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Stochastic magnetic tunnel junctions (sMTJ) using low-barrier nanomagnets have shown promise
as fast, energy-efficient, and scalable building blocks for probabilistic computing. Despite recent
experimental and theoretical progress, sMTJs exhibiting the ideal characteristics necessary for prob-
abilistic bits (p-bit) are still lacking. Ideally, the sMTJs should have (a) voltage bias independence
preventing read disturbance (b) uniform randomness in the magnetization angle between the free
layers, and (c) fast fluctuations without requiring external magnetic fields while being robust to mag-
netic field perturbations. Here, we propose a new design satisfying all of these requirements, using
double-free-layer sMTJs with synthetic antiferromagnets (SAF). We evaluate the proposed sMTJ
design with experimentally benchmarked spin-circuit models accounting for transport physics, cou-
pled with the stochastic Landau-Lifshitz-Gilbert equation for magnetization dynamics. We find that
the use of low-barrier SAF layers reduces dipolar coupling, achieving uncorrelated fluctuations at
zero-magnetic field surviving up to diameters exceeding (D ≈ 100 nm) if the nanomagnets can be
made thin enough (≈ 1-2 nm). The double-free-layer structure retains bias-independence and the
circular nature of the nanomagnets provides near-uniform randomness with fast fluctuations. Com-
bining our full sMTJ model with advanced transistor models, we estimate the energy to generate
a random bit as ≈ 3.6 fJ, with fluctuation rates of ≈ 3.3 GHz per p-bit. Our results will guide
the experimental development of superior stochastic magnetic tunnel junctions for large-scale and
energy-efficient probabilistic computation for problems relevant to machine learning and artificial
intelligence.

I. INTRODUCTION

The slowing down of Moore’s law has been driving the
development of domain-specific computers in different
fields. One approach is to build physics-inspired com-
puters exploiting the natural physics of materials and
devices for efficiency. A prominent emerging example of
“let physics do the computing” [1, 2] is based on prob-
abilistic or p-bits [3–5]. The central idea in this field is
to build programmable networks of p-bits, or p-circuits,
whose natural dynamical evolution leads to the solution
of a problem of interest. The mathematical formulation
of p-bits is related to the widely used Monte Carlo or
Markov Chain Monte Carlo algorithms [6], casting a wide
net for their application domains from random number
generation [7, 8], machine learning [9, 10], combinatorial
optimization [4, 11] to a subset of quantum simulation
problems [12–15].

Since their appearance as building blocks for prob-

abilistic computation, there have been many proposals
and implementations of p-bits in different material sys-
tems using a variety of stochastic phenomena [16–20]. A
particularly promising possibility is the use of magnetic
devices in the superparamagnetic regime which have re-
cently been shown to produce ≈ GHz fluctuations at
room temperature [21–24] using in-plane magnetic tun-
nel junctions (MTJ). Combined with the proven man-
ufacturability of magnetic memory that has integrated
billions of deterministic MTJs with standard comple-
mentary metal-oxide semiconductor (CMOS) technology
[25, 26], the development of highly integrated and fast
probabilistic computers is highly probable.
Despite successful recent demonstrations of fast super-

paramagnetism in in-plane MTJs, following earlier work
on perpendicular MTJs [27, 28], ideal stochastic MTJs
for circuit-level p-bits have been difficult to realize. In
particular, a three transistor/1 MTJ design (3T/1MTJ)
[29] has been explored as a compact and energy-efficient
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implementation of a p-bit in discrete [4, 9, 14, 30] and in-
tegrated implementations [31]. Various other possibilities
beyond the 3T/1MTJ p-bit design have been considered,
including a spin-orbit-torque design (proposed in Ref. [3])
and later experimentally demonstrated in Ref. [32] and
a comparator based design [14, 30], with possibly dif-
ferent sMTJ requirements. Moreover, entirely different
approaches to create p-bits exploiting the stochasticity
observed in the switching characteristics of determinis-
tic MTJs have been proposed [33–37]. In this paper,
we focus on the necessary design requirements for the
3T/1MTJ p-bit. This design makes minimal modifi-
cations to the currently integrated 1T/1MTJ circuit in
the commercialized spin-transfer torque magnetoresistive
random access memory (STT-MRAM). The 3T/1MTJ
p-bit does not explicitly require spin-torque control on
magnetization characteristics, and its variation tolerance
is greatly improved since it uses low-barrier nanomag-
nets.

There are several requirements for scalable sMTJ-
based p-bits in this 3T/1MTJ p-bit circuit. First, the
sMTJ design should be magnetically soft, fluctuating
without requiring external magnetic fields but electron-
ically hard so that even at large bias currents the free
layer magnetization is not pinned. Second, the sMTJs
should exhibit reasonable tunneling magnetoresistance
(TMR), with uniform randomness in resistance values
[38]. Third, the sMTJ should exhibit fast fluctuations. A
previous design [39] using double-free-layers nearly sat-
isfies all these requirements by providing fast zero-field
fluctuations and bias-independence (FIG. 1). The sim-
plicity of the double-free-layer structure is appealing as
opposed to asymmetrically designed typical MTJs with
fixed and free layers. However, achieving zero-bias and
zero-field fluctuations comes at a price: for the thermal
noise to overcome the dipolar coupling between free lay-
ers the magnetic layers need to be scaled down to ≈ 20
nm or below, imposing fabrication challenges.

