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TWO VERTEX GEOMETRICALLY IRREDUCIBLE ALGEBRAS

GRZEGORZ BOBIŃSKI AND GRZEGORZ ZWARA

Abstract. We complete a classification of the two-vertex geometrically irreducible al-
gebras. We also classify the algebras in new classes of hom- and ext-irreducible algebras.

1. Introduction and main result

Throughout the paper k denotes an algebraically closed field of arbitrary characteristic.
Given a finite dimension k-algebra A and a nonnegative integer d we denote by modA(d)

the variety of d-dimensional A-modules, which consists of the k-algebra homomorphisms
A → Md×d(k) and parameterizes A-modules of dimension d. The algebra A is called
geometrically irreducible if the connected components of modA(d) are irreducible, for
all d. Geometrically irreducible algebras have been studied in [2–4]. In particular, it
is conjectured in [4] that every geometrically irreducible algebra is a gluing (in a sense
explained in [4]) of algebras with at most two simples. This conjecture has been confirmed
for the algebras without shortcuts ([4, Theorem 1.2]). Consequently, the geometrically
irreducible algebras with at most two simples seem to be of particular interest. The aim
of this paper is to complete the classification of this class of algebras initiated in [2, 4].

We introduce some families of algebras. For n ≥ 0, let Q(n) be the quiver
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For l ≥ 1 (and n ≥ 1), let

ρ(l) :=
l

∑

i=0

εl−i
0 α1ε

i
1.

For m ≥ 2 and n, l ≥ 1, let A(n,m, l) be the path algebra of the quiver Q(n) bounded
by εm0 , ε

m
1 and ρ(l). Similarly, for m0, m1 ≥ 1 and n ≥ 0, let A′(n,m0, m1) be the path

algebra of the quiver Q(n) bounded by εm0
0 and εm1

1 .
The following theorem is the first main result of the paper.

Theorem 1.1. Let A be an algebra which has exactly two simples. Then A is geometri-

cally irreducible if and only if A is Morita equivalent to one of the following algebras:

(1) A(n,m, 1), for some m ≥ 2 and n ≥ 1, or
(2) A(n,m,m− 1), for some m ≥ 2 and n ≥ 1, or
(3) A′(n,m0, m1), for some m0, m1 ≥ 1 and n ≥ 0.

The main result of [4] (Theorem 1.1) states that if A is a geometrically irreducible
algebra with exactly two simples, then (up to Morita equivalence) A is one of the algebras
listed in Theorem 1.1. On the other hand, it is relatively easy to see that the algebras
A′(n,m0, m1), m0, m1 ≥ 1 and n ≥ 0, are geometrically irreducible (see for example [4,
Proposition 3.3]). Moreover, [2, Corollary 2.1] implies that the algebras A(n,m, 1), m ≥ 2
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and n ≥ 1, are also geometrically irreducible. Thus in order to prove Theorem 1.1 it
suffices to prove the following.

Theorem 1.2. If m ≥ 2 and n ≥ 1, then the algebra A(n,m,m − 1) is geometrically

irreducible.

The paper is organized as follows. In Section 2 we recall basic definitions, while in
Section 3 we introduce classes of hom- and ext-irreducible algebras, which play crucial
role in our proof of the main result presented in Section 4. The final Section 5 contains
a classification of the hom- and ext-irreducible algebras.

The both authors gratefully acknowledge the support of the National Science Centre
grant no. 2020/37/B/ST1/00127.

2. Preliminaries

Throughout the paper, by Z, N, and N+ we denote the sets of integers, nonnegative
integers, and positive integers, respectively. If i, j ∈ Z, then [i, j] denotes the set of all
l ∈ Z such that i ≤ l ≤ j.

A quiver Q consists of a finite set Q0 of vertices, a finite set Q1 of arrows, and two
maps s, t : Q1 → Q0, which assign to an arrow α ∈ Q1 its starting and terminating vertex,
respectively. An arrow α ∈ Q1 is called a loop if sα = tα. If α is an arrow in a quiver
Q, then we define the degree degα of α by deg α := 0, if α is a loop, and degα := 1,

otherwise. We denote by Q
(i)
1 the set of arrows of degree i, i = 0, 1 (in particular, Q

(0)
1 is

the set of loops in Q). By a path of length l ∈ N+ in Q we mean a sequence σ = α1 · · ·αl

of arrows such that sαi = tαi+1, for all i ∈ [1, l−1]. We put sσ := sαl and tσ := tα1, and
call them the starting and the terminating vertex of σ, respectively. By the degree deg σ
of σ we mean

