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THE DISTRIBUTION OF POLYNOMIALS IN MONOTONE
INDEPENDENT ELEMENTS

MARWA BANNA AND PEI-LUN TSENG

ABSTRACT. Building on the work of Arizmendi and Celestino (2021), we derive the =-
distributions of polynomials in monotone independent and infinitesimally monotone indepen-
dent elements. For non-zero complex numbers « and 3, we derive explicitly the #-distribution
of pa,s = aab + Bba whenever a and b are monotone or infinitesimally monotone indepen-
dent elements. This encompasses both cases of the commutator and anti-commutator. This
approach can be pushed to study more general polynomials. As applications, we derive the
limiting distribution with respect to the partial trace of polynomials in a certain class of
random matrices.

1. INTRODUCTION

In non-commutative probability theory, diverse notions of independence arise through
the examination of purely algebraic representations of fundamental concepts in classical
probability theory. Five notions of independence were identified to satisfy natural axioms of
probability: tensor (classical), free, Boolean, monotone, and its mirror image, anti-monotone.
These notions of independence were classified by Speicher [31] and Muraki [23] 24] and also
by Ben Ghorbal and Schiirmann [6] in the framework of category theory.

Following Voiculescu’s introduction of the concept of free independence, numerous exten-
sions and generalizations of freeness have arisen within the non-commutative setting. Among
these, one notable generalization is infinitesimal freeness, see [I5] and [8]. This extension
has found practical applications in investigating the occurrence of spikes in diverse deformed
random matrix models, as shown in [3, B0, 9]. Consequently, extensions of infinitesimal
Boolean and monotone independence have also been introduced in |27, [17].

Just like the classical counterpart, these notions of independence enable the computation
of probability distributions for sums and products of independent random variables when we
have knowledge of their individual distributions. This is achieved through the corresponding
operations of additive and multiplicative convolutions. For more details, we refer to [36], 35|
for free convolutions, [32], [16] for Boolean convolutions, and [22] [7] for monotone convolu-
tions. Similarly, analogous convolutions, known as infinitesimal additive and multiplicative
convolutions, have been developed in [B, 19, 28] [34] for the free case and [27), B3] for the
Boolean and monotone cases.

Beyond sums and products, there is a keen interest in determining distributions of gen-
eral polynomials in independent variables. A natural starting point involves deriving the
distributions of two particular polynomials: the commutator i(zz2 — z2x1), and the anti-
commutator, x1xs + T2x1, for independent variables x; and x5. While the distribution of the
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commutator in the free setting was derived combinatorially using cumulants in prior works
[25], the distribution of the anti-commutator was only obtained recently in [14] [26]. This is
also the case for Boolean independent variables where the distributions of both the commu-
tator and anti-commutator were determined recently in [21]. Furthermore, the infinitesimal
free and Boolean distributions of commutators and anti-commutators were, under certain
assumptions, derived recently in [21].

On the other hand, distributions of commutators and anti-commutators for monotone
independent variables and infinitesimally monotone independent remain unexplored. One
of our primary objectives in this paper is to address this gap. As polynomials, we study
closely linear spans in Section [3] for which we obtain explicit results. In fact, let (C, ) be a
«-probability space and a, b € C such that A4, < Ay, where A, is the x-algebra generated by
a and Ay is the «-algebra generated by b and 1. We determine explicitly in Theorem [B.1] the
+-distribution of p, 3 = aab + Bba, where o and 3 are non-zero complex numbers. Theorem
3.1 yields for the particular case where ¢(b) = 0 that for any k > 1,

o(ph ) = Ozﬁw(bz)kap(ak) if k is even,
P 0 if k is odd.

The framework of Theorem B.I] encompasses both cases of the commutator ¢ = i(ab — ba)
and anti-commutator p = ab + ba and yields for each k > 1,

o) = 5 ([0 + VI~ olh) = Vel ) o)

k
old) = 5 (10— (1) (Vo) — o) ola").

Moreover, using the upper triangular technique developed in [34], 27|, we extend our results
to the infinitesimal monotone setting where we study linear spans in Section (] and general
polynomials as described in Remark

In the work of Lenczewski [I8], random matrix models for asymptotic monotone indepen-
dence with respect to the partial trace were given and were further discussed in [12, [10].
On the other hand, Mingo and Tseng [21] introduced recently a constructive approach for
generating random matrix models for which asymptotic monotone independence holds. We
extend in this paper the utility of our results to derive the distribution of such random
matrices with respect to the partial trace, as elaborated in Section

