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Abstract

It is conjectured that all decomposable (that is, interior can be triangulated without adding
new vertices) polyhedra with vertices in convex position are infinitesimally rigid and only
recently has it been shown that this is indeed true under an additional assumption of codecom-
posability (that is, the interior of the difference between the convex hull and the polyhedron
itself can be triangulated without adding new vertices).

One major set of tools for studying infinitesimal rigidity happens to be the (negative)
Hessian MT of the discrete Hilbert-Einstein functional. Besides its theoretical importance, it
provides the necessary machinery to tackle the problem experimentally. To search for potential
counterexamples to the conjecture, one constructs an explicit family of so-called T -polyhedra,
all of which are weakly convex and decomposable, while being non-codecomposable. Since
infinitesimal rigidity is equivalent to a non-degenerate MT , one can let Mathematica search for
the eigenvalues of MT and gather experimental evidence that such a flexible, weakly convex
and decomposable T -polyhedron may not exist.
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1 Introduction

1.1 Structure of the paper

Already back in 1766, Leonhard Euler conjectured that “a closed spatial figure allows no changes,
as long as it is not ripped apart”. This lead to a lot of partial results, among them the well-
known theorem by Cauchy assuring us that convex “closed spatial figures” are indeed all rigid,
in a sense that will be made precise soon. However, the reason for why nobody could prove
Euler’s conjecture in its entirety turns out to be that it is simply wrong, as Connelly (1977) [2]
demonstrated by providing a counterexample and gifting the world its first flexible and non-self-
intersecting polyhedral surface in R3.

Since not all closed surfaces share rigidity, the natural question would be to seek minimal con-
ditions under which the latter holds. This lead to the following conjecture, lying at the heart of
this paper:

Main conjecture:
Every weakly convex and decomposable polyhedron is infinitesimally rigid.

Let us remark that the motivation for studying the conjecture stems from Izmestiev and Schlenker
(2010) [11]. There it was shown that the statement is indeed true under the additional assumption
of codecomposability and it was left as an open problem to determine whether this supplemen-
tary requirement is truly necessary. The conjecture was however also mentioned in Connelly and
Schlenker (2010) [4] as Question 1.1. and even before that, in a paper by Schlenker (2005) [14]
where it also originates from. The latter proves that the conjecture holds true for all polyhedra P
for which there exists an ellipsoid containing no vertices of P but intersecting all its edges. Before
continuing, we’ll first need some definitions.

Definition 1.1.1. Let S be a triangulation of a compact, orientable surface with V denoting the
set of vertices and E the set of edges. A polyhedral surface or polyhedron is the image of a map
S Ð→ R3 that is affine on each edge and non-degenerate on the faces.

Definition 1.1.2 (Izmestiev, 2011, [9]). Let P ⊂ R3 be a polyhedron with vertices V = {p1, ..., pn}.
An infinitesimal isometric deformation of P is a map q ∶ V → R3 such that

d

dt
∣
t=0

dist(pi + tqi, pj + tqj) = 0, (1.1)

for all edges pipj of P and where q(pi) =∶ qi.

Definition 1.1.3. A polyhedron P ⊂ R3 is said to be infinitesimally rigid if every infinitesimal
isometric deformation is trivial in first order, that is

qi =K(pi),

for K a Killing field of R3. If there is a non-trivial infinitesimal isometric deformation, the poly-
hedron is said to be infinitesimally flexible.

So, an infinitesimal deformation is just an assignment of vectors to each vertex of a polyhedron
P . If moving the vertices in the assigned directions induces a zero first-order variation of the
edge lengths, we speak of isometric infinitesimal deformation. Such a deformation is trivial if the
Euclidean distance between every pair of points is preserved, that is, the motion is just a rigid
motion in R3. Explicitly, one can verify that Equation (1.1) is equivalent to

⟨pi − pj , qi − qj⟩ = 0,

for all edges pipj of P .
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Definition 1.1.4. A polyhedron P ⊂ R3 is said to be weakly convex if every vertex v of P has a
supporting plane that intersects P at exactly v.

For instance, consider a cube having an additional vertex in the center of one of its faces. This
polyhedron is convex but not weakly convex. Such a vertex is called flat vertex. That weak
convexity is indeed a necessary condition for infinitesimal rigidity will be illustrated in Section 3.3
by an example.

It should also be pointed out that weak convexity does not imply convexity. Indeed, the
Schönhardt polyhedron, as shown in Figure 2.1, already provides us with a counterexample.

Definition 1.1.5. A triangulation of a polyhedron P is a partition of its interior into tetrahedra.
Such a polyhedron is said to be decomposable if its interior can be triangulated without adding
new vertices and codecomposable if the interior of its complement, that is, the difference between
the convex hull of P and P itself, can be triangulated without adding new vertices.

Let us remark that it is still an open problem to determine sufficient criteria a polyhedron has
to satisfy in order to be decomposable. Note that in the discrete geometry literature, one rather
encounters the word tetrahedralizable instead of decomposable.

