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We investigate the phase diagram of a bilayer Kitaev honeycomb model with Ising interlayer in-
teractions, deriving effective models via perturbation theory and performing Majorana mean-field
theory calculations. We show that a diverse array of magnetic and topological phase transitions
occur, depending on the direction of the interlayer Ising interaction and the relative sign of Kitaev
interactions. When two layers have the same sign of the Kitaev interaction, a first-order transition
from a Kitaev spin liquid to a magnetically ordered state takes place. The magnetic order points
along the Ising axis and it is (anti)ferromagnetic for (anti)ferromagnetic Kitaev interactions. How-
ever, when two layers have opposite sign of the Kitaev interaction, we observe a notable weakening
of magnetic ordering tendencies and the Kitaev spin liquid survives up to a remarkably larger in-
terlayer exchange. Our mean-field analysis suggests the emergence of an intermediate gapped Z2

spin liquid state, which eventually becomes unstable upon vison condensation. The confined phase
is described by a highly frustrated 120◦ compass model. We furthermore use perturbation theory to
study the model with the Ising axis pointing along ẑ-axis or lying in the xy-plane. In both cases, our
analysis reveals the formation of 1D Ising chains, which remain decoupled in perturbation theory,
resulting in a subextensive ground-state degeneracy. Our results highlight the interplay between
topological order and magnetic ordering tendencies in bilayer quantum spin liquids.

I. INTRODUCTION

Quantum spin liquids (QSLs) are a unique class of
phases in quantum magnets that are not uniquely char-
acterized by local order parameters [1–4], but instead
exhibit long-range entanglement, fractionalization and
emergent gauge fields [5–7], which are understood to be
stabilized by strong quantum fluctuations. Since the first
proposal for a QSL by Anderson [8] in 1973, there has
been remarkable progress in the identification of both
theoretical models that may exhibit QSL ground states
and the discovery of candidate materials that exhibit ex-
perimental signatures which might be compatible with
QSL behaviour. In this regard, the Kitaev model on
a honeycomb lattice [9] plays an exceptional role as a
spin model for a QSL that both can be solved exactly
and may be (approximately) realized in materials, most
prominently α-RuCl3 [10, 11].

Further, in recent years, remarkable experimental
progress and theoretical analysis has made evident that
bilayers and moiré superlattices of 2D (van der Waals)
materials represent new, adjustable quantum platforms
for realizing a myriad of novel phases [12–14]. While bi-
layers of electronic materials have widely been explored,
investigations of bilayers of frustrated quantum magnets
and magnetic moiré superlattices are still in their early
stages [15–23]. Considering bilayers of the Kitaev’s hon-
eycomb spin liquid [9], we note that generic interlayer in-
teractions spoil the integrability of the Kitaev model in
each layer [24, 25], and the resulting model is no longer
exactly solvable. Instead, one can turn to perturbative
expansions, starting in solvable limits, perform mean-
field treatments [24, 26] or use numerical methods such
as exact diagonalization [27, 28] to estimate its phase
diagram. In contrast, Γ-matrix generalizations of the Ki-
taev model (with larger local Hilbert spaces) [29–32] al-

FIG. 1. (a) Illustration of the bilayer Kitaev-Ising model. K
and J are intralayer Kitaev and interlayer Ising interaction
exchange terms, respectively. (b) The bond-dependent inter-
actions of the Kitaev model: red, green and blue bonds repre-
sent the x, y and z bonds respectively. We observe two types
of phase transitions: (c) topological phase transitions where
the interlayer plaquettes acquire finite expectation value that
gap the spectrum, and (d) magnetic order induced by the in-
terlayer interaction or an external magnetic field.

low for interlayer exchange terms that commute with the
intralayer fluxes, making controlled calculations feasible.
Yet, the lack of candidate materials for these models is
a significant challenge. It is worth noting that prior re-
search has predominantly focused on bilayer Kitaev mod-
els with Heisenberg interlayer interactions, which stabi-
lize a trivial quantum paramagnet at for large interlayer
interactions, consisting of interlayer singlets [24, 26–28].

Instead, in this article, we focus on the S = 1/2 bilayer
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Kitaev model with Ising interlayer interactions. Unlike a
Heisenberg interlayer interaction, this interaction retains
a residual degree of freedom in the limit of large inter-
layer exchange couplings. This opens up the possibility
for non-trivial phases in this limit, in particular one may
wonder if topologically ordered states or magnetic phases
are realized. In particular, the coexistence of topological
and magnetic order could give rise to a spontaneously-
generated chiral spin liquid. In principle, there exists
an arbitrariness to fixing the spin-space axis of the Ising
interlayer. We note that varying this axis and different
choices for the relative sign of the Kitaev couplings add
layers of complexity to our investigation, providing the
means for exploration of rich phase diagrams and emer-
gent phenomena.

