0

0 pkα,β

˙
“

„
ϕppkα,βq ϕ1ppkα,βq

0 ϕppkα,βq


.

Thus in order to derive an expression for ϕ1ppkα,βq, we shall compute the p1, 2q-entry of the
right hand side of (4.1). In order to do this, let us note for any z, z1 P C and matrix

M “
„
z z1

0 z


P rC,

M1{2 “
?
M “

„?
z z1

2
?
z

0
?
z


and M´1 “

„
z´1 ´z´2z1

0 z´1


.

Setting x “ ϕpbq and y “ ϕ1pbq, we observe that

X “ rϕpBq “
„
x y

0 x


and Γ “

a
pα ´ βq2 rϕpBq2 ` 4αβ rϕpB2q “

„
γ ω

γ

0 γ


,

where γ and ω are defined in (4.2), and finally obtain that

1

2k`1
Γ´1 “ 1

2k`1

„
γ´1 ´γ´2 ¨ ω{γ
0 γ´1


“ 1

2k`1γ

„
1 ´ω{γ2
0 1


.

Note that

ppα ` βqX ´ Γqk`1 “
„

ppα` βqx ´ γqk`1 pk ` 1q
`
pα ` βqx´ γ

˘k`
pα` βqy ´ ω{γ

˘

0 ppα` βqx´ γqk`1



“ ppα` βqx´ γqk
„

pα ` βqx´ γ pk ` 1q
`
pα ` βqy ´ ω{γ

˘

0 pα ` βqx´ γ


.
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Therefore,

1

2k`1
Γ´1 ppα ` βqX ´ Γqk`1

“ ppα` βqx´ γqk
2k`1γ

„
1 ´ω{γ2
0 1

 „
pα` βqx´ γ pk ` 1qppα` βqy ´ ω{γq

0 pα ` βqx´ γ



“ ppα` βqx´ γqk
2k`1γ

„
pα ` βqx´ γ pk ` 1qppα` βqy ´ ω{γq ´ ω{γ2ppα ` βqx´ γq

0 pα` βqx ´ γ



“ ppα` βqx´ γqk
2k`1γ

«
pα` βqx´ γ pα ` βq

´
pk ` 1qy ´ xω{γ2

¯
´ kω{γ

0 pα ` βqx´ γ

ff

Similarly, we also have

1

2k`1
Γ´1ppα ` βqX ` Γqk`1

“ ppα` βqx` γqk
2k`1γ

«
pα ` βqx` γ pα ` βq

´
pk ` 1qy ´ xω{γ2

¯
` kω{γ

0 pα ` βqx` γ

ff
.

Thus, the right hand side of Equation (4.1) is

ϕpakq
2k`1γ

«
ppα ` βqϕpbq ` γqk

´
pα` βq

`
pk ` 1qϕ1pbq ´ ϕpbqω{γ2

˘
` kω{γ

¯

´ ppα ` βqϕpbq ´ γqk
´

pα` βq
`
pk ` 1qϕ1pbq ´ ϕpbqω{γ2

˘
´ kω{γ

¯ff

` ϕ1pakq
2k`1γ

”
ppα ` βqϕpbq ` γqk`1 ´ ppα` βqϕpbq ´ γqk`1

ı

which completes the proof. l

Remark 4.5. (General Polynomials) The commutativity of rC allows again deriving infini-
tesimal ˚-distributions of general polynomials. Following the notation in Remark 3.5 and as-
suming A ăăă B̊, let p be any polynomials of the form p “ řn

j“1
bjyjb

1
j with b1, b

1
1
, . . . , bn, b

1
n P B

and y1, . . . , yn P Q. We denote by

rQ “ tA0B1A1 ¨ ¨ ¨BkAk | k ě 0, a0, . . . , ak P A and b1, . . . , bk P Bu

where Ai “ Diagpai, aiq andBj “ Diagpbj , bjq for each 0 ď i ď n, 1 ď j ď n. For each element