The structure of the paper is now as follows. In order to explore the main conjecture, we would
like to explicitly test a certain family of weakly convex, decomposable and non-codecomposable
polyhedra for infinitesimal rigidity. This is done with the aid of the Schönhardt polyhedron, which
is known to be infinitesimally flexible as shown by Izmestiev (2011) [9] for instance and the simplest
non-decomposable polyhedron as demonstrated by Schönhardt (1928) [15]. Albeit not being able to
provide a counterexample to the main conjecture, we’ll suggest a recipe that enables one to decide
with a computer whether a given polyhedron is infinitesimally rigid or not. This is done throughout
Sections 2 and 3 with explicit computations given in the appendix.

In Section 3, an elementary proof of the fact that the π/6-twisted Schönhardt polyhedron is in-
finitesimally flexible is given. This is done by rederiving Wunderlich’s (1965) [17] formula (Equation
(3.1)) by purely geometric means. Lastly, we provide an example to illustrate why weak convexity
is a necessary condition for infinitesimal rigidity and conclude with an outlook summarizing all of
the experimental observations we collected so far. This leads to a new conjecture that all polyhedra
belonging to a certain family and satisfying the assumptions of the main conjecture must be in-
finitesimally rigid. Moreover, we collect experimental evidence that for any infinitesimally flexible
polyhedron in that family weak convexity and decomposability can not be achieved simultaneously.

1.2 Regge Calculus and the discretization of space

Before moving to the main part of the paper, we’ll take a small detour to motivate the techniques
that are used to study the infinitesimal rigidity of polyhedra.

In his paper “General relativity without coordinates” (1961) [13], Tullio Regge developed a way
to discretize N -dimensional Riemannian manifolds using a collection of N -dimensional building
blocks whose intrinsic geometry (their metric) is Euclidean (that is, flat). This is known as Regge
Calculus. Besides the original paper, see for example chapter 42 of Misner et al. (1973) [12].

Apart from being interesting for gravitational physics by providing the necessary tools to evalu-
ate the curvature of Lorentzian manifolds in an intrinsic and manageable way, it also constitutes one
of the cornerstones of the mathematical formulation of infinitesimal rigidity, considering that the N -
dimensional building blocks mentioned above are Euclidean simplices SN , as depicted in Figure 1.1.
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Figure 1.1: A few Euclidean simplices

Joined facet to facet, the initially smooth manifold transforms into a discrete association of
simplices. What is particularly well-suited for computations is that the characterization of any
such discrete manifold skeleton only requires the specification of the edge lengths of the simplices
and the gluing rules for connecting them. By choosing a collection of sufficiently small simplices,
any smooth manifold can be approximated to arbitrarily high precision with an assembly of that
kind. The fact that edge lengths suffice to specify the intrinsic geometry, has been exploited so far
to conclude that

curvature lies concentrated into simplices of dimension N − 2.

These simplices are the so-called bones (or, in the language of discrete geometry, the 1-skeleton)
of the structure and turn out to be of uttermost value in our context. Given a weakly convex
polyhedron P ⊂ R3 and a triangulation of its interior into S3 simplices such that every vertex of
every interior tetrahedron coincides with a vertex of the polyhedron, we will restrain ourselves from
moving the vertices of P (and therefore altering its boundary lengths) and modify the metric inside
of it. Before making all of this precise in the next subsection, this is roughly speaking done by
varying the lengths of the bones (which are just S1 simplices) of P , that is the collection of all
interior edges of the triangulation. The edge lengths of the polyhedron itself are not altered, only
the ones of the individual tetrahedra. As a result, this induces a total angle of ωi around each
such interior edge that potentially differs now from 2π. This is done by summing up the individual
angles of the now modified tetrahedra that constituted the interior triangulation while respecting
the initial gluing. Defining the total curvature of an interior edge i as κi = 2π −ωi, Regge Calculus
enables us to express it in terms of edge lengths. In order to extend this to infinitesimal rigidity, it
is necessary to borrow another function from physics.

1.3 The discrete Hilbert-Einstein functional

Following Izmestiev (2014) [10], we briefly recall the most important results surrounding the discrete
Hilbert-Einstein functional.

Definition 1.3.1. Let P ⊂ R3 be a polyhedron and T a triangulation of P with interior edges
e1, ..., en. Then DP,T is defined as the collection of n-tuples of the form l ∶= (l1, ..., ln) ∈ Rn

>0 which,
for every simplex σ of T , are such that replacing the lengths of the edges of σ which are interior
edges of the triangulation by the corresponding lj’s in l induces a non-degenerate simplex.

Definition 1.3.2. Let e′1, ..., e
′

r denote the boundary edges of P , l′j the length of the edge e′j and αj

the dihedral angle of P at e′j, for j ∈ {1, ..., r}. Moreover, for i ∈ {1, ..., n}, let ωi be the total angle
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around the interior edge ei and κi ∶= 2π − ωi the singular curvature along it.
In that case, the discrete Hilbert-Einstein functional is defined by

HE ∶ DP,T Ð→ R

l z→
n

∑
i=1

liκi +
r

∑
j=1

l′j(π − αj).