To construct the phase diagram of the model, we first
focus on deriving effective Hamiltonians in the limit of
large interlayer exchange interactions. This allows us
to determine the ground state in this limit, such as
ferromagnetic (FM) or antiferromagnetic (AFM) order.
Equipped with these controlled insights, we perform Ma-
jorana mean-field theory to determine the phase at weak
and intermediate interlayer exchange, where we use mag-
netically ordered states as variational ansatze. We em-
phasize that by construction, the mean-field theory ex-
actly reproduces the T = 0 ground state of the Kitaev
model (i.e. in the lowest flux sector) and is thus con-
trolled in both limits of vanishing and strong interlayer
interactions.

Our main results can be summarized as follows: (i)
when the Ising interaction points along (nx, ny, nz) with
all nα ̸= 0, and both layers have the same Kitaev inter-
action strength (K1 = K2), there is a first order transi-
tion from a Z2 × Z2 spin liquid state to a FM or AFM
state, depending on the sign of the Kitaev interaction.
(ii) For K1 = −K2, the magnetic order is suppressed and
the spin liquid phase is sustained for fairly large inter-
layer couplings. Beyond a critical J/|K|, within mean-
field theory we find that a gapped bilayer Z2 spin liquid
emerges, locking the gauge structure of the two layers.
This phase then undergoes a confinement-deconfinement
transition for larger J/|K|. Perturbatively, we show that
the large interlayer coupling limit of the confined phase
is determined by the 120◦ compass model for the effec-
tive degrees of freedom. (iii) In cases when n is along
a Cartesian axis such as the ẑ direction, or perpendicu-
lar to it (i.e. n lies in the x-y plane), our perturbative
analysis shows the existence of Ising chain with a two-
fold ground-state degeneracy per chain. We find that
the splitting of this two-fold ground-state degeneracy by
interchain couplings is exponentially small in the length
of the chains, and therefore, surprisingly, the system pos-
sesses a subextensive ground-state degeneracy (given by
effectively decoupled chains) in the thermodynamic limit.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and describe our methodology,
including the perturbative analysis and Majorana mean
field theory. In Sec. III, we present our results for differ-

ent parameter regimes. We conclude with a discussion
and a summary of our results in Sec. IV.

II. MODEL & METHODS

A. Microscopic model

The Kitaev honeycomb model [9] is a paradigmatic ex-
ample of a highly frustrated S = 1/2 model characterized
by bond-dependent interactions. Within this model, in-
teractions are defined along three distinct types of bonds
originating from each lattice site within the honeycomb
lattice, which we denote using the symbols α = x, y, z
as shown in Figs. 1(a) and (b). For the bilayer Kitaev
model, we consider an AA stacking configuration, where
the A sublattice of the first layer is precisely aligned with
the A sublattice of the second layer. The interaction
between these two layers is governed by an Ising-type
interaction oriented along a specific axis in spin space,
characterized by a unit-vector n, which henceforth will
be referred to as the Ising axis. The full Hamiltonian is
H = HK +HJ ,

HK =
∑

ν,⟨ij⟩α
KνS

α
νiS

α
νj (1)

HJ =− J
∑
i

(n · S1i)(n · S2i), (2)

where ν = 1, 2 is the layer index and n is a vector on
the unit sphere. Before delving into the bilayer model,
we first briefly review the solution of the single layer Ki-
taev model following Ref. [9]. The key observation which
leads to the exact solvability is based on the plaque-
tte operators Wp = σx

i σ
y
j σ

z
kσ

x
l σ

y
mσz

n. These operators
commute with the Hamiltonian, and hence the whole
Hilbert space can be labelled by the eigenvalues of the
plaquette operators. Eq. (1) can be solved by repre-
senting the spin operators at each site by four Majorana
fermions, 2Sα

i = iχα
i χ

0
i where we choose the normaliza-

tion (χµ)2 = 1. The Majorana representation is overcom-
plete and the physical Hilbert space can be recovered by
projecting states with the operator P =

∏
i(1 + Di)/2

where Di = χ0
iχ

x
i χ

y
i χ

z
i , which enforces that the fermion

parity on each site is even, Di ≡ +1. Using the Majo-
rana representation, the Kitaev Hamiltonian can then be
written as

HK =
K

4

∑
⟨ij⟩α

(iχα
i χ

0
i )(iχ

α
j χ

0
j )

≡ K

4

∑
⟨ij⟩α

iuijχ
0
iχ

0
j , (3)

where in the second line we have introduced uα
ij = iχα

i χ
α
j .

Notably, both χµ
j and uij anticommute with the con-

straint operator Di, and thus it becomes clear that the
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Majorana fermions carry a Z2 gauge charge and are cou-
pled to a Z2 gauge field given by uij , with gauge trans-
formations generated by Di.

The plaquette operators can be represented by the
product of the bond operators, Wp =

∏
p uij , corre-

sponding to gauge-invariant Wilson loops in the Z2 gauge
theory. Given that the Wp are conserved, the physical
Hilbert space decomposes into distinct sectors labelled
by the eigenvalues of Wp. According to Lieb’s theorem,
the ground state of the Kitaev model lies in the zero-flux
sector with all plaquette operators having the eigenvalue
Wp = 1. In this sector, the Majorana fermion disper-
sion is gapless, and possesses two Majorana-Dirac cones.
For a bilayer system with vanishing interlayer couplings
J = 0, there are two copies of gapless Z2 QSLs, resulting
in a Z2 × Z2 phase.