Y “ A0B1A1 ¨ ¨ ¨BkAk in rQ, we set rY “ A0 rϕpB1qA1 ¨ ¨ ¨ rϕpBkqAk. The for P “ řn

j“1
BjYjB

1
j ,

we have by Remark 3.5 for any m P N,

rϕpPmq “ rϕp
“ nÿ

j“1

Bj
rYjB1

j

‰mq

“
ÿ

j1,...,jmPrns
rϕprYj1 ¨ ¨ ¨ rYjmqrϕpBj1qrϕpB1

j1
Bj2qrϕpB1

j2
Bj3q ¨ ¨ ¨ rϕpB1

jm´1
BjmqrϕpBjmq,(4.3)
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It remains to track the p1, 2q-entry of the above equality. In the particular case where
p “ řn

k“1
bkakb

1
k, then

ϕ1ppmq “
ÿ

j1,...,jmPrns
pu1,...,um`1qPWm

ϕpu1qpaj1aj2 ¨ ¨ ¨ ajmqϕpu2qpbj1qϕpu3qpb1
j1
bj2q ¨ ¨ ¨ϕpumqpb1

jm´1
bjmqϕpum`1qpb1

jm
q,

where ϕp0q “ ϕ and ϕp1q “ ϕ1 and for each m ě 0,

Wm “ tp1, 0, 0, . . . , 0q, p0, 1, 0, ¨ ¨ ¨ , 0q, ¨ ¨ ¨ , p0, 0, ¨ ¨ ¨ , 0, 1qu Ă R
m`1.

5. Applications to Random Matrices

We show in the section the utility of our results to derive the distributions of some random
matrices with respect to the partial trace. Let us first recall that the partial trace is defined
for a given N ˆ N random matrix AN by

ψNpAN q :“ 1

N0

pE ˝ TrN0
qpAp1,1qq

where TrN0
is the non-normalized trace and Ap1,1q is the first block of AN . To draw the

connection to random matrices, we recall the notation in Subsection 2.3 and the results
stated therein and prove the following:

Proposition 5.1. Suppose AN and BN are independent N ˆN Wigner matrices as defined
in Section 2.3, then pTQpAN q, BNqN is asymptotically monotone independent with respect to
ψN for any polynomial Q whose constant term is zero.

Proof. Let Q be a polynomial that has no constant term. We note that AN and BN are
asymptotically free with respect to E˝TrN where we recall that trN is the normalized trace.
Also note that TQpAN q “ jNQpANqp1 ´ jN q ` p1 ´ jNqQpAN qjN where jN “ řN0

j“1
E

j,j
N and

that by Theorem 2.7, QpANq and BN are asymptotically infinitesimally free from jN . Then
it follows by Theorem 2.6 that pTQpAN q, BNqN is asymptotically monotone independent with
respect to ψN . l

Proposition 5.2. Let AN and BN be independent N ˆN Wigner matrices and let for some
m ě 0 and non-zero α P C, PN be the polynomial defined by

(5.1) PN “ αTAm

N
BN ` sαBNTAm

N
.

Then the limiting distribution of PN with respect to ψN is µ “ 1

2
pδω ` δ´ωq where δ is the

dirac measure and ω “
a

|α|Dm with

Dm “
#
Cm ´ C2

m{2 if m is even,

Cm if m is odd,

and Ck being the k-th Catalan number.

Proof. By Proposition 5.1, pTAm

N
, BNqN is asymptotically monotone independent with respect

to ψN . In addition, we note that the limiting distribution of TAm

N
with respect to ψN can be

easily computed following [21, Proposition 5.3]. Indeed, we have for any k ě 1,

lim
NÑ8

ψN pT k
Am

N

q “

$
&
%

”
lim
NÑ8

`
pE ˝ TrNqpA2m

N q ´ pE ˝ TrNqpAm
Nq2

˘ık{2
if k is even,

0 if k is odd.
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By the Wigner semicircular law, we infer that

lim
NÑ8

ψNpT k
Am

N

q “
#
D

k{2
m if k is even,

0 if k is odd.