Our approach builds upon the work of Arizmendi and Celestino [I] who study distributions
of polynomials with cyclic monotone elements. The notion of cyclic monotone independence
was introduced by Collins, Hasebe, and Sakuma [I1] to describe the joint limiting spectral
distribution of some pairs of matrices. They derived spectral formulas for certain polyno-
mials of degree 2 and 3 in cyclic monotone elements, including the commutator and anti-
commutator. In [I], Arizmendi and Celestino offered a novel approach for finding spectral
distributions for polynomials in cyclic monotone elements. A pivotal aspect of their method
lies in the observation that many polynomials can be expressed as the (1, 1)-entry of matrix
products, allowing for the derivation of the distribution by examining the corresponding
product matrices. Building on this idea, we extend this approach to study polynomials in
monotone independent elements. Moreover, this approach can be further pushed to investi-
gate more general polynomials which lead to computing the precise distributions of a wide
range of polynomials in random matrices as Proposition [(.4]
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2. PRELIMINARIES

2.1. Monotone Independence. A non-commutative probability space (or ncps for short)
is a pair (C, ) such that C is a unital algebra and ¢ is a linear functional on C that p(1) = 1.
Moreover, a ncps (C, ¢) is called a =-probability space if we further assume C is a =-algebra
and ¢(a*a) = 0 for all a € C.

For aq,...,ay € C, the =-distribution of {a, ..., a;} is the set of all possible joints moments

Pay,oar, = 1@ - -ai™) [n =1, 1<iy,...,i, <k and my,...,my, € {1,}}.

Definition 2.1. Suppose that (C, ¢) is a =-probability space, and A and B are =-subalgebras
of C that are not necessarily unital. We say that (A, B) is monotone independent and write

A< B if

(2.1) p(boarby -~ - anby) = @lar--an)p(bo)p(br) - p(bn),
for all ay,...,a, € A, by,...,b,_1 € B and by, b,, are either 1 or elements in B.

For two sets A; and A, of elements in C, we say (A;, As) is monotone independent and
write A; < As if A; < A where A; is the =-algebra generated by A; and A, is the =-algebra
generated by A, and 1.

Remark 2.2. Note that under the notion of monotone independence of pair algebras (A1, .As),
we usually don’t consider A; to be unital; otherwise, for all a € Ay, we have

pa")=¢p(l-a-1-a---1-a) =p(a)"p(l-1---1-1) = p(a)",
which is not the case that we are interested in.

2.2. Infinitesimally Monotone Independence. Let (C, ) be a =probability space and
¢' : C — C be a linear functional such that ¢'(1) = 0 and ¢(a*) = ¢(a) for all a € C. Then
we call the triple (C, ¢, ') an infinitesimal -probability space.

For ay, ..., a, € C, the infinitesimal +-distribution of {ay, . .., ay} is the pair (fta, ,...a;» Mo, .. a; )
where fi4, a4, is the =-distribution of {ay, ..., a;} and

k

Py gy = 0@ ai™) [ n =1, 1 <iy,... 0, < kand my,...,m, € {1,+}}.
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Definition 2.3. Let (C, ¢, ¢’) be an infinitesimal =-probability space and let A and B be -
subalgebras of C that are not necessary unital. We say that (A, B) is infinitesimally monotone
independent and write A < B if

@(boaiby -+~ anbn) = @(ar--a,)e(bo)e(br) - p(bn),
¢ (boarby - - - anby) @' (ay -+~ an)p(bo)p(b1) - - - o(bn)

+p(ar-+-an) D @(bo) -+ (b;-1) (b)) @ (bjs1) -+ p(b),

for all ay,...,a,€ A, by,...,b,_1 € B and by, b, are either 1 or elements in B.

For two sets A; and A, in C, we say that (A;, Ay) is infinitesimally monotone independent
and write A; < Ay if A; < fotg with A; being the =-algebra generated by A; and /ig be the
x-algebra generated by A, and 1.

Note that the infinitesimal monotone independence can be understood as monotone inde-
pendence with amalgamation. To be precise, let (C, ¢, ¢') be an infinitesimal =-probability

space and define
5 a a , ~ (lc
C:{l() a] @ a EC}’ C_{lo c}
Finally, let @ : C — C be the linear functional defined by

AL D10

Then the triple (C,C, $) forms a C-valued probability space (see [34]). The correspondence
to independence with amalgamation is illustrated by the following theorem by Perales and
Tseng [27].

c,c’eC}.

Theorem 2.4. Let (C,¢,¢') be an infinitesimal =probability space and let A and B be
«-subalgebras of C that are not necessarily unital. Then (A4, B) is infinitesimally monotone

independent if and only if (./T, g) is monotone independent with respect to ¢ where

.Zz{lg Z/] a,a’eA} andgz{la Cﬂ )a,a'eB}.

0
2.3. Random Matrices for Monotone independence.

Definition 2.5. Let (C,, ¢,). be a sequence of ncps and (a,, b,) be a pair of elements in C,
for each n. We say that the sequence (ay,,b,), is asymptotically monotone independent with
respect to ¢, if there exist a ncps (C, ) and elements a,b € C with a < b such that (a,, b,)
converges to (a,b) in distribution; that is,

lim ¢, (p(an, by)) = ¢(p(a, b)) for any polynomial p
n—0o
and a < b with respect to .

