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The strongly coupled system like the quark-hadron transition (if it is of first order) is becoming
an active play yard for the physics of cosmological first-order phase transitions. However, the tradi-
tional field theoretic approach to strongly coupled first-order phase transitions is of great challenge,
driving recent efforts from holographic dual theories with explicit numerical simulations. These
holographic numerical simulations have revealed an intriguing linear correlation between the phase
pressure difference (pressure difference away from the wall) to the nonrelativistic terminal velocity
of an expanding planar wall, which has been reproduced analytically alongside both cylindrical and
spherical walls from perfect-fluid hydrodynamics in our previous study but only for a bag equation
of state. We also found, in our previous study, a universal quadratic correlation between the wall
pressure difference (pressure difference near the bubble wall) to the nonrelativistic terminal wall
velocity regardless of wall geometries. In this paper, we will generalize these analytic relations be-
tween the phase/wall pressure difference and terminal wall velocity into a more realistic equation
of state beyond the simple bag model, providing the most general predictions so far for future tests
from holographic numerical simulations of strongly coupled first-order phase transitions

I. INTRODUCTION

The cosmological first-order phase transition
(FOPT) [1, 2] is a quantum field analog of quantum
tunneling in quantum mechanics and thermal transition
in statistical mechanics. For a quantum field theory
that exhibits a continuous symmetry breaking with the
appearance of a potential barrier [3], the cosmological
FOPT occurs by randomly nucleating true-vacuum
bubbles in the false-vacuum environment [4], and then
proceeds by accelerating expansion of bubble walls [5, 6]
driven by the potential difference that is eventually
balanced by the backreaction force during the asymp-
totic expansion stage [7, 8], and finally ends by violent
bubble wall collisions [9–12] with longstanding bulk fluid
motions afterward [13–21]. The associated stochastic
gravitational wave backgrounds (SGWBs) [22, 23] and
curvature perturbations [24] or even the primordial
black holes [25–30] provide comprehensive probes into
our early Universe [31–33].

Although much attention on cosmological FOPTs has
focused on the model buildings and parameter space
searching at the electroweak scales (see, for example, [34]
and references therein) for their apparent advantage of
promising detection in space-borne GW detectors, the
current observational data has already manifested the po-
tential power in constraining the cosmological FOPT at
corresponding energy scales of PT much higher or lower
than the electroweak scales. For example, with the first
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three observing runs of Advanced LIGO-Virgo’ data, the
strong super-cooling FOPTs at LIGO-Virgo band have
been marginally ruled out [35] when both contributions
from wall collisions and sound waves are present as a
general improvement to the previous works [36–39] with
a single source. In particular, recent detection of SGWBs
from the pulsar-timing-array (PTA) observations [40–43]
has renewed the interest in strongly coupled system like
the quark-gluon/hadron PT at the quantum chromody-
namics (QCD) scales.

The cosmological PT of a strongly coupled system, if it
is of first-order, has thus became an alternative probe in
addition to the traditional heavy-ion collisions and lattice
simulations for investigating the strong dynamics in QCD
physics from various cosmological observations like the
recent PTA constraints [44–62] at QCD scales. In partic-
ular, the PTA constraint [59] on the FOPT at QCD scales
allows for the productions of solar-mass primordial black
holes (PBHs) [25], which, however, might be disfavoured
by the accompanying constraints from curvature pertur-
bations [24] as shown specifically for a holographic QCD
model [62]. On the other hand, the strongly coupled
FOPT can in return serve as a play yard for explor-
ing the nonequilibrium physics of cosmological FOPT.
However, unlike the usual weakly coupled FOPT, the
strongly coupled FOPT is difficult to deal with from the
traditional perturbative field-theory approach due to its
strong-dynamics nature.

Nevertheless, the holographic principle, especially the
AdS/CFT correspondence [63–65] as a specific realiza-
tion of the strong-weak duality, can be naturally applied
to the strongly coupled FOPT in recent studies on bubble
nucleation [66–72] and bubble expansion [73–76] as well
as bubble-collision phenomenology [27, 62, 77–79]. In
particular, the numerical simulations [73, 75] from two

ar
X

iv
:2

31
1.

07
34

7v
3 

 [
he

p-
ph

] 
 1

1 
M

ay
 2

02
4

mailto:junchenwang@stu.pku.edu.cn
mailto:yuwenziyan@itp.ac.cn (Corresponding author)
mailto:haoyushi@itp.ac.cn
mailto:schwang@itp.ac.cn (Corresponding author)


2

very different holographic models reveal a similar linear
correlation between the phase pressure difference1 and
the terminal velocity of an expanding planar wall as also
derived analytically from a nonperturbative top-down ap-
proach [74]. However, such a correlation has not been
explored yet in the holographic numerical simulation [76]
for a cylindrical wall due to the high costs of computa-
tional power. Based on the same reason, the holographic
numerical simulation has also not been conducted to date
for the more realistic case of spherical wall expansion.

Intriguingly, besides the linear correlation between the
phase pressure difference and terminal planar-wall ve-
locity, the holographic numerical simulations [73, 75]
have also unfolded two characteristic features for the
strongly coupled FOPT: (i) The terminal wall velocity is
marginally nonrelativistic. This can be understood that,
as the bubble wall strongly interacts with the ambient
plasma, the backreaction force is so rapidly growing that
it only takes a very short time duration for the acceler-
ating expansion stage until the backreaction force could
balance the driving force. Hence, the strong dynamics
can force the bubble wall to quickly saturate at a small
velocity; (ii) The perfect-fluid hydrodynamics works ex-
tremely well in the whole range of bubble expansion ex-
cept at the wall position. This can be understood as
the bubble wall now moves so slowly (nonrelativistically)
that the particles have enough time to fully thermalize
before the bubble wall has swept over. Hence, the strong
dynamics can also help to establish perfect-fluid hydrody-
namic approximation except at the wall. Note that with
appropriate junction conditions across the bubble wall,
the perfect-fluid hydrodynamic approximation might as
well work effectively at the wall position [7, 8].

