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Describing statistical dependencies is foundational to empirical scientific research. For uncovering
intricate and possibly non-linear dependencies between a single target variable and several source
variables within a system, a principled and versatile framework can be found in the theory of
Partial Information Decomposition (PID). Nevertheless, the majority of existing PID measures are
restricted to categorical variables, while many systems of interest in science are continuous. In
this paper, we present a novel analytic formulation for continuous redundancy–a generalization
of mutual information–drawing inspiration from the concept of shared exclusions in probability
space as in the discrete PID definition of Isx∩ . Furthermore, we introduce a nearest-neighbor based
estimator for continuous PID, and showcase its effectiveness by applying it to a simulated energy
management system provided by the Honda Research Institute Europe GmbH. This work bridges
the gap between the measure-theoretically postulated existence proofs for a continuous Isx∩ and its
practical application to real-world scientific problems.

I. INTRODUCTION

The pursuit of discovering and quantifying dependen-
cies between different experimental variables lies at the
heart of empirical and data-driven scientific research.
However, conventional tools such as correlation analysis
might fail to capture relevant associations if these as-
sociations are non-linear. This ascertains the need for
a comprehensive framework capable of capturing both
linear and non-linear dependencies. Such a framework
can be found in information theory, which was originally
introduced for the analysis of communication channels
by Claude Shannon [1] and has since become a general-
purpose approach to data analysis.

A basic quantity of information theory is the mutual
information [1, 2]

I(T : S) =
∑
t,s

pT,S(t, s) log2
pT (t) pS(s)

pT,S(t, s)
,

which captures the dependency between two variables T
and S by quantifying how much the uncertainty about
one variable can be reduced by observing the respective
other, and which is used as a general measure of depen-
dency between two variables in many applications [3].

In many situations, however, there are variables of in-
terest T which depend not only on one but multiple vari-
ables S = (S1, . . . Sn), and where the distinction between
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† Equally contributing first author; kyle.schick-poland@uni-
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the Si is conceptually important. Hence arises the need
to unravel the specific contributions of these source vari-
ables Si to the information contained in the target T .
Note that this information may be distributed among the
source variables in very different ways: While parts of the
information might exclusively be available from one vari-
able but not from others (“unique information”), other
parts can be obtained from either one or another (“redun-
dant information”) and finally some pieces of information
might only be revealed when considering multiple sources
simultaneously (“synergistic information”). Identifying
and quantifying these information atoms is the subject
of Partial Information Decomposition (PID) [4, 5], which
has been gaining popularity as a tool for the detailed
information-theoretic analysis of variable dependencies,
for example in neuroscience [6–12], machine learning [13–
20], engineering [21], sociology [22], linguistics [23] and
climatology [24].

The PID framework was originally envisioned by
Williams and Beer [4], who showed that the informa-
tion atoms of unique, redundant, and synergistic infor-
mation could not be defined using classical information-
theoretic terms, but required the introduction of novel
axioms. Based on their proposed set of axioms, the au-
thors introduced a measure of redundant information as
a generalization of mutual information, that allowed to
quantify the PID atoms. Following the original work
of Williams and Beer, a series of different quantification
schemes for PIDs has been proposed, which mostly adopt
the proposed overall structure and either adopt the orig-
inal set of axioms or modify it [25–29]. In particular,
most works propose alternative measures of redundancy,
which are grounded in a multitude of different and partly
non-compatible desiderata [25, 26].

However, while most variables of interest encountered
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in science and engineering are continuous-valued, most
of the PID measures suggested to this date are only
valid for categorical random variables, i.e., variables with
a discrete alphabet. Only a few continuous PID mea-
sures have been introduced in recent time, which each
have distinct operational interpretations: Barrett [30]
were among the first to introduce a fully continuous PID
for Gaussian random variables. Drawing on concepts of
game theory, the measure by Ince [28] based on com-
mon changes in surprisal can be straightforwardly ap-
plied to continuous variables. Similarly, the measure by
Kolchinsky [29], which is build on the notion of the Black-
well order, and the redundant information neural estima-
tion by Kleinman et al. [31] also transfer canonically to
the continuous domain. Finally, the measure introduced
by Pakman et al. [32] provides a continuous PID defi-
nition based on the decision-theoretic discrete concepts
introduced by Bertschinger et al. [25], while Milzman
and Lyzinski [33] introduce continuous generalizations of
Imin
∩ [4] and IPM

∩ [27].
Overall, these measures all draw on different desider-

ata which make the measures applicable to different sit-
uations that fit their operational interpretation. If the
system is best described by a memoryless agent acting
on an ensemble of states, the shared-exclusion PID mea-
sure Isx∩ is most suitable, which has been introduced by
Makkeh et al. [26] for categorical variables. Recently,
Schick-Poland et al. [34] showed that an extension of this
measure to continuous variables is possible, by proving
that a continuous version of the measure is measure-
theoretically well-defined. However, since the provided
existence proofs are not fully constructive, neither an
analytical definition nor a practical estimation procedure
for such a continuous Isx∩ has been suggested to this date.
With this paper, we fill the gap for a continuous PID mea-
sure based on the shared-exclusion principle which draws
only on concepts of probability and information theory.

The main contributions of this paper are (1) the in-
troduction of a tractable analytical PID definition in-
spired by the measure-theoretic definition of continuous
Isx∩ from Schick-Poland et al. [34] and its application
to simple theoretical examples in Section II B, (2) the
development of an estimator for the associated redun-
dancy measure, which draws on concepts of the k-nearest-
neighbours based estimator for mutual information by
Kraskov et al. [35] in Section IIC and (3) the demon-
stration of the efficacy of our continuous Isx∩ measure in
uncovering variable dependencies in data from an energy
management system in Section IV.

II. THE PID PROBLEM FOR TWO SOURCE
VARIABLES

To provide a succinct account of the PID problem and
its intuitive meaning, we start with a discussion of PID
using only two source variables—referred to as bivariate
PID—in this section. A comprehensive treatment of the

FIG. 1. Partial Information Decomposition reveals
the intricate interdependencies between classical
information-theoretic quantities [4]. Using PID, the mu-
tual information I(T : S1, S2) (large oval) and the marginal
information terms I(T : S1) and I(T : S2) (circles) can simul-
taneously be dissected into a total of four information atoms
(colored areas): The unique information that S1 carries about
T , Πunq,1 (orange), and likewise the unique information of S2,
Πunq,2 (red); the redundant information of S1 and S2 about
T , Πred (blue), and the synergistic information exclusively
contained in S1, and S2, Πsyn (teal). The marginal mutual
information terms I(T : Si) can be constructed from the re-
dundant and the corresponding unique atoms, while the joint
mutual information I(T : S1, S2) contains of all four atoms.

general multivariate PID is deferred to Section III.

The mutual information I(T : S) that two source vari-
ables S = (S1, S2) hold about a target variable T can
be conveyed by the source variables in four distinct ways
(see Figure 1): Some parts of the information might be
unique to either S1 or S2, meaning they are inaccessible
from the other variable. Other parts may be redundant
between both, meaning that they can be obtained from
either source, while finally some parts only become ac-
cessible synergistically when both sources are observed
together—like a cipher text and its corresponding pass-
word are jointly necessary to recover the plain text. We
denote these PID atoms by Πunq,1 and Πunq,2 for the
unique information, by Πred for the redundant informa-
tion, and by Πsyn for the synergistic information.

To understand how the joint mutual information I(T :
S) relates to the PID atoms, a first step is to look at
the marginal mutual information terms I(T : S1) and
I(T : S2), which quantify the statistical dependence be-
tween the target T and a single source variable. These
two information quantities, however, need not be dis-
joint, because each mutual information, while containing
the respective unique atoms Πunq,1 or Πunq,2, also con-
tain the redundant atom Πred. Finally, besides the two
unique and the redundant term, the joint mutual infor-
mation I(T : S) also contains the synergistic atom Πsyn,
which is part of neither of the marginal mutual infor-
mation terms because it is inaccessible from any single
source alone. These requirements lead to the so-called
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consistency equations for two source variables [4, 5]:

I(T : S1) = Πred +Πunq,1

I(T : S2) = Πred +Πunq,2

I(T : S) = Πred +Πunq,1 +Πunq,2 +Πsyn .

(1)

Note that, in the bivariate case, there are four unknown
PID atoms, yet only three consistency equations provid-
ing constraints. Hence, the system is underdetermined
and has to be resolved by defining an additional quan-
tity. Typically, this is done by explicitly quantifying the
redundancy Πred (e.g., [4, 26, 27]). For more than two
source variables, a generalized notion of redundancy I∩
needs to be introduced which captures the redundancy
between sets of source variables (see Section IIIA).
In recent years, a variety of different redundancy mea-

sures has been suggested which fulfill a number of partly
incompatible assumptions and have different operational-
izations, e.g. from decision [25] or game theory [28]. In
this work, we focus on the Isx∩ redundancy measure [26],
which is rooted in the probability- and information-
theoretic considerations of Fano [2].

A. The Isx∩ redundancy measure and the
measure-theoretic definition of continuous Isx∩

The Isx∩ redundancy measure has originally been de-
fined for discrete random variables [26]. To understand
the intuition behind the definition, consider a discrete
target random variable T and two discrete source ran-
dom variables S1 and S2, taking on realizations t and
(s1, s2), respectively. Notice that the joint mutual infor-
mation I(T : S1, S2) between the target and both sources
can be written as an expectation value of local mutual in-
formation terms i(t : s1, s2) as [3]

I(T : S1, S2) =
∑

t,s1,s2

pT,S(t, s1, s2) i(t : s1, s2) , (2)

where

i(t : s1, s2) = log2

[
pT |S(t|s1, s2)

pT (t)

]
(3a)

= log2

[
pT |S(t|S1 = s1 ∧ S2 = s2)

pT (t)

]
. (3b)

The local mutual information reflects how we need to
update our beliefs about the occurrence of the target
event T = t when we know both source events S1 = s1
and S2 = s2 have occurred [2]: If knowledge of the
event S1 = s1 and S2 = s2 happening increases the
likelihood of guessing the correct target event T = t
(i.e., pT |S1,S2

(t|s1, s2) > pT (t)), the event is called in-
formative and i(t : s1, s2) is positive. Vice versa, if one
is less likely to guess the target event T = t after know-
ing the source events (i.e., pT |S1,S2

(t|s1, s2) < pT (t)), the
event is called misinformative and i(t : s1, s2) < 0.

In the second transformation step, i.e., in Equa-
tion (3b), we explicitly state the logical statement whose
observation leads us to update our beliefs about T = t.
Makkeh et al. [26] suggest that building on this basic
idea, a measure for redundancy can be constructed by
instead measuring how our beliefs about T = t are up-
dated if we only know that either S1 = s1 or S2 = s2
have occurred, which leads to the local expression

isx∩ (t : s1; s2) = log2

[
pT |S(t|S1 = s1 ∨ S2 = s2)

pT (t)

]
. (4)

Averaging this quantity with weights p(t, s1, s2) as in
Equation (2) then yields a global measure of redundant
information between sources S1 and S2 about T , denoted
by Isx∩ , i.e., [26]

Isx∩ =
∑

s1,s2,t

pT,S(t, s1, s2) i
sx
∩ (t : s1; s2) . (5)

This redundancy measure is symmetric with respect
to swapping the sources S1 and S2 and invariant towards
any arbitrary bijective relabelling of the discrete realiza-
tions of any of the random variables. Furthermore, it
fulfills a target chain rule and is differentiable with re-
spect to the underlying probability distribution [26].
Equivalently, Equation (4) can be derived from the re-

gions of probability space which S1 = s1 and S2 = s2
jointly render impossible (see Appendix A for a more
visual explanation), which is why the PID definition is
referred to as “shared exclusion PID” or “SxPID” for
short. For more than two source variables, the logical ex-
pression in the numerator has to be extended to account
for disjunctions between sets of source events occurring
simultaneously (see Section III B).
In previous work, Schick-Poland et al. [34] showed that

the Isx∩ redundancy measure can be generalized to contin-
uous source and target variables. In particular, the au-
thors proved the existence of a measure-theoretic gener-
alization of Isx∩ , which can handle arbitrarily many source
variables while being invariant under isomorphic trans-
formations and differentiable with respect to the joint
distribution of sources and target. The proof of the ex-
istence of this generalization builds on established theo-
rems from probability and measure theory. It is shown
that the derived measure inherits all the above mentioned
desirable properties of the discrete Isx∩ measure and is
applicable to any possible discrete or continuous variable
settings.
However, due to the provided proofs not being en-

tirely constructive, a concrete analytic formulation of this
continuous Isx∩ measure remains elusive. While proven
to exist from measure-theoretic principles, the way to
construct a transformation-invariant shared-exclusion re-
dundancy measure is still not explicit. Therefore, in the
next section we provide an analytical definition for a
purely continuous Isx∩ measure which, while not adhering
to all properties described by Schick-Poland et al. [34],
provides a practical and interpretable shared-exclusion
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based continuous PID definition. In the following, we
show how such a formulation can be obtained, present
an estimation procedure and discuss its relation to the
measure-theoretic derivation.

B. An analytical formulation of a continuous Isx∩
measure

1. Definition

To make a continuous Isx∩ measure available to prac-
titioners, an important first step is to find an analytic
formulation. In this section, we present such a formula-
tion and show how it can be computed numerically for a
given probability density function. Since in most practi-
cal applications one has only access to a finite sample of
data from an unknown distribution, we introduce an es-
timator for this redundancy measure based on k-nearest-
neighbour distances in Section IIC.