B. The limit of large interlayer exchange

In the atomic limit with Kν = 0 and J ̸= 0, the ef-
fective degrees of freedom are determined by the Ising
interlayer interaction. The ground state is a doublet
given by |↑n1↑n2 ⟩ and |↓n1↓n2 ⟩ where |↑n⟩ and |↓n⟩ are eigen-
states of (n · S), that is the spin operator aligned to the
n Ising axis. The excited states also form a doublet,
|↑n1↓n2 ⟩ and |↓n1↑n2 ⟩. For later convenience, we rotate the
axis of quantization of the Pauli matrices such that the
rotated ẑ-axis point along n. To achieve this, we choose
the axis of rotation and the angle to be k = n × ẑ and
θ = cos−1(nz). Next, we use the operator exp(iθ/2k ·σ),
to rotate each spin matrix at every site along the de-

sired axis using the relation: e−iσ·k̂θ/2a · σeiσ·k̂θ/2 =[
k̂(k̂ · a) + cos(θ)(a− k̂(k̂ · a)) + sin(θ)k̂× a

]
· σ. This

rotation maps (n · S) → S̃z, and then the interlayer in-

teraction can be written as HJ = −J
∑

i S̃
z
1iS̃

z
2i.

In the following, we will derive effective Hamiltonians
within the degenerate ground-state manifold spanned by
degenerate doublets on each site. To this end, it will
be convenient to introduce pseudospin operators for each
interlayer pair of sites. These span a full operator basis
for each local ground state doublet,

ηz =
1

2
(S̃z

1i + S̃z
2i)

ηxi =
1

4
(S̃x

1iS̃
x
2i − S̃y

1iS̃
y
2i)

ηyi =
1

4
(S̃x

1iS̃
y
2i + S̃y

1iS̃
x
2i) (4)

These pseudospin operators satisfy the SU(2) algebra.
Note that ηz is a dipolar operator while ηx and ηy are
quadrupolar operators [30]. If the sign of J is flipped from
positive to negative, the pseudospin operators need to be
redefined as the ground state sector will then be spanned
by |↑n1↓n2 ⟩ and |↓n1↑n2 ⟩. The effective Hamiltonian acting
on this degenerate subspace, obtained via perturbation
theory in the large J/K| limit, can be expressed using

these operators [30]. For instance, the first and second
order contribution to the effective Hamiltonian are de-
rived as:

H
(1)
eff = P0HKP0

H
(2)
eff = P0HKSHKP0, (5)

where we use projection operator (in the rotated basis):

P0 =
∏

i(1 + 4S̃z
1iS̃

z
2i) onto the low-energy manifold, and

S = (1−P0)/(E0−HJ). We stop at the order of perturba-
tion when the effective Hamiltonian exhibits non-trivial
magnetic order. If Heff has a simple form (i.e. without
frustrated interactions), the ground state in the J/K ≫ 1
limit can then be readily obtained. We will use the thus-
obtained magnetically ordered states as ansatze in our
Majorana mean-field theory calculations to explore the
weak and intermediate J/K regions.

C. Majorana mean field theory

In the presence of interlayer interactions, the single-
layer Kitaev model as detailed in Sec. II A is no longer
solvable, as the plaquette operators are no longer con-
served, [HJ ,Wp] ̸= 0. To map out phase diagrams, we
therefore resort to Majorana mean-field theory (MMFT)
for the full bilayer system [33]. In the following, we also
incorporate an onsite external magnetic field into the
Hamiltonian, which will find utility in specific sections
of our analysis.
Within MMFT, we do not enforce the constraint Di =

+1 for each site (which would require significant nu-
merical effort, e.g. using Gutzwiller-projected variational
Monte Carlo methods), but instead enforce the constraint
on average. To this end, we reformulate Di = 1 as
iχαχ0 + i

2ϵ
αβγχβχδ = 0 and subsequently enforce it

through the introduction of a Lagrange multiplier, as de-
tailed in Refs. 33 and 34.
To facilitate the analysis, we employ a mean-

field approximation to decouple intralayer Majo-
rana fermion interactions as iχα

i,Aχ
0
i,Aiχ

α
j,Bχ

0
j,B ≈

mα
A(iχ

α
j,Bχ

0
j,B) + mα

B(iχ
α
i,Aχ

0
i,A) − mα

Am
α
B −

uα(iχ0
i,Aχ

0
j,B) − u0(iχα

i,Aχ
α
j,B) + uαu0, with the mean-

field parameters u0 = ⟨iχ0
i,Aχ

0
j,B⟩, mα

A = ⟨iχα
i,Aχ

0
i,A⟩

and mα
B = ⟨iχα

j,Bχ
0
j,B⟩. The interlayer inter-

action, HJ = −J
4

∑
i(iχ

(n)
1i χ0

1i)(iχ
(n)
2i χ0

2i), where

χ(n) =
∑

α nαχα, is decoupled as iχ
(n)
1i χ0

1iiχ
(n)
2i χ0

2i ≈
w0

i (iχ
(n)
1i χ

(n)
2i )+w

(n)
i (iχ0

1iχ
0
2i)−w

(n)
i w0

i −m
(n)
1i (iχ

(n)
2i χ0

2i)−
m

(n)
2i (iχ

(n)
1i χ0

1i) + m
(n)
1i m

(n)
2i with w0

i = ⟨iχ0
1iχ

0
2i⟩,

w
(n)
i = ⟨iχ(n)