The above-mentioned nonrelativistic terminal wall ve-
locity and perfect-fluid hydrodynamics approximation re-
vealed by the holographic numerical simulations for the
strongly coupled FOPT have indicated that it might
be feasible to derive the linear correlation between the
phase pressure difference and terminal planar-wall veloc-
ity from bottom-up approach by fully appreciating the
perfect-fluid hydrodynamics in the nonrelativistic limit
of a planar-wall expansion. This is what we achieved in
Ref. [80] not only for the planar wall but also for both
cylindrical and spherical walls provided with a bag equa-
tion of state (EOS).

However, in both holographic numerical simulations
and realistic models of strongly coupled FOPTs, the EOS
cannot be fixed exactly by the bag model. It is therefore
necessarily useful to generalize our previous study [80]
directly into the case beyond the bag EOS, and in par-
ticular, to provide analytic approximations for practical

1 Note that, owing to the presence of sound shell with a nonva-
nishing fluid-velocity profile around the bubble wall, the phase
pressure difference is different from the wall pressure difference,
the former of which takes the pressure difference away from the
bubble wall (in fact, away from the sound shell) while the latter
of which takes the pressure difference near the bubble wall.

use without going over again the whole numerical eval-
uations. We therefore first set up the conventions and
requisite formulas for later use in Sec. II, and then derive
in the nonrelativistic wall limit for its correlations to the
phase pressure difference and wall pressure difference in
Sec. III and Sec. IV, respectively. Finally, the Sec. V is
devoted to conclusions and discussions. Appendix A is
provided for a self-containing introduction to the hydro-
dynamics beyond the bag EOS.

II. STRONGLY COUPLED FOPT

In this section, we will introduce the necessary nota-
tions and conventions closely following Ref. [8] in order
to generalize the results of our previous study [80].
For a generally coupled system of scalar field and ther-

mal plasma, the joined dynamics is governed by a se-
ries of Boltzmann equations for the distribution functions
of each species. By considering the late stage of a fast
FOPT, one can take advantage of simplifications from the
flat-spacetime background, self-similar expansion, thin-
wall geometry, and steady-state evolution. Therefore,
the scalar-plasma system can be further reduced into a
wall-fluid system [8] that can be well described by the
perfect-fluid hydrodynamics with corresponding energy-
momentum tensor of form

Tµν = (e+ p)uµuν + pηµν , (1)

where e, p are the total energy density and pressure, and
uµ ≡ dxµ/dτ is the four velocity of the fluid element at
xµ ≡ (t, z, x = 0, y = 0), (t, ρ, φ = 0, z = 0), (t, r, θ =
0, φ = 0) for planar, cylindrical, and spherical wall ge-
ometries, respectively. Here, the corresponding coordi-
nate systems are established at the center of the bubble
in such a way that the fluid element only moves in the
x1 direction with the other two spatial directions fixed
constantly, for example, all at zero. Hence, the four ve-
locity of bulk fluids also reads uµ = γ(v)(1, v, 0, 0) from
the three velocity v ≡ dx1/dx0 via the Lorentz factor

γ(v) ≡ 1/
√
1− v2. The similarity of bubble expansion

during the asymptotic stage at late time preferentially
defines a convenient self-similar coordinate system (T =
t,X = x1/x0 ≡ ξ) so that v(ξ) traces the fluid velocity
at x1 = ξt in the background plasma frame. Besides,
the steady-state expansion of the thin wall also preferen-
tially defines an observer frame comoving with the wall
at x1

w(x
0) = ξwt traced by the wall velocity ξw. Hence,

in the comoving wall frame, the bulk-fluid four velocity
reads uµ = γ̄(1,−v̄, 0, 0) with γ̄ ≡ γ(v̄) = 1/

√
1− v̄2,

where the negative sign before the wall-frame three ve-
locity v̄ = (ξw − v)/(1 − ξwv) ≡ µ(ξw, v) is introduced
to ensure a positive v̄ for later convenience. Here, the
abbreviation µ(ζ, v(ξ)) ≡ (ζ−v)/(1−ζv) denotes for the
Lorentz boost of the bulk fluid velocity v(ξ) in the back-
ground plasma frame into a ζ-frame velocity seen in the
comoving frame with velocity ζ.
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With the wall-fluid approximation for the coupled
scalar-plasma system of cosmological FOPTs, the equa-
tion of motions (EoMs) of the wall-fluid system is given
by the conservation of the total energy-momentum tensor
∇µT

µν = 0, which can be projected parallel along and
perpendicular to the bulk fluid direction [81] that can be
further combined into following equations for the profiles
of fluid velocity v(ξ) and total enthalpy w(ξ) = e+ p,

D
v

ξ
= γ(v)2(1− ξv)

(
µ(ξ, v)2

c2s
− 1

)
dv

dξ
, (2)

d lnw

dξ
= γ(v)2µ(ξ, v)

(
1

c2s
+ 1

)
dv

dξ
. (3)

Here D = 0, 1, 2 correspond to planar, cylindrical, and
spherical walls [82], respectively, and the sound velocity

cs =
√
∂ξp/∂ξe should be in general a function of ξ [83].

To further maintain the conservation of total energy-
momentum tensor across the discontinuous interfaces at
the bubble wall ξ = ξw and shockwave front ξ = ξsh, ap-
propriate junction conditions should be imposed from the
temporal and spatial components of ∇µT

µν = 0. Specif-
ically, in the comoving frame of the bubble wall, the fol-
lowing junction conditions,

w−γ
2
−v− = w+γ

2
+v+, (4)

w−γ
2
−v

2
− + p− = w+γ

2
+v

2
+ + p+, (5)

are hold across the bubble wall, where w±, p±, v±, and
γ± ≡ γ(v±) are the enthalpy, pressure, wall-frame fluid
velocity, and corresponding Lorentz factors just right in
front and back of the bubble wall, respectively. Besides,
in the comoving frame of the shockwave front, the fol-
lowing junction conditions,

wLγ̃
2
LṽL = wRγ̃

2
RṽR, (6)

wLγ̃
2
Lṽ

2
L + pL = wRγ̃

2
Rṽ

2
R + pR, (7)

are hold across the shockwave front, where wR/L, pR/L,
ṽR/L, and γ̃R/L ≡ γ(ṽR/L) are the enthalpy, pressure,
shock-frame fluid velocity, and corresponding Lorentz
factors just right in front and back of the shockwave front.
Therefore, the combination of the fluid EoMs (2) and (3)
with the junction conditions (4), (5), (6), and (7) together
ensures the conservation of total energy-momentum ten-
sor in the whole range of the fluid profile.