The main difficulty for finding an analytical formula-
tion for the continuous Isx∩ measure is due to the dis-
junction (logical “or”) in Equation (4). While conjunc-
tions (logical “and”) are ubiquitous in classical contin-
uous information theory and correspond to simple joint
probability densities, disjunctive statements have no es-
tablished counterpart in the continuous regime. In the
following we will introduce an intuitive notion of how
such a quantity can be defined, while we defer a more
rigorous derivation to Appendix B.

For discrete random variables, the probability of the
event S1 = s1 ∨ S2 = s2 is given by the inclusion-
exclusion-rule as

P(S1 = s1 ∨ S2 = s2)

= pS1
(s1) + pS2

(s2)− pS1,S2
(s1, s2) ,

(6)

where the last term pS1,S2
(s1, s2) is the probability of

both S1 = s1 and S2 = s2 occurring, which is double-
counted in the sum of marginals and thus needs to be
subtracted once.

To make the leap from discrete to continuous variables,
we follow the steps of Jaynes’ derivation of the differen-
tial entropy [36] by reinterpreting the probability mass
functions pSi of Equation (6) as binned distributions of
an underlying continuous probability density fSi . That
is, we assume the density fSi to be given, such that the
probability mass of a specific binned realization can be
calculated as

p(si) =

∫
Usi

ds′i fSi
(s′i) ≈ |Usi | fSi

(si) ,

where {Usi}si is a partition of the support of fSi
and

|Usi | is the area of one of the sets of the partition. The
probability of the binned disjunction, i.e., the probability
of either S1 falling into the bin Us1 or S2 falling into Us2

then becomes

P(S1 ∈ Us1 ∨ S2 ∈ Us2)

≈ |Us1 | fS1(s1) + |Us2 | fS2(s2)

−|Us1 ||Us2 | fS1,S2
(s1, s2) .

(7)

To get to a fully continuous description, one now has to
take the limit of the partitionings {Us1}s1 and {Us2}s2
becoming increasingly fine. If this limit is sufficiently
well-behaved, the local density of the evaluation points
si can in the limit be represented by a function (referred
to by Jaynes as an “invariant measure” [37]) m(si) such
that

lim
n→∞

(n|Usi |) =
1

m(si)
,

with

lim
n→∞

1

n
(number of points in A) =

∫
A

dsim(si)

for arbitrary open sets A in the sample space of Si.
Specifically, the measure mSi

represents the density of
evaluation points, such that a more dense collection of
evaluation points causes the corresponding binning in-
tervals to shrink more rapidly. From this, we arrive at
the formulation

P(S1 ∈ Us1 ∨ S2 ∈ Us2)

≈ fS1(s1)

nmS1
(s1)

+
fS2(s2)

nmS2
(s2)

− fS1,S2(s1, s2)

n2mS2
(s2)mS2

(s2)

(8)

for the probability mass of a sufficiently small disjunction
in the continuous regime. Note that, while the whole ex-
pression naturally tends to zero in the limit n → ∞,
the subtracted term scales with the number of discrete
points squared, n2. Thus, it will become negligible com-
pared to the two terms before under the assumption that
fS1,S2

(s1, s2) is finite everywhere.
Nonetheless, neglecting the third term still leaves a

choice of how the invariant measures mS1
and mS2

are
chosen with respect to each other. Intuitively, this free-
dom is reflective of the relative scale with which the vari-
ables are considered: Since ultimately, probability den-
sities are defined by what finite probability masses they
integrate to in small neighbourhoods, the relative scale
between two variables defines how to compare the neigh-
borhoods for two variables. If the two marginal distri-
butions of the sources are the same, a canonical choice
is to take the same partitioning for both variables. On
the other hand, if the variables come from very differ-
ent distributions, the invariant measures mSi

need to be
selected to account for that.
On a practical note, the division by the invariant mea-

suresmSi
can be absorbed into the definition of the prob-

ability densities fSi
by a suitable variable pretransfor-

mation. How the variables should be preprocessed, if
at all, depends on the nature of the variables in ques-
tion. Firstly, if the variables describe equivalent source



5

processes, no pretransformation is necessary, and linear
pretransformations such as standardization do not make
a difference (see Appendix C for a more detailed com-
parison). On the other hand, if two variables measure
the same physical quantity but with different scales, e.g.,
body height measured in centimeters versus in feet, a rea-
sonable preprocessing step would be the rescaling of one
of the variables or—if the variables come from a similar
distribution—a standardization of both. Alternatively,
if the measurement precision, i.e., the relative pointwise
deviation, can be assumed to be proportional to the prob-
ability density at that point, the original probability den-
sities f may be replaced with the copula densities c [38],
which furthermore happens to make the measure invari-
ant under invertible mappings of individual variables be-
fore this step.

Finally, these considerations lead to the following def-
inition for the probability of a continuous disjunction for
two random variables S1 and S2, which have possibly
been preprocessed beforehand.

Definition 1. Let S1, S2 be continuous random variables
with associated densities fS1 , fS2 . Then we define the
quasi-density of the disjunctive logic statement S1 = s1∨
S2 = s2 to be

fS1∨S2
(s1 ∨ s2) := fS1

(s1) + fS2
(s2) .

Note that in the above definition, it is assumed that
the precision of one variable does not depend on the value
of the other variable and that the relative precision be-
tween the two variables is constant. Furthermore, while
the local density of a disjunction as defined above does
not fulfill all properties of a density function in the math-
ematical sense (particularly, it does not integrate to one),
it nevertheless serves as a local approximate proportion-
ality of probability in relation to magnitude of area in
state space.

Given this definition for a continuous disjunction, we
can write down an analytical formulation for the contin-
uous local shared-exclusion redundancy.

Definition 2. Let S1, S2 be continuous random variables
with associated densities fS1

, fS2
.

Then we define the continuous local shared-exclusion
redundancy for two sources as

isx∩ (t, {s1}{s2}) := log2
fT |S1∨S2

(t|s1 ∨ s2)
fT (t)

= log2
fT,S1(t, s1) + fT,S2(t, s2)

fT (t)(fS1
(s1) + fS2

(s2))
.

This measure for continuous redundancy shares many
of the favourable properties of its discrete counterpart. In
particular, it is localizable (i.e., the global measure can
be expressed as an expected value of local values) and
can be generalized to arbitrary numbers of source vari-
ables (see Section III). Furthermore, the continuous isx∩
measure is differentiable with respect to the underlying
probability density function (see Appendix D).

Despite being initially inspired by the ansatz from [34],
Definition 3 deviates from the measure-theoretic deriva-
tions. The main difference is the absence of the auxil-
iary random variable designed in [34] to carry the logical
structure of the setting. This variable, however, stems
from a perspective of abstractness that disregards all
differences in the measurement scales between the indi-
vidual density functions and relies on an auxiliary ran-
dom variable carrying all the irregularity in this exis-
tence theorem. In actual applications this perspective
needs to be concretized and made evaluable, which in-
troduces the non-uniqueness of the definition due to the
measurement scales and preprocessing. Thus Definition 1
is a single choice of concretization that can be shown to
vary smoothly with the overall density as shown in Ap-
pendix B.
Comparing this definition for continuous local shared-

exclusion redundancy to the discrete local shared-
exclusion redundancy of Equation (4), which can be
rewritten as

isx,discrete∩ (t, {s1}{s2})

= log2
pT,S1(t, s1) + pT,S2(t, s2)− pT,S1,S2(t, s1, s2)

pT (t)(pS1
(s1) + pS2

(s2)− pS1,S2
(s1, s2))

,

reveals that the continuous definition can be obtained
from the discrete one by replacing probability masses p
with probability densities f and ignoring the exclusion
terms in the disjunctions. Because of these similarities in
the analytic form, the derivation from shared exclusions
of Makkeh et al. [26] carries over to the continuous do-
main, which is why the continuous redundancy measure
inherits the same operational interpretation of a mem-
oryless agent trying to guess the target from only the
redundant local information on an ensemble of realiza-
tions.
As in the case of the mutual information, the average

redundancy is defined as the expectation value of the
local values, i.e.,

Isx∩ (T, {S1}{S2})

=

∫
dtds1 ds1 fT,S1,S2

(t, s1, s2) i
sx
∩ (t, {s1}{s2}).

Finally, given this quantification of the redundant in-
formation in conjunction with the three classical mutual
information terms between T and the sources, the four
information atoms can be computed by solving Equa-
tions 1, which in the general case is known as a Moebius
inversion [4] (see Section IIIA).

2. Results for toy examples

To gain an intuition for the continuous Isx∩ measure, we
apply the analytical formulation established in the pre-
vious section to simple and intuitive toy examples. Such
simple example cases can be found in logic gates, which
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TABLE I. Numerical evaluations for four example distributions show qualitative similarities between discrete
and the continuous Isx∩ on the three selected logic gates, while qualitative differences can be observed for the
sum example. In the continuous case, the sources are distributed normally, Si ∼ Normal(µ = 0, σ = 1), except for S2 in the
redundant gate which is set equal to S1, and the target is constructed according to the pictograms with added Gaussian noise
(σ = 0.01) to make the mutual information I(T : S1, S2) finite. In the discrete setting, the variables are drawn from uniform
binary distributions and no noise is added to the target.

Redundant Gate Copy Gate Unique Gate Sum

Continuous Gates
Πsyn 0.000 bits 6.644 bits 5.525 bits 6.497 bits

Πunq,1 0.000 bits 0.000 bits 1.119 bits 0.147 bits
Πunq,2 0.000 bits 0.000 bits −5.525 bits 0.147 bits
Πred 6.644 bits 6.644 bits 5.525 bits 0.353 bits

I(T : S1, S2) 6.644 bits 13.288 bits 6.644 bits 7.144 bits
Discrete Gates

Πsyn 0.000 bits 0.415 bits 0.415 bits 0.415 bits
Πunq,1 0.000 bits 0.585 bits 0.585 bits 0.585 bits
Πunq,2 0.000 bits 0.585 bits −0.415 bits 0.585 bits
Πred 1.000 bits 0.415 bits 0.415 bits −0.085 bits

I(T : S1, S2) 1.000 bits 2.000 bits 1.000 bits 1.500 bits

have been employed as examples for discrete PID mea-
sures throughout the literature (e.g., [25, 39]). We here
use continuous versions of the well-established “redun-
dant”, “unique” and “copy” gate as well as a sum be-
tween source variables and discuss the results compared
to their discrete counterparts. In the discrete domain,
the two source variables are binary with two equiprob-
able realizations, whereas in the continuous domain, we
draw the variables from a standard normal distribution.
To ensure a finite mutual information, which is a prereq-
uisite for a well-defined continuous PID, Gaussian noise
with standard deviation σ = 0.01 is added to the target
variable T in the continuous case. While the choice of σ
significantly affects the numerical results, the qualitative
analysis of the results remains unaffected by the precise
value chosen (see Appendix E).

While some logic gates (like the “and” gate) have
no canonical continuous counterparts, we selected three
gates whose basic concept can be straightforwardly trans-
ferred to the continuous domain: The redundant gate,
in which the two sources are the same and equal to
the target, the copy gate, in which the target is a two-
dimensional variable whose components consist of the
two source variables, and the unique gate, in which the
target is a copy of the first source variable while the sec-
ond source variable is drawn independently from the tar-
get. In addition to the three logic gates, we added the
“sum” example, in which the source realizations are in-
terpreted as numerical values and the target variable is
the sum of the two sources.

While the computation of the discrete PID atoms is
a straightforward exercise, the computation of the con-

tinuous atoms is more difficult due to the integral ex-
pressions. Note, first, that all continuous examples can
be expressed as multivariate Gaussian distributions, for
which an analytical closed form for the joint and marginal
mutual information terms exists (see Appendix E). The
integrals involved in computing the redundancy, however,
cannot be easily evaluated analytically. Therefore, we re-
sorted to simple Monte Carlo integration techniques to
numerically estimate the involved integrals. To compute
the expectation value, we drew randomly from the given
joint probability distributions, and computed the local
isx∩ redundancy for 2 · 108 samples. The PID atoms can
then be computed from the analytical mutual informa-
tion terms (see for instance Appendix E) and the numeri-
cally computed redundancy via the consistency equations
(see Equations 1).

Table I shows the results for all four examples. For
the continuous redundant gate, Isx∩ attributes all mutual
information between the sources and the target to redun-
dancy. This result, which can equivalently be observed in
its discrete counterpart, is expected from an information
measure constructed for quantifying redundant informa-
tion, and stems from the fact that the probability of a dis-
junction between two equal events, e.g. S1 = s1∨S1 = s1
is trivially equal to just the probability the individual
event.

In the copy gate, the two marginal mutual information
terms each contribute half of the total mutual informa-
tion, i.e., I(T : S) = 2I(T : S1) = 2I(T : S2). Since
the two source variables are independent, learning about
source event S1 = s1 provides no information about the
state of the second source, and vice versa, resulting in no
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source redundancy [40]. Nevertheless, the redundancy
measured by Isx∩ is non-zero, since the two variables in-
form redundantly about the target event because of the
mechanism with which the target is constructed from
the sources (i.e., mechanistic redundancy [40]): When
an agent is informed that either S1 = s1 or S2 = s2
occurred, the agent can redundantly exclude all target
events T = t = (s′1, s

′
2) for which both s′1 ̸= s1 (which

is excluded by observing S1 = s1) and s′2 ̸= s2 (which
is excluded by observing S2 = s2). In contrast, for the
marginal mutual information I(T : S1), the hypothetical
agent is informed which of the two source events actually
took place, e.g., S1 = s1, which enables the agent to addi-
tionally rule out all events for which s′1 ̸= s1 but s′2 = s2.
In the discrete case, these additional events for which s1
does not match the first component of the target event t
but s2 matches the second, carry a significant probability
mass, which makes the redundancy smaller than the mu-
tual information, which thus produces non-zero unique
information. For the continuous copy gate, however, the
additionally excluded regions carry only negligible prob-
ability, which results in negligible unique information.