∑l
i=1 degαi. By an oriented cycle we mean a path σ of positive length such

that sσ = tσ. For each vertex x of Q we also consider the trivial path 1x at vertex x
(i.e., s1x := x =: t1x) of length (and degree) 0. If X ⊆ Q0, then we put 1X :=

∑

x∈X 1x.
With a quiver Q we associate its path algebra kQ, which as a k-vector space has a

basis formed by all paths in Q and whose multiplication is induced by the composition
of paths. By a relation ρ in Q we mean a linear combination of paths of length at least
2 with the same starting and terminating vertex (denoted by sρ and tρ, respectively). If
ρ =

∑n

i=1 λiσi is a relation, where λ1, . . . , λn are nonzero scalars and σ1, . . . , σn pairwise
different paths, the by the degree deg ρ of ρ we mean min{deg σi : i ∈ [1, n]}. By a bound
quiver we mean a pair (Q, I) consisting of a quiver Q and an ideal I of kQ generated by
relations, such that there exists n ∈ N+ with σ ∈ I, for each path σ of length (at least)
n. If (Q, I) is a bound quiver, then we call kQ/I the path algebra of (Q, I). If A is the
path algebra of a bound quiver (Q, I) and the ideal I is generated by relations ρ1, . . . ,
ρn, then we also say that A is the path algebra of Q bounded by ρ1, . . . , ρn.

If A is an algebra, then there exists a bound quiver (Q, I) such that A and kQ/I are
Morita equivalent. Moreover, it follows from [6] that A is geometrically irreducible if and
only if kQ/I is geometrically irreducible.

Thus from now on we concentrate on path algebras of bound quivers. The quiver Q is
uniquely determined by A and is called the Gabriel quiver of A. The algebra A is called
weakly triangular, if there are no oriented cycles of positive degree in Q.

Let (Q, I) be a bound quiver. By a representation of (Q, I) we mean a collection V of
finite dimensional k-vector spaces Vx, x ∈ Q0, together with k-linear maps Vα : Vsα → Vtα,
α ∈ Q1, such that Vρ (defined in a natural way) vanishes for all relations ρ ∈ I. The
collection (dimk Vx) ∈ NQ0 is called the dimension vector of V (and the elements of
NQ0 are called dimension vectors). If U and V are representations of (Q, I), then a
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homomorphism f : V → U is a collection of k-linear maps fx : Vx → Ux, x ∈ Q0, such
that Uα ◦ fsα = ftα ◦ Vα, for each α ∈ Q1. If A is the path algebra of (Q, I) then
the category modA of (finite dimensional left) A-modules is equivalent to the category
rep(Q, I) of representations of (Q, I). By abuse of language we call objects of rep(Q, I)
representations of A. If x ∈ Q0 then we denote by SA(x) the simple representation at
vertex x, i.e., SA(x)x := k, SA(x)y := 0, for y 6= x, and SA(x)α := 0, for α ∈ Q1.

According to [6] the above equivalence has its geometric counterpart. Namely, let A
be the path algebra of a bound quiver (Q, I). For a dimension vector d we denote by
repA(d) the set of representations V of A such that Vx = kdx , for each x ∈ Q0. One easily
observes that repA(d) can be identified with a closed subset of

∏

α∈Q1
Mdtα×dsα(k), thus

carries a structure of an affine variety. Then results of [6] imply that A is geometrically
irreducible if and only if repA(d) is irreducible, for each d ∈ NQ0. More precisely, if d
is a nonnegative integer then the connected components of modA(d) are (isomorphic to)
the associated fiber bundles GL(d)×GL(d) repA(d), for the dimension vectors d such that
∑

x∈Q0
dx = d, where GL(d) :=

∏

x∈Q0
GL(dx).

Let A be the path algebra of a bound quiver (Q, I) and d a dimension vector. The
group GL(d) acts on repA(d) by conjugation, i.e., if g ∈ GL(d) and V ∈ repA(d), then
(g ∗V )α := gtαVαg

−1
sα , for α ∈ Q1. Note that g ∈ GL(d) can be viewed as an isomorphism

g : V → g ∗ V .
We finish this subsection by listing basic properties of geometrically irreducible algebras

proved in [3, Section 3].

Lemma 2.1. The following hold for a geometrically irreducible algebra A with the Gabriel

quiver Q.

(1) A is weakly triangular.