We present the random matrix model given by Lenczewski [18] where asymptotic monotone
independence holds with respect to the partial trace. Let Ay be an N x N random matrix



THE DISTRIBUTION OF POLYNOMIALS IN MONOTONE INDEPENDENT ELEMENTS 5

and Ny < N be a fixed natural number. Ax can be represented as a composition of four
block matrices in the following manner:

AL 412
Ay = AL A22) >

where AMY corresponds to a square submatrix of size Ny x Ny, A®?) to a square submatrix
of size (N — Ng) x (N — Ny), AL? to a submatrix of size Ny x (N — Ny), and A®V to a
submatrix of size (N — Ny) x Ny. The partial trace ¢y of Ay is then defined by

1
2.2 Ayn) = —
(22) UnlAy) = 3
where T'ry, is the non-normalized trace. Here we note that the partial trace 1)y depends on
Ny. Lenczewski showed that if Ay and By are independent GUE matrices, then (74,,, Bx)

is asymptotically monotone independent with respect to ¥ where

0 AU
Tay = [A(Zl) 0 ]

In [2I], Mingo and Tseng considered the notion of infinitesimal freeness and showed a
method for utilizing infinitesimal idempotents to construct monotone independent random
matrix models. By this construction, they recover the random matrix models in [I8] as
particular cases. We illustrate this construction for the reader’s convenience and start by
recalling some notation.

Let (C,p,¢’) be an infinitesimal probability space, and let j € C be an infinitesimal
idempotent element, that is, ¢(j*¥) = 0 for all k = 1 and j = j2. Assume furthermore that
¢'(j) # 0 and let A be a unital subalgebra of C that is infinitesimally free from {j}. Finally,
define

(E o Trag ) (AGY)

P(a) = ﬁgp’(a‘j) for all a € C,

and note that 1(a) = ¢(a) for all a € A. It is clear that ¢ is a linear functional on C with
¥(1) = 1, and hence, (C,%) is a ncps. Finally, set Y := j and ) := 1 — j, and define
Ja(A) to be the algebra generated by

{j(el)alj(”)@ B gER) |k >0,e1,...,ep,€ {21} with ey # -+ # &, aq,...,a;, € A}

We refer to [15] [19] for more details on infinitesimal free independence and recall now the
following result in |21, Theorem 5.5].

Theorem 2.6. Suppose A and B are unital subalgebras of C such that {4, B} are infinites-
imally free from j in (C,p,¢’). If A and B are free with respect to ¢, then (7,(A), B) is
monotone independent with respect to .

Let us recall a natural framework of an infinitesimal =probability space for random ma-

trices. Let Ag\l,), e ,Ag\];) be N x N random matrices, and consider the linear map ¢y on
C{(Xj,...,Xy), the algebra of polynomials in k£ non-commuting indeterminates, defined by

on(p) = (B Try) (oA, AY).

If for all p e C(Xq,..., Xp), ¢(p) := limy_,0 on(p) exists as well as ¢'(p) = limy_o 'y (p)
where @y (p) := N[en(p) — ©(p)], then (¢, ¢’) is said to be the asymptotic infinitesimal law

of {AY. ..., AP,
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We recall now real and complex Wigner matrices and consider certain assumptions on their
moments. We will provide applications of our main results to polynomials in such matrices in

SectionBl We denote by Wy the N x N Hermitian matrix defined by Wy = \/LN (W-(N))lgi’jg N

i\j
with VVZ(;V) = Wj(’]iv) for j > 4. For each N € N, (VVZ-(’;-V))KKKN is a family of independent
random variables such that the diagonal entries are real-valued centered random variables
with common variance, say s?. For real Wigner matrices, we assume that off-diagonal entries
are real-valued variables satisfying for all 7 < j:

N N
E[WY] =0 and E[W V%] =0

Z?]

For the complex Wigner matrices, we assume that the off-diagonal entries are complex-
valued and satisfy, in addition to the above conditions, E[(WZ(;V))z] =0 forall i < j. It
is well-known that the limiting spectral distribution of a Wigner matrix is the semicircular
distribution. Since the latter is compactly supported, this is equivalent to the convergence

of the moments, i.e., for all & > 1,

lim %(E o Try)(Wh) =

N—o0

C,, if k= 2m is even,
0 if k is odd,

where (), is the m-th Catalan number. Moreover, a family of independent real or complex
Wigner matrices is known to be asymptotically free with respect to ¢y, see for instance