1i χ
(n)
2i ⟩ denoting mean fields in the Hartree

channel, while m
(n)
1i = ⟨iχ(n)

1i χ0
1i⟩ and m

(n)
2i = ⟨iχ(n)

2i χ0
2i⟩

is the decoupling in the magnetic channel. Note that,
m(n) is the magnetization along the direction of the n
axis and mα is the magnetization along x, y, z axes.
Incorporating all these, we write down the full mean-field
Hamiltonian as
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H =
∑
ν,i

∑
α−bonds

1

2

(
Kν

2
mB − hα − λα

)
iχα

νi,Aχ
0
νi,A +

1

2

(
Kν

2
mA − hα − λα

)
iχα

νj,Bχ
0
νj,B − Kνu

α

4

(
iχ0

νi,Aχ
0
νj,B

)
−Kνu

0

4

(
iχα

νi,Aχ
α
νj,B

)
− λα ϵ

αβγ

4

(
iχβ

νi,Aχ
γ
νi,A + iχβ

νj,Bχ
γ
νj,B

)
−J

4

∑
i

w0
i

(
iχ

(n)
1i χ

(n)
2i

)
+ w

(n)
i

(
iχ0

1iχ
0
2i

)
−m

(n)
1i

(
iχ

(n)
2i χ0

2i

)
−m

(n)
2i

(
iχ

(n)
1i χ0

1i

)
+ Econst[m,u,w], (6)

where in total 8 mean-field parameters u,w,m and
3 Lagrange multipliers λα are to be determined self-
consistently. Econst[m,u,w] is a constant term that de-
pends on the mean field parameters. We use an iterative
procedure to solve the mean-field self-consistency equa-
tions and determine the Lagrange multipliers, where we
diagonalize Eq. (6) on momentum space grids of 4× 104

points.
As discussed in previous works, the mean-field decou-

pling of the single-layer Kitaev interaction in Eq. (6)
can be seen to exactly reproduce static spin-spin cor-
relations and the spectrum of the itinerant Majorana
fermions in the 0-flux ground state sector [35, 36], where
intuitively the mean-field parameter uα can be identified
with a (gauge-fixed) configuration of the gauge field uij

in Eq. (3).
Next, we present the results obtained using the meth-

ods above for various possibilities of n and the relative
sign of the Kitaev interactions in the two layers.

III. RESULTS

A. Arbitrary Ising axis with same Kitaev
interaction (nα ̸= 0, K1 = K2)

We first consider the case where the Ising interac-
tion has components along all Cartesian coordinates,
n = (nx, ny, nz), with nα ̸= 0. We proceed according to
the method described in the previous section, and first
derive an effective Hamiltonian for J/K ≫ 1 via pertur-
bative expansion. First order perturbation theory leads
to

H
(1)
eff =

∑
⟨ij⟩α

Uαηzi η
z
j (7)

where Uα = (K1 +K2)(n
α)2/2. For the isotropic direc-

tion, n = (1, 1, 1)/
√
3, and K1 = K2 = K we obtain

Uα = K/3 for all bonds. Eq. (7) suggests the ground
state exhibits FM or AFM long range order depending
on the sign of K. It is noteworthy that highly-frustrated
Kitaev interactions lead to a simple, non-frustrated effec-
tive model in this limit with a straightforward AFM/FM
ground state aligned along the Ising axis.

Next, we perform Majorana mean-field theory calcu-
lations to explore the intermediate J region. We begin
with solving the mean field Hamiltonian in Eq. (6), with

FIG. 2. a) Phase diagram for n = (1, 1, 1)/
√
3 and K1 = K2.

For both FM and AFM Kitaev interactions, the Z2 ×Z2 gap-
less spin liquid (red line) undergoes a first order transition
to a polarized phase as Jc/K = 0.55. For FM Kitaev inter-
action, external magnetic field, h, along the [111] direction
lowers the critical J . External magnetic field induces a finite
magnetization, which is shown with the colour coding. This
phase is a gapped chiral spin liquid.

no external field. We find a transition from the Z2 × Z2

gapless spin liquid, which is characterized by a vanishing
magnetisation and no interlayer Hartree channel (w(n)

and w0), to a fully polarised state with a uniform mag-
netization m(n) = 1.

This holds for both FM or AFM Kitaev interactions.
Moreover, this transition depends heavily on the initial
conditions, signalling a first-order phase transition. To
pinpoint the exact value of Jc/K, we compare the en-
ergies of the Z2 × Z2 gapless spin liquid and the fully
polarized state and find that the energies intersect at
Jc/K = 0.55 as shown in Fig. 2. This demonstrates
that, based on our mean-field analysis, we do not expect
a phase that simultaneously exhibits local magnetic order
and topological order.