Note that this functional can be viewed as the discrete analog of twice the total scalar curvature
of P plus half of the total mean curvature of ∂P , hence its name. In combination with the 3-
dimensional Euclidean Schläfli formula (which is valid for each individual simplex),

∑
e

le dαe = 0,

where the sum runs over all edges of P , le denoting the length and αe the dihedral angle at each
edge, the first-order variation of the Hilbert-Einstein functional reduces to

dHE =
n

∑
i=1

κi dli.

Note that this expression takes in tangent vectors to DP,T as input, so that it expresses the first-
order variation of the interior edge lengths of a triangulation T of a polyhedron P with n interior

edges. Most importantly, the Hessian ( ∂2HE
∂li∂lj

) of HE is equal to the Jacobian of the map (li)ni=1 →
(κi)ni=1. Since differentiation eradicates the constant of 2π in the curvature term, one has

MT ∶= (
∂ωi

∂lj
) = −(∂

2HE

∂li∂lj
) .

Observe moreover that MT must be symmetric, given that it equals minus the Hessian of HE. This
matrix plays an important role in the theory, as illustrated by the following two results. Given
that symmetric matrices are especially well suited for computations, it also provides us with the
necessary tools to tackle the problem experimentally.

Theorem 1.3.3. Let P be a convex polyhedron and T a triangulation admitting m interior and k
flat vertices. The dimension of ker(MT ) is 3m + k and MT has m negative eigenvalues.

Proof. Izmestiev and Schlenker (2010) [11].

So, if the convex polyhedron in question can be triangulated without interior and flat vertices,
MT is positive definite. Another result that will be of great use to us is the following:

Lemma 1.3.4. Let P be a polyhedron admitting a triangulation T without interior vertices. Then
P is infinitesimally rigid if and only if MT is non-degenerate.

Proof. Bobenko and Izmestiev (2008) [1].

While Izmestiev and Schlenker proved Theorem 1.3.3 in [11], they obtained the following result
as a consequence:

Theorem 1.3.5. If a polyhedron is weakly convex, decomposable, and weakly codecomposable with
triangular faces then it must be infinitesimally rigid.

Here, weakly codecomposable denotes any polyhedron P which sits inside a convex polyhe-
dron Q such that the vertices of P form a subset of the vertices of Q and the complement of P
in Q (that is, the difference between Q and P ) can be triangulated without adding new vertices.
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Recall that codecomposability is stronger in the sense that the complement of the polyhedron with
respect to its convex hull can be triangulated without adding new vertices.

To see how Theorem 1.3.5 follows from Theorem 1.3.3, notice that for a weakly convex, decom-
posable, and weakly codecomposable polyhedron P , there must exist a convex polyhedron Pc such
that Pc shares all its vertices with P , and a triangulation T of P that is contained in a triangulation
Tc of Pc, where the vertices of Tc are precisely those of Pc. Now, it can be shown that MT must be
a principal minor of MT c. Thus, by Theorem 1.3.3, MT c is positive definite and therefore MT must
be as well. Since positive definite matrices are invertible, Lemma 1.3.4 yields the desired result.

2 An empirical approach

2.1 The flexible Schönhardt polyhedron

Depicted in Figure 2.1 is the so-called Schönhardt polyhedron, a polyhedron named after
his discoverer Erich Schöhnhardt and having the special property of being weakly convex, non-
decomposable and (infinitesimally) flexible as shown by Izmestiev (2011) [9]. In fact, it is the
simplest (in the sense of fewest vertices) flexible polyhedron which doesn’t admit a triangulation
without interior vertices as was verified by Schönhardt (1928) [15], making it the perfect footing
onto which to construct polyhedra violating the codecomposability assumption of Theorem 1.3.5.

Figure 2.1: The Schönhardt polyhedron

As a figurative example, consider a Schönhardt polyhedron with vertices

A = (1,0,1)

A′ = (cos π
6
, sin π

6
,−1)

B = (cos 2π
3
, sin 2π

3
,1)

B′ = (cos 5π
6
, sin 5π

6
,−1)

C = (cos 4π
3
, sin 4π

3
,1)

C ′ = (0,−1,−1),

in R3, having edges AA′, AC ′, BB′, BA′, CC ′ and CB′ and faces AA′C ′, AA′B, BA′B′, BB′C,
CB′C ′, CC ′A, ABC and A′B′C ′. Later on, we will have to remove faces ABC and A′B′C ′ from
the list since we’ll restrict ourselves to weakly convex polyhedra of genus one with triangular faces
(for the sake of simplicity) and admitting the Schönhardt polyhedron as their complement (in the
sense that their convex hull contains the Schönhardt polyhedron).

In practice, the following three major steps will be employed to discern infinitesimally rigid
polyhedra from infinitesimally flexible ones:
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1. Triangulate the polyhedron. This triangulation T will have n ∈ N interior edges.

2. Calculate all the dihedral angles between the faces of the simplices making up T and meeting
at an interior edge of the triangulation of P . The total angle around an interior edge will be
the sum of all such dihedral angles.

