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Abstract

We apply the gradient expansion approximation to the light-cone gauge, obtain-
ing a separate universe picture at non-linear order in perturbation theory within
this framework. Thereafter, we use it to generalize the δN formalism in terms of
light-cone perturbations. As a consistency check, we demonstrate the conservation
of the gauge invariant curvature perturbation on uniform density hypersurface ζ
at the completely non-linear level. The approach studied provides a self-consistent
framework to connect at non-linear level quantities from the primordial universe,
such as ζ, written in terms of the light-cone parameters, to late time observables.

Keywords: cosmological perturbation theory, geodesic light-cone gauge

1 Introduction

Advances in cosmological observations have provided us with high-precision methods

to study the universe [1–3]. So far, linear cosmological perturbation theory has been

the main tool to describe the early universe, particularly the primordial seeds that are

believed to be produced by quantum mechanical fluctuations during inflation. These
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fluctuations grow during the quasi-exponential expansion epoch and freeze outside

the horizon. Later on, they re-enter the horizon during a power-law expansion epoch,

giving rise to the large-scale structure observed in the universe.

In order to link the gauge invariant quantity that characterizes such primordial

fluctuations with the observations, we need to have a good understanding of their

behaviour outside the horizon. An interesting example is given by the primordial

curvature perturbation on the uniform density hypersurface ζ, which is expected to

be of order 10−5 at the last-scattering surface and has been shown to be conserved

outside the horizon, both at the linear [4] and the non-linear level [5]. The first-order

treatment for the primordial fluctuations agrees with the observations of a nearly

Gaussian, scale-invariant power spectrum. Although non-linearities are expected to be

small, they are however unavoidable as a consequence of the non-linear evolution of the

perturbations. Detection of the related non-Gaussianities can then provide important

insights into early universe models, such as the inflationary ones [6, 7].

The evolution of ζ is proportional to the non-adiabatic (if any) contribution in

the energy-momentum tensor, as shown in [4, 5]. In the linear regime, ζ has been

successfully calculated using the δN formalism [8–13], which has been extended to the

exact non-linear level [5] by applying the first-order gradient expansion directly in the

equations of motion provided by the Arnowitt-Deser-Misner (ADM) formalism [14].

The first-order gradient expansion, also known as the separate universe (SU) scheme,

describes the universe as a set of FLRW geometries with independent equations of

motion and is a good approximation in the regime of large comoving wavelengths

compared to the horizon [4, 5, 8, 9].

The great advantage of the SU scheme is that the equations of motion within this

approximation have the same form both for the background and perturbed universe

with the exception of the momentum constraint, which vanishes in the background.

As a consequence, one can obtain the non-linear field’s evolution from the background

one by imposing non-linear initial conditions [15].

In [16], this formalism has been generalized to include stochastic effects and derive,

within the framework of the stochastic approach [17] and its relation with QFT [18, 19],

non-perturbative correlation functions for single-field slow-roll inflation. Further exten-

sions have also studied ultra-slow-roll inflation [20–23], allowing for the investigation

of primordial black-hole production [20–25]. The δN formalism has also been extended

to the case when cosmic shear is included to describe the anisotropic expansion. In

such a framework, the evolution of gravitational waves has been explored both for the

case of a Bianchi I universe [26] and when couplings with external fields are present

[27, 28].
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A formalism that connects the picture of the primordial universe presented so far

to late-time observables would be greatly welcome, especially if such a connection can

account for non-linearities. Since the Geodesic Light-Cone (GLC) gauge [29] gives the

chance of describing light-like observables in the late universe exactly, such as the

redshift and the distance-redshift relation [29–36], the galaxy number count [37, 38],

the non-linear corrections to the CMB spectra [39, 40], and also Ultra-Relativistic

particles [41], this is a natural framework to pursue the aforementioned program.

Moreover, there has also been recent interest in the GLC gauge application to

the study of backreaction effects from the primordial universe [36, 42–44]. Although

these are very interesting prospects, one still must face the fact that the evolution

of perturbations in the GLC gauge is quite involved already at linear order (see [44]

for an analytical treatment). An alternative approach to this may be provided by

numerical attempts, as done for instance in [45] for the linearized evolved solution

for the gravitational potential on the past light-cone. In this manuscript, we take a

different route by providing simplified equations of motion using the SU approach on

the past light-cone.

