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We consider how to tell the time-ordering associated with measurement data from quantum experiments at
two times and any number of qubits. We define an arrow of time inference problem. We consider conditions on
the initial and final states that are symmetric or asymmetric under time reversal. We represent the spatiotemporal
measurement data via the pseudo density matrix space-time state. There is a forward process which is CPTP
and a reverse process which is obtained via a novel recovery map based on inverting unitary dilations. For
asymmetric conditions, the protocol determines whether the data is consistent with the unitary dilation recovery
map or the CPTP map. For symmetric conditions, the recovery map yields a valid CPTP map and the experiment
may have taken place in either direction. We also discuss adapting the approach to the Leifer-Spekkens or
Process matrix space-time states.

I. INTRODUCTION

The arrow of time refers to the apparent asymmetry be-
tween time moving forward and backward. One can often
tell if a movie is being played in the correct, forward, direc-
tion or not. Understanding the arrow of time and time-reversal
symmetry is of long-running foundational interest, whether in
cosmology, particle physics or thermodynamics [1–6].

The recent renewed interest in creating a unified spatiotem-
poral framework for quantum theory [7–15], wherein space
and time are treated on a more equal footing, raises new ques-
tions and challenges concerning the arrow of time. Temporal
correlations are being analyzed with tools originally created
for spatial correlations [16–20]. Leggett and Garg demon-
strated that quantum systems display a type of timelike corre-
lation unexplainable by macroscopic realism [7]. Techniques
have been developed to certify quantum temporal correlation
in quantum information theory [21–26]. Genuine temporal
signals have been utilized to infer quantum causal structure
[11, 27]. People also found that causal structures in quantum
theory can be superposed [8–10] with consequences for in-
formation communication capacity and thermodynamics [28–
32]. Of particular interest here is that in analyzing tempo-
ral correlations with tools for spatial correlations an important
new feature emerges: the potential time-asymmetry of tem-
poral correlations [2, 33–36]. This gives rise to the question
of how this time asymmetry manifests itself in the spatiotem-
poral data, and the closely related question of how one can
determine the temporal ordering given the data.

In this work, we accordingly give a protocol determining
the arrow of time given quantum spatiotemporal correlations.
We employ the so-called pseudo-density matrix (PDM) for-
malism [11]. The PDM is constructed operationally, from
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U /U †

FIG. 1. The task is to determine whether a forward process generated
the data or whether the time labels of the data have been switched.
Forward Process. A crucial initial condition is that the system S
and the environment E start in a product state ρS1 ⊗ ρE1 at time t1.
Undergoing a unitary interaction U , the joint system SE becomes in
general correlated at time t2. Ignoring E, the dynamics of the system
S are characterized by a CPTP map. Backward Process. At t2, the
system S with the environment E starts in a correlated state ρS2E2 .
The joint system SE then undergoes the backward evolution U†. In
this scenario, the dynamics of the system S is given by a recovery
map that is positive but not necessarily CPTP.

measurements at several locations and times. There is, as
depicted in Fig. 1, a forward process, which is a completely
positive and trace-preserving (CPTP) map of the system state.
Flipping the time label of the collected data gives rise to an
associated reverse process, a recovery map of independent in-
terest, that turns out to be equivalent to inverting the unitary
dilation of the forward channel. When the conditions on the
initial and final states are asymmetric, our protocol helps de-
termine whether the data aligns with the unitary dilation re-
covery map or the CPTP map. In symmetric conditions, the
recovery map produces a valid CPTP map, indicating that the
experiment could have taken place in either direction. The
main technical contribution is a method for extracting a ma-
trix representing the dynamics (the Choi Jamiolkowski oper-
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ator) given the spatio-temporal data, via a vectorisation of the
PDM.