3. Determine the eigenvalues of MT (a n × n matrix). If zero is not an eigenvalue, P must be
infinitesimally rigid.

Let us remark that it is in practice not feasible to search for infinitesimal flexible polyhedra through
the linear system of equations (1.1) proposed in Definition 1.1.2. In fact, this method would require
one to stumble exactly upon the right polyhedron and would involve many issues coming from
rounding errors. However, when working with MT , this is not the case since it suffices to just
find two polyhedra having different signatures. This would then be enough to conclude that a
polyhedron with zero-determinant MT (which would then be infinitesimally flexible) must exist
between them, without having to construct it explicitly.

Since we will explicitly construct P (instead of studying random polyhedra), step one is not
something we will have to worry about much. What is of greater importance is to find a way to
determine the total angle around the interior edges ei, for i = 1, ..., n, of P as a function of the
edge lengths li of the ei (remember, the entries of MT are the derivatives of total angle around
each edge with respect to edge length). This is not as straightforward as it sounds at first since
expressing dihedral angles of tetrahedra as a function of edge lengths is sometimes quite cumbersome
and unnecessary complicates the process even further (for example, using trigonometry and Heron’s
formula requires calculating the areas of the faces, which we neither need nor want). A more efficient
method to obtain the desired dihedral angles turns out to be through Cayley-Menger determinants.

2.2 The Cayley-Menger determinant

A sextuple of the form S = (e12, e13, e14, e23, e24, e34) determines a non-degenerate Euclidean tetra-
hedron (that is, not all points of S are lying in the same plane) if and only if the following two
conditions are satisfied:

Figure 2.2: A tetrahedron

1. All face triplets of S are of the form F = (eij , eik, ejk), where F satisfies eij < eik + ejk,
eik < eij + ejk and ejk < eij + eik;
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2. The determinant D of the following matrix is strictly greater than 0:

CM ∶=

⎛
⎜⎜⎜⎜⎜
⎝

0 e212 e213 e214 1
e212 0 e223 e224 1
e213 e223 0 e234 1
e214 e224 e234 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟
⎠

The first condition simply states that the tetrahedron has four faces with non-negative edge
lengths satisfying the triangle inequality. The determinant D is the Cayley-Menger determinant.
Its geometric significance becomes apparent when considering how it relates to the volume V of the
tetrahedron, that is,

D = 288V 2.

See Fiedler (2011) [5] for a proof. In order to compute dihedral angles, it is necessary to look at a
specific minor of the matrix CM. Given any edge eij of the tetrahedron, the term e2ij appears twice
in CM, namely in the two rows and columns i and j. To obtain the desired cofactor, defined by

Dij ∶= (−1)k+l ⋅ (k, l) - minor of CM,

it suffices to localize the two terms e2ij in CM and delete row k and column l which does not contain

the term e2ij , evaluate the determinant and multiply by (−1)k+l. It is important that the 5th row
and column of CM does not take part in this excision process.

As an example, in order to obtain D12, delete row 3 and column 4 of CM (or, equivalently, row
4 and column 3), calculate the determinant of this smaller matrix and multiply it by minus one,
since 3 + 4 = 7.

Denoting the interior dihedral angle at the edge eij by αij , the following relationship between
D and αij can be derived:

αij = arccos
⎛
⎜
⎝

Dij√
2e2ijD +D2

ij

⎞
⎟
⎠

(2.1)

There are many ways to prove this, see for instance Fiedler (2011) [5].

3 Rotational flexibility

3.1 When, how and why does a certain polyhedron twist?

The first part of this section is devoted to the Schönhardt polyhedron. In particular, we would
like to understand which properties discern it from other, infinitesimally rigid, polyhedra. Let us
therefore start by recalling

Cauchy’s rigidity theorem: If two convex polyhedra in R3 have pairwise congruent faces, then
the two polyhedra must themselves be congruent.

What is meant by requiring congruence is that the two faces (or sets of points in general) can be
transformed into each other by means of isometries, that is, rigid motions in R3 which are com-
binations of translations, rotations and reflections, with no changes in size allowed. Even though
the untwisted and twisted states of the Schönhardt polyhedron have the same polyhedral net, they
form a pair of incongruent octahedra. Yes, two corresponding faces are congruent to each other
and two corresponding edges have the same convexity character (one concave edge in each side),
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however, the twisted and untwisted states of the Schönhardt polyhedron do not constitute convex
polyhedra and hence Cauchy’s theorem is not applicable to begin with.

Figure 3.1: Cardboard model of the Schönhardt polyhedron

As is shown in Figure 3.1, the untwisted Schönhardt polyhedron is not an upright triangular
prism, but a so-called concave, triangular gyroprism. Let us also remark that the two states of the
Schönhardt polyhedron can not be continuously deformed into each other. This means in particular
that if the model depicted in Figure 3.1 was made of a perfectly stiff material, one wouldn’t be able
to twist it from one state to the other without disassembling and rebuilding it. Now, if one were
to play around with it for a while, one would make the following experimental observation (EO):

EO1: There is no flex of the Schönhardt polyhedron that does not involve a twist.

Even though this seems to be a trivial statement, it is far from being a superfluous one.