The continuous unique gate produces similar PID re-
sults as its discrete counterpart. Despite S2 being inde-
pendent from S1 and T , a significant amount of the joint
mutual information is assigned to redundancy, which is
attributable to incidental overlaps between exclusions in
probability space. Note that since only the first vari-
able provides the full information about the target, i.e.,
I(T : S) = I(T : S1), while I(T : S2) = 0, the redun-
dancy Πred and the unique information Πunq,1 add up
to the total mutual information I(T : S), resulting in
a positive unique contribution of S1. Conversely, the re-
dundancy Πred and the unique information Πunq,2 need to
cancel exactly, resulting in negative unique information
for the uncorrelated source S2. Since the unique informa-
tion of S2 also cancels the redundant information in the
consistency equation for the full mutual information, the
synergy finally needs to be equal to the redundancy to
compensate. While the quantitative results differ, these
results are qualitatively similar to the PID of the discrete
unique gate.

Finally, for the sum gate, most of the information
about the target is carried synergistically between the
two source variable, reflecting the fact that knowledge of
one variable hardly restricts the possible target realiza-
tions that can be taken on. Some information is unique
to either of the two sources, since knowledge of just one
value already makes some values for the sum less plausi-
ble, while the small redundancy in this example can likely
again be attributed to mechanistic effects. For this gate,
the discrete and continuous examples differ qualitatively:
While in the discrete case, the unique atoms are positive
and the redundancy is negative, all atoms are positive in
the continuous case. These discrepancies are likely due to
the fact that the discrete sum gate is not a good analogue
of the continuous case, since the values of the realizations
the discrete random variable can take on has no natural

total ordering, while neighborhoods between values are
crucial to the continuous definition.
Depending on the setting that the variables arise in,

different preprocessing schemes might need to be applied
to the variables before computing the PID atoms. Using
different preprocessing schemes, one finds that the values
agree qualitatively on most gates, which is mostly due to
them being drawn from the same distributions. For a
more detailed discussion, refer to Appendix C.

C. KSG nearest-neighbour based estimator for
mutual information

While we established in Section II B how continuous
Isx∩ can be computed from a given probability distribu-
tion, in most research settings this distribution is un-
known. More commonly, one has access to only a fi-
nite sample drawn from this distribution and needs to
estimate the information-theoretic quantities of interest
from this sample. For mutual information, several dif-
ferent approaches to this estimation problem have been
discussed in literature, for instance, binning or kernel
density estimation (see, e.g., [41] for a review). How-
ever the nearest-neighbour-based approach introduced by
Kraskov, Stögbauer and Grassberger [35] (KSG) has been
widely adopted due to its favourable variance-bias char-
acteristics. In the following, we explain how local prob-
abilities can be estimated using nearest-neighbor tech-
niques [42] and introduce the key ideas behind the KSG
estimator. Then, we show how these concepts can be
built upon to derive an estimator for continuous Isx∩ .
Many information-theoretic quantities like the mutual

information (see Equation (2)) can be expressed as ex-
pectation values of local quantities. For discrete data, a
simple (but not optimal [43]) way to approximate these
local values is to replace the probability masses by their
frequencies in the sample, which is referred to as plug-in
estimation. In the continuous case, however, all sam-
ples are almost always unique, which is why no contin-
uous analogue to the plug-in principle exists. Thus, one
has to revert to more elaborate methods to estimate the
local densities f(xi) necessary for computing the local
information-theoretic values.

a. Nearest-neighbor-based estimation of local proba-
bility densities To estimate the local probability densi-
ties at the sample points, we exploit the intuitive idea
that sample points are more likely to be closer together
in regions of higher probability density. Note that this in-
tuition crucially rests on the assumption that the sample
is sufficiently large such that the true probability density
varies only little between neighbouring data points. If
this prerequisite is met, a natural approach to estimate
the local probability density is to take a ball Bϵ(xi) of
fixed radius ϵ around the evaluation point xi, over which
the probability density is assumed to be approximately
constant, and count the number of neighbours ki within
the ball (see Figure 2.A). A point estimate for the prob-
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A B

FIG. 2. Local densities can be estimated from data in two opposite ways. A Kernel density estimation using a
fixed volume vol(ϵ) around the reference point xi. B k-nearest-neighbor-based estimation using an adaptive search volume,
determined by the distance to the k-th neighbor.

ability density is then given by the fraction of sample
points (ki + 1)/N within that ϵ-ball divided by its vol-
ume vol(Bϵ(xi)) as

f̂(xi) =
ki + 1

Nvol(Bϵ(xi))
. (9)

Kernel density estimators (KDE) use this principle,
but typically weigh the neighbors by their respective dis-
tance using a fixed kernel, which in general does not have
to be the characteristic function of an ϵ-neighborhood.

The disadvantage of approaches like this is that the
same ball or kernel is used irrespective of the local den-
sity: In areas of low density there may be insufficiently
many points within the neighborhood to arrive at a good
estimation, while conversely in areas of high density the
high numbers ki would have allowed for a smaller search
region, partly relaxing the smoothness assumption on f .
A way to get around these problems is to invert the pro-
cedure: Instead of fixing the search radius ϵ and counting
the number of neighbouring points ki, one can fix a nat-
ural number k and compute the distance ϵi from point
xi to its k-th nearest neighbor (see Figure 2.B). Anal-
ogously to Equation (9), a point estimate of the local
probability density can now be expressed as

f̂(xi) =
k + 1

Nvol(Bϵi(xi))
. (10)

b. The Kozachenko-Leonenko Estimator for Shannon
Differential Entropy Kozachenko and Leonenko [42]
used the nearest-neighbour-based approach to build an
estimator for the Shannon differential entropy [3]

H(X) = E[− log2 p(X)] = −
∫

dx p(x) log2 p(x) . (11)

However, instead of using the point estimate of Equa-
tion (10), the authors derive the expectation value for

log p(xi) for the probability mass of the ϵ-ball

p(xi) =

∫
Bϵi

(xi)

dx′ f(x′) ≈ vol(Bϵi(xi))f(xi)

given the number of neighbours k for each sample point,
which results in the expression

̂log pX(xi) = ψ(k)− ψ(N) ,

where Ψ represents the Digamma function. Plugging this
result into Equation (11), the authors obtain an estima-
tor for the Shannon differential entropy as (for a more
formal derivation, refer to Appendix F)

Ĥ(X) = − 1

N

N∑
i=1

̂log [pX(xi)]

= −ψ(k) + ψ(N) +
1

N

N∑
i=1

log [vol (Bϵi)] .

(12)

c. The Kraskov-Stögbauer-Grassberger (KSG) Esti-
mator for Mutual Information The most straightfor-
ward way to construct an estimator for continuous mu-
tual information from the results of Kozachenko and Leo-
nenko [42] is by using the identity I(T : S) = H(T ) +
H(S)−H(T, S). However, in doing so, the biases of the
individual entropy estimates likely do not cancel, which
led Kraskov et al. [35] to take a different approach: First,
like for the Kosachenko-Leonenko estimator, the distance
ϵi of point xi = (ti, si) to its kth nearest neighbour is
determined in the joint space (see Figure 3.A). Subse-
quently, the number of neighbours nT which have a dis-
tance of less than ϵi in only the marginal space of the first
variable T is determined (see Figure 3.B), and the proce-
dure is repeated analogously to determine the number of
neighbors nS in radius ϵi in the marginal space of the sec-
ond random variable S (see Figure 3.C). The advantage
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A B

FIG. 3. The KSG estimator for mutual information [35] works by considering kth nearest neighbors in the joint
and marginal spaces in three steps. A Determining search radius in joint space B counting neighbors in marginal space
of S and C counting neighbors in marginal space of T .

of obtaining the marginal probability densities using the
distance determined in the joint space is that—when us-
ing the maximum norm—the volume terms which appear
in Equation (12) cancel exactly, leading to the succinct
expression

Î(T : S) = Ψ(k)+Ψ(N)−⟨Ψ(nT (i)) + Ψ(nS(i))⟩i , (13)
for the estimated mutual information. Here, angled
brackets ⟨·⟩i denote the average over the sample points.
Clearly, the estimated density as well as the informa-

tion quantity assessed via the density estimation will de-
pend on k. However, Kraskov et al. [35] have empirically
studied the influence of k, or more exactly a fixed k

N on
the estimation result and concluded that in the limit of
infinitely many sample points the exact choice of k does
not matter as all choices will converge.

D. Generalizing the KSG estimator for Isx

a. Adapting local probability density estimation for
redundant information To understand how to estimate
the continuous redundancy Isx∩ using an approach sim-
ilar to Kraskov et al. [35]’s, first consider the case of
estimating the mutual information I(T : S) between a
single target random variable T and two joint source
variables S = (S1, S2) using the KSG estimator. In the
first step, the radius ϵi is determined as the smallest ra-
dius in the joint space for which the k-th neighbor of
the point xi = (ti, s1,i, s2,i) lies within the Ball Bϵi(xi).
Using the maximum norm, this ball in the joint space
is equal to the product of the ϵ-balls in the marginal
spaces, i.e., Bϵi(ti)×Bϵi(s1,i)×Bϵi(s2,i) (square region in
Figure 4.A). In the second step, neighbours are counted
within the marginal space of S, where only those points
are counted which lie within less than the distance ϵi to
xi in both dimensions S1 and S2 simultaneously.
As laid out in detail in Section II B, the difference in

the mathematical formulation between mutual informa-
tion between a single target T and two (or more) source

variables S = (S1, S2) and I
sx
∩ redundancy is that while

the former is expressed with conjunctions, which amount
to intersections of source events in sample space, the lat-
ter deals with disjunctions, which result in unions. The
KSG estimator can be readily adapted to this concept
by changing the search regions accordingly: To compute
the redundancy in the example case of two source vari-
ables introduced above, the radius ϵi now has to be de-
termined not as the smallest radius laying on the in-
tersection of Bϵi(ti), Bϵi(s1,i) and Bϵi(t2,i) (“square”
region in Figure 4.A) but on the union of the source
variable neighbourhoods intersected with the target ball
Bϵi(ti)×Bϵi(s1,i)×S2∪Bϵi(ti)×S1×Bϵi(s2,i) (“cross”
region in Figure 4.B). Similarly, nS is determined by
counting all points which lie within the union of marginal
balls with radius ϵ.

Note that, analogously to Kraskov’s [35] estimator for
mutual information, this estimation procedure assumes
the maximum norm when combining the unions between
the source with the target variables in order for the vol-
ume terms of the KL estimator to cancel, which simpli-
fies the analytical formulation considerably. Although
the choice of any particular distance norm will matter
for small sample sizes (e.g. Gao et al.[44] suggest us-
ing the Euclidean norm), the assumed continuity of the
density function and all its marginals ensures that re-
gardless of the choice of distance norm the estimation of
the local densities asymptotically converges to the same
values. Intuitively, the average probability over decreas-
ing neighbourhoods of a point converges to the density
at that point in the limit of infinitely many samples, re-
gardless of the exact choice of the shape of the neighbour-
hood, the shape being determined by the distance norm.
Technically, however, these neighbourhoods must not be
chosen entirely arbitrarily–the shrinking procedure obey
the nicely shrinking [45] property, guaranteeing that the
shrinking neighbourhoods indeed cover neighbourhoods
in each dimension of the point. For the nicely shrinking
property to hold, one can choose any distance norm as
all imply the nicely shrinking property. This asymptotic
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A B

FIG. 4. To estimate local redundant information for a two-variable example, the search regions of the original
mutual information KSG estimator [35] need to be adapted. A For mutual information estimation, the radius ϵ at a
point x is assessed in the joint space by searching for the minimal distance such that all of the variables’ marginal distances to
x is smaller or equal to ϵ. B For redundancy estimation, on the other hand, ϵ is inferred by searching for the minimal distance
such that at least one of the variables’ marginal distances to x is smaller or equal to ϵ.

convergence behavior of the estimated densities then di-
rectly implies the asymptotic convergence of the estimate
of the redundant information to its analytical value.

b. Nearest-neighbor-based estimator for continuous
redundant information Adapting the steps by Kraskov
et al. [35] using the described estimation procedure for
the probability density of a logical disjunction we find

Îsx∩ (T : X,Y ) = ⟨ ̂log[f iT,X∨Y (t, x, y)]⟩i
−⟨ ̂log[f iX∨Y (x, y)]⟩i − ⟨ ̂log[f iT (t)]⟩i

= ψ(k) + ψ(N)− ⟨ψ(nX∨Y (i))⟩i − ⟨ψ(nT (i))⟩i .
(14)

More precisely, we have retaken the approach of choos-
ing the ϵ to be determined by a nearest neighbor search in
the joint space. We then use the same ϵ in the marginal
spaces themselves, such that the volume terms cancel ex-
actly. The search with the predetermined ϵ will then
cause an adapted number of nearest neighbors in the
marginal spaces, denoted by nX∨Y (i) and nT (i), respec-
tively. The exact steps leading to Equation (14) are
outlined in Appendix G. Furthermore, details of the im-
plementation and code availability are described in Ap-
pendix H.