[2][Theorem 5.4.2]. Now assuming furthermore that for i < j, IE[|VVZ(éV)|4] = o and

sup sup E[|I/Vl(év)|€] <o forall [(eN,
NeN 1<i<k<N

then Au [3] proved that that Wy has an infinitesimal distribution generalizing the result of
[13] for matrices whose entries are identically distributed. Moreover, Au proves that a family
of independent Wigner matrices satisfying the above moment conditions is asymptotically

infinitesimally free from finite rank matrices. Indeed, Lemma 3.4 and Corollary 3.11 in [3]
yield the following:

Theorem 2.7. Let (ng,i))iel be a family of independent N x N real or complex Wigner
matrices satisfying the above moment conditions and denote by E](\?’k) the unit matrix in the

(7, k)-th coordinate. Then for any fixed No, (W](Vi)>i€[ and (E}g’k))lgj’kg N, are asymptotically
infinitesimally free with respect to (pn, @ly)-

We note that in a more recent paper, Au proves asymptotic infinitesimal freeness for a
more general class of matrices, see [4, Proposition 3.6].

It is noteworthy that the limit operators of (Ej(\j,] ))1<]’< N, are infinitesimal idempotents.
Consequently, we can construct many asymptotically monotone independent random matrix
models by combining Theorem and Theorem 2.7 1In particular, choose Ay and By
to be asymptotically free and asymptotically infinitesimally free from jy = Zjvz‘)l EY. It
is easy to see that ¥y(-) = mapg\,(-jj\f) is the partial trace in (2.2)) and that T4, =

N
JNAN(1 — jn) + (1 — jn)Angn. This yields that (T4, By) is asymptotically monotone
independent with respect to the partial trace. Moreover, the limiting distribution of T4,
with respect to 1)y can then be computed following [21, Proposition 5.3] which, whenever
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Ay and jy are asymptotically infinitesimally free, yields that

k)2
(2.3) lim YN (TE ) = []\1;13})0 (EoTry)(AY) — (Eo TTN)(AN)z)] if k is even,
N—o0 N

0 if k is odd,

where try denotes the normalized trace.

3. DISTRIBUTION OF POLYNOMIALS IN MONOTONE INDEPENDENT ELEMENTS

In this section, we extend the approach in [I] to the monotone setting and study distri-
butions of polynomials in monotone independent elements. For two monotone independent
elements a and b, we start by studying distributions of linear spans of ab and ba for which we
derive explicit expressions. As particular cases, we determine the distributions of the com-
mutator and anti-commutator. Then, in Remark [3.5] we discuss more general polynomials
in monotone independent elements.

The Linear Span of ab and ba. Let (C, p) be a =-probability space. For any a and b in C,
we denote by pa g := pas(a,b), the linear span of ab and ba, given by p, s = aab + Sba for
some non-zero complex numbers o and f.

We recall that for a given = € A, we set A, to be the =-algebra generated by x, and A, to
be the =-algebra generated by x and 1.

Theorem 3.1. Assume that A, < /ib, then for each k£ > 1, we have for any k € N,

ak k+1 k+1
ol ) = S [+ B+ )" = ((a+ B — 2]

where z = p(b) and v = 1/(a — 8)2p(b)2 + 4aBp(b?).

Remark 3.2. Note that by monotone independence, the *-distribution of p, g depends on
the distribution of b only through its first and second moments ¢(b) and ¢(b*). Now, if we
assume that ¢(b) = 0, then for any k > 1,

k —1)k k aBo(0) p(a*)  if k is even
P8k ) = 3/ el + S s SO(ak):{O e s e

2 if k£ is odd.

Furthermore, if @ is an even operator, then we have the *-distribution of p, g is a mere scaling
of the distribution of a.

Note that, as a direct consequence, we obtain the =-distribution of anti-commutators and
commutators in monotone independent variables by taking (a, ) = (1,1) or («, 5) = (i, —1)
respectively. More precisely, we obtain the following moment expressions.

Corollary 3.3. Consider a, b € C such that A, < A,. Let p = ab + ba and g = i(ab — ba),
then for each k > 1,

o0 = g (10 + VI o) — Vo)) e

pld") = 5 (1= (0" (Vo) = o0P) ela).

N | —
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In order to derive explicit expressions for the distributions of spans of ab and ba, we
prove first the following proposition that plays a crucial role in bridging the gap between
matrices with monotone entries and the distribution of polynomials. For a given algebra D,
we represent the unital =-algebra generated by D as D.

Proposition 3.4. Let (C,¢) be a =-probability space. Suppose that A and B are =
subalgebras of C such that A < B. Consider 4; = [a (k)]we[ 1€ M,(A) foreachk =1,...,m

and B, = [bg;]me[n] € M, (B) for each s = 0,1,...,m. Then we have

(T’l"n ® QO) (DoAlBlAng s Bm—lAmDm) = (T’f’n ® (p)(D/ AlBiAQB; cee B;n_lAmD;J
where Dy = I, or By, D,,, = I, or B,,, B}, = ( (b(k )ijel ]) e M,(C), for each k, and
Dy =1,or By, D, =1, or B,.