Figure 3.2: Twisting the Schönhardt polyhedron

Still and all, this is not the end of the story. Observe how the motion of untwisting the
Schönhardt polyhedron induces a height augmentation ∆h of the structure and that every ver-
tex of the top triangle is prescribed to move on a cylinder (while the bottom basis is kept in a fixed
position). It is then natural to believe that this ∆h can be expressed in terms of some of the vital
polyhedral characteristics (such as height, angle and edge lengths of the two equilateral triangles).
Moreover, one can easily convince oneself, by trying to construct a model for instance, that the
polyhedral net must not be made out of a perfect rectangle but rather a parallelogram. We can
denote this little overhang by m, as depicted in Figure 3.3.
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Figure 3.3: The Schönhardt polyhedron’s net with top and bottom faces removed

As already remarked, we can keep the bottom basis fixed and imagine an infinitesimal flex.
During that process, all edge lengths are kept at constant lengths and so the vertex A (for instance)
of the top basis is not only constrained to move on a cylinder of radius r, but also on a circle of
radius c, (corresponding to the edge length EA). Figure 3.4 describes how the (infinitesimal) twist
is done:

Figure 3.4: Twisting the Schönhardt polyhedron

Proposition 3.1.1. With notation as in Figures 3.3 and 3.4, the difference of the square of the
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heights of the twisted and untwisted Schönhardt polyhedron denoted, respectively, by h and h′, is
given by

h2 − h′2 = 2r2 sin(ω
2
). (3.1)

Proof. Note that this formula already appears in Wunderlich (1965) [17], albeit derived by different
means. Here we present a purely geometric proof using Figure 3.4. Hollow points indicate that
they do not belong to the set of vertices of the Schönhardt polyhedron.
Now, since ABC is an equilateral triangle, all its angles must be equal to π/3. Thus, by construction,
the two segments of length r cos (π

6
) and r cos (ω

2
) are parallel and their difference is equal to m,

that is,

m = r cos(ω
2
) − r cos(π

6
) = r (cos(ω

2
) − cos(π

6
)) .

With the fact that cosine is bounded by 1 and 1 − cos (π
6
) = 1 −

√
3/2 ≈ 0.134, we find that the

overhang m must satisfy
0 ≤m ≤ 0.134 ⋅ r.

On the other hand, observe that

distance(P,P ′) = 2r sin(ω
2
).

Constructing the blue circle of radius h and center P gives birth, upon projecting the point
A′ onto the blue circle and connecting it to the line that passes through the points P and P ′,
to the right angled triangle PA′′P ′′. In order to find the distance between P and P ′′, we can
extend the line segment connecting O and P by a length of 2r sin (ω

2
). The trick consists in taking

2r sin (ω
2
) + r to be the diameter of a new circle. This circle (depicted in red) has of course radius

(2r sin (ω
2
) + r) /2 (which is the arithmetic mean of 2r sin (ω

2
) and r) and intersects the segment h

at the point S which, by the geometric properties of semi-circles, is at a distance of
√

2r2 sin (ω
2
)

from the point P . The length of
√

2r2 sin (ω
2
) corresponds to the geometric mean of 2r sin (ω

2
) and

r. The only thing that is left to do is to notice that

distance(P,P ′′) = distance(P, S)

and apply the Pythagorean theorem to the triangle PA′′P ′′

h2 = h′2 +
⎛
⎝

√
2r2 sin(ω

2
)
⎞
⎠

2

,

that is,

h2 − h′2 = 2r2 sin(ω
2
).

It remains to show that the Schönhardt polyhedron is indeed infinitesimally flexible.

Theorem 3.1.2. The π/6-twisted Schönhardt polyhedron is infinitesimally flexible.

Proof. By Definition 1.1.3, we know that a polyhedron is infinitesimally rigid if every isometric
infinitesimal deformation is trivial in first order, so that each motion corresponds to a rigid body
motion. If ν = {v1, ..., vn} denotes the set of vertices of the polyhedron P , any such motion can be
expressed through a map q ∶ ν → R3 satisfying

d

dt
∣
t=0

distance(vi + tq(vi), vj + tq(vj)) = 0 (3.2)
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for every edge vivj of P . This is equivalent to

⟨vi − vj , qi − qj⟩ = 0 (3.3)

because (3.2) forces 2(vi + tq(vi)qi + 2(vj + tq(vj)qj = 0 which, at t = 0, is just viqi + vjqj = 0.
So, in order to show infinitesimal flexibility, we need to find at least one infinitesimal isometric
deformation that is non-trivial in first order.

In the case of the Schönhardt polyhedron, ν = {A,B,C,D,E,F}. Assume furthermore that the
top basis is twisted by an angle of θ = π/6 with respect to the bottom basis. Here, θ denotes the
total rotation, that is, the angle ω (as depicted in Figure 3.4) and the smaller angle stemming from
the overhang m added together. The reason for choosing the particular value of π/6 is that this
corresponds to the unique choice of “twisting angle” θ that makes the polyhedron infinitesimally
flexible.

To see why, assume for simplicity that the side lengths of the equilateral triangles ABC and
DEF are equal to 1 and apply the Pythagorean theorem to the triangle AFE such to obtain

AF 2 = 12 +
⎛
⎜
⎝

¿
ÁÁÀ sin (π/3 + θ)

cos (π/6)
⎞
⎟
⎠

2

and

AF 2 = 1 + 2√
3
sin (π/3 + θ).