Note, however, one subtle difference in the meaning of
the parameter ϵ between the mutual information and re-
dundancy case: While scaling ϵ by a constant factor for
one but not the other source variable changes the esti-
mated mutual information for any finite sample, it does
not change what the mutual information estimator con-
verges to in the limit of infinite samples. This is different
in the case of redundancy: Because of the addition of
marginal densities in Definition 1, scaling one but not the
other search radius ϵ makes a difference also in the limit
of infinite samples. Using the same ϵ for both source vari-
ables here thus reflects the choice of treating the source
variables on “equal footing”. This train of thought aligns
with the dependence of the result on the chosen distance
function, as in many cases a transformation of one of the

variables can be reflected with a change in the utilized
norm.

For a fixed small k, the specific value of k does not
influence the estimation results if sufficient samples N
are provided. Analogously to the KSG estimator for mu-
tual information, the estimation results only depend on
the fraction k/N , as a fixed fraction k/N hinders the
estimator in resolving high-frequency fluctuations in the
probability density. Fluctuations on all length scales are
resolved in the limit k/N → 0, for which the estimator
converges to the analytical solutions (see Figure 14 and
Figure 15 in Appendix I). Following the suggestions from
Kraskov et al. [35], we typically recommend k to be set
to 2, 3 or 4, where estimates with higher k have smaller
variance due to the stochasticity of the distances neigh-
bours averaging out, but also higher bias due to their
inability to resolve small-scale features.

E. Convergence of the estimator for simple toy
examples

In order to assess the efficacy of our estimation pro-
cedure, we applied it to the toy examples outlined in
Section II B. To this end, different numbers of samples
have been drawn from the known probability distribu-
tions and have been plugged into the estimator to check
for convergence.

Figure 5 shows how the PID atoms converge with more
samples for the four example cases. The copy gate and
sum example converge slower than the other values. This
behaviour is inherited from the KSG estimator, which
also converges more slowly for higher-dimensional distri-
butions and distributions with higher mutual informa-
tion. All in all, we conclude that the estimator succeeds
in reproducing the numerically evaluated analytical re-
sults from Section II B given sufficiently many samples.
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FIG. 5. With increasing sample size N , the estimated
PID atoms converge to the numerically evaluated an-
alytical results. The subfigures show the four PID atoms
Π and the mutual information I(T : S) for the continuous
redundant, unique and copy gates as well as the sum exam-
ple estimated using the nearest-neighbors approach outlined
above with k = 4. The colored bars to the right of the graphs
correspond to the respective analytical value for each atom
and gate from Table I.

III. DEFINITION OF MULTIVARIATE
CONTINUOUS Isx∩

A. The multivariate PID Problem

In the previous sections we introduced the continuous
Isx∩ measure for two source variables. However, as was
already mentioned, the PID framework as envisioned by
Williams and Beer [4] is more general and in principle
applicable to an arbitrary number of sources. In the fol-
lowing, we will explain the PID problem for the gen-
eral, multivariate case and generalize the continuous Isx∩
measure accordingly. This section may be skipped if the
reader has a particular application in mind for which two
source variables suffice and this section is found too tech-
nical.

Before we generalize to an arbitrary number of source
variables, note that already in the bivariate case, each
atom can be uniquely identified by which mutual infor-
mation terms it contributes to via the consistency equa-
tions (see Equations 1). For instance, the unique atom
Πunq,1 is the only atom that is part of both I(T : S1) and
I(T : S) but not I(T : S2) while the synergistic informa-

tion atom Πsyn is precisely the one atom whose informa-
tion is contained in neither I(T : S1) nor in I(T : S2),
but only in I(T : S1, S2). In the following, we show how
this notion of parthood, also called mereology, can serve
as a general framework for identifying and ordering PID
atoms for arbitrarily many source variables following the
work by Gutknecht et al. [5].
Mathematically, the mereological relations between an

atom and the marginal mutual information terms can be
captured by a parthood distribution Φ : P(S) → {0, 1}:
A boolean function defined on the power set of source
variables P(S) which is equal to 1 for exactly those sets
of sources Sa = {Si | i ∈ a} for which the atom ΠΦ is
part of the marginal mutual information I(T : Sa) [5].
Note that not all boolean functions constitute valid part-
hood distributions: Since all information about T that
is contained in the mutual information I(T : Sa) with
a set of sources Sa must naturally also be contained
in the mutual information I(T : Sb) with any super-
set Sb ⊃ Sa, Φ has to be monotone, in the sense that
Sb ⊃ Sa ⇒ (Φ(Sa) = 1 → Φ(Sb) = 1). For instance,
any information provided by source S1 alone must nat-
urally also be present when taking sources S1 and S2

together. Furthermore, we must always require that
Φ(∅) = 0 and Φ(S) = 1, indicating that no atom is part
of the mutual information with the empty set and, con-
versely, all information atoms are part of the full joint
mutual information I(T : S).
The marginal mutual information terms can be con-

structed additively from these PID atoms according to
the generalized consistency equations

I(T : Sa) =
∑

Φ:Φ(Sa)=1

ΠΦ . (15)

The number of such parthood distributions, and thus
of the PID atoms, grows superexponentially like the
Dedekind numbers [5]. On the other hand, there are only
2n − 1 classical mutual information quantities providing
constraints through Equation (15), leaving these consis-
tency equations underdetermined and making it impos-
sible to determine the sizes of the PID atoms. This un-
derdeterminedness is typically resolved by introducing a
measure for generalized redundancy I∩(T : SΦ) for each
parthood distribution Φ. This redundancy generalizes
the mutual information and fulfills

I∩(T : SΦ) =
∑

Ψ:Ψ≺Φ

ΠΨ , (16)

where the sum is over all atoms ΠΨ with a parthood dis-
tribution Ψ which are part of the generalized redundancy
I∩(T : SΦ).
This condition is similar to the monotonicity require-

ment of the mutual information mentioned before and is
mathematically captured in the ordering relation ≺ given
by

Ψ ≺ Φ ⇔ Φ(Sa) = 1 → Ψ(Sa) = 1 for all Sa ⊆ S .
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FIG. 6. The PID lattice structure for three source variables reveals how generalized redundancies can be
dissected into PID atoms [4, 5]. A Every node in the redundancy lattice represents a generalized redundancy I∩ for a
given antichain, while edges indicate parthood of generalized redundant information in information terms higher up the lattice.
For instance, the mutual information I(T : S1), which corresponds to the self-redundancy with the antichain {1}, contains all
redundancies in its downset, i.e., those with antichains {1}{2, 3}, {1}{2}, {1}{3} and {1}{2}{3}, which, however, themselves
overlap and contain parts of each other. B The PID atoms (shaded boxes), which are referenced by the same antichains,
only comprise the information that the redundancy of the same antichain contains in excess of what the all the atoms below
contain together. Atoms thus reflect the incremental increases of the redundancies which conversely can be used to construct
the generalized redundancies. For instance, the redundancy with antichain {1} is the sum of the four atoms in its downset
plus the atom {1} itself (green shaded box and green dashed outline, respectively). Analogously, the figure shows how the
redundancy with the antichain {1, 3}{2, 3} (orange) is constructed from the atoms in its downset.

This partial ordering bestows a structure onto the set of
PID atoms which is known as the “redundancy lattice”[4,
5] (see Figure 6).

Comparing Equations (15) and (16), one finds that
the mutual information can be interpreted as a “self-
redundancy”—a special case of a redundancy which de-
scribes how the mutual information provided by a set of
sources about the target is trivially redundant with itself.
Finally, to quantify the atoms ΠΦ given the redundancies
I∩(T : SΦ), Equation (16) can be inverted, which, due to
the partial ordering, is known as a Moebius inversion [4].
Equivalently, each parthood distribution can be

uniquely identified by the set of sets of source variables
for which the parthood distribution is equal to 1, i.e.,
Φ−1[{1}]. Because of the monotonicity requirement men-
tioned before, we can make this representation even more
concise by removing all sets which are supersets of others,
which gives the so-called antichains

α =
{
a ∈ Φ−1[{1}] |̸ ∃ b ∈ Φ−1[{1}] s.t. b ⊆ a

}
, (17)

which is the most prevalent way how PID atoms are re-
ferred to throughout literature and also the formalism
that PID was originally conceived in [4]. Throughout this
paper, the outer braces of the set of sets are neglected for
the sake of brevity (e.g., {1}, {2} instead of {{1}, {2}}.
The term antichain stems from the fact that the sets
contained within α are incomparable with respect to the

partial order of set inclusion. These antichains make the
intuitive meaning of the redundancy terms explicit, e.g.,
I∩,{1}{2,3} refers to the information that can either be
obtained from source S1 alone, or–redundantly to that–
from sources S2 and S3 taken together.

B. Definition of multivariate continuous Isx∩

Since in the multivariate case the generalized redun-
dancy I∩,α refers, for a particular antichain α, to infor-
mation that can equivalently be obtained from all sets Sa

for a ∈ α of source variables taken together, the logical
statement in the conditional probability of Definition 2
needs to be generalized to accommodate for such general
disjunctions as

isx∩,α(t : s1; s2) = log2

[
p(t|∨a∈α Sa = sa)

p(t)

]
(18)

= log2

[
p(t|∨a∈α

∧
i∈a Si = si)

p(t)

]
, (19)

where Sa = {Si | i ∈ a} and likewise sa = {si | i ∈ a}.
This generalization is analogous to how the multivariate
redundancy is introduced for the discrete case by Makkeh
et al. [26].
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C. Estimation of multivariate continuous Isx∩

To estimate multivariate continuous Isx∩ , the search re-
gions used by the nearest neighbor estimator need to be
expanded to higher dimensions. For d > 2 source vari-
ables S = (S1, . . . , Sd) and a specific antichain α, the
search space for determining the radius ϵi is given by the

union of intersections⋃
a∈α

Bϵi(ti)×
ą

j∈a

Bϵi(si,j)×
ą

j /∈a

Sj . (20)

For illustration, the search regions for three source
variables (trivariate PID) are visualized in Figure 7 for
all antichains in the redundancy lattice.

Using this notion of neighborhood, the estimator for
continuous Isx∩ can be generalized to arbitrary antichains
α as in Definition 3, yielding

Îsx∩ (T : α)

= ⟨ ̂log[f iα,T (t, sk)]⟩i − ⟨ ̂log[f iα(sk)]⟩i − ⟨ ̂log[f iT (t)]⟩i
= ψ(k) + ψ(N)− ⟨ψ(nα(i))⟩i − ⟨ψ(nT (i))⟩i .

IV. APPLICATION OF CONTINUOUS Isx∩
ESTIMATOR TO SIMULATED DATA FROM AN

ENERGY MANAGEMENT SYSTEM

A. Simulation of an energy management system

To demonstrate the applicability of the proposed def-
inition for continuous Isx∩ and its corresponding estima-
tor, we applied it to simulated data for an energy man-
agement system and show how the simulated relation-
ships between system components can be recovered from
the estimated PID. In a hybrid simulation approach,
we integrated real-world sensor readings from a Honda
R&D facility into simulation components, which were in
turn modelled via fundamental physical differential equa-
tions [46]. We informed our simulation by recordings of
the actual facility energy consumption profile and local
weather patterns, obtained by smart meter measurement.
Specifically, the measured time series consist of all envi-
ronmental inputs such as temperature, wind speeds, and
humidity, as well as the power consumption of subsys-
tems of the Honda R&D facility, while all other variables
were simulated. The simulations have been done in the
Modelica simulation language, using the commercial tool
SimulationX [47].

The simulation comprises multiple different agents rep-
resenting energy sources, energy storage, consumers and
grid interconnections. The energy originates from four
sources: An on-premise wind turbine, a photovoltaic
(PV) system, a combined heat and power natural gas
plant (CHP), as well as energy transfers from the elec-
tricity grid. This energy is utilized as building power
consumption, while excess power is stored in the battery
storage system or fed back into the external power grid
(see Figure 8).

In the simulation, the different agents of the system are
given set rules for how they respond to each other or to
external changes. Firstly, as the CHP not only provides
electrical energy to the facility but also heating, it is set

to operate only during times in which the ambient tem-
perature is equal to or lower than 16 ◦C. During those
times, the plant produces a continuous electric power
output depending on the overall energy consumption of
the facility (see Algorithm 1). The stationary battery
is either charged or discharged depending on the overall
power consumption level of the facility (see Algorithm 2).
Specifically, the storage system is set to Discharge ac-
cording to a binary hysteresis with respective threshold
values of 330 kW and 350 kW for the overall power con-
sumption (see Figure 9). The model was simulated for a
full year to capture seasonal variations in both renewable
energy availability and power demand.

Algorithm 1: CHP controller

if Temperature ≤ 16 ◦C then
PowerOutput← 0.4 PowerReference

else
PowerOutput← 0

end

Algorithm 2: Battery controller

if Discharge then
PowerOutput← −200 000

else if PowerReference ≤ 200 000 then
PowerOutput← 100 000

else
PowerOutput← 100 000

end

The goal of the PID analysis is to find the environmen-
tal variables which best predict the net energy transfer to
the power grid PGrid. Specifically, we performed analyses
between the net energy transfer as the target variable and
used the ambient temperature, TA, wind speed, vWind,
and time of day, tDay, as sources. A full PID between
these three source variables reveals how the predictive
capabilities of the environmental variables is distributed
among the individual factors.