The fluid EoMs (2) and (3) can be readily solved nu-
merically for the detonation and deflagration modes with
the junction condition (4) at the bubble wall and junction
condition (6) at the shockwave front (if any) provided
with an extra assumption on the EOS. For a strongly
coupled FOPT, the MIT bag EOS [84] is usually assumed
as a good approximation with corresponding sound ve-
locity cs = 1/

√
3 independent of ξ. A more general EOS

dubbed ν-model [85] renders two constant sound veloc-
ities c2± = ∂ξp±/∂ξe± outside and inside of the bubble

wall, respectively, where

e± = a±T
ν±
± + V ±

0 , (8)

p± = c2±a±T
ν±
± − V ±

0 (9)

are the total energy density and pressure just right in
the front and back of the bubble wall, respectively. Here,
V ±
0 ≡ V0(ϕ±) is the zero-temperature part of total ef-

fective potential Veff(ϕ, T ) = V0(ϕ) + ∆VT (ϕ, T ) at the
false and true vacua ϕ±, respectively. It is easy to see
that ν± = 1+1/c2±. With above ν-model EOS, the wall-
frame fluid velocities v̄± from the junction conditions (4)
and (5) can be related by

v+ =
1

1 + α+

(
qX+ ±

√
q2X2

− + α2
+ + (1− c2+)α+ + q2c2− − c2+

)
,

(10)
with abbreviations q ≡ (1 + c2+)/(1 + c2−), X± ≡
v−/2 ± c2−/(2v−), α+ ≡ ∆V0/(a+T

ν+

+ ), and ∆V0 ≡
V +
0 − V −

0 . One can also define the strength factor
αN ≡ ∆V0/(a+T

ν+

N ) at null infinity ξ = 1 (unperturbed
by fluid motions) so that α+w+ = αNwN = (1+c2+)∆V0.
The hydrodynamic solutions for the above ν-model EOS
can be solved numerically in Appendix A.

To see the nonrelativistic behavior of the phase pres-
sure difference (driving force per unit area) between the
innermost and outermost parts of the fluid profile [7, 8],

pdr = ∆Veff = −∆p = ∆(−c2saT
ν + V0)

= −
c2+

1 + c2+
wN +

c2−
1 + c2−

wO +
1

1 + c2+
αNwN , (11)

we consider the deflagration expansion of bulk fluid with
a compressive shockwave as a sound shell in front of the
bubble wall, in which case we can equal the enthalpy
at null infinity wN ≡ w(ξ = 1) = w(ξ = ξsh + 0+) ≡
wR to the enthalpy just in front of the shockwave front,
and equal the enthalpy at the origin wO ≡ w(ξ = 0) =
w(ξ = ξw + 0−) ≡ w− to the enthalpy just behind the
bubble wall. Further note that w− can be even reduced to
depend only on ξw, v+, and w+ by adopting the junction
condition (4) with v+ = µ(ξw, v+) and v− = ξw, where
w+ can be further expressed in terms of ξw, v+, and
observable parameters at null infinity like αN and ωN by

w+ =
(1 + c2−)(1− v2+)ξwαNwN

c2+(ξw + c2−v+)(1− v+ξw)− (c2− + v+ξw)(ξw − v+)
(12)

from the minus-sign branch of (10). Now the phase pres-
sure difference reads purely in terms of the sound ve-
locities c±, null-infinity observables αN and wN , bubble
wall velocity ξw, and fluid velocity v+ (to be determined
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later),

pdr
wN

=

[
1

1 + c2+

+
c2−(ξw − v+)(1− v+ξw)

c2+(ξw + c2−v+)(1− v+ξw)− (c2− + v+ξw)(ξw − v+)

]
αN

−
c2+

1 + c2+
, (13)

where v+ = µ(ξw, v+(ξw, α+)) from the minus-sign
branch of (10) can be further reduced in terms of ξw
and α+. Therefore, as long as we can find a relation be-
tween α+ and αN , which can be achieved approximately
to the leading order (LO) in ξw for planar, cylindrical,
and spherical walls, we can eventually arrive at the di-
rect relation between the phase pressure difference pdr
and bubble wall velocity ξw solely in terms of the ν-model
EOS c± and null-infinity observables αN and wN without
reference to the underlying microscopic physics.

III. PHASE PRESSURE DIFFERENCE

In this section, we analytically derive the approxi-
mated relation between the phase pressure difference
pdr = ∆Veff = pO − pN and the bubble wall velocity ξw
with ν-model EOS for planar, cylindrical, and spherical
wall geometries.

A. Planar wall

For a planar wall, the nonvanishing fluid profile is de-
picted by the fluid EoM (2) with D = 1,

(µ(ξ, v)2 − c2+)
dv

dξ
= 0, (14)

whose solutions are either dv/dξ = 0, namely, v = const,
or µ(ξ, v) = c+, which would lead to ξ > c+ for v > 0
but with no deflagration regime. Hence, the only solution
should be v = const. = v+ in the sound shell and the
corresponding enthalpy profile from (3) with dv/dξ = 0
also stays constant in the sound shell, w+ = const. = wL.
This wL can be related to wR = wN by the junction
condition (6) via ṽR = ξsh and ṽL = µ(ξsh, vsh) from the
fluid velocity vsh ≡ v(ξsh+0−) just behind the shockwave
front ξsh. To further determine vsh and ξsh, note that the
constant velocity profile in the sound shell implies vsh =
v+ = µ(ξw, v+(v−, α+)) with v− = ξw and v+(v−, α+)
given by the minus-sign branch of (10). Thus, vsh can
be expressed in terms of ξw and α+ alone. Once vsh is
determined, ξsh can be directly obtained from the shock
front condition µ(ξsh, vsh)ξsh = c2+. Hence, αN/α+ =
w+/wN can be derived in terms of ξw and α+ alone,

which can be expanded as

αN

α+
= 1 +

c2− − c2+ + (1 + c2−)α+

c2−c+
ξw

+
[c2− − c2+ + (1 + c2−)α+]