II. ARROW OF TIME INFERENCE PROBLEM

We first briefly review the PDM formalism used for formu-
lating the problem. The PDM generalizes the density matrix
by assigning a Hilbert space to each instant in time. In par-
ticular, the two-time PDM R12 ∈ B(H1 ⊗H2), which aligns
with the arrow of time and will be used in this work, is defined
as [11, 27]

(forward)R12 =
1

4n

4n−1∑
i1,i2=0

⟨{σi1 , σi2}⟩σi1 ⊗ σi2 , (1)

where σiα ∈ {1, σx, σy, σz}⊗n is an n-qubit Pauli matrix at
time tα. σiα is extended to an observable associated with two
times, σi1 ⊗ σi2 that has expectation value ⟨{σi1 , σi2}⟩. One
measurement scheme for obtaining ⟨{σi1 , σi2}⟩ is provided in
Sec. IV. We refer to Eq. (1) as the forward PDM. The partial
trace of a PDM still gives a valid PDM [27]. The PDM is Her-
mitian with unit trace but may have negative eigenvalues. The
negative eigenvalue is a sufficient but not necessary condition
for quantum temporal correlation, as the density matrix at a
single time cannot explain it.

While negative eigenvalues signify quantum temporal cor-
relation, the arrow of time remains a separate question. Quan-
tum temporal correlation has a unique feature of being time
asymmetric compared to quantum spatial correlations, such
as quantum entanglement. The negative values in the PDM
can be used to quantify the strength of quantum temporal cor-
relation [11, 27], but they do not carry the information of the
time asymmetry. This motivates the investigation of the arrow
of time in the PDM formalism.

The arrow of time inference problem is formulated in the
PDM formalism as follows. Consider that an n-qubit system
undergoes a CPTP map E : B(H1) → B(H2). In order to
construct the 2-time PDM, an experimenter Alice implements
the observables σi1 at initial time t1 and σi2 at final time t2.
She then collects the data {⟨{σi1 , σi2}⟩} but forgets to record
the time order of events. This means that, due to the lack
of time information, that data could be used to construct two
possible PDMs, one is the forward PDM listed in Eq. (1) and
the other is in the following

(backward) R̄12 =
1

4n

4n−1∑
i1,i2=0

⟨{σi1 , σi2}⟩σi2 ⊗ σi1 . (2)

We refer this to as the backward PDM. Alice wants to know
which one is consistent with the flow of time.

Let us first understand the problem better before we
dive into it. The collected data {⟨{σi1 , σi2}⟩} includes
{⟨{σi1 ,1}⟩} and {⟨{1, σi2}⟩}, i.e., scenarios where Alice
does nothing at one time while measuring n-qubit Pauli matri-
ces at another time. Attaching those two pieces of data to the
corresponding Pauli matrices and summing up gives two valid

density matrices (up to a normalization constant). Denote the
two density matrices by

ρ :=
1

2n

4n−1∑
i1=0

⟨{σi1 ,1}⟩σi1 , γ :=
1

2n

4n−1∑
i2=0

⟨{1, σi2}⟩σi2 .

It can be directly verified that

ρ = Tr2 R12 = Tr1 R̄12,

γ = Tr1 R12 = Tr2 R̄12. (3)

To put it in words, the initial and final states in the two PDMs
are swapped. This reveals a useful relation between the two
PDMs

R̄12 = S R12 S
†, (4)

where S :=
∑2n−1

i,j=0 |ij⟩⟨ji| = 1
2n

∑
i σi ⊗ σi denotes the n-

qubit swap operator. The swap operator here can be treated
as a time reversal operation on a PDM. It is natural to call
the PDM R̄ a time-reversed version of R. Therefore, Alice’s
task then becomes to distinguish whether her data table corre-
sponds to the actual forwards process R or R̄. The idea of an
arrow of time is associated with there being examples where
R̄ is not realizable but R is, an asymmetry that will next be
associated with the boundary conditions.

III. BOUNDARY CONDITIONS FOR INFERRING ARROW

A common explanation for time asymmetry concerns the
conditions on the initial and final states, i.e., the boundary
conditions [2]. Next, we will discuss inferring the arrow of
time under both symmetric and asymmetric entropic bound-
ary conditions.

A. Asymmetric boundary conditions

The asymmetry of boundary conditions often refers to the
asymmetry of entropies. In quantum information processing
as illustrated in the forward direction of FIG. 1, the system of
interest S is often assumed to be initially in a product state
with the environment E at initial time t1, i.e., ρS1

⊗ρE1
. Sys-

tem S then interacts with the environment E via the unitary
U , arriving at a final state ρS2E2 := U(ρS1 ⊗ ρE1)U

†. Let
ρS2 := TrE ρS2E2 , ρE2 := TrSρS2E2 . The sum of the en-
tropies is non-decreasing during the process, i.e.,

S(ρS1
) + S(ρE1

) ≤ S(ρS2
) + S(ρE2

) (5)

where S(ρ) denotes the von Neumann entropy and the sub-
additivity of entropy [20] is used. The consequences of the
inequality can be employed to infer the arrow of time.