Focussing on the case of FM Kitaev interactions, we
consider the impact of a magnetic field in the [111] direc-
tion. In the absence of interlayer interactions (J = 0),
we obtain a chiral spin liquid up to hc/K = 0.18, in
agreement with Ref. 34. With the inclusion of interlayer
couplings, hc diminishes, as expected since the FM in-
terlayer exchange functions similar to magnetic field at
mean-field level, leading to a higher effective magnetic
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field experienced by each layer. We also observe that if
the magnetic channel is artificially turned off, the inter-
layer Hartree channel acquires a finite expectation value
at J/K = 0.9. Given that this value surpasses the criti-
cal exchange needed for the fully polarized phase, we can
infer that magnetic ordering is preferred compared to the
interlayer Hartree channel.

It is important to note that Majorana mean-field cal-
culations on the Kitaev model tend to overestimate the
critical values for the destruction of the Kitaev QSL
phase, since they ignore the quantum fluctuations due
to dynamical visons as excitations of the Z2 gaiuge field
[28, 37, 38]. An appropriate treatment is an interest-
ing direction for future research. Nevertheless, the phase
diagrams of mean-field calculations and numerical ap-
proaches can be expected to be similar, with renormal-
ized values for the critical coupling constants.

B. Suppressed magnetic ordering for Kitaev
interaction with opposite sign (K1 = −K2)

Eq. (7) implies that the first order correction in the
effective Hamiltonian vanishes when K1 = −K2. Moti-
vated by this observation, we investigate the phase dia-
gram for K1 = −K2 = K and n = (1, 1, 1)/

√
3. Then,

second order perturbation theory leads to the following
effective spin Hamiltonian in the large J limit,

H
(2)
eff =

2K2

|J |
[
∑
⟨ij⟩z

ηxi η
x
j +

∑
⟨ij⟩x

Rz
120(η

x
i )R

z
120(η

x
j )

+
∑
⟨ij⟩y

Rz
−120(η

x
i )R

z
−120(η

x
j )] (8)

where Rz
θ(η

x) = exp(i θ2η
z)ηx exp(−i θ2η

z) is the rotation
operation on the pseudospin operators about the ẑ-axis
by θ = ±120◦. Notably, Eq. (8) is the 120◦ compass
model for the η degrees of freedom. It is a highly-
frustrated model and its ground state has still not been
unambiguously identified. Candidate orders include va-
lence bond solid, long-range dimer order [39, 40].

Since the ground state of the 120◦ compass model is not
well-established, a major reason being that the energy
differences between the candidate magnetic orders are
quite small, we instead use for simplicity FM and AFM
(Néel order) mean field ansatze for our mean field theory

calculations: m
(n)
ν,A = m

(n)
ν,B , for FM and m

(n)
ν,A = −m

(n)
ν,B

for AFM case. We find that these magnetically polarized
phases exhibit higher energies compared to the K1 = K2

case, since the energy gain from the Kitaev term on each
layer cancels each other due to the opposite sign. This
allows for the Hartree channel order parameter, wµ, to
attain a finite expectation value prior to magnetic or-
der. Consequently, the interlayer plaquette operator, as
shown in Fig. 1(c), attains a non-zero value, leading to
a topologically trivial gapped QSL at Jc/K = 1.25 as
shown in Fig. 3.

FIG. 3. Phase diagram K1 = −K2 and n = (1, 1, 1)/
√
3.

At J/K = 1.25, the Hartree order parameter wµ acquires
a finite expectation value which gaps the spectrum and
locks the gauge fields on each layer. This is followed by a
confinement-deconfinement transition via the condensation of
visons, which occurs (in a treatment beyond mean-field the-
ory) when the vison gap closes. Here, we take the energy gap
of the χα-bands as a proxy for the energy cost of a single vi-
son excitation in the full interacting Z2 gauge theory. Using
perturbation theory, we predict that this phase, at large val-
ues of J/K, is described by the 120◦ compass model.

We now comment on the interpretation of our results
beyond the mean-field treatment of the model. The
mean-field Hamiltonian in Eq. (6) can be understood
to constitute a particular gauge-fixed configuration of
some (non-integrable) gauge theory. Equivalence classes
of such mean-field ansatze which are equivalent (up to
gauge transformations) can be classified with respect to
their projective symmetry group (PSG) [35]. We refrain
from a such a full classification for the bilayer system
here. However, importantly, we note that a finite wµ

implies that independent gauge transformations on each
layer no longer leave the Hamiltonian invariant, only con-
joint gauge transformations do. This reduces the gauge
group from Z2 × Z2 to Z2 [30]. Moreover, we stress that
the operators Wµ

i = iχµ
1iχ

µ
2i are in general not gauge-

invariant, and thus the fields wµ
i can not be used to con-

struct a local Landau-Ginzburg analysis for the transition
out of the Z2 ×Z2 spin liquid to the bilayer system with
a residual Z2 gauge group. Explicitly, gauge transforma-
tions induced by the operators Dνi change the sign of the
associated wµ

i , in addition to the three bond operators,
uα
ij emanating from that site. Consequently, wµ

i vanishes
for the physical wave function which is symmetrized over
all gauge configurations [9]. However, it is possible to
introduce a gauge-invariant correlator [29, 30],