Proof. Without loss of generality, we may assume Dy = [, and D,, = B,, (the proof of all
other cases are similar). Note that by monotone independence with respect to ¢, we obtain

(T’l"n ® QO) (AlBlAgBQ cee AmB )
N W H0 4@ @ (m)
= Z @ (azl i2 bzz i3 13 I bl4 is sz 1,%2m bZZM7i1)
1 1 2) m m
= Z 2 (a; ?izgp(bz(z?m) 23 4 (,O(b2(4 Zo> ’ a"l('anflJthp(bz('anyil ))

= (Tr, @ )(A1B1AyBy - -- Ay By).

Having this in hand, we are ready to prove the above results.

Proof of Theorem[3.1 Let

a b a 0 b 0
30:[0 O},A:[O a],andBlle 0].

Then it is obvious that ByAB; = Diag(aab + Sba,0). Note that following Proposition [3.4]
for any k£ > 1, we have

el s) = (Tra®¢) ((ByABy)Y)
= (Try®¢) (Bo(AB1By)" ' ABy)

ST e [ e R )
e ([3 21l VI 2D )

We observe that for all z,y € C, l SDS™! where

Bﬁ}

(tPry (a-Bl—y  (a=B)rty o [ree arasse
— 2 — 2a, 2a, E— o Y
P [ 0 7(”@“”} o [ il 1’ } T e e
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and v = 1/¢(0)2(a — 8)% + 4aBp(b?). Then

ol 27

T —(B2+aB)x
- [m%m ro gen +x] (o))" 0 —tehiei
- a T k—1 24 a8z
0 0 0 « +/32)kjw) (B°+ 2@ B

- ﬁ%;UM+ﬁm—wf«4a+mx+w+«m+ﬁn+vf«a+@x+w]H ﬂ'

Thus, we complete the proof by concluding that

o) = 20 [(la B+ 20 = (a4 o =) ).

[

Remark 3.5. Let (C, ) be a =probability space. Let p be any polynomial generated by
elements of A and B with A < B. Note that p can be expressed in the form

p =) byt
j=1

where n > 1, by, b}, ..., b,, 0, € alg(B,1c),y1,...,yn € Q with Q being the set defined by

(31) Q = {aoblal---bkak | k = O,ao,...,ak € A and bl,...,bk EB}
To soothe the notation, we write § = agp(b1)ay - - - p(bg)ar whenever y = agbiay - - - byay for
some ai,...,ar € A and by,...,br € B. Then by monotone independence, we get for any
me N,
(3:2) o™ = > 0@ )by ) eV, b,) oV by (V).

1,3 JmE[N]

We provide in the following proposition an example to demonstrate how to compute the
law of a given polynomial.

Proposition 3.6. Suppose (C, p) is a =-probability space, and a, by, by, ¢, and ¢y are elements
in C such that ({a}, {b1,b2,c1,c2}) is monotone independent. Assume @(b1) = by, p(bs) =
b27 gO(Cl) = 517S0<02) = 627 and
bl,l lf (Za]) = (1a ]-)7
@(blbj) = b2,2 if (Za]) = (2a 2)7
bio if (4,5) = (1,2) or (2,1).
We set p = byiaciab, + byacoaby. Then the distribution of p is
Oz,ua2519+< + (1 - Oz),uaﬂ;g_g

where ju,2 is the distribution of a*, § denotes the dirac measure, o = g¢(¢ — ¥ + & b2 + &b?)
with

1 . 5 1 N ~ -
Y = 5([)27202 + 617101) and C = 5\/(b27202 — 617101)2 + 46%720201.
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Proof. By Remark [3.5] we have

pp") = <P([bl cap(cr)a- by + by - ap(cz)a - bz]k>
= . Z @(ajl a]k) (bj1>90<bj1 bj2)¢(bj2bj3) o .90<bjk71bjk>gp<bjk>

where a; = ¢(c;)a® and ay = ¢(cz)a®. Note that for all (ji,...,5%) € [2]%,

2k)

@(ajl o 'ajk) = QO(CL ¢(Cj1)90(cj2) T ¢(Cjk)'
(@)

Thus, if for each i € [2], we set oy’ = ¢(b;), and
af = 0 el b)elbibi) - elby b )e(bi el plen) - ples, ) for k> 2
J1seendr—1€[2]

then we obtain

p(0) = pla®)ar  where  ay = p(bi)p(er)af + p(ba)g(ca)af’.
We observe that for each [ > 2,

o) = plbaby)p(er )™, + p(baba)p(ca)afs = biatia”, + bystan?,,

which when iterated we obtain for each [ > 3,

o — 0,20,

(1) (1)
b 2010y + by 20152202041 9 T 039C0 "

. 2
= b12C (al( ) 202@1( 5 + b2 zczal( 3> + b2 2c§’al( )3

3
= 617261 (al(i)l + Z béﬂééal(i)(]—i-l ) + bl2 22Cl2 (bl’gblél + bggbgég).