The connection between the primordial origin of inhomogeneities and their obser-

vations has to deal with the fact that the latter are done along our past light-cone,

whereas the primordial universe is usually described using spatial hypersurfaces. Dur-

ing primordial epochs, these hypersurfaces are naturally described in terms of uniform

field slices. In fact, in a single-field inflationary scenario, the inflaton is the only clock

available. Therefore, the natural slicing which describes the dynamical space-time evo-

lution is the one given by uniform inflaton hypersurfaces, which also fixes the time

gauge mode. Another interesting fixing for the time coordinate is the one describ-

ing uniform density slices. This is an interesting fixing because it directly translates

the density perturbations into curvature perturbations, providing the initial condi-

tions for large-scale structure formation. These two gauge fixings are usually called,

respectively, uniform field gauge (UFG) and uniform density gauge (UDG).

To make contact between these gauges and the GLC one, we recall that, although

the GLC time coordinate is fixed to the time measured by a free-falling observer, a

generalization of this gauge is provided in [44], the so-called Light-Cone (LC) gauge. In

this generalization, the time gauge choice is left unspecified, allowing us to fix the lapse

function for describing the uniform field and uniform density slicing on the past light-

cone. An alternative approach could be to start from the cosmological perturbation

theory on the past light-cone developed in [36, 42], and then perform the necessary

gauge transformations. A description of the primordial universe in terms of the LC

gauge could be a promising framework to connect non-linearly the late universe to the
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primordial one, given in terms of light-cone parameters, since cosmological observables

can be described non-perturbatively within this gauge.

Here, we will take a first step in this program. Moreover, we underline that the

success of this program would probably require also numerical studies besides the

analytical ones developed so far, regarding the late time evolution of the perturbations.

In particular, along this manuscript, we will discuss the gradient expansion as done

on the observer’s past light-cone, which allows us to obtain a SU picture and the δN
formalism in terms of light-cone perturbations. We will provide this both at the fully

non-perturbative level, using the LC gauge [44], and, as a consistency check, at the

linear level using the light-cone perturbation theory [36, 42]. By considering the LC

gauge as a non-linear ADM decomposition (see [44] for more details), we will show

that, unlike previous literature, where the shift vector was a first-order term in the

gradient expansion [5, 15, 26], in the LC gauge the shift vector has to be taken into

account also for the background. This is an important difference, since in this case

the shift vector corresponds to the direction of propagation of the photon, and it is

used to take into account inhomogeneities along the photon propagation direction.

However, we will neglect spatial derivatives of such shift vector since they correspond

to light-cone distortion effects which are expected to be negligible on large scales.

After such implementations, we will show that the SU picture can be realized in

the LC gauge (i.e., we will obtain evolution equations with the same form for both

perturbed and background universe). Furthermore, within the gradient expansion

approximation, we will verify at the fully non-linear level that the curvature pertur-

bation on uniform density slices ζ is a conserved quantity (for adiabatic pressure) also

when the light-like slicing of spacetime is used. This is a sanity check that confirms

how the SU picture can be extended also to the case of the light-cone gauge.

In summary, we will present a novel approach to study the primordial universe

within the past light-cone, by developing the δN formalism in the LC gauge. We will

verify that the LC gauge allows for a non-linear description of the primordial universe

in terms of light-cone parameters, and that the SU picture can be realized in this

gauge by neglecting spatial derivatives of the shift vector.

The manuscript is organized as follows. In Sect. 2 we obtain a generic SU descrip-

tion where we keep inhomogeneities along the geodesics in terms of an ADM metric.

In Sect. 3 we present the set of light-cone gauges used here and, with a non-linear dif-

feomorphism, we show how the standard ADM formalism relates with the LC gauge.

Moreover, we provide the LC gauge fixing condition in terms of the ADM variables up

to non-linear order. Thereafter, we discuss the SU formalism on the past light-cone,

which is also presented for the GLC gauge. Sect. 4 is devoted to the computation of

the non-linear number of e-folds and its relation to spacetime perturbations, which
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allow us to obtain the non-linear scale factor in the LC. We then give a proof for

the super-horizon conservation of ζ, at both linear and non-linear order in perturba-

tion theory, and first order in the gradient expansion, for adiabatic fluids. Finally, we

provide a generalization of the δN formalism in the LC gauge. In Sect. 5, our main

conclusions are summarized and discussed. In Appendix A we provide the linear δN
formalism as a consistency check of the obtained results.