⟨Cµ
ij⟩ = ⟨Wµ

i BijW
µ
j ⟩ (9)
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where Bij =
∏

⟨i′j′⟩ sgn(u
µ
1i′j′)sgn(u

µ
2i′j′), is the product

of the signs of the uµ
νij operators that connect the two

Wµ
i/j operators. The value of Bij is the same in all gauge

choices. Therefore, it is also finite for the physical wave
function. Finite wµ

i/j ̸= 0 implies ⟨Cµ
ij⟩ ̸= 0, signalling a

non-local string order parameter.

For larger values of interlayer exchange, we observe
that the energy gap of χα bands vanishes as shown in
Fig. 3. These bands are associated with the Majorana
fermions of flavor α that are localized on the α-bonds in
the pure Kitaev limit, which in the exact solution give
rise to the Z2 gauge field (compare also Eq. (3)). While
the vison in Kitaev’s exact solution is a non-local ex-
citation of the Z2 gauge field, the delocalization of the
α-Majoranas (i.e. dispersive bands) can be taken as a
proxy for the dynamics of the visons that is induced by
breaking integrability, and we therefore (loosely) asso-
ciate the gap of the χα-Majorana fermion dispersion with
the gap of dispersing visons in the full (non-integrable)
Z2 gauge theory. Equipped with this understanding ,
we suggest that the χα-Majoranas becoming gapless can
be interpreted as the single-vison gap closing, which al-
lows for the condensation of visons, tantamount to a
confinement-deconfinement transition [41, 42]. From our
mean-field computations, we find a critical coupling of
approximately J/K ≃ 1.4. The resulting state will be
accurately described by the 120◦ compass model, as pre-
sented in Eq. (8), for which previous studies have identi-
fied non-fractionalized states with magnetic/VBS order-
ing as possible ground states.

C. Special cases for the Ising axis

The first order correction to the effective Hamiltonian
in Eq. (7) also becomes suppressed if the Ising axis is
oriented such that nα (α = x, y, z) vanishes for certain
bonds. Unlike the (K1 = −K2) case in Sec. III B, where

H
(1)
eff vanishes entirely, orienting the n such that nα = 0

for particular Cartesian axes only suppresses the bonds
along the α directions. To investigate the consequences
of these interactions, we consider two cases, where nα = 0
for one and two Cartesian axes, respectively, below.

1. Effective chain geometry for n = (1, 1, 0)/
√
2

We first consider the case when a single nα vanishes.
We pick n = (1, 1, 0)/

√
2, which preserves the symmetry

between the x and y bonds, but the first order correc-
tion the energy along the z bond vanishes. We obtain
the following effective Hamiltonian up to second order in

perturbation expansion,

H
(1)
eff = K

∑
⟨ij⟩x/y

ηzi η
z
j

H
(2)
eff =

2K2

|J |
∑

⟨ij⟩x/y

ηxi η
x
j (x/y bonds) (10)

H
(2)
eff =

2K2

|J |
∑
⟨ij⟩z

ηxi η
x
j (z bonds) (11)

Eq. (10) leads to the formation of chains along x/y bonds,
coupled along the Ising axis (as depicted in Fig. 4(a)).
This is the largest interaction in the perturbation theory,
O(K), and at this order, each chain exhibits two degen-
erate ground states. Meanwhile, at each lattice site, the
spins along a chain interact with spins on adjacent chains
in the transverse direction in spin space, with a notably
diminished interaction strength on the order ofO(K2/J).

Considering the two adjacent Ising chains, a single H
(2)
eff

bond flips two spins and therefore takes the state outside
the ground state manifold of Eq. (10). Consequently, the

interchain interactions in H
(2)
eff do not split the degener-

acy between different chains in leading order K/|J |.
In order to determine if there are higher-order con-

tributions to Heff which lift the degeneracy, we perform
exact diagonalization on a 12 site system, which is a sin-
gle hexagon on both layers. We extract the following
effective Hamiltonian,

HED
eff =

∑
7

[c1K
3/J2(ηxi η

x
j η

x
k + ηxl η

x
mηxn)

+c2K
6/|J |5(ηxi ηxj ηxkηxl ηxmηxn)] (12)

where c1 ≈ 10−2 and c2 ≈ 10−5. The details of this cal-
culation are given in Appendix A. While the second term
involves interactions between spins on different chains, it
flips three bonds on each chain, and therefore takes the
chains outside their ground state manifold determined by

Eq. (10), similar to H
(2)
eff .

Next, we argue that the degeneracy between distinct

chains, determined by H
(1)
eff remains at arbitrarily high-

order when including the effects of interchain interac-

tions in H
(2)
eff perturbatively in K/J ≪ 1. To this

end, we denote the two degenerate Ising ground states

of a chain according to H
(1)
eff as |⇑ (⇓)⟩ =

∏
i |↑ (↓)⟩.