For the forward evolution as shown in Fig. 1, by ignoring
the environment E, the open dynamics of the system S can be
characterized by a CPTP map E , its action is given by

E(ρS1
) := TrE U(ρS1

⊗ ρE1
)U†. (6)
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Let M ∈ B(H1 ⊗ H2) denotes the Choi–Jamiołkowski (CJ)
matrix of E and it is defined as [37, 38]

M =

2n−1∑
i,j=0

|i⟩⟨j| ⊗ E(|j⟩⟨i|). (7)

The map E being CP is equivalent to its Choi matrix MT1

being positive semidefinite, where T1 denotes the transpose
on B(H1).

As for the backward evolution, the joint state ρS2E2
of the

system-environment is, in general, correlated. The unitary
evolution U† undoes the correlations between S and E. In this
scenario, the local open dynamics Ē of the system S is linear
but, in general, cannot be characterized by a CP map [39–42],
i.e., its Choi matrix M̄T1 is not positive semidefinite.

Based on the analysis above, the positivity of Choi matri-
ces MT1 and M̄T1 can be utilized to infer the arrow of time.
If M is positive semidefinite and M̄ has negative eigenval-
ues, then the PDM R is the one consistent with the arrow of
time. However, in situations when both M and M̄ are posi-
tive semidefinite, we need more information to determine the
arrow of time.

B. Symmetric boundary conditions

The entropic boundary conditions are symmetric when
S(ρS1

)+S(ρE1
) = S(ρS2

)+S(ρE2
). One particular scenario

is that the system undergoes a unitary evolution Ũ . The for-
ward dynamics of system S is then given by E with its action
E(ρS1

) := ŨρS1
Ũ†, where Ũ is part of U which acts on the

system alone. Naturally, the backward dynamics of S is given
by Ē with the action Ē(ρS2

) := Ũ†ρS2
Ũ . Therefore both the

forward and backward maps are CPTP. Moreover, there are
also interesting cases in quantum thermodynamics in which
the backward map is also CPTP [43]. Let τ denote the Gibbs
state. When the system S and the environment E are fully
thermalized, i,e., U(τS1

⊗ τE1
)U† = τS2

⊗ τE2
, the backward

local dynamics Ē on S, which is given by its action

Ē(τS2
) = TrE

(
U†τS2

⊗ τE2
U
)
,

is a CPTP map. We thus need more information to infer the
arrow of time, which we will discuss more on this point in
section V.

IV. EXTRACTING DYNAMICS FROM
SPATIOTEMPORAL CORRELATIONS

In this section, we show how to extract information about
processes from the forward and backward PDMs.

Let us first introduce a closed-form of the PDM consisting
of multiple qubits across two times [27]. In order to obtain a
closed-form for the forward PDM, the measurement scheme
for determining the expectation values ⟨{σi1 , σi2}⟩ is crucial.
If the measurement scheme for the observable σi at each time

is set to be the projectors that project the state onto the ±1
eigenspaces of σi, i.e.,{

Πi
+ =

1 + σi

2
,Πi

− =
1 − σi

2

}
,

the expectation value ⟨{σi1 , σi2}⟩ of the product of σi1 made
at t1 and σi2 made at t2 is read as

⟨{σi1 , σi2}⟩ =⟨{Πi1
+ ,Πi2

+}⟩+ ⟨{Πi1
− ,Πi2

−}⟩
−
(
⟨{Πi1

− ,Πi2
+}⟩+ ⟨{Πi1

+ ,Πi2
−}⟩

)
.