2 Separate universe

Let us begin by introducing a systematic approximation scheme, which can be used

when the wavelength of the perturbations is larger than the physical horizon. This

approximation, widely known as the SU approach [4, 5, 8, 9], consists of employing

the already mentioned gradient expansion perturbative scheme. This is based on the

quantity ϵ ≡ k/(aH), rather than on the amplitude of the perturbations. This quantity

compares the comoving wavenumber of a given mode k/a with the expansion rate H.

As an example, within this approximation scheme, terms with one spatial derivative

will be first order1 in ϵ. The first order gradient expansion is known as the SU approach,

since in this case the equations of motion for a local patch of the perturbed space-time

have the same form of the FLRW background ones [15]. Thus, in this view the universe

can be described as a collection of FLRW geometries, each one locally described by a

different scale factor.

This approximation can be particularly interesting to study the super-horizon evo-

lution of the curvature perturbation ζ with a light-cone foliation of the spacetime. In

fact, the SU approach is used in [4, 5] to show the conservation of ζ on super-horizon

scales, for adiabatic pressure, at linear and non-linear order in perturbation theory.

By applying the gradient expansion to the non-linear ADM formalism [15] one can

provide a SU scheme in the uniform curvature gauge (UCG). It has been shown that

the shift vector has a decaying evolution, and therefore during the exponential expan-

sion of the universe, it can be considered as a first order term in the gradient expansion.

Also analyzing the consistency between the Hamiltonian and momentum constraints,

it has been shown that, taking into account also the momentum constraints, the results

differ only by a decaying solution [15] (see also [46] for a similar proof beyond the

context of slow-roll inflation). Moreover, it is shown that the additional information

in the momentum constraints should be O(ϵ3) in the gradient expansion. Thereby, for

super-horizon perturbations, the SU scheme is a good approximation.

1As an example in a flat space, under a Fourier transformation, spatial derivatives give rise to terms

proportional to k. Here we are considering that for a quantity Q, 1
a∂iQ ≪ ∂tQ ≈ HQ [10].
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In this manuscript, we will provide a SU picture for the LC [44] and GLC [29]

gauges. As we will see later, one difference with the previous works is that, when we

consider the LC gauge as an ADM decomposition, the shift vector does not vanish,

not even on the background (see, for instance [44]). In fact, in the LC gauge, the

shift vector describes the direction of observation. On the other hand, we will neglect

the divergence of the shift vector, which describes the divergence of the direction of

observation in the language of 1 + 3 formalism.

2.1 ADM formalism

In this section we provide the SU set of equations for generic perturbations. Firstly,

we introduce the ADM splitting and the 1 + 3 evolution equations, then we obtain

general conditions which allow a SU evolution of the perturbations. For a general

formulation of the SU approach in the Hamiltonian formalism, we redirect the reader

to [47]. Thereafter, we show how also the LC gauge satisfies these conditions. Starting

with the ADM metric

ds2ADM = −M2dt2 + fij
(
dxi +N idt

) (
dxj +N jdt

)
, (1)

one can prove that, with a suitable choice of the coordinates, N i = O (ϵ) and therefore

∂iN
i = O

(
ϵ2
)
. This condition was assumed in the references [4, 5], and it was proved

in [15] considering the UCG.

Let us now work with the ADM foliation of Eq. (1). Thanks to this description of

non-linear general perturbations, made on top of a FLRW background, we will show

how to recover a SU picture even if the shift vector does not vanish in the background.

It rather combines with the time derivative to provide a derivative along the time-like

motion.

The vector nµ normal to the space-like hypersurfaces t = const is given by

nµ =
∂µt

(−∂νt∂νt)
1
2

, (2)

which satisfies

nµ = −Mδtµ , nµ∂µ =
1

M
(
∂t −N i∂i

)
, (3)

with correspondent induced metric given by

fµν = gµν + nµnν . (4)

This metric can be used to define the following induced quantities

E ≡ nµnνTµν , pµ ≡ −fµνnρTνρ , Sµν ≡ fµρfνσTρσ , (5)
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where E is the energy density, pµ is the energy flux (or momentum) and Sµν is stress

tensor. Then, the standard energy-momentum tensor can be written as

Tµν = Enµnν + pµnν + pνnµ + Sµν . (6)