Finally, observing that limNÑ8pE ˝ TrNqpBNq “ 0 and limNÑ8pE ˝ TrNqpB2

Nq “ 1, we get
by applying Theorem 3.1 and taking into account Remark 3.2 that for any k ě 1,

lim
NÑ8

ψN pP k
Nq “

#`
|α|Dm

˘k{2
if k is even

0 if k is odd.

l

Remark 5.3. The above result also holds for AN being an N ˆ N GUE matrix, and BN

an entry permutation of AN that is self-adjoint. In particular, BN can be chosen to be the
transpose of AN . Indeed, by [20] and [29], we have that pAN , BNqN is asymptotically free and
by combining Theorems 2.6 and 2.7, we obtain that pTAN

, BNqN is asymptotically monotone
independent with respect to ψN . Then by analogous arguments, we obtain the same limiting
˚-distribution of PN with respect to ψN as in Proposition 5.2.

Finally, we give another example around the polynomial in Proposition 3.6 and show how
our results easily extend to computing the distribution with respect to the partial trace of
such a polynomial in Wigner matrices.

Proposition 5.4. Let AN and BN be N ˆ N independent Wigner matrices and consider
the polynomial given by

PN “ B2n
N TAN

B2h
N TAN

B2n
N ` B2m

N TAN
B2s

N TAN
B2m

N

for some n,m, h, s ě 1. Then PN converges in distribution with respect to ψN to µ “
αδϑ`ζ ` p1 ´ αqδϑ´ζ where δ denotes the dirac measure, α “ 1

2ζ
pζ ´ ϑ`ChC

2

n `CsC
2

mq with

ϑ “ 1

2
pC2mCs ` C2nChq, ζ “ 1

2

b
pC2mCs ´ C2nChq2 ` 4b2

1,2CsCh,

and Ck being the k-th Catalan number.

Proof. It is notable that pTAN
, BNqN is asymptotically monotone independent with respect

to ψN by Proposition 5.1. Then there is a ˚-probability space pC, ψq and elements a and b

in C such that a ă b and pTAN
, BNq converges to pa, bq in ˚-distribution. In other words, for

any k ě 1,
lim
NÑ8

ψN pP k
Nq “ ψppkq where p “ b1ac1ab1 ` b2ac2ab2.

with b1 “ b2n, b2 “ b2m, c1 “ b2h, c2 “ b2s. Following the notation in Proposition 3.6, we have
b̃1 “ Cn, b̃2 “ Cm, c̃1 “ Ch, c̃2 “ Cs, and

(5.2) b1,2 “

$
’&
’%

C2n if pi, jq “ p1, 1q,
C2m if pi, jq “ p2, 2q,
Cn`m if pi, jq “ p1, 2q or p2, 1q.

Then by applying Proposition 3.6, we conclude that

ψppkq “ 1

2ζ
pζ ´ ϑ ` ChC

2

n ` CsC
2

mqpϑ ` ζqk ` 1

2ζ
pζ ` ϑ´ ChC

2

n ´ CsC
2

mqpϑ´ ζqk
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where

ϑ “ 1

2
pC2mCs ` C2nChq, and ζ “ 1

2

b
pC2mCs ´ C2nChq2 ` 4C2

n`mCsCh.

l

Remark 5.5. µ “ αδϑ`ζ ` p1 ´ αqδϑ´ζ in Proposition 5.4 is a probability measure. One
could also check that indeed α P r0, 1s using the fact that

2C2

nC
2

m ď C2

n`m ď C2nC2m for all n,m ě 1.

Note that the first inequality can be deduced by induction, while the second one follows from
the Cauchy-Schwartz inequality with respect to the inner product on polynomials defined by

xf, gy :“
ż
fpxqgpxqdµ where dµptq “ 1

2π

?
4 ´ t2dt.
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