This function hits its maximum at θ = π/6 and therefore forces its derivative to have a zero at that
value. In other words, the edge length AF does not change (up to first order) with respect to θ, or,
by imagining that the twist is executed in a uniform and symmetric manner, AF is kept constant
with respect to time (similar holds of course for the other diagonals BD and CE). Of course, this
will then be used to study infinitesimal isometric deformations.

Let q(D) = q(E) = q(F ) = 0 or, equivalently, keep the bottom basis of the polyhedron at a
fixed position and apply a non-zero velocity vector (pointing to the outside of the polyhedron) to
the remaining vertices such that q(A) is orthogonal to the plane AEF and q(B) and q(C) are the
images of q(A) under rotation by an angle of 2π/3 and 4π/3 around the axis of the cylinder of
radius r. Clearly, the edge lengths of the triangle ABC are kept constant since no transformation
is applied to its vertices. Since q(A) is just an infinitesimal rotation around the edge EF of the
vertex A, the side lengths of the triangle EAF are preserved up to first order.

By symmetry, q(B) and q(C) have a similar effect on the vertices B and C and thus the side
lengths of the triangles DFB and CDE are also infinitesimally preserved. Taking our particular
choice of θ = π/6 into account, the planes AEF , BDF and CDE must pass through the center of the
triangle ABC and so q(A), q(B) and q(C) are tangent to the cylinder of radius r and axis passing
through the center of ABC. This on its own means, by taking the symmetry of the motion into
consideration, that ABC does indeed twist around the axis of the cylinder and therefore naturally
preserves its side lengths.

Hence, we have found a non-trivial infinitesimal isometric transformation (corresponding to a
twist) and can conclude that this Schönhardt polyhedron (of angle θ = π/6) is indeed infinitesimally
flexible.

Remember, our initial goal is to build a weakly convex and decomposable structure violating the
codecomposability hypothesis of the main conjecture and, in the (quite utopian) best-case scenario,
obtain an infinitesimally flexible polyhedron that will therefore disprove it.

Now, the absence of a suitable triangulation for the Schönhardt polyhedron is due to the fact
that any such tetrahedron would have vertices contained in the top and bottom basis of the latter
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and therefore edges that coincide with the diagonals of the Schönhardt polyhedron. However, the
Schönhardt polyhedron has no internal diagonals and so any simplex of a potential triangulation
could never lie entirely inside, thus the impossibility to decompose it.

Before investigating more complicated arrangements, it will prove useful to set up some termi-
nology.

3.2 Some weakly convex, non-codecomposable polyhedra

Let us start by remarking that whenever we mention notions of rigidity and flexibility in what
follows, we are referring to infinitesimal rigidity and infinitesimal flexibility.

Since we would like to examine the family of weakly convex, decomposable polyhedra having
the Schönhardt polyhedron as its complement, we set up some terminology and refer to them as
T -polyhedra, T standing for twist (even though most of them will be perfectly rigid), Every such
polyhedron can be partitioned into three regions:

Figure 3.5: A T -polyhedron

The cover at the top and bottom, the Schönhardt hull lying in the middle of the structure
and the exterior hull, a polygonal ring connected to the cover. Notice how vertices belonging
to the cover must necessarily be connected to vertices of the Schönhardt hull. Of course, nothing
prevents the exterior hull from being trivial (in the sense of nonexistent) such that all vertices of the
upper cover are immediately connected to the bottom cover. However, polyhedra of that kind will
not be of great use to us since they most certainly will never twist. To see why, observe the following:

EO2: Any potential infinitesimal twist of a T -polyhedron will preserve the geometry of the cover,
that is, the cover can only perform an infinitesimal rigid body motion.

In other words, the distance between vertices of the cover and vertices of the Schönhardt hull
to which they are connected remains constant during any potential twist. Thus, if the exterior hull
is trivial, the rigidity of the cover will prevent the polyhedron from twisting. One could speak of
induced rigidity stemming from the exterior hull and spreading onto the whole T -polyhedron. In
that spirit:

EO3: If the exterior hull is rigid (can not be twisted), then the T -polyhedron is itself rigid (can
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not be twisted either).

So, in the case of convex exterior hulls, it is not necessary to calculate any eigenvalues or Cayley-
Menger determinants since EO3 allows us to immediately conclude that the polyhedron is rigid,
which already rules out quite a few candidates. Alright, but there is even more.

With EO1 in mind, note how the rotational flexibility of the Schönhardt polyhedron forces the
exterior hull to not only have rotational flexibility as well, but to rotate in one and the same man-
ner. For instance, constructing a T -polyhedron with an exterior hull that rotates to the right and
a Schönhardt hull that twists to the left would produce a perfectly rigid structure even though the
individual “building pieces” are not. The same is (probably?) true for exterior hulls that would
potentially flex in some other way that does not involve a twist.