B. Results of experiments

1. Bivariate PID results

As a first step, we analyzed how well the net energy
transfer PGrid is predictable from the ambient temper-
ature TA and the wind speed vWind. The results of
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FIG. 7. The nearest neighbor search regions for three source variables are cumulative when going from the full
synergy (top) towards the full redundancy (bottom) in the redundancy lattice. The orange regions depict where to
search for nearest neighbors, and its border signifies the surfaces of equal distance from the logical statement corresponding to
each antichain. Here the finite heights, widths and depths ϵ are chosen equally large. Also note that the search regions for all
classical mutual information terms (i.e., antichains {1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2} and {3}) correspond to marginalized
hypercubes, just as in the regular definition of the KSG estimator [35].

this bivariate PID are summarized in Table II. In to-
tal, 2.323 bits of information about PGrid can be obtained
by observing TA and vWind. Intuitively, if all values for
PGrid were equally likely, one bit of information would be

equivalent to restricting the range of possible values for
the energy transfer by half after observation of the envi-
ronmental variables. Accordingly, the observed 2.323 bits
would then equate to a reduction of range of the possible
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Net Energy Transfer
to External Grid

PGrid (T )

Wind
Turbine

Weather
Data

Ambient temparature TA (S1)
Wind speed vWind (S2)
Time of day tDay (S3)

PV
System

Building Power
Consumption

Combined Heat
And Power Plant

Battery Storage
And Controller

FIG. 8. Causal structure of the energy management system model. An arrow from A to B reads as “A influences
B”. The model simulates the building power and heat demand based on time and weather conditions. Energy is provided by
the grid connection, a PV-system, a combined heat and power plant (CHP), a wind turbine, and a stationary battery. The
battery’s charging and discharging behavior is controlled depending on the overall power consumption level. The CHP produces
energy depending on the overall power consumption and the ambient temperature. The gray boxes highlight the choices for
source (Si) and target (T ) variables for the PID analysis.

FIG. 9. Hysteresis function of the battery controller.
Depending on the overall power consumption level u, a dis-
charge signal y is sent to the controller.

TABLE II. Most information that the ambient temper-
ature (S1 = TA) and the wind speed (S2 = vWind) hold
about the net energy transfer (PGrid) is held synergis-
tically. The PID is calculated considering the target variable
to be the net energy transfer to the electricity grid. The esti-
mator was applied to N = 105 data points.

Size of information atom
Πsyn 1.363 bits
Πunq,1 0.296 bits
Πunq,2 0.034 bits
Πred 0.630 bits

I(T : S1, S2) 2.323 bits

outcomes by a factor of about 1/5.

Most of this information, namely 1.363 bits are car-
ried synergistically between the two environmental vari-
ables, meaning that this information is not accessible
from any individual source alone. This implies that the
net energy transfer is, to a large extent, predictable only
from the interaction between the temperature and wind
speed. Some of the information can also be determined
redundantly from both sources (Πred = 0.630 bits) and
finally, some information can be gained from the ambi-
ent temperature alone (Πunq,1 = 0.296 bits), while the
wind speed conveys hardly any information exclusively
by itself (Πunq,2 = 0.034 bits).

Note the strong similarity in values to the sum gate Ta-
ble I, which constructs the target as a net sum of its two
source inputs. One can assume that this results from the
dependency on the ambient temperature in the building
power consumption and the CHP controller Algorithm 1
and the dependency of the energy generation of the wind
turbine on the wind speed leading to these two source
variables’ effects would add up together to inform about
the net energy transfer to the external grid. However, the
inequality in effects on other parts of the system such as
potential temperature and wind speed dependency of for
instance the photovoltaic system lead to a less balanced
summation then was done in the equiweighted sum gate,
and becomes conceptually more similar to a skewed sum
gate as in Table VI in Appendix J.
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FIG. 10. By adding a third source variable S3, the four
PID atoms between the target T and the sources S1

and S2 of Figure 1 are further subdivided and new
ones are added, resulting in a total of 16 atoms [4].
The individual atoms are identified by their antichains, e.g.,
{1}{2, 3} is the redundancy between source S1 taken alone
and sources S2 and S3 synergistically taken together.

2. Trivariate PID results

A possible common cause for the correlation between
the environmental variables and the net energy transfer
from or to the power grid might be the time of day. To in-
vestigate this hypothesis, we augmented our analysis by
incorporating the time of day as a third source variable
in our PID analysis. By adding a third variable, the bi-
variate PID atoms themselves are dissected into smaller
parts depending on their relation with the third variable
(see Figure 10). For instance, the bivariate synergy Πsyn

splits into five parts upon the introduction of the third
variable, which are each characterized by a different an-
tichain α:

• The part of the synergy between only the sources
S1 and S2 which is not part of S3 (α = {1, 2}),

• the part of the synergy between S1 and S2 which
is redundant with S3 (α = {1, 2}{3}),

• the part of the synergy between S1 and S2 which
is redundant with the synergy between S1 and S3

(α = {1, 2}{1, 3}),

• the part of the synergy between S1 and S2 which
is redundant with the synergy between S2 and S3

(α = {1, 2}{2, 3}) and finally

• the part of the synergy between S1 and S2 which
is redundant with both the synergy between S1

and S3 and the synergy between S2 and S3 (α =
{1, 2}{1, 3}{2, 3}).

Examining the estimation results of the trivariate PID,
as listed in Table III and visualized in Figure 11, we can
observe that the synergy between ambient temperature
and wind speed primarily resides within the trivariate
atom characterized by the antichain {1, 2}{3}. This im-
plies that the bivariate synergy between TA and vWind

largely duplicates the information conveyed by the time
of day. A similar trend emerges when considering bivari-
ate redundancy Πred, which also predominantly overlaps
with the time of day, i.e., resides mainly in the trivariate
atom {1}{2}{3}, and also the bivariate unique informa-
tion of the ambient temperature Πunq,1, which mostly
resides in the redundant atom {1}{3}. These findings
substantiate our hypothesis that weather variables are
primarily redundant with the time of day. One possible
explanation for this is that the weather variables primar-
ily act as intermediaries, conveying information that the
time of day carries about the net energy transfer.

Nevertheless, there are also other PID atoms which
contribute non-negligibly to the total mutual informa-
tion. In particular, some information is carried synergis-
tically between the ambient temperature and the time of
day ({1, 3}) or, to a lesser extent, between the synergy
between all variables ({1, 2, 3}) and the synergy between
wind speed and the time of day ({2, 3}). Yet other rel-
evant contributions come from the redundancy between
the ambient temperature and the time of day ({1}{3})
and the redundancy between all three two-variable syn-
ergies ({1, 2}{1, 3}{2, 3}).
Further, note that the information that the time of day

provides uniquely and independent of ambient tempera-
ture and wind speed is on average negative, i.e., misinfor-
mative about the total power draw. Average misinforma-
tion can arise in Isx∩ since the operational interpretation,
which has been put forward in Makkeh et al. [26] and car-
ries over to the continuous case, assumes a memoryless
agent and interprets the average information-theoretic
quantities as ensemble averages. For a hypothetical agent
incapable of learning from past events, this means that
gaining only the purely unique information of the time
of day diminishes the agent’s accuracy in predicting the
net energy transfer.

V. DISCUSSION

This work presents a tractable analytical definition of
continuous PID which is based on the intuitive ideas of
the discrete Isx∩ measure [26] and the measure-theoretical
existence proofs by Schick-Poland et al. [34]. It is in a
local form by definition, is applicable to arbitrary many
source variables and differentiable. We exemplify the in-
tuition of our definition on four toy examples and ob-
serve that the measure gives mostly qualitatively compa-
rable results to the the discrete case when computed on
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TABLE III. The three source PID of the Honda energy management system between the ambient temperature
(S1 = TA), the wind speed (S2 = vWind), and the time of day (S3 = tDay) with the net energy transfer to an
external grid (T = Pgrid) as target variable reveals that most information that the sources carry about the
target is redundant with the time of day. The bivariate PID atoms from Table II are subdivided into trivariate atoms

according to Figure 10, and the estimated information carried by each atom Π̂(T : α) as well as the cumulative atoms, i.e., the

corresponding estimated redundant information Îsx∩ (T : α) are shown. The estimator was applied to the same N = 105 data
points as in Table II. The total mutual information is I(T : S1, S2, S3) = 3.092 bits, agreeing with the top-most redundancy in
the lattice. The bold rows each represent the most informative trivariate atom from the decomposition of the corresponding
bivariate atom. Note that all bold rows contain an atom which is in some way a redundancy with source variable three.

Estimation results

Antichain α of trivariate atom Contained in bivariate atom Π̂(T : α) Îsx∩ (T : α)
{1, 2, 3} - 0.429 bits 3.092 bits
{1, 3} - 0.688 bits 2.440 bits
{2, 3} - 0.223 bits 1.971 bits

{1, 3}{2, 3} - 0.177 bits 1.742 bits
{3} - −0.749 bits 1.239 bits
{1, 2} Πsyn 0.000 bits 2.330 bits

{1, 2}{1, 3} Πsyn 0.013 bits 2.324 bits
{1, 2}{2, 3} Πsyn 0.006 bits 2.320 bits
{3}{1,2} Πsyn 1.053bits 1.988 bits

{1, 2}{1, 3}{2, 3} Πsyn 0.29 bits 2.314 bits
{1} Πunq,1 −0.003 bits 0.927 bits

{1}{2, 3} Πunq,1 0.022 bits 0.930 bits
{1}{3} Πunq,1 0.278bits 0.905 bits
{2} Πunq,2 0.000 bits 0.664 bits

{2}{1, 3} Πunq,2 0.004 bits 0.664 bits
{2}{3} Πunq,2 0.03bits 0.657 bits
{1}{2} Πred 0.003 bits 0.630 bits
{1}{2}{3} Πred 0.627bits 0.627 bits

continuous versions of certain logic gates. Furthermore,
we provide a nearest-neighbor based estimator and show
that it converges to the numerically obtained values on
the before-mentioned examples. Lastly, we demonstrate
how this estimator can be used in a practical example by
using it to uncover variable dependencies in a simulated
energy management system.

The proposed measure fills a gap not addressed by ex-
isting continuous PID measures. The space of PID mea-
sures can be subdivided into mainly two groups: Those
based on optimization of an auxiliary variable with re-
spect to some ordering criterion [29, 48, 49] as explained
in the framework of Kolchinsky [29], and those which
have a pointwise definition, i.e., which can be defined
for an individual realization in a self-contained func-
tional way dependent solely on the probability densities
at that realization. Kolchinsky [29] highlights that for
ordering-based PID measures, the inclusion-exclusion-
rule for defining PID atoms is inconsistent and thus can-
not be applied. However, being defined for local realiza-
tions, our proposed measure is fully compatible to the
mereological framework of Gutknecht et al. [5] and is
therefore not affected by this criticism.

Furthermore, it is crucial to remark that mutual infor-
mation as well as PID are measures of statistical depen-
dence only, and therefore do not imply any causation in
the interventional sense. Note that a causality decom-
position into causal atoms must have a different struc-

ture from the partial information decomposition lattice
as causality does not follow the same monotonicity crite-
rion as redundancy [50]. This is because multiple causal
influences can hinder and prevent each other: Consider,
for instance, two stones being thrown at a bottle. While
each stone individually would hit and destroy the bottle,
their trajectories may intersect in such a way that the
stones themselves collide when thrown simultaneously,
diverting each other enough to both miss the bottle. In
this case, two causes which would have individually been
sufficient to cause an event have cancelled each other,
which is an interaction that is impossible when consider-
ing redundancy instead.

As outlined in Section II B, the definition of continuous
Isx∩ leaves open a choice of how to set the relative scale
between variables that needs to be made in accordance
with the setup in question. While such a choice marks a
departure from the purely model-free nature of classical
information theory, note that this is likely unavoidable
in a PID context. For PID itself, choosing one of the
multiple competing PID measures according to their op-
erational interpretation similarly introduces some notion
of “proto-semantics” to the analysis. Overall, we see the
choice of relative scale not as a weakness but as a neces-
sity for a continuous PID measure, since what it means
to be in a neighborhood of a value might differ drastically
between different variables.

This work builds on the definition of the discrete Isx∩
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FIG. 11. Most of the information in S1 (ambient tem-
perature) and S2 (wind speed) is redundant with S3

(time of day). Visualization of the results of Table III in
the mereological diagram from Figure 10. Here, red encodes
positive, i.e., informative, information contributions carried
by the associated information atom, while blue encodes neg-
ative, i.e., misinformative contributions in bits.

measure [26] and its measure-theoretic extension to con-
tinuous variables [34] to introduce a tractable analytical
definition and practical nearest-neighbor based estima-
tor for a continuous Isx∩ measure. However, this defini-
tion turns out not to be invariant with respect to bijec-
tive transformations of the individual variables–at least
not without prescribing a preprocessing scheme (see Ap-
pendix C). Yet, this invariance is a property central to
the measure-theoretic derivation in [34]. For this reason,
the analytic definition presented here cannot be directly
interpreted as a concretization of the latter but should
rather be seen as a practical implementation rooted in
the intuitive meaning of the Isx∩ measure.
Like in the discrete case, this definition of redundancy

might yield negative information atoms. In the context
originally introduced by Makkeh et al. [26], namely for
memory-less agents and interpreting the average in Equa-
tion (5) as an ensemble average, these are easily inter-
preted as misinforming the agents of the ensemble on
average. For time-series data, for which the averages
are taken over time, however, negative atoms can be a
distracting technicality hindering a straightforward inter-
pretation of the results. In these cases, practitioners may
opt to clamp the atoms to non-negative values and ad-
just the other atoms accordingly so that the consistency
equations (Equations (16) for the general case) continue
to hold.