Given this measurement scheme {Πi
+,Π

i
−}, the corre-

sponding closed-form of a 2-time PDM is expressed by [27]

R =
1

2
((ρ⊗ 12)M +M (ρ⊗ 12)) . (8)

This closed-form expression has been taken as a definition
for a quantum spatiotemporal framework, called symmetric
bloom [44–46]. Similarly, given the coarse-grained measure-
ment scheme, we define that the closed form of the backward
PDM is given by

R̄ =
1

2

(
(γ ⊗ 11) M̄ + M̄ (γ ⊗ 11)

)
, (9)

where M̄ denotes the CJ matrix of the backward process Ē .
A key justification for defining Eq. (9) is the case of unitary
evolutions, as will be described around Eq. (14) below.

The map Ē , which is of independent interest, can be defined
as follows.

Definition 1 (Unitary dilation recovery map). Consider a
CPTP map E with input space S1 and output space S2 and
a unitary dilation acting on SE to give the output state ρS2E2

(we again denote the output ρS2
as γ) . For a given valid

unitary dilation U and initial state ρS1
⊗ ρE1

, we can define
a unique recovery map Ē as the map corresponding to a CJ
matrix M̄ which respects

TrE1E2 R̄S1E1S2E2 :=
1

2

(
(γ ⊗ 11) M̄ + M̄ (γ ⊗ 11)

)
,

(10)
where R̄S1E1S2E2

is the inverse PDM of the process, associ-
ated with taking ρS2E2

as the initial state and then applying
the inverse global evolution U† . We will show in Sec.IV B
how M̄ can be extracted from Eq.(10).

The map Ē defined by Eq. (10) is in the form of its CJ rep-
resentation M̄ , i.e.,

M̄ =

2n−1∑
i,j=0

|i⟩⟨j| ⊗ Ē(|j⟩⟨i|). (11)

Therefore, given the input state ρS1E1 and the unitary evolu-
tion U , the operation Ē can be solved from Eq. (10). More-
over, the output of the map Ē for any input ρ can be calculated
in the CJ representation via

Ē(ρ) = Tr1(ρ⊗ 12)M̄. (12)
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The operation Ē on the system S is linear but may not be a
CP map. However, we note that if the final state ρS2E2 is in a
product state, then M̄ must represent a CP map.

The justification for the closed form of the backward PDM
R̄ and the unitary dilation recovery map Ē , for the case of
unitary evolution E(·) = Ũ(·)Ũ†, is below. Recall the relation
between the forward and backward PDMs in Eq. (4), direct
calculation and some manipulation show that

R̄ =S RS† =
1

2

∑
i,j

E(|i⟩⟨j|)⊗ (ρ |j⟩⟨i|+ |j⟩⟨i| ρ)

=
1

2

∑
i,j

E(ρ |j⟩⟨i|+ |j⟩⟨i| ρ)⊗ |i⟩⟨j| , (13)

where the linearity of the forward map E is used. Given that
E(·) = Ũ(·)Ũ†, then E(ρ |i⟩⟨j|) = E(ρ)E(|i⟩⟨j|). The re-
versed PDM R̄ can be written as

R̄ =
1

2

∑
i,j

(E(ρ)E(|j⟩⟨i|) + E(|j⟩⟨i|)E(ρ))⊗ |i⟩⟨j|)

=
1

2

∑
i,j

(
E(ρ) |j⟩⟨i|+ |j⟩⟨i| E(ρ))⊗ E†(|i⟩⟨j|)

)
=

1

2
(M̄ E(ρ) + E(ρ) M̄) (14)

where E† is the Hilbert-Schmidt adjoint of E and
∑

ij |i⟩⟨j| ⊗
E(|j⟩⟨i|) = ∑

ij E†(|i⟩⟨j|)⊗|j⟩⟨i| is used in the second equal-
ity. Therefore, M̄ =

∑
i,j |i⟩⟨j| ⊗ Ũ†(|j⟩⟨i|)Ũ . In this case,

the Choi matrices MT1 , M̄T1 are positive.
From the closed-form expressions in Eqs. (8) and (9), one

can directly observe that the information about the processes,
namely the CJ matrices M and M̄ , is encoded in R and R̄,
respectively. Next, we demonstrate how to extract M and M̄
from the forward and backward PDMs, respectively.

A. Forward process

Let R : B(H1⊗H2) → B(H1⊗H2) be the linear operator,
defined by

Rρ(M) =
1

2
(ρM +M ρ). (15)

Then, the extraction of M can be treated as finding the inverse
map of Rρ. Note that, for the sake of simplicity in notation,
the identity operator 12 ∈ B(H2) is omitted. In the follow-
ing, one should tensor product identity operators in suitable
bounded operator spaces when there is a mismatch in dimen-
sionality.