In this paper, we propose an improvement to this ear-
lier design by considering double-free-layer sMTJs using
synthetic antiferromagnetic (SAF) free layers (FIG. 1).
The key intuition is to use the magnetic neutrality of
SAF layers. Because the SAF layers possess antiparal-
lel nanomagnets in close proximity, the net dipolar field
emanating from the SAF layers is minimal unlike sin-
gle nanomagnets whose dipolar fields favor an antiparal-
lel configuration of the two free layers, as in the case of
double-free-layer sMTJs [39].

In the rest of this paper, we evaluate this proposed
design by the language of spin-circuits, pioneered by
Brataas, Bauer and Kelly [40]. Further, we employ
coupled stochastic Landau-Lifshitz-Gilbert (sLLG) equa-
tions to take magnetization dynamics into account. We
apply a microscopic approach to calculate the dipolar
tensors between magnets and provide an approximate
autocorrelation theory with analytical results. We then
simulate the proposed sMTJ in conjunction with ad-
vanced transistor nodes in SPICE, estimating energy and

FIG. 1. Stochastic MTJ (sMTJ) designs (a) This work:
Double-SAF-free sMTJ where the low barrier free layers are
replaced by magnetically inert SAF layers. (b) Double-free-
layer sMTJ which no fixed layer but two low-barrier free lay-
ers. (c) Standard sMTJ with a fixed layer and a low-barrier
free layer: commonly used in literature since it minimally
modifies existing stable MTJs with a fixed layer to have a
low-barrier free layer.

delays to produce random bits.

II. SPIN-CIRCUIT AND STOCHASTIC LLG
ANALYSIS OF THE PROPOSED SMTJ

Our approach in this paper is to start from the pow-
erful spin-circuit approach, pioneered by Brataas, Bauer
and Kelly [40], that has later been converted into ex-
plicit circuit models that can be modularly simulated
in SPICE-like simulators [41–43]. These two approaches
have been extensively compared and found to be exactly
equivalent [43, 44]. The advantage of writing down ex-
plicit SPICE-compatible 4 × 4 conductances is the abil-
ity to combine spin the transport physics obtained from
the spin-circuit approach with time-dependent stochastic
LLG solvers and advanced CMOS transistor models, all
in standard circuit simulators. The sLLG solvers are rig-
orously benchmarked against probabilistic models such
as the Fokker-Planck Equation applied to nanomagnet
dynamics [45, 46]. This approach allows us to consider
each interface separately and it can be used to provide
a detailed understanding of spin currents as they travel
through the 4-magnet system. Technically, the use of
spin-circuit theory is strictly applicable to metallic in-
terfaces [40] and modeling tunneling junctions requires a
different treatment such as multiplying the conductance
matrices [47] to get a tunneling magnetoresistance ratio
of 2P 2/(1−P 2) rather than the giant magnetoresistance
ratio of P 2/(1 − P 2) where P is the interface polariza-
tion. Nevertheless, to keep our model fine-grained and
microscopic at each interface, we use the metallic spin-
circuit models (as in Ref. [48]) to study the proposed
double-SAF-free MTJs as a series of ferromagnet-normal
metal interfaces. To match experiments, we choose the
interface polarizations (P ) appropriately, corresponding
to experimental TMR values (shown in Table I).
FIG. 2 shows how we decompose the full double-SAF-
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FIG. 2. Modular spin-circuit model for the double-SAF-free layer structure (a) Close-up look on the spin-circuit
transport model for a single SAF stack-layer: represented with two ferromagnet-normal metal (F|N) interfaces and a normal
metal (NM) block. (b) The full model coupling magnetizaton dynamics (sLLG) with spin-transport modules. The transport
module produces spin-polarized currents input to sLLGs. For the two interfaces of the same magnet, we add the spin-currents
incident to the magnets vectorially (e.g., I⃗s2 = I⃗s21 + I⃗s22) as an input to the sLLGs, since we are in the monodomain
approximation for the magnets. LLGs in turn produce instantaneous magnetization vectors back to the interface modules. In
addition, the two interfaces of the same magnet receive the same magnetization vector from their corresponding sLLG’s as
shown. Dipolar, exchange and thermal noise are considered by the sLLG model. Details of the 4×4 conductances and the
sLLG module can be found in Ref.’s [43–45, 49]. Numerical parameters are summarized in Table I.