2

2c4−c
2
+

ξ2w +O(ξ3w). (15)

We can reverse the above relation to get α+ expressed in
terms of ξw and αN . Then, we can plug α+(ξw, αN )
into the minus-sign branch of (10) to get v+(v− ≡
ξw, α+(ξw, αN )). Next, we can further expand v+ =
µ(ξw, v+(ξw, αN )) in ξw, which finally yields the phase
pressure difference (13) in the small ξw limit up to the
next-to-leading order (NLO) as

pdr
wN

=
c+[c

2
− − c2+ + (1 + c2−)αN ]

c2−(1 + c2+)
ξw

+
c2− − c2+ + (1 + c2−)αN

2c4−(1 + c2+)
2

[
αN − c4+ − c2+(3 + αN )

+c2−(1− c2+)(1 + αN )
]
ξ2w +O(ξ3w). (16)

In the bag limit c± = cs, this analytic approximation re-
duces to the same linear correlation pdr = αNwNξw/cs+
O(ξ2w) at the leading order as our previous estima-
tion [80]. To see the goodness of fit for our analyti-
cal approximation, we can separately evaluate the phase
pressure difference numerically from the exact numerical
solutions, and then find a perfect match for both cases
with c+ > c− and c+ < c− at NLO as shown in Fig. 1.
This leading-order linear dependence in the planar-wall
velocity can be tested explicitly in Sec. V with respect to
the holographic numerical simulation of a strongly cou-
pled FOPT with a planar wall [73].

B. Cylindrical wall

For a cylindrical wall with D = 1, the fluid EoM (2)
to the order of v2,

dv

dξ
=

c2+v

ξ(ξ2 − c2+)
−

(c2+ + ξ2 − 2)c2+v
2

(c2+ − ξ2)2
+O(v3), (17)

can be solved as

v(ξ) =
c+(c

2
+ − ξ2)

ξ

/[
2c+(c

2
+ − 1) +

1

v+ξw

√
c2+ − ξ2

c2+ − ξ2w
Sol

]
,

(18)

Sol = c+ξw(2v+ − ξw) + c3+(1− 2v+ξw)

+ v+ξw(c
2
+ − 2)

√
c2+ − ξ2w ln

 ξ
(
c+ +

√
c2+ − ξ2w

)
ξw

(
c+ +

√
c2+ − ξ2

)
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FIG. 1. The comparison between our analytical approximations (dashed lines) and the exact numerical evaluations (solid lines)
for the relations (16) (top), (20) (middle), and (24) (bottom) between the phase pressure difference pdr/wN and wall velocity
ξw given some illustrative values for the asymptotic strength factor αN in both cases of ν-model EOS with sound velocities
c+ > c− (left) and c+ < c− (right).

given the condition v(ξw + 0+) = v+ at the bubble wall.
It is easy to see from (18) that the shock front where
v(ξ) drops to zero is now approximated at ξ = ξsh = c+
with w(c+) = wN , from which we can integrate the fluid
EoM (3) to evaluate w+ at ξw from d lnw/dξ as estimated
shortly below. To estimate d lnw/dξ, we first insert (18)
into (3) and then expand d lnw/dξ to the order of v2+.
Hence, αN/α+ = w+/wN is now a function of ξw, α+,
and v+ = µ(ξw, v+). After inserting v+(ξw, α+) from the

minus-sign branch of (10), αN/α+ can be expanded in
the small ξw limit as

αN

α+
= 1+

c2− − c2+ + (1 + c2−)α+

2c4−c
2
+(1 + c2+)

[
c2+ − c2− − (1 + c2−)α+

+2c2−(1 + c2+) ln
2c+
ξw

]
ξ2w +O(ξ4w). (19)
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Reversing the above relation to get α+(ξw, αN ) and plug-
ging it into the minus-sign branch of (10), we can derive
v+(ξw, αN ) as a function of ξw and αN . We next further
expand v+ = µ(ξw, v+(ξw, αN )) in terms of ξw and then
insert it into (13), finally the phase pressure difference
can be obtained in the small ξw limit as

pdr
wN

=
c2− − c2+ + (1 + c2−)αN

2c4−(1 + c2+)
2

[
(1 + c2−)αN

−(c2+ + 2c2+c
2
− + c2−) + 2c2−(1 + c2+) ln

2c+
ξw

]
ξ2w +O(ξ4w).

(20)

Note that the purely quadratic term in ξw in the above
approximation is actually an NLO term, while the term
proportional to ξ2w ln ξw is at the leading order as it is
larger than the purely quadratic term in ξw. This ana-
lytic expression serves as an even better approximation in
the bag limit c± → cs = 1/

√
3 compared to our previous

estimation [80], and also perfectly matches the exact nu-
merical evaluation as shown in Fig. 1 for both cases with
c+ > c− and c+ < c−, where the distinctive logarithmic
dependence can be directly tested in future holographic
numerical simulations of strongly coupled FOPTs with a
cylindrical wall [76].