In this paper, we propose a novel shared-exclusion
based PID measure designed specifically for purely con-
tinuous variables. However, it is important to acknowl-
edge that real-world systems often involve a combina-
tion of continuous and discrete source variables. Addi-

tionally, even certain individual variables may comprise
both discrete and continuous parts. To address these
scenarios, we introduce an analytical formulation in Ap-
pendix K, outlining an ansatz for handling mixed sys-
tems. While we defer the presentation of specific ex-
amples demonstrating its application and the develop-
ment of a mixed continuous-discrete estimator to future
research, this work lays the groundwork for a compre-
hensive understanding of information decomposition in
systems with diverse variable types.
Overall, with this paper we introduce a new analytical

formulation for a shared-exclusion based continuous PID
measure and provide an estimator that makes it applica-
ble to practitioners from all sciences and technology.
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Appendix A: On the shared-exclusions measure of
redundancy

The definition of bivariate Isx∩ in Equation (4) can also
be derived from shared exclusions of parts of the under-
lying abstract probability space (Ω,P), i.e., the parts of
(Ω,P) that are rendered impossible by observation of ei-
ther variable. To determine the precise subsets of the
probability space to be excluded, we assume that a real-
ization S = (S1, S2) = s = (s1, s2) has been taken by the
system and we have gained the information that either
S1 = s1 or S2 = s2 have materialized. Through this ob-
servation, the part of the probability space corresponding
to any other realization s′ = (s′1, s

′
2) is rendered impos-

sible unless either s′1 = s1 or s′2 = s2. If neither of those
equations holds, then s′ would not fulfill the logical or-
statement in Equation (4) and would hence be impossible
under the assumption (see Figure 12).
When parts of the probability space are rendered im-

possible by observing a certain event, the resulting pos-
terior probability measure P needs to be normalized on
Ω, yielding an adapted probability measure P′, known
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FIG. 12. The pointwise redundancy isx∩ can be derived from principles of probability exclusion. Local redundant
information for two sources S1 and S2 with respect to target T at a joint realization (s1, s2, t). Each realization corresponds
to one of the events in the probability space denoted by s1, s2 and t in the probability space (Ω,P). Here we aim at assessing
the benefit of knowing that either S1 = s1 or S2 = s2 in predicting t. In panel A the events s1 and s2 are displayed. In panel
B there is the intersection of both complements from the events in panel A, which is the area of probability mass which either
event excludes. In panel C we consider a target variable and its event set t in Ω, while panel D shows the area of interest, the
green set represents the part of event t that is included in also either s1 or in s2 which corresponds to the part of the probability
of realization t, which is accessible when assuming that the logical statement S1 = s1 ∨ S2 = s2 is true, or, correspondingly,
W{1},{2} = 1. While the green area can be measured via the probability measure directly, i.e., P(t∩ (s1 ∪ s2)), we can similarly

represent it using the shared exclusion overlapping with t as in panel E, by P′(t) − P′(t ∩ (s̄1 ∩ s̄2)) = P(t)−P(t∩(s̄1∩s̄2))
1−P(s1∪s2)

. This

green area then has to be compared to the regular probability of obtaining the realization t without knowledge of any of the
sources, P(t).

as the conditional probability measure. The visualiza-
tion Figure 12 shows the exclusion of specific parts of
the probability space leading to descriptions of the infor-
mation that can be assessed from either S1 or S2 locally
about T .
Similarly, this concept can then be generalized to col-

lections α = {aj}j = {{sij}i}j of three or more source
variables by excluding the part of the probability space
that is redundantly excluded by all joint collections of
random variables aj . For instance, in a quadrivariate
(i.e., four source variable) system, the redundancy be-
tween the collections {S1, S3} and {S2, S4} is defined
by the joint exclusions between the collections, which
is given by all realizations s′ = (s′1, s

′
2, s

′
3, s

′
4) for which

neither (s′1, s
′
3) = (s1, s3) nor (s′2, s

′
4) = (s2, s4) holds.

This generalization to collections of subsets of the source
variables turns out to be of the form of local mutual in-
formation with respect to an auxiliary random variable

WΦ(s) =
∨

a∈P(S):Φ(a)=1

∧
i∈a

(Si = si)

and reverts to a classical mutual information quantity
for self-redundancies, i.e., α = {a}. Further, its depen-
dence on elements of the power set of the index set of

sources (set of all collections of sources) implies that the
Isx∩ measure of redundant information gives rise to a full
lattice of PID atoms as described in Section IIIA. Note
also that this measure, as a composition of differentiable
functions, is differentiable itself with respect to minor
perturbations of the underlying probability mass func-
tion. Additionally, it fulfills a target chain rule [26].

Appendix B: Construction of densities of logical
statements

In this appendix section we argue for the explicit form
of the quasi-densities appearing in Isx∩ , which stem from a
logical statement allowing also for disjunctions, and not
only conjunctions as is usual in traditional probability
theory.
Let us recall that when measuring a union of two sets,

by the law of inclusion-exclusion, we can express the re-
sult as the following sum:

PS1,S2(B ∪ C) = PS1,S2(B) + PS1,S2(C)− PS1,S2(B ∩ C) .

Similarly to Appendix A, a union can be utilized to rep-
resent the logical disjunction S1 ∈ B ∨ S2 ∈ C via mea-
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suring the set B ×ES2
∪ES1

×C where ESi
denotes the

respective space of possible realizations for Si. Measuring
B × ES2

∪ ES1
× C then yields

PS1,S2(B × ES2
∪ ES1

× C)

= PS1(B) + PS2(C)− PS1,S2(B ∩ C) ,

i.e., by using the marginal measures, just as it is done
in discrete settings. Suppose now that we know that the
statement S1 ∈ B ∨ S2 ∈ C is true. How would we
measure the probability of additional events under this
presumption? Assuming the event S1 ∈ B ∨ S2 ∈ C is
true means that we need to use a conditional probabil-
ity measure to measure additional events A ∈ ES1

×ES2
.

Thus, to obtain a probability measure under the assump-
tion that S1 ∈ B ∨ S2 ∈ C is true, we can write

P(S1,S2)
S1∈B∨S2∈C(A) := PS1(A ∩B) + PS2(A ∩ C)

−P(S1,S2)(A ∩ (B × C)).

Applying this to infinitesimally small sets B = {s1}
and C = {s2}, we can achieve the same form by adding
slices of conditional measures with respect to the con-
straints set by the disjunction. We define

P(S1,S2)
(S1=s1)∨(S2=s2)

(A) := PS1({x|(x, y) ∈ A, y = s2})
+PS2({y|(x, y) ∈ A, x = s1})− P(S1,S2)({(s1, s2)} ∩A)

for an event A.

Note that when taking the limit to infinitesimal sets,
a choice needs to be made regarding the relative rate of
convergence of the two variables. Choosing to interpret
the two variables as being on equal scales, i.e., using the
same ϵ to search in the respective marginal neighbor-
hoods, this uniquely defines the measure as the only one
fulfilling

∥∥∥P(S1,S2)
(S1∈Bs1

(ϵ))∨(S2∈Bs2
(ϵ))(A)− ϵ · P(S1,S2)

(S1∈{s1})∨(S2∈{s2})(A)
∥∥∥ ≤ Cϵ · ϵ ϵ↘0→ 0 ∀A ∈ E ,

with Cϵ
ϵ↘0→ C, where C is a constant. This can easily

be seen when using the triangle inequality and recalling

the form of a conditional probability measure, i.e.,

PS1,S2({(x, y) ∈ A|y ∈ Bs2(ϵ)}) =
PS1,S2({(x, y) ∈ A|y ∈ Bs2(ϵ)})

PS2(Bs2(ϵ))︸ ︷︷ ︸
ϵ↘0→ PS1 ({(x,y)∈A|y=s2})

PS2(Bs2(ϵ))

λS2
(Bs2(ϵ))︸ ︷︷ ︸

ϵ↘0→ fS2
(s2)

λS2
(Bs2(ϵ))︸ ︷︷ ︸
2ϵ

ϵ≪1∼ 2ϵPS1({(x, y) ∈ A|y = s2})fS2
(s2) .

This idea is further visualized in Figure 13.

Evidently, this ansatz fails if any of the marginal den-
sities fSi

is unbounded at si. The choice of this measure
could also be argued for as a consequence of the simple
function approximation, found for instance in [51], thrm.
7.10.

To arrive at a probability for an infinitesimal event,
compare the above to the construction of the usual
Lebesgue measure λS measuring the maximal size of
nicely shrinking balls Bi = B(s1,s2)(ri) [51]. Note that
the maximal size of a Bi is the diameter of the ball, 2ri,
and in the continuous case, the last term in the numera-
tor vanishes.

Then

fS1∨S2(s1, s2)

= lim
Bi↘{(s1,s2)}

P(S1,S2)
(S1=s1)∨(S2=s2)

(B(s1,s2)(ri))

λS(B(s1,s2)(ri))

= lim
ri↘0

PS1({(x, y) ∈ Bi|y = s2})
2ri

+
PS2({(x, y) ∈ Bi|x = s1})

2ri

= lim
ri↘0

PS1({s1 ± ri}) + PS2({s2 ± ri})
2ri

=fS1(s1) + fS2(s2) ,

where λS1
({(x, y) ∈ Bi|y = s2}) + λS2

({(x, y) ∈ Bi|x =
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FIG. 13. We choose our localized conditional probability measure such that its extension for small neigh-
bourhoods naturally results in the global probability measure. In panel A the intuitive meaning of the measure

P(S1,S2)

(S1∈Bs1
(ϵ))∨(S2∈Bs2

(ϵ))(A) for a set A is illustrated. In panel B one sees the consequences of ϵ decreasing, leading to

P(S1,S2)

(S1∈Bs1
(ϵ))∨(S2∈Bs2

(ϵ))(A) approaching the conditional measure of our choice, P(S1,S2)

(S1∈{s1})∨(S2∈{s2})(A) multiplied with the

width of the neighborhood, ϵ, as shown in panel C.

s1} is equal to 2ri since the measures λSi measure the
diameter of the uniform ball centered around (s1, s2).

This method is readily generalized to n sources in the
exact same way it worked for two, with the one excep-
tion being that conjunctions are treated as one variable.
For example, a logical statement α(s1, s2, s3) = {S1 =

s1} ∧ {S2 = s2} ∨ {S3 = s3} is treated as a disjunction
of a single two dimensional statement and a single one
dimensional statement.

Definition 3. Let for a generic logical statement α of
length l(α) in its disjunctive normal form α =

∨
j∈J aj,

Id ⊂ J be the subset of purely discrete statements. Then
we define the density of α as
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δP∨

δλ∨
(s1, . . . sn) = fα(x1, . . . xn) :=

|Id|+1∑
k=1

(−1)k+1

 ∑
m1<m2<...<mk−1∈Id
m1 ̸=m2 ̸=... ̸=mk−1 ̸=j∈J

fk−1⋃
q=1

amq∪aj

(
k−1⋃
q=1

xamq
∪ xaj

) .

Example 1. 1. Take the example α = (X1 ∧ X2) ∨
(X3) ∨ (X4 ∧ X5), where X1, X2 and X4 are dis-
crete, and X3 and X5 are continuous, such that
J = {1, 2, 3} and Id = {1}. The resulting quasi-
density is

fα(x1, x2, x3, x4, x5)

= pX1X2(x1, x2) + fx3(x3) + fX4X5(x4, x5)︸ ︷︷ ︸
k=1

−

fX1X2X3(x1, x2, x3) + fX1X2X4X5(x1, x2, x4, x5)︸ ︷︷ ︸
k=2

 .

2. Choosing α = (X1 ∧X2) ∨ (X1 ∧X3) with X1, X3

discrete andX2 continuous on the other hand, leads
to

fα(x1, x2, x3)

= fX1X2(x1, x2) + pX1X3(x1, x3)− fX1X2X3(x1, x2, x3).

The above derived form of the density of an OR state-
ment readily only works for purely continuous measures,
as for purely discrete ones; ϵi → 1 and thus the last
term does not vanish, yielding the expression commonly
derived via the inclusion-exclusion rule, that is,

P∨(Ai, Bi)

ϵi
→ pX(xA) + pY (yB)− pXY (xA, yB) .

Thus those corner cases of purely discrete and purely
continuous systems can be understood as they have com-
parable ϵiA = ϵiB , but if one considers the case of a system
consisting of both types of variables, one cannot fulfill
this requirement. To circumvent this nuisance while still
measuring the maximal possible amount of probability,
we define the density of an OR-statement in the measure-
theoretic case to be

δP∨

δλ∨
(xA, yB)

:= lim
i→∞

PX(∆Ai)

ϵiA
+

PY (∆B
i)

ϵiB
− PXY (∆A

i ×Bi−1) + PXY (Ai−1 ×∆Bi)− PXY (∆A
i ×∆Bi)

ϵiAϵ
i
B

max
(
ϵiA, ϵ

i
B

)

with ∆Ai = Ai\Ai+1, and the same for ∆Bi = Bi\Bi+1.
With this definition, the special cases of purely discrete
and purely continuous arise again, and the mixed case
yields sums of probability masses and densities of the
same order of magnitude with respect to the underlying
space vanishing, i.e., in the case where X is continuous
and Y is discrete, we find

δP∨

δλ∨
(xA, yB) = fX(xA) + pY (yB)− fXY (xA, yB) .