As the standard treatment in quantum information, our
method for finding the inverse map utilizes the vectoriza-
tion of operators. Given a generic quantum operator O =∑

ij Oij |i⟩ ⟨j| ∈ B(H), its vectorization is expressed by

|O⟩⟩ =
∑
ij

Oij |i⟩ ⊗ |j⟩ ∈ H ⊗H.

The vectorization of Rρ(M)(= R) is then given by

|Rρ(M)⟩⟩ =1

2
|ρM +M ρ⟩⟩

=
1

2

(
ρ⊗ 1 + 1 ⊗ ρT

)
|M⟩⟩

=:A|M⟩⟩, (16)

where |BCD⟩⟩ = D⊗BT |C⟩⟩ with B,C,D ∈ B(H1 ⊗H2)
is used in the second equality [47] and 1 denotes the iden-
tity operator in B(H1 ⊗ H2). Therefore, the invertibility of
Rρ resorts to the invertibility of the operator A, and thus the
invertibility of ρ.

If ρ is full rank, then the operator A and the map Rρ are
invertible. The inverse map R−1

ρ can be defined via

|R−1
ρ (O)⟩⟩ = A−1|O⟩⟩, (17)

where O ∈ B(H1 ⊗H2). Therefore, one has

|R−1
ρ (R)⟩⟩ = A−1A|M⟩⟩ = |M⟩⟩. (18)

where Eq. (16) is used in the first equality. Thus, one has ob-
tained the full information of CJ matrix M of the forward pro-
cess. Alternatively, one can also employ the following Lemma
to get the analytic expression of M .

Lemma 1. Let A and B be operators whose spectra are con-
tained in the open right half-plane and the open left half-
plane, respectively. Then the solution of the operator equation

AX −XB = Y, (19)

can be expressed as [48]

X =

∫ ∞

0

e−tA Y etBdt. (20)

The closed-form of PDM is of the form of Eq.(19). Given that
ρ is full rank, according to Lemma 1, the expression for M is
given by

M = 2

∫ ∞

0

e−tρ Re−tρdt. (21)

If ρ is rank deficient, A is also rank deficient therefore Rρ

is not invertible. However, some information about the quan-
tum process M , i.e., the action of the process on the partic-
ular subspace, can still be obtained. For all |M⟩⟩ ∈ Ker(A),
Rρ(M) = A|M⟩⟩ = 0. In other words, the process infor-
mation in Ker(A) is inaccessible to us. Fortunately, one can
extract the process information on Supp(A) := Ker(A)⊥ via
the Moore-Penrose pseudoinverse

A‡ : Ran(A) → Supp(A). (22)

The operator A‡A =: P projects states onto Supp(A). Simi-
larly, one can define the pseudoinverse map R‡

ρ via

|R‡
ρ(O)⟩⟩ = A‡|O⟩⟩. (23)

The projection of |M⟩⟩ to Supp(A) can be recovered through

|R‡
ρ(R)⟩⟩ = A‡A|M⟩⟩ = P |M⟩⟩. (24)

The partially recovered map in general is not completely pos-
itive however it contains all the process information on the
support of ρ.



5

B. Backward process

The backward process M̄ can be extracted from R̄ simi-
larly. Following the same procedure in the previous subsec-
tion, we first vectorize the backward PDM R̄ (= Rγ(M̄)) in
Eq. (9) and obtain

|Rγ(M̄)⟩⟩ = 1

2

(
γ ⊗ 1 + 1 ⊗ γT

)
|M̄⟩⟩

=: Ā|M̄⟩⟩. (25)

If γ is full rank, there exists a well-defined inverse map R−1
γ

and thus M̄ can be extracted via

|R−1
γ (R̄)⟩⟩ = Ā−1|R̄⟩⟩ = |M̄⟩⟩.