(2) For each vertex x ∈ Q0 there exists at most one loop α ∈ Q1 with sα = x.
(3) If |Q0| = 1, then A ≃ k[x]/(xm). �

3. Hom-, mono- and ext-irreducible algebras

Let Λ be an algebra. For dimension vectors d and e we denote by HΛ(e,d) the set
of triples (V,W, f), such that V ∈ repΛ(e), W ∈ repΛ(d), and f ∈ HomΛ(V,W ). Then
HΛ(e,d) has a natural structure of an affine variety. We denote by MΛ(e,d) the subset
of HΛ(e,d) consisting of the triples (V,W, f) such that f is a monomorphism. Note that
MΛ(e,d) is an open subset of HΛ(e,d). Moreover, M(e,d) is nonempty if and only
if e ≤ d (i.e., ex ≤ dx, for each x ∈ Q0). We say that Λ is hom-irreducible (mono-
irreducible) if HΛ(e,d) (MΛ(e,d), respectively) is irreducible, for all dimension vectors
d and e (such that e ≤ d, respectively). We have the following obvious observation.

Proposition 3.1. If an algebra Λ is hom-irreducible, then Λ is mono-irreducible. �

In order to define ext-irreducible algebras we need to recall an interpretation of ex-
tensions of Λ-modules in terms of cocycles. Fix the path algebra Λ of a bound quiver
(Q, I), dimension vectors d and e, and V ∈ repΛ(d) and U ∈ repΛ(e). Let A

e,d
Q :=

∏

α∈Q1
Mdtα×esα(k). For each Z ∈ A

e,d
Q we have a representation W V,Z,U of Q defined by:

W V,Z,U
x := k

dx+ex(= k
dx ⊕ k

ex), for x ∈ Q, and W V,Z,U
α :=

[

Vα Zα

0 Uα

]

, for α ∈ Q1. Given an
exact sequence

0 → V
f
−→ W

h
−→ U → 0

3



of Λ-modules, there exists Z ∈ A
e,d
Q and an isomorphism g : W V,Z,U → W , such that the

following diagram is commutative

0 // V
µ

// W V,Z,U π //

g

��

U // 0

0 // V
f

// W
h // U // 0

where µ and π are the natural maps. Commutativity of the above diagram means in
particular that f = g ◦ µ. Moreover, if W ∈ repΛ(d + e), then g ∈ GL(d + e) and

W = g ∗W V,Z,U . Let ZU,V be the set of Z ∈ A
e,d
Q such that W V,Z,U ∈ repΛ(d+ e). Then

Z ∈ ZU,V if and only if ZU,V
ρ = 0, for each relation ρ ∈ I, where

ZU,V
ρ =

n
∑

i=1

li
∑

j=1

λiVαi,1
· · ·Vαi,j−1

Zαi,j
Uαi,j+1

· · ·Uαi,li
,

provided ρ =
∑n

i=1 λiαi,1 · · ·αi,li .
Given an algebra Λ and dimension vectors d and e we denote by EΛ(e,d) the set of

triples (U, V, Z) such that U ∈ repΛ(e), V ∈ repΛ(d), and Z ∈ ZU,V . Obviously EΛ(e,d)
has a structure of an affine variety and we call Λ ext-irreducible if the varieties EΛ(e,d)
are irreducible, for all dimension vectors d and e.

The following proposition, whose proof uses a construction from [7], is the main result
of this section.

Proposition 3.2. An algebra Λ is ext-irreducible if and only if Λ is mono-irreducible.

Proof. Assume first that Λ is ext-irreducible and fix dimension vectors d and e such that
e ≤ d. Consider the map Φ: GL(d)× EΛ(d− e, e) → MΛ(e,d) given by:

Φ(g, (U, V, Z)) := (V, g ∗W V,Z,U , g ◦ µ),

for g ∈ GL(d), V ∈ repΛ(e), U ∈ repΛ(d − e), and Z ∈ ZU,V , where µ : V → W V,Z,U is
the natural inclusion. One easily checks that Φ is a well-defined morphism of varieties.
We show that Φ is onto and this will imply that MΛ(e,d) is irreducible as an image of an
irreducible set, since GL(d) is irreducible and by assumption EΛ(d− e, e) is irreducible.

Let (V,W, f) ∈ MΛ(e,d) and U := Coker f . Without loss of generality we may assume
U ∈ repΛ(d− e). We have an exact sequence

0 → V
f
−→ W → U → 0.

By remarks preceding the proposition, there exists Z ∈ ZU,V and g ∈ GL(d) such that
W = g ∗W V,Z,U and f = g ◦ µ. In other words, (V,W, f) = Φ(g, (U, V, Z)).