free layers into corresponding interfaces. F|N denotes a
ferromagnet-normal metal interface, NM denotes a nor-
mal, non-magnetic metal. All spin-circuits are described
by 4-component currents (3 for spin and 1 for charge)
related to 4×4 conductance matrices (FIG. 2a). For
the spacer in the SAF layers we explicitly consider the
NM layers (modeling the Ruthenium) but we do not
include an explicit NM layer in between the free lay-
ers for the MgO. In our full model (FIG. 2) coupling
transport and magnetism, we parameterize the F|N inter-
faces with instantaneous magnetization vectors obtained
from the sLLG equations. We assume that the transport
timescales are much faster than magnetization dynamics,
hence we assume a lumped circuit model for each magne-
tization vector [45]. The details of the 4×4 conductance
models and the sLLG solver we used in this paper have
been explained in detail in Ref.’s [43–45].

III. EQUILIBRIUM (ZERO-BIAS) BEHAVIOR

In this section, we study the zero-bias behavior of the
double-SAF free layer sMTJs under the influence of ther-

mal noise, dipolar and interlayer exchange interaction
fields. We first describe our magnetostatics model we
use in this paper. We consider 4 identical magnets with
the same volume, interacting with dipolar and exchange
interactions. The magnets are assumed to be perfectly
circular and zero-barrier (kBT ≪ 1) with easy-plane
anisotropy in the (x − y) plane. Later in Section V, we
carefully analyze the validity of the easy-plane assump-
tion. The equilibrium energy description for this system
is [50]:

E = −2πM2
sVol.

(
n=4∑
i=1

m̂T
i Niim̂i

+

n=4∑
i,j
i̸=j

m̂T
i (Jij +Dij)m̂j

)
(1)

where Ms represents the saturation magnetization, Vol.
is the volume of each magnet, m̂i are the 3-dimensional
magnetization vectors on the unit sphere, and Nii, and
Dij, Jij , are the demagnetizations, dipolar and exchange
tensors, respectively. We consider exchange interactions
only between SAF-pairs (1,2) and (3,4), while dipolar in-
teractions are considered between all

(
4
2

)
= 6 pairs of
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FIG. 3. Dipolar coupling in the double-SAF-free layer stucture (a) Dipolar coupling coefficients Dij between magnets
(i, j) are shown at varying diameters (1 nm thickness), numerically calculated based on the approach described in Ref. [39].
The effective dipolar (Deff) coupling (Eq. 3) is also shown. D12 and D34 are combined with exchange tensor (Jij) for SAF
couples in the numerical model but not shown in the plot. (b) Average angle between layers (2,3), ⟨cos θ⟩, are calculated
numerically (markers) and analytically (solid and dashed lines), based on (Eq. 4), as a function of varying magnet diameters
and thicknesses. Numerical calculations for the sLLG model uses a 1 ps time-step and averages are taken over 5 µs.

magnets. Throughout this paper, we assume Nzz = −1
for all magnets with all other components of the demag-
netization tensor being zero. Note that this is a simpli-
fying assumption and corrections to the demagnetization
tensor [51] should be considered depending on magnet
geometry for more detailed models.

In Eq. 1, we assume an isotropic and constant ex-
change model where the exchange tensor Jij is param-
eterized by a single number, i.e., Jij = J0δij . We renor-
malize the exchange coupling Jex, typically measured in
units of J/m2 [52], such that J0 = Jex/(2πM

2
s t), where

t is the thickness of the magnets (assumed equal). In
this form, Jij has the same units with dipolar tensors
and can be directly compared. Throughout, we use a
|Jex| value of 5 mJ/m2 for our numerical models, a rea-
sonable choice considering experimental measurements
[52, 53]. To calculate dipolar tensors, Dij, we follow the
approach described in Ref. [39]. The basic idea is to ob-
tain position-dependent dipolar tensors Dij(x, y, z) start-
ing from the Poisson equation for the magnetic potential,
Ψ, ∇2Ψ = ∇ · m̂ to calculate dipolar tensors, and then
to average these tensors over the volume of the target
magnet to obtain single Dij values. Until the averag-
ing step, this approach is exact. Due to the cylindrical
symmetries present, the only non-zero components are
Dxx = Dyy = −Dzz/2 where (x, y) are the easy-plane
and z is the out-of-plane component. In the rest of the
paper, we drop the coordinate subscripts and use D for
Dxx = Dyy.
To study the equilibrium behavior of this system, we

perform numerical and theoretical analysis. For our nu-
merical results, after calculating all 6 D’s for each pair of
magnets and assuming a fixed interlayer exchange cou-
pling between the SAF layers, we employ our full model
in FIG. 2 with 4 coupled sLLGs to obtain the average
cos θ between layers 2 and 3, which determines the output
signal. The dipolar coefficients and the numerical average