In the spirit of the discussion from the previous section, recall how the motion of untwisting the
Schönhardt polyhedron induces a height augmentation ∆h of the structure. This implies that any
exterior hull giving rise to a flexible T -polyhedron would have to vary in height by the same amount
∆h. Thus:

EO4: A flexible T -polyhedron is characterized by the height variation ∆h of the Schönhardt hull.
Any rotational motion of the exterior hull must not only be performed in the same direction as the
one of the Schönhardt hull, but vary in height by the same amount of ∆h.

Being equipped with EO4 and the contrapositive of EO3, a natural choice of T -polyhedra to
test would be the ones obtained by replacing the exterior hull by a second Schönhardt polyhedron.
After all, we can be assured that the exterior hull has the same “rotational properties” as the
Schönhardt hull and calibrating the edge lengths of the equilateral triangles constituting it with
respect to the height of the twisted exterior hull (such that to verify EO4), this would supply us
with a nice and flexible polyhedron. See Figure 3.6, with top and bottom cover removed for a better
visualization.

Figure 3.6: Nested Schönhardt polyhedra

Even though this might seem like we completed our task by finding a flexible T -polyhedron (and
the thought does indeed admit quite a compelling attraction), we are unfortunately anything but
done. The problem lies in the sole fact that our promising candidate is actually not a T -polyhedron!

To see why, remember that T -polyhedra are by construction assumed to be decomposable and that
calculating eigenvalues of MT requires us to find a triangulation of the polyhedron as a preliminary.
Since there must exist some simplex of any potential triangulation of the preceding polyhedron
that would have to share one of its faces with one of the triangular faces of the Schönhardt hull,
the remaining fourth vertex of the simplex would be forced to lie on a vertex of the exterior hull,
creating thereby forbidden intersections.
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Figure 3.7: Resulting non-decomposable polyhedron

Since the possibly easiest choice of exterior hull that permits rotations did not provide us with
the result we sought, it is time to look at more complicated (and less obvious) examples with the
help of a computer. This purely computational approach will however not be explored in depth
here (see Appendix).

3.3 Seemingly incompatible assumptions

It proves not to be particularly difficult to find counterexamples to variations of the main conjecture
obtained by dropping one of the assumptions. To see why weak convexity is necessary, consider
the polyhedron in Figure 3.8a. Since it is decomposable via a certain triangulation T , one can
calculate the eigenvalues of the associated matrix MT . Of course, such a computation is not needed
in this particular case since Cauchy’s Rigidity Theorem assures us that due to its convexity, the
polyhedron must be rigid. As a check, it can be computationally confirmed that MT does indeed
admit only positive eigenvalues.
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(a) A convex polyhedron (b) Pushing the red vertex inside

(c) View from above (d) Weak convexity is lost

Figure 3.8: A non weakly convex example

Things look quite different when investigating the polyhedron obtained by ”pushing” the top
vertex of the previous one towards the interior. Even though the triangulations of both polyhedra
admit the same number of simplices, the first one is (weakly) convex whereas the second one is
definitely not. In the latter case, we find that MT admits a negative real and zero as eigenvalues,
which implies, using Lemma 1.3.4, that the polyhedron is not infinitesimally rigid, hence infinites-
imally flexible. So, weak convexity is not an assumption that should be dropped from the main
conjecture.

Coming back to T -polyhedra, it is indeed the case that the triangulation issue we encountered
before can be resolved, and that by shifting the Schönhardt hull to an appropriate height (for a
given exterior hull, there are two possible choices for the height of the Schönhardt hull that would
make its ∆h be identical to the ∆h of the exterior hull).
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Figure 3.9: Resolving non-decomposability

Unfortunately, this process makes the polyhedron lose weak convexity and admittedly, it does
seem just like flexibility forces us to choose between decomposability or weak convexity, an exclusive
or. Thus, let us make one final (and quite reckless) experimental conjecture:

EC1: There is no T -polyhedron that twists, that is, any weakly convex, decomposable polyhedron
having the Schönhardt polyhedron as its complement is infinitesimally rigid.

3.4 Conclusions and outlook

As the reader may have remarked, the conducted Mathematica - calculations (although very inter-
esting) did not provide us with any additional information. Taking into account that the polyhedra
studied in this paper were rather small (none of them exceeded 18 vertices) and predictable, most
of the computations could have been replaced by a straightforward application of a certain theorem
and we were not able to develop the powerful formalism involving MT to its full potential. This
could of course be achieved by writing a better program that allows to test millions of more com-
plicated examples. Maybe such an expanded and more sophisticated search would lead towards the
almighty one that might disprove the main conjecture.

We hope that this note will be considered helpful then.