Now assume that Λ is mono-irreducible and fix dimension vectors d and e. Let Y be the
set of tuples (V,W, f, h) such that (V,W, f) ∈ MΛ(d,d+e) and h ∈

∏

x∈Q0
M(dx+ex)×ex(k),

and X be the subset of Y consisting of the tuples (V,W, f, h) such that the collection
[f, h] := ([fx, hx])x∈Q0 ∈

∏

x∈Q0
M(dx+ex)×(dx+ex)(k) belongs to GL(e + d). Then Y is a

vector bundle over MΛ(e, e+d) and X is a nonempty open subset of Y , hence irreducible.

We have obvious maps π1,1 : repΛ(d+e) → A
d,d
Q , π1,2 : repΛ(d+e) → A

e,d
Q , π2,1 : repΛ(d+

e) → A
d,e
Q , and π2,2 : repΛ(d + e) → A

e,e
Q , where Q is the Gabriel quiver of Λ. If

(V,W, f, h) ∈ X , g := [f, h], and W ′ := g−1 ∗W , then π1,1(W
′) = V , π2,1(W

′) = 0, and
π1,2(W

′) ∈ ZU,V , where U := π2,2(W ). Consequently, we may define Ψ: X → EΛ(e,d) by

Ψ(V,W, f, h) := (π2,2([f, h]
−1 ∗W ), V, π1,2([f, h]

−1 ∗W )),
4



for (V,W, f, h) ∈ X . Obviously Ψ is a regular map, which is easily seen to be onto, hence
EΛ(e,d) is irreducible. �

We formulate the following obvious consequence of Propositions 3.1 and 3.2.

Corolary 3.3. If an algebra Λ is hom-irreducible, then Λ is ext-irreducible. �

In Section 5 we classify the hom- and ext-irreducible algebras. In particular, we show
that the hereditary algebras, which are not semisimple, are ext-irreducible, but not hom-
irreducible.

4. Proof of the main result

Throughout this section we fix m ≥ 2. In order to simplify notation we put A :=
A(1, m, 1) and Bn := A(n,m,m − 1), for n ∈ N+. Moreover, by A′ we denote the path
algebra of the quiver

0ε0 88 1 ε1ff
αoo

bounded by εm0 , ε
m
1 , and ε0α − αε1. Finally, we put Λ := k[x]/(xm). Note that the

dimension vectors for Λ are the elements of N, while the dimension vectors for A, A′ and
Bn are the pairs (d, e) with d, e ∈ N. Furthermore, the correspondence given by

ε0 7→ ε0, α 7→ α1, ε1 7→ −ε1,

induces an isomorphism A′ ≃ A. Since the algebra A is geometrically irreducible by
[2, Corollary 1.2], A′ is geometrically irreducible as well.

The crucial point in the proof is the following.

Lemma 4.1. Let d, e ∈ N. Then the following hold.

(1) repA′((d, e)) ∼= HΛ(e, d).
(2) repB1

((d, e)) ∼= EΛ(e, d).

Proof. (1) Note that Λ is the path algebra of the quiver Q of the form

0 εff

bounded by εm. Consequently, repΛ(d) consists of the matrices V ∈ Md×d(k) such that
V m = 0. Similarly, repΛ(e) consists of the matrices U ∈ Me×e(k) such that Um = 0.
Finally, if V ∈ repΛ(d) and U ∈ repΛ(e), then HomΛ(U, V ) consists of the matrices
f ∈ Md×e(k) such that fU = V f . Consequently, we have an isomorphism repA′((d, e)) ∼=
HΛ(e, d) given by

repA′((d, e)) ∋ M → (Mε1,Mε0 ,Mα1) ∈ HΛ(e, d).

(2) Note that A
e,d
Q = Md×e(k), while EΛ(e, d) consists of the triples (V, U, Z) with

V ∈ repΛ(d), U ∈ repΛ(e), and Z ∈ A
e,d
Q , such that ZU,V

εm = 0. By easy induction one

shows that ZU,V

εl
=

∑l−1
i=0 V

l−1−iZU i, for l ∈ N+. Consequently the map

repB1
((d, e)) ∋ M → (Mε1 ,Mε0 ,Mα1) ∈ EΛ(e, d)

is easily seen to be an isomorphism. �

We have the following consequences.

Corolary 4.2. The algebra Λ is hom- and ext-irreducible.

Proof. If d, e ∈ N, then HΛ(e, d) ∼= repA′((d, e)) by Lemma 4.1(1). Since A′ is geomet-
rically irreducible, HΛ(e, d) is irreducible, thus Λ is hom-irreducible. Ext-irreducibility
follows from Corollary 3.3. �
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Corolary 4.3. The algebra B1 is geometrically irreducible.