Using the expression obtained for agl, we have get for any k > 2

o) = p(bib)p(en)og, + @(bibo)e(ca) s
= b 1510&,&1)1 + by 2520&,({2)1
7j=1
+ by ol 528k by
Then we observe

1 - - L.
Oé;(f) - b2,2C2Oé;g,)1 = bl,lcla](fjl + (big - 62,261,1)0201%2,)2,
and hence we obtain the following linear homogeneous recurrences

Oé,(:) — (b27262 + b17151)a,(€121 + (b272b171 — 6372)6261%922 = 0.

Thus by solving the characteristic equation x? — (bg2¢a + b1 1¢1)x + (ba2by 1 — 6%72)6261 = 0,
we have x = ¥ + ¢ as a solution with

1 . 5 1 N ~ -
Y = §(b27202 + 617101) and C = 5\/(b27202 — b17101)2 + 4b%720201.
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This yields that
ay) = sV + 0 + 57 (0 - )
(1)

for some constants s; ’ and sgl) that determined by the initial conditions, and similarly

a® = sOW + O)F + P - )
(2)

11

for some constants s;” and sgz). Hence, putting the above terms together, we infer that for

any k> 1,
Q. = (Elélsg + 620281 )(79 + g) (blclsg + b20282 )(19 g)

Now we observe that ag = 1 and ay = ¢b? + &b2. Thus,

6151( ) + Sgl)) + 5252(8?) + 852)) =1
biea[st (0 + €) + 557 (0 — )] + bada[ s (9 + ) + 557 (9 — Q)] = &1b? + &0,

As a result, we obtain

61518&1) + (;262(‘3&2) = (C Y + Clbl + 0262)

2C
61518;1) + 6262852) = QC (C + ¥ — b 526%)

by solving a system of equations which concludes the proof by obtaining for any k£ > 1

p(") = pla®™)a
2k 2k
= Ao a4 e+ of + E o - adt - a0 - O

[

4. DISTRIBUTION OF POLYNOMIALS IN INFINITESIMALLY MONOTONE INDEPENDENT

ELEMENTS

Let (C,p,¢") be an infinitesimal =-probability space and consider its associated C-valued
probability space (, C ,®), described in Subsection 2.2l Note that by Theorem [2.4] and

the fact that C is commutative, we extend our approach to the framework of (CN,(N:, D).
This allows passing directly many results on =distributions of polynomials in monotone

independent variables to the infinitesimal setting.

For two infinitesimally monotone elements a and b, we start by illustrating, in Section [4],
how this allows us to derive an explicit expression of the infinitesimal distribution of linear

spans of ab and ba, covering the cases of the commutator and anti-commutator.

Then,

we discuss in Remark [.5] more general polynomials in infinitesimal monotone independent

elements.
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Linear spans in ab and ba. The commutativity of C allows deriving explicit expressions of
the infinitesimal =-distribution of linear spans. Let a and b be two elements in C such that
a < band set A = Diag(a,a) and B = Diag(b,b). Then, by Theorem[24], we have that A < B
with respect to @. We obtain, following the same lines of proof as in Theorem B.1], the explicit
distribution of the linear span P, g := P, 3(A, B) = aAB + $BA for any non-zero complex
numbers « and 3. More precisely, setting X = $(B) and I' = /(a — 8)23(B)? + 4a33(B?),
we obtain for each k£ > 1,

@y ar) = LA [k )X 4T~ (0 Bx - D).

The key point that enables deriving such an expression following the same lines as in the
scalar case is the fact that C is commutative, and more precisely, XI' = I'X. Note that by
comparing the (1, 2)-entry of both sides of (d.1]), we obtain explicitly the kth moment of p, g
with respect to ¢'.

Remark 4.1. Note that we can also compute ¢’ (p'fy’ﬁ) by formally differentiating @(pfy’ﬁ)
in Theorem B.Il However, we adopt the method in [34], 27] by translating problems in the
infinitesimal setting to independence over the commutative algebra C. This methodology
proves beneficial for addressing a range of other problems in infinitesimal independence,
which motivates our choice to illustrate it for computing the infinitesimal distribution.

Theorem 4.2. Let a and b be two elements in an infinitesimal =-probability space (C, ¢, ¢')

such that A, < A,. For given non-zero complex numbers a and f3, let p, 3 = aab + Sba.
Then for each k& > 0,

o) = 52 [<<a + p0) + ) (@ 5)(k + 1 0) — plber/r?) + )

where

(4.2) 7 =V(a—B)%(b)? +4afp(t?) and w = (a— B)’p(b)¢'(b) + 2054 (17).