Requiring the same to hold for higher order statements
α, this can easily be generalized utilizing the inclusion-
exclusion law, leading to Definition 3.

Appendix C: Variable preprocessing

This appendix chapter discusses the effect that dif-
ferent preprocessing schemes have on the results of the
introduced PID definition. Different to the mutual in-
formation and the measure-theoretic existence proofs by
[34], the analytic definition for redundancy suggested in
this paper is not invariant under isomorphic mappings of
individual source variables. At the core, the reason for
this fact is that in the continuous case, the meaning of a
logical disjunction turns out to be contingent on the rela-
tive scale of the two variables, since densities are defined
as the limits of neighbourhoods, and there is no canoni-
cal way to compare neighborhoods between two different
variables to make them shrink at the same pace.
Definition 3 has been made under the assumption that

the two variables are on a comparable scale. While this
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TABLE IV. Different preprocessing schemes for continuous PID gates produce qualitatively similar results on
the redundant and unique gate, while a copula pretransformation results in different results for the copy and
sum gates. The results have been computed using a Monte-Carlo integration analogous to Table I.

Redundant Gate Copy Gate Unique Gate Sum
No transformation

Πsyn 0.000 bits 6.644 bits 5.525 bits 6.497 bits
Πunq,1 0.000 bits 0.000 bits 1.119 bits 0.147 bits
Πunq,2 0.000 bits 0.000 bits −5.525 bits 0.147 bits
Πred 6.644 bits 6.644 bits 5.525 bits 0.353 bits

I(T : S1, S2) 6.644 bits 13.288 bits 6.644 bits 7.144 bits
Standardization

Πsyn 0.000 bits 6.644 bits 5.524 bits 6.497 bits
Πunq,1 0.000 bits 0.000 bits 1.119 bits 0.147 bits
Πunq,2 0.000 bits 0.000 bits −5.524 bits 0.147 bits
Πred 6.644 bits 6.644 bits 5.524 bits 0.353 bits

I(T : S1, S2) 6.644 bits 13.288 bits 6.644 bits 7.144 bits
Copula transformation

Πsyn 0.000 bits 6.922 bits 5.671 bits 6.791 bits
Πunq,1 0.000 bits −0.279 bits 0.973 bits −0.147 bits
Πunq,2 0.000 bits −0.279 bits −5.671 bits −0.147 bits
Πred 6.644 bits 6.922 bits 5.671 bits 0.647 bits

I(T : S1, S2) 6.644 bits 13.288 bits 6.644 bits 7.144 bits

holds true for many scientific questions in which the vari-
ables in question are distributed equivalently, in other
scenarios a preprocessing step might become necessary
to compare the variables in a way adequate for the re-
search question. Table IV shows how the PID results of
the logic gate examples in Table I change when differ-
ent preprocessing schemes are applied. First, note that
preprocessing does not impact the mutual information
quantities. While there are no qualitative differences be-
tween the preprocessing schemes for the redundant and
the unique gate, the copula transformation, i.e. chang-
ing the random variables to their own cumulative density
making them uniform on the unit interval, introduces
some unique information in the copy gate and negative
unique information in the sum gate. These results show
that while different preprocessing schemes might often
lead to comparable results, it is nevertheless important
to choose a preprocessing scheme that matches the scien-
tific question to yield reliable and interpretable results.

Note, also, that specifically the preprocessing based
on standardization makes no difference compared to no
transformation for the given examples. This, however,
is not true in general but only if the two source random
variables already have the same standard deviation, as is
the case for all examples shown here.

Appendix D: Proof of the differentiability of Isx∩

The analytical definition of the redundancy (see Defi-
nition 2) allows us to prove its differentiability and even
smoothness for both the local and global measure.

Theorem 1. The local continuous measure of shared
information

isx∩ [f ](t, {s1}{s2}) = log2

[
fT |S1∨S2

(t|s1 ∨ s2)
fT (t)

]
= log2

[
fTS1

(t, s1) + fTS2
(t, s2)

fT (t)(fS1(s1) + fS2(s2))

]
varies smoothly with respect to changes of the underly-

ing joint probability density fTS1S2 . Moreover, for more
than two source variables, isx∩ [fTS1S2 ](t : α) is smooth for
arbitrary antichains α.

Proof. Let fTS1S2
be a density function and (t, s1, s2) a

point in state space such that fTS1S2
(t, s1, s2) > 0. Now,

let gTS1S2
be a function such that gTS1S2

(t, s1, s2) ̸= 0.
Then we construct the derivative D(isx∩ [f ])g in the di-

rection of g by considering the limit of a shifted density
fTS1S2

7→ fTS1S2
+ ϵ · gTS1S2

with ϵ > 0, yielding
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D(isx∩ [f ])g = lim
ϵ→0

isx∩ [fTS1S2 + ϵ · gTS1S2 ](t : s1 ∨ s2)− isx∩ [fTS1S2 ](t : s1 ∨ s2)
ϵ

= lim
ϵ→0

log
[

fTS1
(t,s1)+fTS2

(t,s2)+ϵ(gTS1
(t,s1)+gTS2

(t,s2))

(fT (t)+ϵgT (t))(fS1
(s1)+fS2

(s2)+ϵ(gS1
(s1)+gS2

(s2))

]
− log

[
fTS1

(t,s1)+fTS2
(t,s2)

fT (t)(fS1
(s1)+fS2

(s2))

]
ϵ

= lim
ϵ→0

log2

[
1 + ϵ

gTS1
(t,s1)+gTS2(t,s2)

fTS1
(t,s1)+fTS2

(t,s2)

]
− log2

[
1 + ϵ

gS1
(s1)+gS2

(s2)

fS1
(s1)+fS2

(s2)

]
− log2

[
1 + ϵ gT (t)

fT (t)

]
ϵ

.

At this point, we use the Taylor expansion ln[1 + x] =
∞∑

n=1

(−1)n+1xn

n = x+O(x2) to determine the final form of

the derivative

D(isx∩ [f ])g =
gTS1

(t, s1) + gTS2
(t, s2)

fTS1
(t, s1) + fTS2

(t, s2)
− gS1

(s1) + gS2
(s2)

fS1
(s1) + fS2

(s2)
− gT (t)

fT (t)
,

which is finite by assumption.1

Considering the form that results from the derivative,
it can be concluded that the isx∩ [fTS1S2

](t : s1 ∨ s2) is not
only differentiable at point (t, s1, s2), but even smooth,
since the following derivatives will be linear combinations
of powers of terms of the form 1

fTS1
+fTS2

, 1
fS1

+fS2
and

1
fT

.

Note further that this proof naturally extends to any
arbitrary antichain α of interest by an analogous argu-
ment.

Corollary 1. The global measure of redundant infor-
mation Isx∩ [f ] =

∫
f isx∩ [f ] is a smooth functional of the

underlying density f if f and its marginals are bounded
from below by some ξ > 0.

Proof. The change of Isx∩ when shifting f infinitesimally
in the direction of g is given by[
dIsx∩ [f + ϵg]

dϵ

]
ϵ=0

=

∫
dtds1ds2

δIsx∩ [f ]

δf(t, s1, s2)
g(t, s1, s2) .

where δIsx∩ [f ]/δf(t, s1, s2) is the functional derivative of
Isx∩ [52]. By applying a product rule of differentiation to
the functional

Isx∩ [f ] =

∫
dtds1 ds2 f(t, s1, s2) i

sx
∩ [f ](t, s1, s2) ,

1 Interpreted as a linear functional D(isx∩ [f ]) acting on g, this ex-
pression can be seen to be the Fréchet derivative of the local
redundancy fulfilling [52]

lim
||ϵg||→0

||isx∩ [f + ϵg]− isx∩ [f ]−D(isx∩ [f ])g||
||ϵg||

= 0 .

which depends on f in two places, we obtain[
dIsx∩ [f + ϵg]

dϵ

]
ϵ=0

=

[
d

dϵ

∫
dtds1 ds2 (f + ϵg)(t, s1, s2)

isx∩ [f + ϵg](t, s1, s2)

]
ϵ=0

=

∫
dtds1ds2 {isx∩ [f ](t, s1, s2) g(t, s1, s2)

+f(t, s1, s2) [D(isx∩ [f ])g] (t, s1, s2)}

=

∫
dtds1ds2 [{isx∩ [f ] + fD(isx∩ [f ])} g] (t, s1, s2) ,

from which we can read off the functional derivative as
the functional

δIsx∩ [f ]

δf(t, s1, s2)
= isx∩ [f ] + fD(isx∩ [f ]) .

If the marginals of the joint density f are bounded
from below, the magnitude of the Fréchet derivative,
|Dg(i

sx
∩ [f ])|, is bounded, too. Hence the functional

derivative is well-defined for all points (t, s1, s2). Thus
the total change of the functional Isx∩ [f ] with respect to
an infinitesimal change of f in the direction of g exists
if and only if both isx∩ [f ]g and fD(isx∩ [f ])g are integrable
functions over the space of realizations.
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Appendix E: Analytical probability distributions for
the logic gates and sum examples

The probability densities for the three continuous logic
gates as well as the sum example can be expressed as
multivariate Gaussian distributions of the form

pT,S1,S2(t, s1, s2) =
1√

(2π)l detΣ
exp

{
−1

2
xT Σ−1 x

}
,

where x =
(
t s1 s2

)T
and the covariance matrix

Σ =

(
ΣT ΣTS

ΣST ΣS

)
depends on the gate. Note, further, that the integer l is
equal to 3 for the redundant and unique gate as well as
the sum example while it is equal to 4 for the copy gate
because of the two-dimensional target.

An analytical formulation for the mutual information
for such Gaussian models is given by [3]

I(T,S) =
1

2
log2

(
detΣT detΣS

detΣ

)
.

To make the mutual information finite, noise with stan-
dard deviation σ = 0.01 is added to the target variable.
While the choice of this parameter influences the abso-
lute sizes of the PID atoms, it does not majorly affect the
qualitative analysis of the logic gates (Table V). How-
ever, analogously to the KSG estimator for mutual in-
formation, a higher number of samples is necessary to
correctly estimate the redundant information when the
dependence between the variables is strong [35]. Fur-
thermore, the constant δ = 10−9 is introduced in the
redundant gate for numerical reasons to avoid a singular
matrix. It has been carefully chosen small enough to not
affect the results up to the presented precision.

The covariance matrices are found as follows:
a. Redundant gate

Σ =

1 + σ2 1− δ 1− δ
1− δ 1 1− δ
1− δ 1− δ 1


b. Copy gate

Σ =

1 + σ2 0 1 0
0 1 + σ2 0 1
1 0 1 0
0 1 0 1


where l = 4 and x =

(
t1, t2, s1, s2

)T
,

c. Unique gate

Σ =

1 + σ2 1 0
0 1 0
1 0 1



d. Continuous sum

Σ =

2 + σ2 1 1
1 1 0
1 0 1

 .

Appendix F: Formal derivation of the
Kozachenko-Leonenko estimator for Shannon

differential entropy

The proposed estimator for continuous Isx∩ is based
on ideas of the KSG estimator, originally introduced by
Kraskov et al. [35] in 2004, which is explained here for
completeness. The main advancement of the KSG esti-
mator was to apply the Kosachenko-Leonenko estimator
[42] for (differential) entropy in a specific way, allowing
for estimation of I(X;Y ) = H(X) + H(Y ) − H(X,Y ).
Here we will continue in a very similar fashion.

Kosachenko and Leonenko estimate (differential) en-
tropy on the grounds of the assumption that the density
to consider for the entropy is locally constant around a
measured data point xi, i.e., qi(ϵ) =

∫
Bϵ(xi)

dx pX(x) ≈

λX (Bϵ(xi)) pX(xi), where Bϵ(xi) is the ϵ-ball around xi.
Then Kosachenko and Leonenko introduce a probability
density function Pk(ϵ), such that Pk(ϵ)dϵ determines the
probability of k − 1 points lying within radius ϵ around
xi, a k-th lying within the shell of radii within [ϵ, ϵ+ dϵ]
around xi, and the remaining N − k − 1 points lying
outside.

Using well-known integral identities, we find∫
R+

dϵ log[qi(ϵ)]Pk(ϵ) = ψ(k)− ψ(N) .

On the other hand, since pX(xi)λX (Bϵi(xi)) ≈ qi(ϵi),
it follows that

log [pX(xi)λX (Bϵi(xi))] ≈ E [log[qi]] = ψ(k)− ψ(N)

such that a point estimate Ĥ of the differential entropy
can be determined as

Ĥ(X) = − 1

N

N∑
i=1

̂log [pX(xi)]

= −ψ(k) + ψ(N) +
1

N

N∑
i=1

log [λX (Bϵi(xi))] .

The volume bias terms λX (Bϵ(xi)) are numerically ob-
tained by performing searches for the k-th nearest neigh-
bor in the data set, the distance to whom is ϵi.
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TABLE V. The PID of the four toy examples does not qualitatively differ when varying the amount of noise σ
that is added to the source variable T . The results have been computed using a Monte-Carlo integration analogous to
Table I.