cos θ are shown in FIG. 3a and FIG. 3b, respectively. We
study the average angle as a function of changing mag-
net thickness, t. Using a revised model without the use of
SAF free layers but two FM|NM layers in series, we also
closely reproduce the results in Ref. [39]. Ideally, ⟨cos θ⟩
should be zero corresponding to freely fluctuating and
truly independent stochastic free layers. As shown by the
triangle gray plots in FIG. 3b, for the double-free sMTJ
(without the use of SAFs), reaching such an independent
regime requires extremely thin magnets at small diam-
eters (< 20 nm). The proposed MTJ with double SAF
layers on the other hand shows near independence even
at large diameters for a range of ferromagnet thicknesses,
indicating the magnetic inertness of the SAF layers.
Next, we provide an approximate theoretical analysis

for the results shown in FIG. 3. To proceed, we make sim-
plifying assumptions. First, unlike our numerical model
that assumes a finite exchange coupling, for our theo-
retical calculation we assume an effectively infinite ex-
change coupling between layers (1,2) and (3,4) that share
a Ruthenium spacer between them. We note that this is
simply a mathematical infinity, in practice, using experi-
mentally achievable exchange coupling coefficients justify
this assumption. This allows us to simplify the energy
equation by substituting mx,y,z

1 with −mx,y,z
2 and mx,y,z

4

with −mx,y,z
3 and removing constant terms from the en-

ergy as they do not change the Boltzmann probabilities:

E = −2πM2
sVol.

(
D23m̂

T
2 m̂3 −D13m̂

T
2 m̂3

−D24m̂
T
2 m̂3 +D14m̂

T
2 m̂3

)
(2)

allowing us to obtain an “effective” dipolar tensor be-
tween layers 2 and 3:

E = −2πM2
sVol.

[
(Deff)m̂

T
2 m̂3

]
(3)

where Deff=D23−D13−D24+D14. FIG. 3a shows Deff for
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FIG. 4. Autocorrelation of magnetizations (a) shows numerical and theoretical autocorrelation for the in-plane component
of layers (2,3). (b) shows the numerical and theoretical autocorrelation of cos θ. Numerical results are obtained for a diameter
of 50 nm and a thickness, t = 1 nm. Numerical results are obtained over 5 µs using a timestep of 1 ps in sLLG simulations.
(c) Time-dependent magnetizations of all layers from the full numerical model. Histogram for the cosine of the angle between
layers (2,3) cos θ demonstrating the necessary near uniform randomness between -1 and +1 for p-bit operation.

magnets with t=1 nm at varying diameters, Φ. We ob-
serve an approximate Deff ∝ Φ−2 dependence, with a
decreasing effective dipolar coupling at larger diameters.
These results indicate how the double SAF layer reduces
the effective coupling between layers 2 and 3. Next,
we use the theoretical calculation presented in Ref. [39]
where the equilibrium ⟨cos θ⟩ is related to the dipo-
lar coupling coefficient D between two magnets. The
idea behind this calculation is to assume a large demag-
netization field and expand the Boltzmann probability,
ρ = 1/Z exp(−E/kBT ) around the out-of-plane compo-
nent since mz ≈ 0 for analytical approximation. Note
that for this analysis, we do not set mz to 0, but keep
the first order terms. With this approach, one obtains
(in mks units):

⟨cos θ2,3⟩ ≈
I1 (deff)

I0 (deff)
(4)

where In represents the modified Bessel function of the
first kind and deff = hdDeff where hd = µ0M

2
sVol./kBT ,

µ0 being permeability. Using the Deff values obtained
at different diameters with Eq. 4, we obtain excellent
agreement between the theory and our numerical model
that does not assume an infinite exchange coupling be-
tween layers (1,2) and (3,4) as shown in FIG. 3b. We
note that the reason for the roughly constant and small
cos(θ) ≈ 0− 0.1 at small thickness (t=1 nm) can be ex-
plained by the cancellation of the approximate inverse
square law dependence of the dipolar coefficient on the
diameter and the square law dependence of the dipolar
energy (in hd) on the diameter. The results shown in
FIG. 3 indicate that to overcome the dipolar energy be-
tween layers (2,3), using small volume and small thick-
ness magnets are still favorable as in double-free layer
sMTJs [39]. Making CoFeB-type magnets too thin (be-
low < 2 nm) may induce perpendicular anisotropy in cir-
cular magnets [54], possibly necessitating further exper-
imental optimization or different material systems.

IV. AUTOCORRELATION THEORY

Next, we provide an autocorrelation theory for the rel-
ative angle between magnetic layers (2,3) and compare
it against our full numerical model (FIG. 2). We are
interested in computing the quantity:

C[cos θ(τ)] =
1

T

∫ T

0

cos θ(t+ τ) cos θ(t)dt (5)

where cos θ represents the angle between layers (2,3). To
simplify our analysis, to first order, we will assume that
the magnets always remain in the (x, y) plane and assume
mz(t) ≈ 0, making cos θ(t) = mx

2(t)m
x
3(t)+my

2(t)m
3
y(t).