Proof. Fix a dimension vector (d, e). Since Λ is ext-irreducible by Corollary 4.2 and
repB1

((d, e)) ∼= EΛ(e, d) by Lemma 4.1(2), repB1
((d, e)) is irreducible and the claim follows.

�

Proof of Theorem 1.2. Fix n ∈ N+. If (d, e) is a dimension vector, then

repBn
((d, e)) ∼= repB1

((d, e))×
n
∏

i=2

Md×e(k).

Since B1 is geometrically irreducible (Corollary 4.3), repBn
((d, e)) is irreducible, thus Bn

is geometrically irreducible. �

5. Classification results

It is natural to ask about a classification of the hom- and ext-irreducible algebras. We
solve this problem in this section.

We start with the following remark. One could define hom- and ext-irreducibility for
not necessarily basic algebras, using module varieties instead of representation varieties
– as usual one requires that the connected components of corresponding varieties are
irreducible. An analysis of these constructions, based on results of [6], shows that notions
of hom- and ext-irreducibility defined in this way coincides with these defined in Section 3.
More precisely, let A be the path algebra of a bound quiver (Q, I) and Λ an algebra
Morita equivalent to A. Assume also that Sx, x ∈ Q0, form a complete set of pairwise
nonisomorphic simple Λ-modules such that the module Sx corresponds to the vertex x,
for each x ∈ Q0. For nonnegative integers d and e we define H′

Λ(e, d) to be the set of
triples (V,W, f), such that V ∈ modΛ(e), W ∈ modΛ(d), and f ∈ HomΛ(V,W ). Then
one shows (using results of [6, Section 2]) that the connected components of H′

Λ(e, d) are
the associated fiber bundles (GL(e) × GL(d))×(GL(e)×GL(d)) HA(e,d), for the dimension
vectors d and e such that

∑

x∈Q0
dx · dimk Sx = d and

∑

x∈Q0
ex · dimk Sx = e. A similar

statement also holds for ext-varieties, which in the module varieties case are defined
in [7, subsection 2.1]. We leave details to the interested reader.

Consequently, we will work further with the path algebras of bound quivers, but for-
mulate the results for arbitrary algebras.

For m ∈ N+, let Λm := k[x]/(xm). We have the following classification of the hom-
irreducible algebras.

Theorem 5.1. Up to Morita equivalence, the algebras Λm, m ∈ N+, are precisely the

hom-irreducible connected algebras.

Proof. We already know that the algebras Λm, m ∈ N+, are hom-irreducible (Corol-
lary 4.2). It remains to show that they are the only hom-irreducible connected algebras.

Let (Q, I) be a bound quiver such that A := kQ/I is a hom-irreducible connected
algebra. It is obvious that A is geometrically irreducible (repA(d) = HA(0,d)). Suppose
there exists an arrow α1 : x → y in Q with x 6= y. Since A is weakly triangular by
Lemma 2.1(1), there are no arrows y → x in Q. Let α2, . . . , αn : x → y be the remaining
arrows from x to y in Q. Let d and e be the dimension vectors such that

dz := δx,z + δy,z and ez := δx,z,

for z ∈ Q0, where δu,v is the Kronecker delta.
6



Fix a loop α in Q. Recall that there exists n ∈ N+ such that αn ∈ I. Consequently,
if W ∈ repA(d), then W n

α = 0. Since dz ≤ 1, for each z ∈ Q0, this implies Wα = 0.
Similarly, Vα = 0, for each V ∈ repA(e).

Thus HA(e,d) is isomorphic to the variety

{(b, a1, . . . , an) ∈ k
n+1 : a1b = · · · = anb = 0},

which is easily seen to be reducible.
The above implies that |Q0| = 1 (due to connectedness of A). Using again geometrical

irreducibility of A we get A ≃ Λm, for some m ∈ N+, by Lemma 2.1(3). �

In order to classify the ext-irreducible algebras, we introduce the corresponding class of
algebras. We call an algebra A a loop extension of a hereditary algebra, if A is the path

algebra of a quiver Q bound by relations of degree 0. Note that A/〈Q
(0)
1 〉 is isomorphic to

the path algebra of the quiver (Q0, Q
(1)
1 ) (hence hereditary). In other words, A is obtained

from a hereditary algebra (i.e., the path algebra of a quiver with no relations) by adding
loops and relations involving only these loops. In particular A is weakly triangular. If
additionally, for each vertex x of Q there is at most one loop α such that sα = x, then we
call A a simple loop extension of a hereditary algebra. We show that the ext-irreducible
algebras are exactly the simple loop extensions of hereditary algebras.