C. Spherical wall

For a spherical wall with D = 2, the fluid EoM (2) to
the order of v2,

dv

dξ
=

2c2+v

ξ(ξ2 − c2+)
−

2(c2+ + ξ2 − 2)c2+v
2

(c2+ − ξ2)2
+O(v3), (21)

can be solved as

v(ξ) =
c+v+ξ

2
w(c

2
+ − ξ2)

ξ

/[
c3+ξ + 2c+v+ξw(c

2
+ − 2)ξ

−c+ξ
2
w(2c

2
+v+ − 4v+ + ξ) + Sol

]
(22)

Sol = 4v+ξ
2
w(c

2
+ − 1)

[
arctanh

(
ξ

c+

)
− arctanh

(
ξw
c+

)]
ξ

given the condition v(ξw + 0+) = v+ at the bubble wall.
Following the same procedures as in the cylindrical case,
we can obtain estimate d lnw/dξ by first plugging (22)
into (3) and then expanding it to the order of v2+. Hence,
αN/α+ = w+/wN is obtained by integrating d lnw/dξ.
After inserting v+ = µ(ξw, v+(ξw, α+)), αN/α+ as a
function of ξw and α+ can be expanded in the small ξw
limit as

αN

α+
= 1+

c2− − c2+ + (1 + c2−)α+

2c4−c
2
+(1 + c2+)

[
c2+ + 3c2− + 4c2+c

2
−

−(1 + c2−)α+

]
ξ2w +O(ξ3w). (23)

Reversing the above relation to obtain α+(ξw, αN ) and
substituting it into the minus-sign branch of (10), we
can derive v+(ξw, αN ) as a function of ξw and αN . We
next further expand v+ = µ(ξw, v+(ξw, αN )) in terms
of ξw and then substitute it into (13), finally the phase
pressure difference can be obtained in the small ξw limit
as

pdr
wN

=
c2− − c2+ + (1 + c2−)αN

2c4−(1 + c2+)
2

[
3c2− − c2+ + 2c2+c

2
−

+(1 + c2−)αN

]
ξ2w +O(ξ4w). (24)

This analytical expression serves as an even better ap-
proximation in the bag limit c± → cs = 1/

√
3 com-

pared to our previous estimation [80], and also perfectly
matches the exact numerical evaluation as shown in Fig. 1
for both cases with c+ and c− although the matching is
not as good as the planar and cylindrical cases as here we
only include the leading-order quadratic term while the
NLO quartic term is too lengthy to be informative. This
leading-order pure quadratic dependence in the spherical
wall velocity can be directly tested in future holographic
numerical simulations of strongly coupled FOPTs with a
spherical wall.

IV. WALL PRESSURE DIFFERENCE

Apart from the phase pressure difference away from the
bubble wall, we can also approximate in the nonrelativis-
tic limit for the pressure difference near the bubble wall,
∆wallp ≡ p+ − p−, which can evaluated by the junction
condition (5),

∆wallp

wN
=

γ2
−v

2
−w− − γ2

+v
2
+w+

wN
. (25)

For the deflagration mode with v− = ξw and v+ =
µ(ξw, v+), we can solve α+ from the minus-branch of (10)
as

α+ =
1

(c2− + 1)(v2+ − 1)ξw

[
v+ξw(ξw − v+) + c2+ξw(v+ξw − 1)

+c2−(ξw − v+ − v+c
2
+ + v2+c

2
+ξw)

]
. (26)

Combining (25) and (26), we can obtain the wall pressure
difference ∆wallp/wN in terms of c±, ξw, αN , and v+ as

∆wallp

wN
=

[
(1 + c2−)(v+ − ξw)ξwv+αN

]/
{ξwv+(ξw − v+)

+c2+ξw(ξwv+ − 1) + c2−[ξw + v+(c
2
+ξwv+ − c2+ − 1)]

}
,

(27)

where we have converted w− to w+ via the junction con-
dition (4), and then converted w+ to wN via w+α+ =
wNαN . After plugging the nonrelativistic analytic ap-
proximations v+(ξw, αN ) we obtained in the previous
three subsections for planar, cylindrical, and spherical
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FIG. 2. The comparison between our analytical approximation (28) (dashed lines) [with additional next-to-leading order
correction (30) for relatively large αN = 0.24, 0.3] and the exact numerical evaluations (solid lines) for the relation between
the wall pressure difference p/wN and terminal velocity ξw (solid lines) of planar (top), cylindirical (middle), and spherical
(bottom) walls, respectively, given some illustrative values for the asymptotic strength factor αN in both cases with sound
velocities c+ > c− (left) and c+ < c− (right).

walls into (27), we finally arrive at a universal quadratic
dependence in the wall velocity at the leading order for
the wall pressure difference in the small ξw limit as(
∆wallp

wN

)D=0,1,2

LO

=
(1 + c2−)(c

2
+ − αN )[c2− − c2+ + αN (1 + c2−)]

c4−(1 + c2+)
2

ξ2w,

(28)

whose bag limit c± → cs is the same as our previous
result [80],(

p+ − p−
wN

)D=0,1,2

LO,c±→cs

=

(
αN

c2s
− α2

N

c4s

)
ξ2w. (29)

This universal scaling for different wall shapes can be
understood as the pressure difference taken near the wall
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does not care about its global shape. This is different
from the phase pressure difference taken between the
null infinity and bubble center, which does care about
the global shapes of the bubble wall, containing not only
the information near the bubble wall but also the whole
bubble-fluid system including the sound shell and shock-
wave front (if any). This is why the phase pressure differ-

ence admits different leading-order behaviors, that is, the
leading-order linear, logarithmic-quadratic, and purely
quadratic dependences for the planar, cylindrical, and
spherical walls, respectively. Nevertheless, for the asymp-
totic strength factor αN taking a relatively large value,
the leading-order analytical approximation is not enough,
and we must consider the next leading-order correction,

(
p+ − p−

wN

)D=0

NLO

=
(1 + c2−)[c

2
− − c2+ + αN (1 + c2−)][c

2
+c

2
− − c4+ + α2

N (1 + c2−)]

c6−c+(1 + c2+)
2

ξ3w,(
p+ − p−

wN

)D=1

NLO

=
(1 + c2−)[c

2
− − c2+ + αN (1 + c2−)]

2c8−c
2
+(1 + c2+)

4
(Cy1 +Cy2 +Cy3 +Cy4) ξ

4
w,(

p+ − p−
wN

)D=2

NLO

=
(1 + c2−)[c

2
− − c2+ + αN (1 + c2−)]

2c8−c
2
+(1 + c2+)