Technically the (x, y) components of magnets (2,3) are al-
ways correlated as established in FIG. 3, however, at low
thicknesses, they are only weakly correlated. As such,
for our theoretical analysis we make another simplify-
ing assumption and assume that the magnets are inde-
pendent of each other. This essentially means that we
only need an analytical approximation for the autocorre-
lation of the mx/my components. Following the analysis
shown in Refs. [55, 56], we proceed as follows. In cir-
cular nanomagnets, the mechanism of random fluctua-
tions arise from the random precession of the in-plane
magnetization vector around the stochastically fluctu-
ating demagnetization field which is a function of the
out-of-plane component. The autocorrelation of the
in-plane magnetization vector mx(t) can be written as
C[mx(τ)] = ⟨mx(τ)mx(0)⟩ which reads:

∞∫
−∞

cos(αmz) exp(−βm2
z) dmz

/ ∞∫
−∞

exp(−βm2
z) dmz (6)

where α, β are defined to be γHdτ and HdMsVol./2kBT ,
respectively, while Hd is the out-of-plane demagnetizaton
field and the γ is the gyromagnetic ratio,. The integral
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FIG. 5. Out-of-plane magnetizations of easy-plane
SAFs and single nanomagnets (a) The out-of-plane com-
ponents of magnets m2

z are evaluated as a function of diam-
eter analytically (Eq. 12 - Eq. 15) and numerically for single
and SAF easy-plane magnets at zero bias (equilibrium), along
with their probability distributions obtained from the Boltz-
mann law (ρ ∝ exp(−E)). (b) ⟨m2

z⟩ is shown numerically at
different voltage biases from −0.5 V to 0.5 V for a range of
diameters from 10 nm to 200 nm with free layer thickness of 1
nm. Each point is averaged over 250 ns simulations with 1 ps
transient time step using the .trannoise function in HSPICE.

limits are extended to infinity to obtain a closed-form
expression with minimal errors, due to the exponentially
low probability of large mz components. This expression
evaluates to,

C[mx(τ)] = exp

(
−α2

2β

)
(7)

In the present context, however, we are interested in the
cosine of the angle between layers 2 and 3. As such,
the autocorrelation expression (assuming both magnets
remain in their (x, y) plane) becomes:

+∞∫∫
−∞

cos[α(mz1 −mz2)] exp[−β(m2
z1 +m2

z2)]dmz

+∞∫∫
−∞

exp[−β(m2
z1 +m2

z2)]dmz

(8)

evaluating to,

C[cos(θ(τ))] = exp

(
−α2

β

)
(9)

We observe an interesting difference between the previ-
ously obtained Eq. 7 [56] and the new Eq. 9. It turns out
that the autocorrelation of the angle between the two
independent magnets decays to exp(−1) of its value

√
2

times as fast as the autocorrelation of a single magnet.
We corroborate this theoretical calculation with our full

TABLE I. Simulation parameters

Parameter Value

CoFeB/MgO/CoFeB RA-product 9 Ω µm2 [57]

CoFeB/Ru/CoFeB RA-product 5.2× 10−3 Ω µm2 [58] [59]

corresponding G0 (1/RA-product)/Area ℧
Temperature 300 K

Ms 8× 105 A/m [39]

Damping Coefficient (α) 0.01 [60]

Real part of gmix, (G0a) a=1 [44, 61]

Imaginary part of gmix, (G0b) b=0 [44]

λsf of Ru Layer 14 nm [62]

P0 of CoFeB/MgO/CoFeB, TMR 0.73, TMR=115% [39]

P0 of CoFeB/Ru/CoFeB, GMR 0.077, GMR=0.6% [63]

Diameters of sMTJs, used in p-bit {10, . . . , 200} nm, 25 nm

Aspect ratio of Free layer 1

Thickness of Free layer, Ru Layer 1-2 nm, 0.8 nm [54]

Exchange Field (Jex) −5× 10−3 J/m2 [52]

CMOS Models 14 nm HP-FinFET [64]

numerical model without any independence or in-plane
rotation assumptions. We observe that at moderate di-
ameters of 50 nm’s with thicknesses of 1 nm’s, the SAF
layers behave as if they are nearly independent of one
another. The theoretically obtained

√
2 factor is also ob-

served from our numerical simulations in FIG. 4. Faster
decays of the autocorrelation on cos θ bode well for prob-
abilistic computing applications since they directly influ-
ence the speed with which new and independent random
numbers can be obtained from sMTJ-based p-bits.