If γ is rank deficient, then we can extract the process informa-
tion on the support of Ā via

|R‡
γ(R̄)⟩⟩ = Ā‡|R̄⟩⟩ = P̄ |M̄⟩⟩,

where P̄ = Ā‡Ā.
By utilizing Eq. (4), a relation between M and M̄ can be

found. Vectorizing both sides of Eq. (4), we have

Ā |M̄⟩⟩ =|SRS†⟩⟩ = S ⊗ S∗|R⟩⟩ = (S ⊗ S∗)A|M⟩⟩. (26)

V. PROTOCOL FOR INFERRING ARROW

Our method for answering Alice’s question of inferring the
arrow of time in the PDM formalism can be summarised as
the following theorem.

Theorem 1. If ρ and γ are full rank and the extracted M sat-
isfy MT1 ≥ 0 while M̄T1 ≥ 0 does not hold, then R is the
one consistent with the forwards time flow. For other situa-
tions, we may need more information to determine the time
direction.

Let us illustrate Theorem 1 by the following example. Con-
sider a quantum state ρA = (1 − a) |0⟩⟨0| + a |+⟩⟨+| (0 <
a < 1) that undergoes a decohering channel E described by
the set of Kraus operators {|0⟩⟨0| , |1⟩⟨1|}. The final state is
then given by γB = (1− a

2 ) |0⟩⟨0|+ a
2 |1⟩⟨1|. Both ρA and γB

are full rank, allowing for the extraction of complete informa-
tion of M and M̄ from both R and R̄, respectively. Recalling
Eq. (7) and Eq. (8), the CJ matrix M and the PDM R are given
by

M =

 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , R =
1

4

 4− 2a 0 a 0
0 0 0 a
a 0 0 0
0 a 0 2a

 .

Clearly, MT1 ≥ 0. Next, according to R̄ = S RS† and the
vectorization technique proposed above, we arrive at

R̄ =
1

4

 4− 2a a 0 0
a 0 0 0
0 0 0 a
0 0 a 2a

 , M̄ =


1 a

4−2a 0 0
a

4−2a 0 0 0

0 0 0 1
2

0 0 1
2 1

 .
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FIG. 2. A simple example of measurements whose statistics are suf-
ficient to determine the direction of time. In the actual process the
pure state |0⟩ undergoes a σx measurement at time A, an identity
channel, and finally a σz measurement at time B. If one is given a
table of the measured expectation values where the time order has
been flipped so that B is before A, one can tell this is not a realizable
process.

It is straightforward to see that M̄T1 ≥ 0 does not hold
since here M̄ = M̄T1 and M̄ has two negative eigenvalues
1−

√
2

2 , 1
2 −

√
a2+(2−a)2

2(2−a) . Therefore we conclude that the time
direction is A → B and R is the one consistent with the for-
wards time flow.

There are two scenarios where additional information is
needed to infer the direction of time. Firstly, in situations
when both ρ and γ are full rank and the two extracted Choi
matrices, MT1 ≥ 0 and M̄T1 ≥ 0, due to symmetric bound-
ary conditions, the corresponding PDM is consistent with ei-
ther direction. Secondly, in cases where either ρ or γ is rank
deficient, only partial information about the process can be ob-
tained from the corresponding PDM. Consequently, access to
MT1 or M̄T1 is restricted, making it challenging for us to infer
the arrow of time. The additional information that may be re-
quired to infer the arrow of time is the more fine-grained tem-
poral probabilities when the positivity of the extracted Choi
matrices cannot provide an answer. We illustrate this point
with the following example, where the boundary condition is
symmetric, and the quantum states ρ, γ are rank deficient.

Suppose a pure state |0⟩ undergoes the identity channel.
ρ, γ = |0⟩ ⟨0| and thus are rank deficient. To construct the
corresponding 2-time PDM, Pauli operators are measured at
times tA, tB . The constructed forward and backward PDMs
are the same, i.e.,

RAB =

 1 0 0 0
0 0 1/2 0
0 1/2 0 0
0 0 0 0

 = R̄AB . (27)

Distinguishing the arrow of time would be an impossible mis-
sion if we were only given the two PDMs, RAB and R̄AB .