4
(Sp1 + Sp2 + Sp3) ξ

4
w,

(30)

with

Cy1 = (c2+ − αN )2(c4+ + 3c2+ + c2+αN − αN ) + (4 ln 2)c2−c
2
+α

2
N + c2−αN (c2+ − αN )(1 + 2αN − 2 ln 2),

Cy2 = −c2−(c
2
+ − αN )[(2 ln 2)c6+ − c4+[4 + 3αN − (2 ln 2)αN ] + c2+(2α

2
N + 4αN + 2 ln 2)],

Cy3 = c4−

[
c6+(2 + 2 ln 2 + 2αN ) + c4+[(2 ln 2− 4)α2

N − 5αN − 1 + 4 ln 2] + Cy
′

3

]
,

Cy
′

3 = c2+[α
3
N + (4 ln 2 + 1)α2

N − αN + 2 ln 2− 1]− α2
N (1− 2 ln 2 + αN )

Cy4 = 2c2−

[
(α2

N (1 + c2+)
2 + c2−(1 + c2+)

2(c2+ + α2
N )− (1 + c4+)c

4
+) ln

(
c+
ξw

)
− 2c6+ ln

(
2c+
ξw

)]
Sp1 = (c2+ − αN )2(c4+ + 3c2+ + c2+αN − αN ),

Sp2 = −c2−(c
2
+ − αN ), [4c6+ + c4+(4 + αN ) + 2c2+(α

2
N + 6αN + 2) + αN (3− 2αN )],

Sp3 = c4−[2c
6
+(3 + αN ) + c4+(7− 5αN ) + c2+(α

3
N + 9α2

N − αN + 3) + (3− αN )α2
N ].

(31)

The comparison between our analytical approxima-
tion (28) [with additional next-to-leading order correc-
tion (30) for a relatively large αN = 0.24, 0.3] and the
exact numerical evaluations is presented in Fig. 2 with
perfect match in the nonrelativistic limit. Note that the
crossing of curves for relatively large αN at relatively
large ξw is due to the nonmonotonous dependence of
the wall pressure difference on αN at relatively large ξw.
This can be easily illustrated in the case of a simple bag
EOS [80] with c+ = c− = 1/

√
3, in which case the wall

pressure difference p+ − p− reads

p+ − p−
wN

=
w+

wN
γ2
+v+(v− − v+), (32)

after using the junction conditions w−γ
2
−v− = w+γ

2
+v+

and w−γ
2
−v

2
− + p− = w+γ

2
+v

2
+ + p+. When the bubble

wall velocity ξw is small, the fluid profile is deflagration
and hence the wall-frame fluid velocity just behind the

wall reads v− = ξw. For w+/wN = αN/αN = 1+O(ξw),
we take w+/wN ≃ 1 and then (32) turns into

p+ − p−
wN

=
v+

1− v2+
(ξw − v+). (33)

As one can explicitly check numerically, although the
wall-frame fluid velocity just in front of the wall v̄+ de-
creases with an increasing αN , the wall-pressure differ-
ence is not a monotonic function of v̄+, and hence it is
also nonmonotonic to αN . For example, for a small ξw,
the leading-order wall pressure difference in the bag case,

∆wallp

wN

∣∣∣∣
LO

= 9

(
1

3
− αN

)
αNξ2w, (34)

will be larger if αN is closer to 1/6. However, when ξw
is relatively larger, we need take into account the NLO
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term,

∆wallp

wN

∣∣∣∣
NLO

= 9(αN − 8α2
N + 36α3

N − 9α4
N )ξ4w. (35)

where the quartic coefficient increases as αN increases.
Therefore, when ξw is relatively large, the wall pressure
difference of large αN is larger than that of small αN .

V. CONCLUSIONS AND DISCUSSIONS

The cosmological FOPT serves as an indispensable
probe into the early Universe for the new physics beyond
the standard model of particle physics. The weakly cou-
pled FOPT is widely studied for its validity in adopting
the perturbative field theory method to estimate the vac-
uum decay rate and bubble wall velocity. However, this
is not the case for the strongly coupled FOPTs where the
perturbative method ceases to apply for lack of pertur-
bative definitions on the effective potential and collision
terms in Boltzmann equations. Fortunately, the holo-
graphic method as a specific realization of the strong-
weak duality can map the strongly coupled FOPT on
the boundary into a weakly coupled gravity theory in
the bulk. Recent holographic numerical simulations of
strongly coupled FOPTs not only prefer a nonrelativistic
terminal wall velocity but also confirm the perfect-fluid
hydrodynamics approximation, and in particular, reveal
an intriguing linear correlation between the phase pres-
sure difference and terminal velocity of planar wall. By
fully appreciating the perfect-fluid hydrodynamics, we
analytically reproduce such a correlation not only for the
planar wall but also for cylindrical and spherical walls in
the case with a bag EOS. To be more close to the realis-
tic case, we generalize in this paper our previous analytic
results into the case with a ν-model EOS beyond the sim-
ple bag model. The analytic approximations of the phase
pressure difference (16), (20), and (24) we obtained for
the planar, cylindrical, and spherical walls, respectively,
not only well-match the exact numerical evaluations from
the perfect-fluid hydrodynamics, but also improve our
previous results in the bag limit c± → cs,(
pO − pN

wN

)D=0

c±→cs

=
αN

cs
ξw +O(ξ2w), (36)(

pO − pN
wN

)D=1

c±→cs

=

[
α2
N

2c4s
− αN

c2s

(
1 + ln

ξw
2cs

)]
ξ2w +O(ξ4w),

(37)(
pO − pN

wN

)D=2

c±→cs

=

(
αN

c2s
+

α2
N

2c4s

)
ξ2w +O(ξ4w). (38)

All these analytic results can be directly tested in future
holographic numerical simulations (see, for example, the
last panel of Fig. 3 for a perfect match between our ana-
lytic approximation (16) and holographic numerical sim-

ulation [73] in the case with an expanding planar wall),
which would shed light on the understanding of strongly
coupled FOPT and its holographic dual.
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Appendix A: Hydrodynamics beyond bag EOS

In this appendix, we revisit in detail the hydrodynam-
ics beyond the bag EOS specifically in the ν-model [85]
where the sound velocity profile cs(ξ) takes constant val-
ues c− and c+ inside (ξ < ξw) and outside (ξ > ξw)
of the bubble wall, respectively. This ν-model EOS to-
gether with the junction conditions (4) and (5) across the
bubble wall gives rise to the hydrodynamic solution (10)
which we repeat here at your convenience,

v̄+ =
1

1 + α+

(
qX+ ±

√
q2X2

− + α2
+ + (1− c2+)α+ + q2c2− − c2+

)
.