Remark 4.3. Note that the infinitesimal *-distribution of p, g only depends on that of a
and on ¢(b), p(b?), ¢'(b) and ¢'(b*). In the particular case where p(b) = ¢'(b) = 0, this
reduces to

k B 30/ ak © b2 k/2
k) = [ B (e o) + T (e (14 (1),
Again, as a direct consequence of Theorem [4.2] we obtain the infinitesimal *-distribution of

anti-commutators and commutators by taking (o, 8) = (1,1) or («, ) = (i, —1) respectively.
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Corollary 4.4. Let p = ab+ ba and q = i(ab — ba), then for each k > 1, we have

S0 = %[«o(b)+\/so<b2>>’f(2<k+1>w'<b>so<bz>—¢<b2>[go<b>—k\/w@?)])
INERED

Hp(b) = V) (20k + 1) ) (6?) — & (67) [0 (0) + k\/go<b2>])]

P (o) + VoI [(6) ~ VA1)

NEw
and
ak _
S = PO (1 ) (V@) - eR) () - 20004 )
P 1 ) (Ve — ae)

Proof of Theorem[].3 We start by noting that

wna-s([i )-8 48]

Thus in order to derive an expression for ¢'(pk ;), we shall compute the (1,2)-entry of the
right hand side of (4I]). In order to do this, let us note for any 2,2’ € C and matrix

z 2 ~
M—[O Z]E(C,

2’ -1 -2/
12 _ _ \/E 2z -1 _ |~* —c T
M VM [ 0 \/E] and M [ 0 -1 ] .

Setting © = ¢(b) and y = ¢'(b), we observe that

2 &
—

where v and w are defined in (£.2), and finally obtain that

gl -

2k+17 k41| 0 SRR ST PV [
Note that
N e (@ Bz —)E (k+ D ((a+ B)r— ) (0 + By —w/A)
A L e e, |

e R A A
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Therefore,
ﬁr—l ((a + B)X — D)

_ ((a+pz-—yF1 —w/v2] l(a + Bz =y (k+1)((a+ By — w/v)]
ok+1y 0 1 0 (a+ B)x — 7~

_ (ot Bz =y [la+Be—v (k+1)((a+B)y—w/y) —w/y*((a+ Bz~ 7)]
S B (at B~

_ (@t pr=t[(a+Ba—7 (a+B)((k+1y—aw/r?) —ko/y
2k+ly | 0 (a+ B)xr —~

Similarly, we also have

LI ((a+ B)X +T)F

2k+1
_ (et Bt )t [+ B+ (a+B)((k+ Dy —aw/r?) + kw/y
2ktly 0 (a+ Bz + v '

Thus, the right hand side of Equation (1)) is

- [((a +B)e(t) + 1) (1@ + B) (0 + D) — o(Blor?) + ko)

— ((a+ B)p(b) — v)'“((oz + B)((k+ 1)@ (b) — p(b)w/+*) — kw/v)]

\)
=
+
=

=2

which completes the proof. O

Remark 4.5. (General Polynomials) The commutativity of C allows again deriving infini-
tesimal =-distributions of general polynomials. Following the notation in Remark and as-
suming A < é, let p be any polynomials of the form p = Z?:I bjy;b; with by, b, ..., by, b, € B
and y1, ...,y € Q. We denote by

Q= {AB1A; - ByAy | k=0,a0,...,ar€ Aand by,..., by € B}

where A; = Diag(a;, a;) and B; = Diag(b;, b;) foreach 0 < ¢ < n,1 < j < n. For each element
Y = AgB1A; - BrAp in Q, we set Y = Ag@p(B1)A; - - §(Byg)Ag. The for P = Z?=1 B;Y;B;,
we have by Remark for any m € N,

aPm) = (Y BYB")

j=1

Y, Y, )3(B,)3(B,, B;,)3(B.,By,) - @(B,, | B;,)3(Bj,),
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It remains to track the (1,2)-entry of the above equality. In the particular case where
p = ZZ:l bkakb;, then

@l(pm) = Z QO(ul)(Clean o 'ajm%o(u”(bjl)(p(ug)(b;l bj2) o 'So(um)@;mflbj )Qp(umﬂ)(b;m)’
j17“'7jme[n]
(U1, Um+1)EWm

where 0@ = ¢ and V) = ¢ and for each m > 0,
W, = {(1,0,0,...,0),(0,1,0,---,0),---,(0,0,---,0,1)} < R

5. APPLICATIONS TO RANDOM MATRICES

We show in the section the utility of our results to derive the distributions of some random
matrices with respect to the partial trace. Let us first recall that the partial trace is defined
for a given N x N random matrix Ay by

1

Ay) = —
YN (AN) N
where T'ry, is the non-normalized trace and AWMLY ig the first block of Ay. To draw the

connection to random matrices, we recall the notation in Subsection and the results
stated therein and prove the following:

(EoTry,) (A(l’l))

Proposition 5.1. Suppose Ay and By are independent N x N Wigner matrices as defined
in Section 2.3], then (Tg(a,), Bn)n is asymptotically monotone independent with respect to
¥y for any polynomial () whose constant term is zero.