Considering two chains, labelled ‘t’ and ‘b’, inter-
actions lift the four-fold ground state degeneracy if
there exists some non-trivial Hamiltonian H̃eff acting
on |⇑t⇑b⟩ , . . . , |⇓t⇓b⟩. We first note that symmetry

strongly constrains the form of H̃eff : Performing a π-
rotation about the x-axis of the spins along a given chain,
U = exp (−iπ2

∑
νi σ

x
νi), flips the spins from |⇑⟩ → |⇓⟩

and vice-versa, but commutes both with Eq. (11) and

any effective Hamiltonian H
(n)
eff = P0V SV S...SV P0 ob-

tained at arbitrarily high order in perturbation theory.
This implies that all diagonal matrix elements of H̃eff
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FIG. 4. Depiction of the H
(2)
eff for special cases of the Ising

axis. Purple and dashed orange lines represent first order and
second order terms in the effective Hamiltonian. (a) For the
n = [1, 1, 0]/

√
2, The first order correction forms Ising chains

along x and y. These chains remain decoupled within pertur-
bation theory. (b) For n = [0, 0, 1], the first order correction
lead to formation of Ising dimers. (c) These dimers couple
to form chains in fifth order in perturbation theory. Once
again, the chains remain decoupled perturbatively, leading to
subextensive degeneracy in both cases.

must be identical to any order in perturbation theory,
⟨⇑t⇑b |H̃eff | ⇑t⇑b⟩ = ⟨⇑t⇓b |H̃eff | ⇑t⇓b⟩ = . . . , and simi-
larly all off-diagonal matrix elements must be identical
(and real), ⟨⇑t⇑b |H̃eff | ⇓t⇓b⟩ = ⟨⇑t⇓b |H̃eff | ⇓t⇑b⟩. Cru-

cially, this implies that H̃eff becomes trivial if these off-
diagonal matrix elements vanish. These off-diagonal ele-
ments only emerge at order approx. L =

√
N (length of

a chain) in perturbation theory in K/J , since tunneling
|⇑⟩ → |⇓⟩ requires flipping all spins of a given chain,

and H
(n)
eff consists of local interactions. This implies

that ⟨⇑t⇑b |H̃eff | ⇓t⇓b⟩ ∼ (K/|J |)L∆−L ∼ (K/|J |)Le−L,
where ∆ > 0 is characteristic dimensionless energy dif-
ference between the ground state and excited states. Im-
portantly, this implies that such off-diagonal matrix el-
ements are exponentially supressed with the length of
the chains, and in the thermodynamic limit L → ∞,
these chains are effectively uncoupled. We therefore con-
clude that the ground state has a sub-extensive degener-

acy O(
√
N), consisting of ∼ 2

√
N states corresponding to

a two-fold degree of freedom per chain. Note that our ar-
guments are only valid in the perturbative limit and will
eventually break down for K/J ≮ 1. Similar states are
also obtained in bilayer Kitaev model with Heisenberg
interaction for different stacking orders and can be re-
ferred to as “classical” spin liquids [24], formed by Ising
“macrospins” corresponding to the two-fold degenerate
chains.

2. Coupled dimers for n = ẑ

For n = [0, 0, 1], the first order contribution for both
x and y bonds vanish. We obtain the following effective
Hamiltonian,

H
(1)
eff = K

∑
⟨ij⟩z

ηzi η
z
j (z bonds) (13)

H
(2)
eff =

2K2

J

∑
⟨ij⟩x/y

ηxi η
x
j (x/y bonds) (14)

Note that there are no second or higher order contri-
bution on the z-bonds in this case since [HK , P0] = 0,
which implies that the higher order contributions in the
perturbation theory vanish as (1− P0)HKP0 type terms

are identically zero. The H
(1)
eff forms Ising dimers (see

Fig. 4(b)) such that the spins along z-bonds are ‘locked’

along the ẑ-axis, which forms a doublet. A single H
(2)
eff

bond acting on these dimers flips two spins, thereby
breaking the Ising dimers. The doublet operators can
be expressed as a pseudospin in terms of the η degrees of
freedom,

ρzin =
1

2
(ηzi + ηzn)

ρ±in =η±i η
±
n (15)

where ρz is a dipolar and ρx and ρy are octupolar opera-
tors. In terms of the new degrees of freedom, the ground
state of Eq. (13) are given by the eigenstates of ρzin. In
order to determine if the dimers are coupled via higher

order processes, we treat H
(2)
eff on the x/y bonds as a

perturbation on the ground state. We obtain a non-zero
contribution involving all four x/y bonds which can be
expresses as a ring exchange term.