(A1)
Here abbreviations q ≡ (1 + c2+)/(1 + c2−), X± ≡ v̄−/2±
c2−/(2v̄−), α+ ≡ ∆V0/(a+T

ν+

+ ), and ∆V0 ≡ V +
0 − V −

0

are introduced for clarity. Similar to the bag-EOS case,
the detonation (deflagration) mode picks the plus-sign
(minus-sign) branch of (A1). Note that in order for v̄+
in (A1) to be real positive number, α+ should be bounded
from below by (c2+− c2−)/(1+ c2−), and for α+ > c2+, only
the detonation mode exists. Note also that the condition
v̄− = c− defines the Jouguet velocity, which further de-
fines the Jouguet detonation (deflagration) mode when
v̄+ in the plus-sign (minus-sign) branch of (A1) takes its
minimal (maximal) value as

vdetJ (α+) =
qc− +

√
q2c2− − (1 + α+)(c2+ − α+)

1 + α+
, (A2)

vdefJ (α+) =
qc− −

√
q2c2− − (1 + α+)(c2+ − α+)

1 + α+
. (A3)
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FIG. 3. The original data points from Ref. [73] for the energy density and pressure (first panel) as well as sound velocity (second
panel) with respect to the wall velocity. The third panel reproduces their original fit to the phase pressure difference in unit of
asymptotic energy density, which is actually achieved highly nontrivial by adjusting the strength factor and EOS simultaneously.
The last panel compares the data points from the holographic numerical simulation to our analytic approximation (16) from
both bag EOS and ν-model EOS.

It is worth noting that if α+ takes its minimal value (c2+−
c2−)/(1 + c2−), we have vdetJ |min = vdefJ |max = c−, that is

to say, we always have vdetJ ≥ c− and vdefJ ≤ c−.
After specifying the physical branches of hydrody-

namic solutions for different expansion modes, we can
solve the fluid velocity profile v(ξ) from the hydro-
dynamic EoM (2) given corresponding junction condi-
tions (4) and (6) at the bubble wall and shockwave front,
if any. We illustrate the fluid velocity profiles v(ξ) naively
solved from (2) in Fig. 4 for some particular values of the
sound velocity. Note that (ξ = cs, v = 0) is an improper
node of (2), where all of v(ξ) curves are approached
from cs + 0+. The expansion modes are separated by
the rarefaction front µ(ξ, v) = c− and shockwave front
µ(ξ, v)ξ = c2+. We next turn to solve the fluid velocity
and enthalpy profiles specifically for different expansion
modes.

1. Weak detonation

The detonation mode is defined when the fluid velocity
in front of the bubble wall is vanished, v(ξ > ξw) = 0,

namely v̄+ = ξw in the wall frame. Thus, v̄− can be
solved from the plus-sign branch of (A1), leading directly
to v− = µ(ξw, v̄−). Hence the condition v− > v+ = 0
namely v̄+ > v̄− defines the detonation mode. The deto-
nation mode can be of either weak or Jouguet types with
v̄− > c− or v̄− = c−, that is ξw > vdetJ or ξw = vdetJ ,
respectively. We postpone the discussion of the Jouguet
detonation until Sec. A 4, but first solve here the hy-
drodynamic EoM (2) with cs = c− for the fluid ve-
locity profile v(ξ) passing through (ξw, v−) in the case
of weak detonation (ξw > vdetJ ) as illustrated in the
left panel of Fig. 5. Note that for the ν-model EOS,
the weak detonation mode contains not only the case
with a large ξw > vdetJ > c+ but also the case with a
very large ξw > c2+/v

det
J > vdetJ . As a comparison for

a bag EOS with c+ = c− = cs, only the former case
ξw > vdetJ > cs survives. With the fluid velocity profile
v(ξ) solved from (2) at hand, the corresponding enthalpy
profile w(ξ) can be obtained simply by integrating (3)
from the point (ξw, w−) with the enthalpy w− just be-
hind the wall determined by the junction condition (4)
from the enthalpy w+ = wN in front of the wall up to
the null infinity. We illustrate the enthalpy profile for the
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weak detonation in the right panel of Fig. 5.

2. Weak deflagration

The deflagration mode is defined when the fluid veloc-
ity behind the bubble wall is vanished, v(ξ < ξw) = 0,
namely v̄− = ξw in the wall frame. Thus, v̄+ can
be solved from the minus-sign branch of (A1), lead-
ing directly to v+ = µ(ξw, v̄+). Hence the condition
v+ > v− = 0 namely v̄− > v̄+ defines the deflagration
mode. The deflagration mode can be of either weak or
Jouguet types with ξw = v̄− < c− or ξw = v̄− = c−, that
is ξw < vdefJ or ξw = vdefJ , respectively. We postpone
the discussion of the Jouguet deflagration until Sec. A 3,
but first solve here the hydrodynamic EoM (2) with
cs = c− for the fluid velocity profile v(ξ) passing through
(ξw, v+) in the case of weak deflagration (ξw < vdefJ ) as
illustrated in the left panel of Fig. 6. Note that the

solved fluid velocity profile v(ξ) should be cut off due
to the shockwave front at ξsh with corresponding fluid
velocity vsh ≡ v(ξsh + 0−), both of which can be de-
termined as shown shortly below. First, it is easy to
find ṽLṽR = c2+ for the shock-frame fluid velocities ṽL/R

just inside/outside of the shockwave front since the whole
shockwave is in the symmetric phase in front of the bub-
ble wall. Then, as the fluid velocity in front of the shock-
wave front is at rest, vR = µ(ξsh, ṽR) = 0, the shockwave
front velocity ξsh = ṽR = c2+/ṽL = c2+/µ(ξsh, vL) can be
directly solved from vL = v(ξsh + 0−) ≡ vsh given by
extrapolating the solved profile of v(ξ) from (ξw, v+) to
(ξsh, vsh). The enthalpy profile w(ξ) shown in the right
panel of Fig. 6 can be obtained by integrating the fluid
EoM (3) from the shock front (ξsh, wL) all the way back
to the wall, where wL ≡ w(ξsh+0−) can be determined by
the junction condition (6) with wR = wN , ṽR = ξsh, and
ṽL = µ(ξsh, vsh). At the bubble wall, the enthalpy profile
experiences a sudden jump from w+ = w(ξw+0+) to w−
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FIG. 6. The fluid profiles v(ξ) (left) and w(ξ)/wN (right) of the weak deflagration mode. We fix αN = 0.16 and take c+ = 1/
√
3,

c− = 1/
√
5. The red, green, and blue lines correspond to the bubble wall velocity ξw takes the value of 0.22, 0.32 and 0.42,

respectively.