Proof. Let ) be a polynomial that has no constant term. We note that Ay and By are
asymptotically free with respect to EoT'ry where we recall that try is the normalized trace.
Also note that Toay) = INQ(AN)(1 — jn) + (1 — jn)Q(An)Jjn Where jy = Zjvz‘)l EY and
that by Theorem 27, Q(Ay) and By are asymptotically infinitesimally free from jy . Then
it follows by Theorem that (Ti(ay), Bn)n is asymptotically monotone independent with
respect to Y. ]

Proposition 5.2. Let Ay and By be independent N x N Wigner matrices and let for some
m > 0 and non-zero o € C, Py be the polynomial defined by

(51) Py = OéTA}VnBN + @BNTA}QL.
(6, + 0_y) where ¢ is the

Then the limiting distribution of Py with respect to ¥y is p = %

dirac measure and w = /|| D,, with

D C,, — C’fﬂ/2 if m is even,
" C,, if m is odd,

and Cj being the k-th Catalan number.
Proof. By Proposition [(5.1], (TAK?’ By )y is asymptotically monotone independent with respect

to ¢y. In addition, we note that the limiting distribution of Ty with respect to 1y can be
easily computed following |21, Proposition 5.3|. Indeed, we have for any k > 1,

k/2

1 2m\ _ m\2 . .
lim ¢y (Thn) = []\1,12%0 ((EoTry)(AY") — (Eo Try)(AR) )] if k is even,
o ) 0 if k is odd.
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By the Wigner semicircular law, we infer that

DE? if k is even
1‘ Tkm == mn ’
am on (L) {0 if & is odd.
Finally, observing that limy . (E o Try)(By) = 0 and limy_,»(E o Try)(B%) = 1, we get
by applying Theorem BI] and taking into account Remark 3.2 that for any k > 1,

) D )k/2 if k is even
1 Pk _ (|Oé| m
A o (Fy) {0 if i is odd,

[

Remark 5.3. The above result also holds for Ay being an N x N GUE matrix, and By
an entry permutation of Ay that is self-adjoint. In particular, By can be chosen to be the
transpose of Ay. Indeed, by [20] and [29], we have that (Ax, By)n is asymptotically free and
by combining Theorems and [27, we obtain that (T4,, Bx)n is asymptotically monotone
independent with respect to ¢y. Then by analogous arguments, we obtain the same limiting
#-distribution of Py with respect to ¥y as in Proposition

Finally, we give another example around the polynomial in Proposition and show how
our results easily extend to computing the distribution with respect to the partial trace of
such a polynomial in Wigner matrices.

Proposition 5.4. Let Ay and By be N x N independent Wigner matrices and consider
the polynomial given by

Py = BY'Tay BN'Tay By + BY"Tay B Tay BY"

for some n,m,h,s = 1. Then Py converges in distribution with respect to ¥y to pu =
adyic + (1 — a)dy—_ where § denotes the dirac measure, o = %(C — 9+ C,C2 + C,C2) with

1 1
V= 5 (ComCa+ CouCh), €= 54/ (ConCls = C2uCr)? + 48 ,C.Ch,
and C}, being the k-th Catalan number.

Proof. 1t is notable that (T4, By)n is asymptotically monotone independent with respect
to ¢y by Proposition [l Then there is a =-probability space (C,v) and elements a and b
in C such that a < b and (T4,, By) converges to (a,b) in *-distribution. In other words, for
any k> 1,

]\l]eréO wN(P]’f,) = w(pk) where p = bjaciaby + byacoabs.

with by = b* by = b, c; = b*", ¢y = b?*. Following the notation in Proposition B.6, we have
bl = Cn>b2 = C1777»61 = Chaé2 = Csa and

Con, if (i,7) = (1,1),
(52) b1,2 = C12m if (Za]> = (2’ 2)>
Crsm if (i,7) = (1,2) or (2,1).

Then by applying Proposition [3.6] we conclude that

W(ph) = L

= 2C<C — 9+ ChC2 4+ C,C2) (I + O)F + i(( + 9 — CpC2 — C,C2) (I — ¢)F

2¢
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where

1 1
U= 5(02”108 + C5,Ch), and (= 5\/(02,”08 — C9,Cy)? +4C2,, CCy.
O

Remark 5.5. 1 = adyic + (1 — a)dy_¢ in Proposition [5.4] is a probability measure. One
could also check that indeed « € [0, 1] using the fact that
20202 < C?

im < C9,Coyy, for all n,m > 1.

Note that the first inequality can be deduced by induction, while the second one follows from
the Cauchy-Schwartz inequality with respect to the inner product on polynomials defined by

gy = f F(w)g(a)du where d(t) = T~ Pt
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