Fortunately, there exists a simple way to tell the direction
of time. As illustrated in FIG. 2, suppose that σx is measured
at tA and σz is measured at tB . Denote the expectation of
σz conditioning on σx and the expectation of σx conditioning
on σz by ⟨σB

z ⟩σA
x and ⟨σA

x ⟩σ
B
z , respectively. When the time
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direction is A → B, we have

⟨σB
z ⟩σA

x = 0 = ⟨σA
x ⟩σ

B
z . (28)

When the time direction is B → A, we have

⟨σB
z ⟩σA

x = 1, ⟨σA
x ⟩σ

B
z = 0. (29)

In other words, the conditional expectation values aligned
with the respective arrows of time differ. This difference gives
us the ability to tell the arrow of time.

Let us go back and examine why the PDM formalism can-
not distinguish the arrow of time in some scenarios. To infer
the arrow of time, sometimes the fine-grained probabilities,
P (Πi1

± |Πi2) and P (Πi2
± |Πi1), are needed, as demonstrated

above. However, we only have access to the coarse-grained
probabilities, P (Πi1Πi2 = 1) and P (Πi1Πi2 = −1), from the
correlator ⟨{σi1 , σi2}⟩ that constructed the PDMs in Eq. (1)
via

P (Πi1Πi2 = 1)− P (Πi1Πi2 = −1) = ⟨{σi1 , σi2}⟩,
P (Πi1Πi2 = 1) + P (Πi1Πi2 = −1) = 1, (30)

where P (Πi1Πi2 = 1) := P (Πi1
+ ,Πi2

+) + P (Πi1
− ,Πi2

−) and
P (Πi1Πi2 = −1) is defined similarly. Whilst the PDM also
contains marginal data ⟨{σi1 ,1}⟩ and ⟨{1, σi2}⟩ (σi1 ̸= 1 ̸=
σi2), the marginal data are not sufficient to determine a joint
fine-grained distribution P (Πi1 ,Πi2). Such data would be
associated with a different experiment than the type used to
build a PDM obeying Eq. (1) and Eq. (8).

VI. ARROW OF TIME IN OTHER QUANTUM
SPATIOTEMPORAL FORMALISMS.

We now briefly discuss the applicability of our approach
to infer the arrow of time to two closely related formalisms:
the Leifer-Spekkens framework [12, 49, 50] and the process
matrix formalism [10, 51].

The Leifer-Spekkens framework results from reframing
quantum theory as a theory of Bayesian inference and centers
around a space-time state defined as

L =
√
ρ⊗ 12 M

√
ρ⊗ 12, (31)

where M denotes the CJ matrix of a CPTP map E . Let γ =
E(ρ). The time reversal of L12 is naturally given by

L̄ = SLS† =
√
γ ⊗ 11 M̄

√
γ ⊗ 11, (32)

where M̄ denotes the CJ matrix of the time-reversal of E in
the Leifer-Spekkens framework. We are unclear on the op-
erational meaning of L and accordingly how it relates to the
set-up in FIG 1. The CJ matrices can however be extracted
via the same vectorization approach proposed in section IV.
It turns out that M̄ corresponds, not to the CJ matrix of our
unitary dilation map, but to the CJ matrix of the Petz recov-
ery map [52, 53]. As a result, the partial transpose M̄T1 is
also positive. Consequently, there cannot be a statement that
is very similar to theorem 1 for this space-time state.

The process matrix formalism is an operational framework
building on the assumption that causal order is not a funda-
mental ingredient of nature [10, 51]. Given our focus on the
arrow of time, we examine the most general bipartite scenario
of a definite causal order described by the process matrix for-
malism. That is a quantum channel with memory, i.e., Alice
operates on one part of a correlated state, and her output, along
with the other part, is sent to Bob through a channel. This is
described by the process matrix of the form,

WA1A2B1B2 = WA1A2B1 ⊗ 1B2 , (33)

where A1 and A2 denote Alice’s input and output Hilbert
spaces, respectively, and similarly for B1, B2. The corre-
sponding reverse process matrix has the form

W̄ = 1A1 ⊗ W̄A2B1B2 . (34)

Then, for many cases, the arrow of time can be immediately
identified from the process matrix because the output of the
later-time party is always the identity operator 1 in the forward
direction. We leave the analysis of what the precise form of
W̄A1A2B1B2 should be for future studies.