A Finding the eigenvalues of MT with Mathematica

In order to demonstrate how Mathematica extracts the eigenvalues of MT , it is best to study
a simple example. The first step consists in defining the combinatorics of the polyhedron. For
instance, an octahedron can be encoded as:

Q =

Polyhedron[{A1 = {1,0,0}, A2 = {-1,0,0}, A3 = {0,1,0},

A4 = {0,-1,0}, A5 = {0,0,1}, A6 = {0,0,-1}},

{{1,3,5},{2,5,4},{4,1,5},{6,1,3},

{3,6,2},{2,6,4},{4,6,1},{3,2,5}}]

Since this octahedron can be triangulated by means of four equivalent simplices only one dihedral
angle needs to be determined, the remaining ones being identical in this case. Thus, we choose the
vertices A2, A4, A5, and A6, and compute the resulting Cayley-Menger determinant:

CM1 =
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Det[{{0,EuclideanDistance[A2,A5]^2, EuclideanDistance[A5,A4]^2,

EuclideanDistance[A5,A6]^2,1},

{EuclideanDistance[A2,A5]^2, 0, EuclideanDistance[A2,A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, EuclideanDistance[A2,A4]^2,

0, EuclideanDistance[A4,A6]^2, 1},

{EuclideanDistance[A5,A6]^2, EuclideanDistance[A2,A6]^2,

EuclideanDistance[A4,A6]^2, 0,1},

{1,1,1,1,0}}]

Now, in order to use Equation (2.1), one starts by computing the minor of the matrix CM1 as-
sociated to the edge length of the simplex that corresponds to the interior edge length of the
triangulation. Concretely, this is the edge between vertices A5 and A6. Then,

De2 =

Det[{{0, EuclideanDistance[A5,A4]^2, EuclideanDistance[A5,A6]^2,1},

{EuclideanDistance[A2,A5]^2, EuclideanDistance[A2,A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, 0, EuclideanDistance[A4,A6]^2, 1},

{EuclideanDistance[A5,A6]^2, EuclideanDistance[A4,A6]^2, 0,1}}]

in combination with Equation (2.1) and

ArcCos[De2/(Sqrt[2 * EuclideanDistance[A5,A6]^2 * CM + (De2)^2])]

yields the expected dihedral angle of α0 ∶= π/2. This is the initial dihedral angle.
Of course, the total angle around the edge A5,A6 is the sum of the individual dihedral angles.

Since they are all equal, we obtain 4 ⋅π/2 = 2π, which is not much of a surprise. In particular, since
we haven’t deformed the metric inside of the polyhedron yet, everything is nice and Euclidean and
dihedral angles naturally sum up to 2π. A useful fact to remember.

Recalling that the entries of MT are the derivatives of the total angle around each edge with
respect to the corresponding edge length, we are faced with a complication since differentiating the
expression obtained by Equation (2.1) slows the calculations down considerably. Thus as a first
step and in order to facilitate computations, we’ll make the following approximation:

∂ωi

∂lj
≈ ωif − ωi0

ljf − lj0
.

In other words, the interior edge lengths of the triangulation receive a tiny length variation, say ϵ
(of course, ϵ > 0), which (eventually) induces a change in the total angle around the modified edge
and all the remaining interior edges as well. As remarked earlier, prior to the change of interior
edge lengths the geometry is perfectly Euclidean. Hence ωi0 = 2π, even without calculating any CM
determinants. In that vein, we can reformulate the approximated derivative as

ωif − ωi0

ljf − lj0
= ωif − 2π
lj0 + ϵ − lj0

= ωif − 2π
ϵ

,

which gains evermore on accuracy the smaller the ϵ is. The only quantity that is left to be determined
is now ωif . Coming back to our example, we can pick ϵ = 0.00000001 and repeat the process from
before while taking care that the edge length between vertices A5 and A6 has now gained on length
(all the other edge lengths are kept constant). The Cayley-Menger determinant in this case is

CM2 =

Det[{{0, EuclideanDistance[A2,A5]^2, EuclideanDistance[A5,A4]^2,
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(EuclideanDistance[A5,A6] + 0.00000001)^2, 1},

{EuclideanDistance[A2,A5]^2, 0, EuclideanDistance[A2, A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, EuclideanDistance[A2, A4]^2,

0, EuclideanDistance[A4,A6]^2, 1},

{(EuclideanDistance[A5,A6] + 0.00000001)^2,

EuclideanDistance[A2,A6]^2, EuclideanDistance[A4, A6]^2, 0, 1},

{1,1,1,1,0}}]

and with the appropriate minor

De3 =

Det[{{0, EuclideanDistance[A5,A4]^2,

(EuclideanDistance[A5,A6] + 0.00000001)^2,1},

{EuclideanDistance[A2,A5]^2, EuclideanDistance[A2,A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, 0, EuclideanDistance[A4,A6]^2, 1},

{(EuclideanDistance[A5,A6] + 0.00000001)^2, EuclideanDistance[A4,A6]^2,0,1}}]

one can use once again Equation (2.1) to obtain

ArcCos[De3/(Sqrt[2 * EuclideanDistance[A5, A6]^2 * CM2 + (De3)2])] = 1.5708.

With this, the matrix MT becomes

MT = (
ωif − 2π

ϵ
) = ( ωif − 2π

0.00000001
) = (4 ⋅ 1.5708 − 2π

0.00000001
) = (1469.28) .

It being a 1 × 1 matrix in this example, the eigenvalues are easily read off and we can conclude,
with the aid of Lemma 1.3.4, that the polyhedron is indeed infinitesimally rigid.

Since this particular polyhedron is convex, it is true that we could have just applied Cauchy’s
theorem to conclude the same, and that without having to do any calculations. However, the pur-
pose of this example was to give a simple outline of the method, nothing more and nothing less.
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