We start with the following.

Lemma 5.2. Every hereditary algebra is ext-irreducible.

Proof. Let A be a hereditary algebra. Then A = kQ, for some quiver Q. Consequently,
if we fix dimension vectors d and e, then repA(d) and repA(e) are affine spaces, and

ZU,V = A
e,d
Q , for all representations V ∈ repA(d) and U ∈ repA(e). Consequently,

EA(e,d) = repA(e)× repA(d)× A
e,d
Q is an affine space, thus irreducible. �

As a consequence we obtain the first part of our classification result.

Lemma 5.3. Every simple loop extension of a hereditary algebra is ext-irreducible.

Proof. Let A = kQ/I be a simple loop extension of a hereditary algebra. Let H be the

path algebra of the quiver (Q0, Q
(1)
1 ). Next, for each loop ε, let mε be the minimal m

such that εm ∈ I, and Λε := k[x]/(xmε). Note that I = 〈εmε : ε ∈ Q
(0)
1 〉.

Let d and e be dimension vectors. Then

EA(e,d) = EH(e,d)×
∏

ε∈Q
(0)
1

EΛε
(etε, dsε).

Since H is ext-irreducible by Lemma 5.2, and the algebras Λε are ext-irreducible by
Corollary 4.2, EA(e,d) is irreducible, and the claim follows. �

In order to prove that the simple loop extensions of hereditary algebras are the only ext-
irreducible algebras, we need additional facts on relations in (geometrically irreducible)
algebras. Let Q be a quiver. Recall that a set R of relations is called minimal, if
〈R〉 6= 〈R \ {ρ}〉, for each ρ ∈ R. If R is a set of relations, then for x, y ∈ R we denote
by Rx,y the set of ρ ∈ R such that sρ = x and tρ = y. The first fact is the following
generalization of [5, Proposition 1.2].

Proposition 5.4. Let A = kQ/I be a weakly triangular algebra. If R is a minimal set

of relations generating I, then the cardinality #Rx,y of Rx,y is independent of R, for all

x, y ∈ Q0, x 6= y. More precisely,

#Rx,y = dimk Ext
2
A(SA(x), SA(y)).

7



Proof. Let J be the ideal in kQ generated by the arrows. Then according to [5, Corol-
lary 1.2]

dimk Ext
2
A(SA(x), SA(y)) = dimk 1y(I/(IJ + JI))1x.

Next, let R(0) be the set of relations of degree 0 in R, A′ = kQ/〈R(0)〉, I ′ = I/〈R(0)〉, and
J ′ = J/〈R(0)〉. Since x 6= y,

dimk 1y(I/(IJ + JI))1x = dimk 1y(I
′/(I ′J ′ + J ′I ′))1x.

Thus in order to finish the proof it suffices to show

#Rx,y = dimk 1y(I
′/(I ′J ′ + J ′I ′))1x.

In other words, it is enough to show that the residue classes of the elements of Rx,y form
a basis of 1y(I

′/(I ′J ′ + J ′I ′))1x.
One easily sees that the residue classes of the elements ofRx,y span 1x(I

′/(I ′J ′+J ′I ′))1y

as a vector space (see for example the proof of the corresponding statement in the proof
of [8, Theorem 4.1]). Thus assume the residue classes of the elements of Rx,y are linearly
dependent. This implies that there exists ρ ∈ Rx,y such that ρ ∈ K ′ + I ′J ′ + J ′I ′,
where K ′ := K/〈R(0)〉 and K := 〈R \ {ρ}〉. Consequently, K ′ + I ′J ′ + J ′I ′ = I ′. Note
that I ′J ′ + J ′I ′ is the radical of A′ as an A′-A′-bimodule (here we use that A is weakly
triangular, hence there exists n ∈ N+ with σ ∈ 〈R(0)〉, for each path σ in Q of length n).
Thus the Nakayama lemma (see for example [1, Corollary 15.13]) implies I ′ = K ′, i.e.,
I = K, which contradicts the minimality of R. �

Before we continue we formulate an easy generalization of the results of [3, Subsec-
tion 5.5].