determined by the junction condition (4) with v̄− = ξw
and v̄+(α+, ξw) given by the minus-sign branch of (10).

3. Jouguet deflagration

The Jouguet deflagration mode (or we call it the hybrid
mode in the bag model) is a special deflagration mode
(v+ < v−) of Jouguet type (v− = c−) corresponding to
the minus-sign branch of (10) and realized with the wall
velocity lying between c− < ξw < vdetJ . The fluid velocity
profile in Fig. 7 contains both compressive shockwave and
rarefaction wave in the front and back of the bubble wall,
respectively, as derived shortly below. The Jouguet defla-
gration condition v− = c− leads to v+ = vdefJ from (A3)
by (10), giving rise to v(ξw + 0+) ≡ v+ = µ(ξw, v

def
J )

and v(ξw + 0−) ≡ v− = µ(ξw, c−) that can be used
to solve the fluid EoM (2) both forward and backward
from (ξw + 0+, v+) and (ξw + 0−, v−) with cs = c+ and
cs = c−, respectively. The solved velocity profile again
vanishes in front of the shockwave front ξ = ξsh + 0+

and behind ξ = c− + 0− as in the weak deflagration and
weak detonation cases. The enthalpy profile can be sim-
ilarly obtained from integrating (3) backward from both
w(ξsh + 0−) = wL and w(ξw + 0−) = w−, where the en-
thalpies wL and w− are sequentially determined by the
junction conditions (6) and (4) with wR = wN , ṽR = ξsh,
ṽL = µ(ξsh, vsh) and w+ = w(ξw + 0+), v+ = vdefJ ,
v− = c−, respectively.

4. Jouguet detonation

The Jouguet detonation mode (absent in the bag
model) is a special detonation mode (v+ > v−) of
Jouguet type (v− = c−) corresponding to the plus-
sign branch of (10) realized by v+ = vdetJ (α+). Sim-

ilar to the Jouguet deflagration mode, the fluid veloc-
ity profile of Jouguet detonation mode in Fig. 8 also
contains both compressive shockwave and rarefraction
wave in the front and back of the bubble wall, respec-
tively, but corresponding to the purple region in Fig. 4.
To derive the fluid velocity profile, the Jouguet detona-
tion condition v− = c− leads to v+ = vdetJ from (A2)
by (10), giving rise to v(ξw + 0−) ≡ v+ = µ(ξw, c−)
and v(ξw + 0+) ≡ v− = µ(ξw, v

det
J ) that can be used

to solve the fluid EoM (2) both forward and backward
from (ξw + 0+, v+) and (ξw + 0−, v−) with cs = c+ and
cs = c−, respectively. The solved velocity profile again
vanishes in front of the shockwave front ξ = ξsh + 0+

and behind ξ = c− + 0− as in the weak deflagration and
weak detonation cases. The enthalpy profile can be sim-
ilarly obtained from integrating (3) backward from both
w(ξsh + 0−) = wL and w(ξw + 0−) = w−, where the en-
thalpies wL and w− are sequentially determined by the
junction conditions (6) and (4) with wR = wN , ṽR = ξsh,
ṽL = µ(ξsh, vsh) and w+ = w(ξw + 0+), v+ = vdetJ ,
v− = c−, respectively.

Finally, we discuss the condition where the Jouguet
detonation mode can be realized. The difference be-
tween the weak detonation and Jouguet detonation mode
is that the Jouguet detonation mode has a compressive
shockwave in front of the wall. From the analysis of the
weak deflagration mode, we can figure out that the situ-
ation where a shockfront can exist is µ(ξsh, vsh)ξsh < c2+,
corresponding to the red and purple regions in Fig. 4.
If the condition cannot be satisfied even at ξsh = ξw,
the compressive shockwave must vanish and only weak
detonation mode exists. Since just right in front of the
wall µ(ξw, v+) takes the value of vdetJ , we can derive that
the form of the condition µ(ξsh, vsh)ξsh < c2+ turns into

vdetJ ξw < c2+ at ξsh = ξw, leading to ξw < c2+/v
det
J . Recall

that for a detonation mode v− < v+ < ξw, we must have
ξw > v+|min = vdetJ . Hence, the existence of both detona-
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FIG. 8. The fluid profiles v(ξ) (left) and w(ξ)/wN (right) of the Jouguet detonation mode. We fix αN = 0.16 and take
c+ = 1/

√
3, c− = 1/

√
5. The blue lines correspond to the bubble wall velocity ξw taking the value of 0.58.

tion profile as wall as the shockwave can only be realized
when vdetJ < ξw < c2+/v

det
J , that is exactly the condi-

tion where the Jouguet detonation mode can be realized.
Note that if c+ < vdetJ , the condition vdetJ < ξw < c2+/v

det
J

cannot be satisfied at all. Therefore, the condition of the
realization of the Jouguet detonation can be concluded

as

vdetJ < ξw <
c2+
vdetJ

, if c+ > vdetJ

no Jouguet detonation mode, if c+ < vdetJ .

(A4)

Recall that we have shown the minimum of vdetJ (α+) is
c−, then when c+ < c−, the condition c+ > vdetJ cannot
be satisfied at all and the purple region will vanish in
Fig. 4. Therefore, the Jouguet detonation mode can exist
only in the c+ > c− case.
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