VII. SUMMARY AND OUTLOOK

We explored how to establish the time-ordering of measure-
ment data obtained from quantum experiments involving two
times and any number of qubits. We formulated the arrow of
time inference problem. We examined conditions on the ini-
tial and final states that were symmetric or asymmetric under
time reversal. The spatiotemporal measurement data was then
represented using a pseudo density matrix. There was a for-
ward process that was CPTP and a reverse process that was
obtained via a novel recovery map based on inverting unitary
dilations. In cases of asymmetric conditions, the protocol de-
termined whether the data was consistent with the unitary di-
lation recovery map or the CPTP map. Meanwhile, for sym-
metric conditions, the recovery map yielded a valid unitary
and the experiment may have taken place in either direction.
More data was needed for solving the arrow inference prob-
lem in the unitary case as well as in the case of states that are
not full rank. We also considered the applicability of this ap-
proach to the Leifer-Spekkens or Process matrix space-time
states.

Apart from the relation to other space-time states discussed
above, another question that emerges is: Can the positive uni-
tary dilation recovery map that appeared naturally in this set-
up perform better than the Petz recovery map in quantum in-
formation tasks such as Bayesian quantum parameter estima-
tion? Secondly, the calculations revealed an unexpected con-
sequence that, whilst the normal quantum density matrix can
be fully characterised by coarse-grained measurements giv-
ing correlations between Pauli matrices, such coarse-grained
data concerning temporally separated events cannot be used to
fully determine the probability distributions over the tempo-
rally separated outcome in an analogous manner, suggesting a
further distinction between the spatial and temporal directions
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which deserves investigation. Thirdly, it would be interesting
to quantify the arrow of time in the PDM R, and one possible
approach is through the following measure

A(R) = F (M̄T1

R̄
)− F (MT1

R ), (35)

where F (O) := Tr(
√
OO† − O). Under this measure,

A(R) > 0 means that R is the forward PDM; A(R) < 0
means that R̄ is the forward PDM whereas A(R) = 0 means
that the arrow of time could be in either direction. General
properties of the measure A or other possible measures of the
arrow of time should be investigated further. For example,
A(R) or a variant thereof may constitute a natural measure of

thermodynamical irreversibility.

ACKNOWLEDGEMENTS

We thank Caslav Brukner, Zhenhuan Liu, Zhian Jia, and Fei
Meng for the discussions. We also thank Masahito Hayashi
for his feedback. XL and OD acknowledge support from
the National Natural Science Foundation of China (Grants
No.12050410246, No.1200509, No.12050410245) and City
University of Hong Kong (Project No. 9610623). QC ac-
knowledges support from the QuantERA II Programme that
has received funding from the European Union’s Horizon
2020 research and innovation programme under Grant Agree-
ment No 101017733.
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[40] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: characterization, quantification and detection,
Reports on Progress in Physics 77, 094001 (2014).

[41] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Collo-
quium: Non-Markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[42] F. Wei, Z. Liu, G. Liu, Z. Han, X. Ma, D.-L. Deng, and Z. Liu,
Realizing non-physical actions through hermitian-preserving
map exponentiation, arXiv preprint arXiv:2308.07956 (2023).

[43] G. E. Crooks, Quantum operation time reversal, Phys. Rev. A
77, 034101 (2008).

[44] J. Fullwood and A. J. Parzygnat, On quantum states over time,
Proceedings of the Royal Society A 478, 20220104 (2022).

[45] A. J. Parzygnat and J. Fullwood, From time-reversal symmetry
to quantum Bayes’ rules, PRX Quantum 4, 020334 (2023).

[46] J. Fullwood, Quantum dynamics as a pseudo-density matrix,
arXiv preprint arXiv:2304.03954 (2023).

[47] C. J. Wood, J. D. Biamonte, and D. G. Cory, Tensor net-
works and graphical calculus for open quantum systems, arXiv
preprint arXiv:1111.6950 (2011).

[48] R. Bhatia and P. Rosenthal, How and why to solve the opera-
tor equation ax- xb= y, Bulletin of the London Mathematical
Society 29, 1 (1997).

[49] M. S. Leifer, Quantum dynamics as an analog of conditional
probability, Phys. Rev. A 74, 042310 (2006).

[50] M. S. Leifer and R. W. Spekkens, Towards a formulation of
quantum theory as a causally neutral theory of bayesian infer-
ence, Phys. Rev. A 88, 052130 (2013).
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