V. OUT-OF-PLANE MAGNETIZATION
BEHAVIOR

Our numerical results have been obtained using the
simulation parameters shown in Table I without making
any assumptions on the out-of-plane magnetization com-
ponents. Our analytical results however both for Eq. 4
and for Eq. 9 rely on the out-of-plane magnetization com-
ponents to be small. Here, we analyze the validity of this
assumption both theoretically and numerically. First,
consider a single easy-plane circular nanomagnet whose
energy reads:

E = HDMsVol.(m
2
z)/2 (10)

where HD is the demagnetization field. From the Boltz-
mann law, we can compute the variance of the out-of-
plane component ⟨m2

z⟩ = ⟨cos2(θ)⟩ from:

⟨m2
z⟩ =

1

Z

ϕ=2π∫
ϕ=0

θ=π∫
θ=0

dθdϕ cos2(θ) sin(θ) exp(−E/kBT )

(11)
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FIG. 6. Bias dependence of sMTJs (a) Shows the time-averaged cos θ as a function of the bias voltage across the MTJs
for the double-SAF-free sMTJ. Left-hand side shows corresponding resistance fluctuations at chosen diameters of 10-50 nm
and bias points of 1 mV - 0.5 V. The fluctuation rates are inversely proportional to device diameter, Φ, as predicted by Eq. 9.
Device exhibits independence between the free layers, ⟨cos θ⟩ ≈ 0, with bias-independence. (b) Shows the time-averaged cos θ
as a function of the bias voltage for a double-free sMTJ, modeled as two F|N interfaces in series. Right-hand side shows
corresponding resistance fluctuations at chosen diameters of 10-50 nm and bias points of 1 mV - 0.5 V. These results are
in quantitative agreement with the phenomenological model introduced in Ref. [39]. Unlike that model however we do not
legislate antisymmetric currents to the magnets at the interfaces. This behavior comes out of our fine-grained interface model.
Moreover, due to the uncompensated dipolar coupling the double-free sMTJ does not exhibit nearly independent fluctuations
between its layers, ⟨cos θ⟩ ≠ 0. All magnets assumed to have a thickness of of 1 nm. Each data point is averaged over 1 µs
with a time step of 1 ps using the .trannoise function in HSPICE.

which evaluates to

⟨m2
z⟩ =

1

hd
− exp (−hd/2)√

πhd/2 erf
(√

hd/2
) (IMA) (12)

where hd = HDMsVol./kBT . FIG. 5 compares Eq. 12
with numerical solutions of LLG as a function of magnet
diameter with excellent agreement. Interestingly, in the
case of SAFs where two nanomagnets are exchange cou-
pled, the fluctuations (m2

z) for out of plane components
of each magnet are reduced by a factor of 2. This can be
understood analytically by considering the energy of two
exchanged coupled easy-plane nanomagnets:

E = Vol.

HDMs

∑
i∈{1,2}

cos2 θi
2

+ 2Jex(m̂1 · m̂2)

 (13)

where cos θi is the out-of-plane component of each easy-
plane magnet. For the experimentally relevant exchange
coupling values Jex ≈ −5 erg/cm2, we find that the ex-
change interaction dominates the demagnetization and
thermal fields. In such a scenario, we are justified to
assume m̂1 · m̂2 ≈ −1 in the general energy equation
(Eq. 13) using the parity transformation (θ2 → π − θ1
and ϕ1 → π + ϕ2), leading to:

E =

(
hd

2
− jex +

hd

2
cos 2θ1

)
(14)

where jex is reduced to a dimensionless value similar to
hd. Following a similar prescription as in Eq. 11 to com-
pute the average out-of-plane fluctuations for SAF mag-

nets, we get:

⟨m2
z⟩ =

1

2hd
− exp (−hd)√

πhd erf
(√

hd

) (SAF) (15)

Comparing Eq. 15 with Eq. 12, we observe that the
strong SAF coupling effectively doubles the demagnetiza-
tion field and reduces fluctuations. FIG. 5 shows that the
numerical behavior is well-explained by Eq. 15. In our
present context the use of SAFs as free layers compared
to single easy-plane magnets [39] favorably decreases out-
of-plane fluctuations, making our assumptions more re-
liable. Below < 20 nm’s however, one must be careful
with these assumptions since large out-of-plane fluctua-
tions may be observed. Finally, FIG. 5b shows the fluc-
tuations under voltage bias conditions whose details are
discussed in the next section. We observe that due to
the large demagnetization fields present along with the
antisymmetric magnetic configuration do not lead to in-
stabilities (at least in the parameter ranges of interest we
consider in this paper), exhibiting bias-independence on
the out-of-plane fluctuations. These results are in line
with earlier work where easy-plane magnets exhibit large
pinning fields [55].

VI. NON-EQUILIBRIUM (BIAS-DEPENDENT)
BEHAVIOR

We now investigate the bias-dependence of our pro-
posed device, using the full numerical model of FIG. 2.
Considering self-consistent finite-temperature magneti-
zation, dipolar, exchange fields and spin-circuits for
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transport, we numerically measure cos θ at differ-
ent bias voltages as shown in FIG. 6a-b. We choose
experimentally-informed conductance and polarization
parameters for the MTJ and Ruthenium interfaces,
shown in Table I. Even though we treat the SAFs layer
as spin-valves composed of F|N interfaces, due to their
relatively small interface polarizations, the main resis-
tance modulation arises between layers 2 and 3 that are
separated by the MgO layer.