Lemma 5.5. Let Q be the quiver

0

ε0

��
1

ε1

��α11oo

α1n1

···oo 2

ε2

��α21oo

α2n2

···oo · · ·
α31oo

α3n3

···oo k

εk

��αk1oo

αknk

···oo ,

where k, n1, . . . , nk ∈ N+. If A
′ is a geometrically irreducible algebra, whose Gabriel quiver

Q′ is a subquiver of Q, and R′ is a minimal set of relations such that A′ ≃ kQ′/〈R′〉,
then deg ρ ∈ {0, 1}, for each ρ ∈ R′.

Proof. We adapt arguments from the proof of [3, Corollary 5.5]: Let R′(0) be the set of
relations of degree 0 in R′. Without loss of generality, we may assume R′(0) := {εmi

i :
i ∈ Q′′

0}, for some mi ≥ 2, i ∈ Q′′
0, where Q′′

0 is the set of i ∈ [0, k] such that εi ∈ Q′
1.

Choose mi ≥ 2, for each i ∈ Q0 \ Q′′
0, and let R := R′ ∪ {εmi

i : i ∈ Q0 \Q
′′
0}. If A :=

kQ/〈R〉, then A′ being geometrically irreducible implies A is geometrically irreducible.
Consequently, the claim follows from [3, Proposition 5.4]. �

The proof of the following fact uses ideas from the proof of [4, Lemma 5.1].

Proposition 5.6. Let A be a geometrically irreducible algebra with Gabriel quiver Q, and

let R be a minimal set of relations such that A ≃ kQ/〈R〉. If deg ρ 6= 1, for each ρ ∈ R,

then deg ρ = 0, for each ρ ∈ R.

Proof. Let R(0) be the set of relations of degree 0 in R and I := 〈R(0)〉. Our aim is to
show that ρ ∈ I, for each ρ ∈ R \R(0).

For a path σ = α1 · · ·αl in Q, let supp σ := {t(α1), s(α1), . . . , s(αl)}. Note that deg σ =

#supp σ−1, since A is weakly triangular by Lemma 2.1(1). If ρ =
∑k

i=1 λiσi is a relation
in R, we write ρ =

∑

X⊆Q0
ρX , where ρX :=

∑

i:suppσi=X λiσi, for X ⊆ Q0. By induction
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on #X we show ρX ∈ I, for each ρ ∈ R \ R(0). The claim is obvious if #X = 1
(indeed, weak triangularity implies that ρX = ρ ∈ R(0), if #X = 1 and ρX 6= 0) and
there is nothing to prove if #X = 2 (if #X = 2 and ρX 6= 0, then deg ρ = 1 by weak
triangularity).

Now fix X ⊆ Q0 with #X > 2, and assume ρY ∈ I, for each ρ ∈ R \ R(0) and Y
with #Y < #X . By replacing every ρ ∈ R \ R(0) by ρ −

∑

Y :#Y <#X ρY (note that

(ρ−
∑

Y :#Y <#X ρY )X = ρX) we may assume

(∗) ρY = 0, for each ρ ∈ R \R(0) and Y with #Y < #X.

We number the elements x0, . . . , xl of X in such a way that there are no paths from
xi to xj in Q, for i < j (here we use again that A is weakly triangular). Let Q′

1 be the
union of the set of all loops at x0, . . . , xl and the set of arrows α ∈ Q1 such that sα = xi

and tα = xi−1, for some i ∈ [1, l]. If Q′ := (X,Q′
1), then ρX is a linear combination of

paths in Q′, for each ρ ∈ R \ R(0). Let A′ := A/〈(1Q0\X〉+ 〈Q1 \Q
′
1〉). We show that A′

is geometrically irreducible.
First observe that A′ ≃ kQ′/I ′, where I ′ is the ideal in kQ′ generated by the restrictions

ρ|Q′ of ρ ∈ R to Q′. If ρ ∈ R(0), then either ρ|Q′ = 0 (if sρ 6∈ X) or ρ|Q′ = ρ (if sρ ∈ X).
On the other hand, if ρ ∈ R\R(0), then assumption (∗) implies ρ|Q′ = ρX . Consequently,
I ′ = 〈R′〉, where

R′ := {ρ ∈ R(0) : sρ ∈ X} ∪ {ρX : ρ ∈ R \R(0)}.