Redundant Gate Copy Gate Unique Gate Sum
σ = 0.01

Πsyn 0.000 bits 6.644 bits 5.525 bits 6.497 bits
Πunq,1 0.000 bits 0.000 bits 1.119 bits 0.147 bits
Πunq,2 0.000 bits 0.000 bits −5.525 bits 0.147 bits
Πred 6.644 bits 6.644 bits 5.525 bits 0.353 bits

I(T : S1, S2) 6.644 bits 13.288 bits 6.644 bits 7.144 bits
σ = 0.1

Πsyn 0.000 bits 3.322 bits 2.388 bits 3.186 bits
Πunq,1 0.000 bits 0.000 bits 0.942 bits 0.143 bits
Πunq,2 0.000 bits 0.000 bits −2.388 bits 0.143 bits
Πred 3.329 bits 3.329 bits 2.388 bits 0.353 bits

I(T : S1, S2) 3.329 bits 6.658 bits 3.329 bits 3.826 bits
σ = 0.001

Πsyn 0.000 bits 9.966 bits 8.822 bits 9.819 bits
Πunq,1 0.000 bits 0.000 bits 1.143 bits 0.147 bits
Πunq,2 0.000 bits 0.000 bits −8.822 bits 0.147 bits
Πred 9.965 bits 9.966 bits 8.822 bits 0.353 bits

I(T : S1, S2) 9.966 bits 19.932 bits 9.966 bits 10.466 bits

Appendix G: Estimation steps

In Section IID we estimate log[fα(t, si)] for α =
∨

j aj
containing an OR statement by

̂log[f iα(t, sk)] =

̂
log

∑
j

f iaj
(t, sk)


≈ log

∑
j

e
̂log[fi

aj
]



KSG
= −ψ(N) + ψ(k) + log

∑
j

viaj ,ϵ


where the viaj ,ϵ each represent the volume terms in the
estimation at the i−th point. To the end of arriving at
a form which is treatable by considerations akin to the
KSG estimator, we have intermediately used an expan-
sion of the sort z = exp[log[z]], z ≥ 0. Then, since by
usage of the maximum norm viaj ,T,ϵ = viaj ,ϵ · viT,ϵ, we find

Îsx∩ = ⟨ ̂log[f iα,T (t, sk)]⟩i − ⟨ ̂log[f iα(t, sk)]⟩i − ⟨ ̂log[f iT (t, sk)]⟩i
= ψ(k) + ψ(N)− ⟨ψ(nα(i))⟩i − ⟨ψ(nT (i))⟩i

Appendix H: Implementation details

Having introduced an estimator for continuous Isx∩ in
Sections II C and III C, this section explains how this
estimator can be realized in an efficient algorithm.

In the estimation procedure, the most computation-
ally expensive step is the search for k nearest neighbors
for each sample point in the joint space and counting
of neighbours within a ball in the marginal spaces. For
the maximum norm, efficient O(n log n) algorithms can
be found for both low- (kd-trees) and high-dimensional
(ball tree) data. Furthermore, approximate procedures
exist for scaling beyond what the exact algorithms can
compute.
In order to determine the distance ϵ to the kth near-

est neighbor from a given disjunction statement, we pro-
ceed as follows: First, we obtain the k nearest neighbors
in each of the sets of variables of the corresponding an-
tichain. Then we do a merging procedure: To get the
k closest points to any of the source variables, we suc-
cessively take points with the smallest distance in any
one of the subspaces until we have a total of k points.
While the kd-tree algorithm could be adapted to directly
find neighbours according to this custom distance func-
tion, using the merging-procedure we achieve the same
runtime complexity and can use highly optimized exist-
ing kd-tree implementations. The pseudocode for this
function is given in Algorithm 3.
Following an analogous merging procedure, the num-

ber of points within a radius of ϵ from the disjunction
statement in the source space (see Algorithm 4) as well
as the number of points within a radius ϵ from the query
point in the target space (see Algorithm 5) is determined.
From these results, the redundancy can readily be com-
puted according to Algorithm 6.
We implemented the described algorithm as a python

package using SciPy [53] for efficient nearest-neighbor
searches. The package is publicly available under

gitlab.gwdg.de/wibral/continuouspidestimator

https://gitlab.gwdg.de/wibral/continuouspidestimator
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TABLE VI. PID results for skewed sum example The
results have been computed using a Monte-Carlo integration
analogous to Table I.

Skewed Sum
Πsyn 9.884 bits

Πunq,1 0.214 bits
Πunq,2 0.082 bits
Πred 0.355 bits

I(T : S1, S2) 10.535 bits

Appendix I: Role of the parameter k

The characteristics of the estimates produced by the
procedure laid out in Section IIC are influenced by the
choice of the parameter k, which determines which neigh-
bors are used to compute the distance ϵ in the joint space
by requiring that the k−1 closest neighbors are skipped.
For larger k, these distances ϵ will thus be larger as well,
which has two important ramifications: Firstly, since the
considered ϵ-neighborhoods are larger and contain more
points, fluctuations in the positions of individual points
have less impact on the estimation leading to less vari-
ance. Secondly, however, since the estimator relies on the
assumption that the probability density is approximately
constant over the ϵ-neighborhood, larger k for a fixed N
may make the estimator unable to resolve high-frequency
fluctuations which occur in the data. This may lead to a
higher bias in the estimation for a given number of sam-

ples N . The estimation results do not depend on the
parameter k alone but only on the fraction k/N (as vis-
ible in Figure 14 and Figure 15), as this determines the
average distance ϵ.

Appendix J: Skewed sum

We define the covariance matrix for the skewed sum as

Σ =

2.2 + σ2 1.2 1
1.2 1.2 0
1 0 1

 .

The results of the continuous PID analysis are summa-
rized in table Table VI

Appendix K: A Glimpse into Mixed systems of
discrete and continuous variables

Although systems including both discrete and contin-
uous variables do at this point in time exceed the capa-
bilities of the estimator developed in this work, we still
intend to share some theoretical aspects about potential
future endeavours. Thus, we propose the following treat-
ment of systems, which are composed of both discrete and
continuous variables. Assuming a mixture of discrete and
continuous sources Sj and an either discrete of continu-
ous target T , we suggest utilizing the same exponential
expansion as in the purely continuous case Definition 3.
This leads to the approximation

̂log[f iα] ≈ log


|Id|+1∑
k=1

(−1)k+1


∑

m1<m2<...<mk−1∈Id
m1 ̸=m2 ̸=...̸=mk−1 ̸=j∈J

e

̂

log

fk−1⋃
q=1

amq∪aj

(
k−1⋃
q=1

xaq∪xaj

)

 .

Here then we have a number of the possible combina-

tions of statements
k−1⋃
q=1

amq
∪ aj containing at least one

discrete variable (denoted by aj). The statements con-

sisting solely of continuous variables will be treated in-
dividually by KSG-like estimation while the others will
be handled by isolating the discrete variables and con-
ditioning on those, using the identity H({Sk}k∈K) −
H({Sm}m∈K\L) = H({Sl}l∈L|{Sn}n∈K\L) for some in-
dex sets L ⊂ K. This leads to
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Algorithm 3: compute epsilons

Data: Source samples (Sj)j ; Target samples (Tj)j ;
Antichain α ∈ P(P({1, . . . , n}))

Result: Distances from the disjunction to the k-th
nearest neighbor in the joint source-target
space.

// For each sample point indexed by j
for j ∈ (1, . . . , nsamples) do

// Find the k nearest neighbors in each

of the spaces Sa × T for all sets a
in the antichain α

for a ∈ α do
kNNST

aj ←
find k nearest neighbors(Saj × Tj)

end
// Merge points from all separate nearest

neighbor searches in the individual

spaces to get the k unique samples

with the smallest distances to their

respective query point j

kNN mergedST
j ← merge(

{
kNNST

aj | |a ∈ α
}
)

// Get search radius ϵ as the kth

smallest distance

ϵj ← dist to kth(kNN mergedST
j )

end
return (ϵj)j

Algorithm 4: compute nα
Data: Source samples (Sj)j ; Antichain

α ∈ P(P({1, . . . , n})); Distances from the
disjunction to the k-th nearest neighbor in
the joint source-target space (ϵj)j

Result: Number of points in the source disjunction
space with distance less than ϵj from the
disjunction

for j ∈ (1, . . . , nsamples) do
// Get nearest neighbors in ball of

radius ϵ in the individual conjunction

spaces

for a ∈ α do
NNS

aj ←
find points within distance(Saj , ϵj)

end
// Count unique samples within any of the

epsilon balls for the individual

conjunction spaces

nαj ← count unique(
{
NNS

aj | |a ∈ α
}
)

end
return (nαj)j

Algorithm 5: compute nT
Data: Target samples (Tj)j ; Antichain

α ∈ P(P({1, . . . , n})); Distances from the
disjunction to the k-th nearest neighbor in
the joint source-target space (ϵj)j

Result: Number of points in the target space with
distance less than ϵj from the disjunction

for j ∈ (1, . . . , nsamples) do
// Get nearest neighbors in ball of

radius ϵ in the target space

NNT
j ← find points within distance(Tj , ϵj)

// Count samples within the epsilon ball

for the target space

nTj ← count(NNT
j )

end
return (nTj)j

Algorithm 6: compute redundancy

Data: Source samples (Sj)j ; Target samples (Tj)j ;
Antichain α ∈ P(P({1, . . . , n}))

Result: Distances from the disjunction to the k-th
nearest neighbor in the joint source-target
space.

// Compute distances in joint space

ϵ← compute epsilons((Sj)j , (Tj)j)
// Compute number of neighbors in source

space

nα ← compute nα((Sj)j , ϵ)
// Compute number of neighbors in target

space

nT ← compute nα((Tj)j , ϵ)
// Compute estimate for redundancy

I∩ ← Ψ(k) + Ψ(nsamples)− ⟨Ψ(nα[j]) + Ψ(nT [j])⟩j
return I∩;
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FIG. 14. On the demo gates, the estimation con-
verges to the Monte-Carlo results with increasing
number of samples N for all fixed parameters k
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FIG. 15. The result of the estimation does not de-
pend on the value of the parameter k alone but
only on its fraction k/N .

log

f ik−1⋃
q=1

amq∪aj

 = log

f i
c|d(

k−1⋃
q=1

amq∪aj)

+ log

f i
disc(

k−1⋃
q=1

amq∪aj)



=⇒
̂

log

f ik−1⋃
q=1

amq∪aj

 =

̂

log

f i
c|d(

k−1⋃
q=1

amq∪aj)

+

̂

log

f i
disc(

k−1⋃
q=1

amq∪aj)


KSG
= ψ(k)− ψ(N)− log

vi
ϵ,c|d(

k−1⋃
q=1

amq∪aj)

+

̂

log

f i
disc(

k−1⋃
q=1

amq∪aj)

 ,

where we have omitted the explicit dependent variables
k−1⋃
q=1

xaq ∪ xaj for simplicity. Further, c|d(a) denotes the

continuous random variables in a conditioned on the dis-
crete variables in a. Here we have treated the first es-

timated logarithm via KSG estimation, as here the only
dependent variables are purely continuous, while the lat-
ter term can be evaluated via a standard plugin estimator
as it is a purely discrete entropy. Thus the estimators for
α and (α, T ) become

̂log[f iα] = ψ(k)− ψ(N)−
〈
log

|Id|+1∑
k=1

(−1)k+1

 ∑
m1<m2<...<mk−1∈Id
m1 ̸=m2 ̸=...̸=mk−1 ̸=j∈J

vi

ϵ,c|d(
k−1⋃
q=1

amq∪aj)

f̂ i

disc(
k−1⋃
q=1

amq∪aj)



〉

i︸ ︷︷ ︸
=:Gα

and



30

̂log[f iα,T ] = ψ(k)− ψ(N)−
〈
log

|Id|+1∑
k=1

(−1)k+1

 ∑
m1<m2<...<mk−1∈Id
m1 ̸=m2 ̸=... ̸=mk−1 ̸=j∈J

vi

ϵ,c|d(
k−1⋃
q=1

amq∪aj , T )

f̂ i

disc(
k−1⋃
q=1

amq∪aj , T )



〉

i︸ ︷︷ ︸
=:Gα,T

.

Using the joint space for initial determination of ϵi as the distance to (x1, . . . xn)
i-th k-th nearest neighbor, the

final estimator reads

Îsx∩ =

{
ψ(kc|d(α,T )) + ψ(N)− ⟨ψ(nc|d(α)(i))⟩i − ⟨ψ(nT (i))⟩i −∆volα,T T cont.

ψ(kc|d(α,T )) + ψ(N)− ⟨ψ(nc|d(α)(i))⟩i T disc.
,

with ∆volα,T = Gα,T −Gα−⟨log[viϵ,T ]⟩i the resulting dif-

ferential volume term, c|d(α) being the continuous state-
ment, each conditioned on the discrete variables.

Example 2. Considering α = X1 ∧X2 ∨X3 ∨X4 ∧X5,
with X1, X2 and X4 discrete, X3, X5 continuous, we find

c|d(α) = X3 ∨X5|X4. Note X1 ∨X2 vanished from the
continuous statement as they have already been treated
inside Gα,T and Gα.
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ris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020.
doi:10.1038/s41592-019-0686-2.

https://doi.org/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138
https://link.aps.org/doi/10.1103/PhysRevE.69.066138
https://doi.org/10.1017/CBO9780511790423
https://doi.org/10.1017/CBO9780511790423
https://doi.org/10.1103/PhysRevE.87.012130
https://link.aps.org/doi/10.1103/PhysRevE.87.012130
https://link.aps.org/doi/10.1103/PhysRevE.87.012130
https://doi.org/10.1109/TIT.2018.2807481
https://www.esi-group.com/products/system-simulation
https://www.esi-group.com/products/system-simulation
https://doi.org/10.1038/s41592-019-0686-2