To test our fine-grained spin-circuit model that splits
the system into individual F|N interfaces, we first design
a spin-valve structure with two F|N interfaces to study
the double-free-layer sMTJ proposed in Ref. [39]. With-
out legislating any assumptions on the spin-currents,
we observe the same bias independence using our spin-
circuit model with quantitatively similar results to those
in Ref. [39] which used a phenomenological model with
explicitly defined antisymmetric spin-currents (FIG. 6b).
This indicates that our fine-grained interface model cap-
tures detailed physics accurately. We observe that the
double-free layer sMTJ shows significant correlations,
measured by cos θ for diameters above 50 nm’s, where
the magnets are completely pinned in antiparallel direc-
tions.

Next, we use our full numerical model to investigate
the bias-dependence of cos θ for the double SAF-layer
structure (FIG. 6a). We observe that for a large range of
diameters cos θ shows weak bias dependence and is close
to zero. In addition, the double-SAF-free sMTJ should
be robust to external magnetic fields, due to the mag-
netic insensitivity of the SAF layers [54]. We believe that
our new proposed design is the most promising stochastic
MTJ to date since it satisfies the three important con-
ditions of (a) bias-independence (FIG. 6a), (b) uniform
randomness in the relative magnetization angle (FIG. 4c)
and (c) fast fluctuations without requiring external mag-
netic fields (FIG. 4b). Our design improves upon earlier
ones where the dipolar interaction between two closely
separated nanomagnets was either ignored entirely [29]
or required single-digit magnet diameters [39] with chal-
lenging fabrication requirements. Given the recent ex-
perimental success in observing nanosecond fluctuations
in nanomagnets [21, 22, 24], the prospects for experi-
mentally demonstrating the key features of double SAF
sMTJs seem promising. Indeed, a recent experiment em-
ploying SAF-based free and fixed layer stochastic MTJs
(albeit with different thicknesses) [23] exhibit some of the
key features of bias-independence and nanosecond fluc-
tuations.

VII. CMOS CIRCUIT BEHAVIOR AND
PERFORMANCE

One of the main advantages of the self-consistent spin-
circuit approach coupling microscopic transport physics
with magnet dynamics in standard circuit simulators is in
the ability to integrate them with existing CMOS mod-

-0.2 -0.1 0.1 0.2

-0.4

-0.2

0.2

0.4

VIN (V)

(V)
)b()a(

VOUTVIN

+VDD

14 nm
FinFET

VDRAIN

-VDD

Double-
SAF-free

sMTJ

+VDD

-VDD

FIG. 7. 3T/1MTJ p-bit circuit with double-SAF-free
MTJ (a) We use the full circuit model described in FIG. 2in
conjunction with a 14 nm HP-FinFET predictive model [65],
simulated in HSPICE. Magnet diameters are 25 nm and thick-
nesses are 1 nm. The diameter is chosen to match transistor
resistance. (b) The blue trace is observed by observing VOUT

as a function of VIN while VIN is linearly swept from −0.2 V
to 0.2 V in a 250 ns time-window. The red dots are obtained
as separate measurements where VIN is fixed to a given value
and a time-average of the output over 5 µs is taken with a 1
ps time step. The black line is a tanh fit to this average.

els. Here, we combine our full device model presented
in FIG. 2 with advanced predictive technology models
(PTM) for 14 nm FinFET transistors. FIG. 7 shows the
3T/1MTJ topology [29] to design a p-bit with a binary
output whose probability is controlled by an input volt-
age VIN. The behavioral equation for the ideal p-bit is
given by:

mi = sgn [tanh (Ii)− randU] (16)

For this equation to produce a smoothly varying output
probability and a mean of ⟨m⟩ = tanh(Ii), an essential
requirement is that the random noise denoted by randU
is uniform and continuous between -1 and +1 [38]. To see
how the 3T/1MTJ circuit maps to Eq. 16, we consider
the time-varying drain voltage in FIG. 7a given by:

VDRAIN

2VDD
=

1

2
− RMTJ(t)

RMTJ(t) +RDS (VIN)
(17)

where RDS(VIN) is the transistor resistance which varies
as a function of the input voltage. Eq. 17 indicates an-
other important design criterion for the 3T/1MTJ circuit
to function as a p-bit, namely, for VDRAIN to produce
equal 1 and -1 fluctuations at the output of the inverter,
the average MTJ resistance needs to be matched to the
transistor resistance when VIN is at the midpoint of the
sigmoid (in our circuit this is when VIN = 0). When bi-
ased in its midpoint (VDRAIN = 0), the main function of
the inverter is to amplify VDRAIN, which can be approx-
imated by a sign function, making the output:

VOUT

VDD
∼ sgn [RDS (VIN)−RMTJ(t)] (18)

providing a circuit mapping to the behavioral Eq. 16.
FIG. 7 shows numerical results for this full circuit indi-
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TABLE II. Performance measurements

Power dissipation on sMTJ branch 6.6 µW

Power dissipation on Inverter branch 5.3 µW

Flips per second 3.3 flips/ns

Energy per RNG 3.6 fJ

cating how the proposed double-SAF-free MTJ approx-
imately produces the tunable randomness necessary for
the p-bit. Next, using our SPICE model we estimate
several key metrics for p-bits. We delineate the power
dissipation of the circuit into two branches, the sMTJ
branch and the inverter branch. We obtain the power
dissipation on the MTJ branch by measuring the instan-
taneous current flow over a 5 µs time window and mul-
tiplying this with the supply voltage, where the product
is around 6.6 µW. Similarly, we measure the power dissi-
pation on the inverter branch to be around 5.3 µW. We
define a probabilistic flip based on the autocorrelation
values we reported in FIG. 4 where a new flip is defined
as the time when the autocorrelation roughly saturates.
We estimate such an independent flip time to be around
τf = 0.3 ns for the double-SAF-free MTJ. Using these
numbers the energy per random number generation is
estimated to be Ptotal × τf ≈ 3.6 fJ. These values are re-
ported in Table II and they are in rough agreement with
those estimated in Ref. [38]. The important point to note
however is that the proposed sMTJ does not make any
simplifying assumptions about dipolar fields, the neces-
sary uniform randomness in the MTJ or the speed of
fluctuations. The total flips per second in a system of
integrated p-bits, say with a million p-bits fluctuating in
sparsely connected networks could lead to a system flips
per second of N/τf = 3.3× 1015 which is four to five or-
ders of magnitude larger than what can be achieved with
present-day CMOS technology [11, 66].

VIII. CONCLUSION

We proposed and analyzed a new stochastic magnetic
tunnel junction with double synthetic-antiferromagnetic
free layers with a modular spin-circuit model. By
theoretical analysis and numerical calculations, we have
shown that the proposed stochastic MTJ can meet the
important requirements of bias independence, uniform
randomness and fast fluctuations without any external
magnetic fields. Similar to earlier double-free sMTJ
designs, the structure should be relatively easy to build.
The low-barrier nature of the constituent magnets
should provide robustness against variations. Circuit
analysis shows that the proposed device can function as
a fast and energy-efficient p-bit design which can aid
the development of large-scale probabilistic computers,
useful for a wide variety of applications relevant to
machine learning and Artificial Intelligence algorithms.

ACKNOWLEDGMENT

KS and KYC acknowledge the U.S. National Science
Foundation (NSF) support through CCF 2106260 and
SAMSUNG Global Research Outreach (GRO) grant.
Use was made of computational facilities purchased
with funds from the National Science Foundation (CNS-
1725797) and administered by the Center for Scientific
Computing (CSC). The CSC is supported by the Cal-
ifornia NanoSystems Institute and the Materials Re-
search Science and Engineering Center (MRSEC; NSF
DMR 2308708) at UC Santa Barbara. SF and SK ac-
knowledge JST-CREST JPMJCR19K3, JST-PRESTO
JPMJPR21B2, and JST-AdCORP JPMJKB2305.

[1] R. P. Feynman, Simulating physics with computers, Int.
J. Theor. Phys. 21, 467–488 (1982).

[2] W. Porod, Quantum-dot devices and quantum-dot cel-
lular automata, J. Franklin Inst. 334, 1147–1175 (1997).

[3] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta,
Stochastic p-bits for invertible logic, Phys. Rev. X 7,
031014 (2017).

[4] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Cam-
sari, H. Ohno, and S. Datta, Integer factorization using
stochastic magnetic tunnel junctions, Nature 573, 390–
393 (2019).

[5] S. Chowdhury, A. Grimaldi, N. A. Aadit, S. Niazi, M.
Mohseni, S. Kanai, H. Ohno, S. Fukami, L. Theogarajan,
G. Finocchio, S. Datta, and K. Y. Camsari, A full-stack
view of probabilistic computing with p-bits: Devices, ar-
chitectures, and algorithms, IEEE J. Explor. Solid-State
Comput. Devices Circuits 9, 1–11 (2023).

[6] D. Koller and N. Friedman, Probabilistic Graphical Mod-
els: Principles and Techniques, MIT Press (2009).

[7] D. Vodenicarevic, N. Locatelli, A. Mizrahi, J. S. Fried-
man, A. F. Vincent, M. Romera, A. Fukushima, K.
Yakushiji, H. Kubota, S. Yuasa, S. Tiwari, J. Grollier,
and D. Querlioz, Low-energy truly random number gen-
eration with superparamagnetic tunnel junctions for un-
conventional computing, Phys. Rev. Appl. 8, 054045
(2017).

[8] P. Talatchian, M. W. Daniels, A. Madhavan, M. R. Pu-
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