Hring
eff =P0Hg2SHg2SHg2SHg2P0

=
2K5

J4

∑
7

P0(η
x
i η

x
kη

x
l η

x
n)P0 (16)

where P0 =
∏

⟨ij⟩z (1 + ηzi η
z
j )/2 and the sum over all the

hexagons. In terms of the new pseudospin degrees of
freedom, Eq. (16) can be expressed as

Hring
eff =

2K5

J4

∑
7

[ρxinρ
x
kl] (17)

where ⟨in⟩ and ⟨kl⟩ are the two z-bonds belonging to the
ring. The ring exchange term couples the dimer degrees
of freedom along the x direction and once again forms
chains for the octupolar degrees of freedom, ρx. We also
conducted an exact diagonalization study on a 16-site
lattice, which included a central hexagonal region, along
with two additional z-bond connections (see Fig 4) which
agrees with the splitting due to Eq. (17) and indicates no
further splitting.
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Similar to the previous subsection, here we argue that
the chains remain decoupled within the perturbation the-
ory. Considering two adjacent dimer chains, a π-rotation
about the x-axis, U ′ = exp (−iπ2

∑
ν,⟨in⟩(σ

x
νi + σx

νn)), the

dimers along that chain flip from |⇑⟩ → |⇓⟩ and vice-
versa. Via this rotation, it is possible to map all diag-
onal matrix elements. The off-diagonal matrix elements
require flipping all the spins on the dimer chains, leading
to a vanishingly small matrix element in the thermody-
namic limit.

IV. CONCLUSIONS

In conclusion, the investigation of the phase diagram of
a bilayer Kitaev honeycomb model with Ising interlayer
interactions using both perturbative arguments as well as
Majorana mean-field theory has yielded valuable insights
into the complex interplay between topological order and
magnetic tendencies in quantum spin liquids.

When the Kitaev interaction is of the same sign in both
layers, we observe a first-order transition from the Kitaev
spin liquid state to a magnetically ordered state.

However, when the layers have opposite signs of the
Kitaev interaction, our study uncovered a higher stabil-
ity of the Kitaev spin liquid. We also find that on a
mean-field level, an additional intermediate gapped Z2

spin liquid state emerges, which ultimately becomes un-
stable for larger J/|K|, when visons are expected to con-
dense and topological order is destroyed. The stability
and nature (in particular, topological order) of this inter-
mediate spin liquid is an interesting direction for further
study, e.g. using advanced numerical methods. The con-
fined phase at large J/|K| ≫ 1 is aptly described by a
highly frustrated 120◦ compass model.
Furthermore, we have performed perturbative analy-

ses for the cases where the Ising axis lies along the ẑ-axis
or in the xy plane. Remarkably, in both instances, we
find that 1D Ising chains that intriguingly remain decou-
pled within perturbation theory, and can be viewed as
“macrospin” degrees of freedom. Interesting directions
for future studies include exploring different stacking or-
ders, and twisting the two layers, likely leading to a rich
interplay of various orders preferred by spatially modu-
lating stacking patterns.
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Appendix A: Exact diagonalization for
n = (1, 1, 0)/

√
2

We describe here the exact diagonalization calculation
of the effective Hamiltonian when n = (1, 1, 0)/

√
2.

Considering a hexagon (12 sites), there are four x/y
bonds. The effective Hamiltonian Eq. (10) fixes the
spins along these bonds to be either |↑⟩ or |↓⟩ state
(along the z-axis). The ground state manifold spans:
|↑↑↑⟩t |↑↑↑⟩b , |↑↑↑⟩t |↓↓↓⟩b , |↓↓↓⟩t |↑↑↑⟩b , |↓↓↓⟩t |↓↓↓⟩b,
where t/b represent the ‘top’ and ‘bottom’ three spins,
see also Fig. 5.
To find the coupling between these two segments of the

Ising chains, we perform an exact diagonalization on the
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full Hamiltonian, Eq. (1) and Eq. (2) for n = (1, 1, 0)/
√
2.

The four lowest eigenvalues, and the corresponding eigen-
vectors are extracted. In this 4-dimensional subspace, we
perform a rotation of basis to the ground-space basis of
Eq. (10), mentioned above. This 4-dimensional Hamil-
tonian can be written in terms of spin matrices (up to
additional constants): Σα

t and Σα
b , where α = x, y, z.

HED
7 = a1(Σ

x
t +Σx

b ) + a2Σ
x
tΣ

x
b , (A1)

where a1 and a2 are coefficients that we determine in
the following steps. First, the eigenvalues, of the above
Hamiltonian can be written down as: Egs = −2a1 +

a2, Ee1 = −a2, Ee2 = −a2, Ee3 = 2a1+a2. In addition,
there is an O(K) term in all of these eigenvalues, from
the unperturbed Hamiltonian. To extract coefficient a1,
eigenvalues Egs and E3 are subtracted, and plotted as
a function of K/J , Fig. 5(a). A cubic fit suggests that

a1 ≈ 0.01K3

J2 . Similarly, for a2, the combination E1 −
(Egs + E3)/2 gets rid of the O(K) term and retains a2.
Plotting this as a function of K/J and fitting suggests a

6th order fit with a2 ≈ 10−5K6

J5 .

These operators with their coefficients can be rewritten
in terms of the η spins, as Σx

t = ηxi η
x
j η

x
k and Σx

b = ηxl η
x
mηxn

to obtain Eq. (12).
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