Now let A′′ := A/〈1Q0\X〉. Then obviously A′′ is geometrically irreducible. Moreover,
A′′ ≃ kQ′′/I ′′, where Q′′ is the full subquiver of Q with the vertex set X and I ′′ is the
ideal in kQ′′ generated by the restrictions ρ|Q′′ of ρ ∈ R to Q′′. Obviously, ρ|Q′′ = ρ|Q′,
if ρ ∈ R(0). Furthermore, if ρ ∈ R \ R(0), then ρ|Q′′ = ρX , again by assumption (∗). In
other words, I ′′ = 〈R′〉. Consequently, repA′′(d) is the product of repA′(d) and an affine
space, for each dimension vector d, hence A′′ being geometrically irreducible implies A′

is geometrically irreducible as well.
Now we apply Lemma 5.5 to A′ (note that A′ being geometrically irreducible implies

that there is at most one loop at each vertex of Q′ by Lemma 2.1(2)) and conclude that
ρX belongs to the ideal generated by the relations in R(0) ∩ R′, for each ρ ∈ R \ R(0).
Consequently, ρX ∈ I, for each ρ ∈ R \R(0), and this finishes the proof. �

Now we are able to conclude a classification of the ext-irreducible algebras.

Theorem 5.7. Up to Morita equivalence, an algebra A is ext-irreducible if and only if A
is a simple loop extension of a hereditary algebra.

Before giving the proof we need some preparations. Let A be the path algebra of a
bound quiver (Q, I). For each loop α, let mα be the minimal m ∈ N+ such that αm ∈ I. A
minimal set R of relations generating I is called normalized if, for each loop α, αmα is the
unique element of R which has a summand containing αmα as a subpath (in particular,
αmα ∈ R). In general a normalized minimal set of relations generating I may not exist
(this is, for example, the case for A = k[X, Y ]/(X2 − Y 2, X4)). However, it obviously
exists if A is a quotient of a simple loop extension of a hereditary algebra.

Now let A = kQ/I be a geometrically irreducible algebras. According to Lemma 2.1(2),
for each vertex x there is at most one loop α such that sα = x. Moreover, A is weakly
triangular by Lemma 2.1(1). Consequently, A is a quotient of a simple loop extension
of a hereditary algebra. In particular, there exists a normalized minimal set of relations
generating I.

9



Proof. We already know from Lemma 5.3 that the simple loop extensions of hereditary
algebras are ext-irreducible. Thus we need to show that if A = kQ/I is ext-irreducible,
then A is a simple loop extension of a hereditary algebra. Recall from Proposition 3.2 that
A is mono-irreducible. Moreover, A is geometrically irreducible (repA(d) = EA(0,d)).

Let R be a normalized minimal set of generators of I. According to Proposition 5.6
it suffices to show deg ρ 6= 1, for all ρ ∈ R. Suppose this is not the case and fix ρ ∈ R
with deg ρ = 1. Put x := tρ and y := sρ. If B := A/〈1Q0\{x,y}〉, then B is also
mono- and geometrically irreducible. Moreover, B has exactly two simples, hence by
Theorem 1.1 (or [4, Theorem 1.1]) we may assume B = A(n,m, 1) or B = A(n,m,m−1),
for some n ∈ N+ and m ≥ 2 (the cases of n = 0 and B = A′(n,m0, m1) are excluded
by Proposition 5.4, since from R being normalized it follows that ρ induces a relation of
degree 1 in B, which cannot be generated by relations of degree 0). In order to treat the
above cases simultaneously, let l := 2 in the former case, and l := m in the latter one.

Let d := (1, l) and e := (1, 1). Then MB(e,d) consist of the tuples

k[0] 88

[λ]

��

k [0]ff

[µ1]oo

[µn]

...oo

W

��

k[0] 88 kl
Uhh

V1oo

Vn

...oo

where µ1, . . . , µn, λ ∈ k, V1, . . . , Vn ∈ M1×l(k), U ∈ Ml×l(k), W ∈ Ml×1(k), such that

V1U
l−1 = 0, U l = 0, λµ1 = V1W, . . . , λµn = VnW, UW = 0,

and λ and W are nonzero.
Let U1 be the set of the tuples as above such that rkU = l − 1 and U2 be set of the

tuples such that µ1 6= 0. They are easily seen to be nonempty open subsets of MB(e,d).
If MB(e,d) were irreducible, U1 and U2 would have a nonempty intersection. However,
V1U

l−1 = 0 and UW = 0, imply ImU l−1 ⊆ KerV1 and ImW ⊆ KerU . Moreover, if
rkU = l− 1, then U l = 0 implies KerU = ImU l−1, hence ImW ⊆ KerV1. Consequently,
λµ1 = V1W = 0. Since λ 6= 0, µ1 = 0, i.e., U1 ∩ U2 = ∅. Thus MB(e,d) is reducible, a
contradiction. �
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Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University
ul. Chopina 12/18
87-100 Toruń
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