Now we have everything that we need to present the decomposed Einstein

equations. These are developed in full details in [44], where the authors have special-

ized to the LC gauge as a 1+1+2 ADM foliation. As a starting point, we can extract

the energy (time-time) and momentum (time-space) constraints respectively given by2

(3)R+Θ2
n −KijK

ij = 2E , −DjK
j
i +DiΘn = pi , (7)

where we defined the extrinsic curvature as Kµν ≡ ∇(µnν). We can then also define

the expansion rate Θn as

Θn ≡ fµνKµν . (8)

The evolution of the induced metric fij and of Kij is then obtained from the space-

space decomposition

(∂t − LN ) fij = 2MKij ,

(∂t − LN )Kij = M
[
2KikK

k
j −KijΘn −(3) Rij + Sij −

1

2
fij (S − E)

]
+DiDjM ,

(9)

where LN is the Lie derivative along the field N i.

Finally, the equations for the matter sector ∇µT
µν = 0 are given by

(∂t − LN )E = −Di

(
Mpi

)
−M

(
ΘnE +KijS

ij
)
,

(∂t − LN ) pi = −Dj

(
Sj
iM

)
−MΘnpi − EDiM . (10)

Let us now follow the decomposition of [26] by extracting the shape-preserving volume

expansion out of the spatial metric. First, we make a conformal re-scaling of fij to

fij ≡ e2Ξf̂ij , (11)

by requiring that the determinant f̂ = det[f̂ij ] = 1. In this way, we can interpret eΞ as

the local effective scale factor. Then, we re-scale accordingly also the other quantities

Âij = e−2Ξ

(
Kij −

1

3
fijΘn

)
,

2From now on, for a generic tensor Cij , we will denote its trace with C ≡ fijCij .
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(3)R̂ij = e−2Ξ

(
(3)Rij −

1

3
(3)Rfij

)
,

Ŝij = e−2Ξ

(
Sij −

1

3
fijS

)
. (12)

Before applying the decomposition (12) to Eqs. (9) and (10), we define M d

dλ̃
≡

(∂t − LN ) and compute the trace of the evolution of Aij ≡ e2ΞÂij

f ij (∂t − LN )Aij =
1

M

[
f ijfil

d

dλ̃

(
fjkA

lk
)
+ f ijfjkA

lk d

dλ̃
fil

]
=

1

M
d

dλ̃

(
flkA

lk
)
+ f ijfjkA

lk2Kil

=2AijA
ij = 2ÂijÂ

ij , (13)

where we have used the first of Eqs. (9) from the first to the second line, and the fact

that Aij is trace-less from the second to the last line.

Now we can apply the decomposition (12) to Eqs. (9), using also Eqs. (7) and (13),

to obtain

dΘn

dλ̃
=− Θ2

n

3
− ÂijÂ

ij − 1

2
(E + S) +

1

M
D2M ,

dΞ

dλ̃
=
Θn

3
,

df̂ij

dλ̃
=2Âij . (14)

Then the evolution of the trace-less quantity Âij is given by

dÂij

dλ̃
= −1

3
ΘnÂij + 2e−2ΞAikA

k
j + Ŝij − (3)R̂ij +

1

M

(
DiDj −

1

3
fijD

2

)
M . (15)

At this point, we will apply our gradient expansion scheme without any gauge

fixing. Hence, considering that nµ = 1
M

(
1,−N i

)
, for a generic tensor lij , it holds

1

M
(∂t − LN ) lij = nµ∂µlij + lik∂jN

k + ljk∂iN
k =

d

dλ
lij +O

(
ϵ2
)
, (16)

where we define nµ∂µ ≡ d
dλ and then we have d

dλ̃
= d

dλ +O
(
ϵ2
)
. This corresponds to

neglect terms proportional to ∂iN
j = O

(
ϵ2
)
in Eq. (16), as done also in [15, 26]. This

is our main assumption and comes from the fact that, due to the spatial derivatives,

the momentum constraint of Eq. (7) is a first order relation, i.e. pi = O (ϵ). Hence,
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using Eq. (5), we get

pi = − 1

M
(
Tit −N jTij

)
. (17)

Such Eq. (17) can be satisfied either by the strong condition

Tit ∼ N i = O (ϵ) , (18)

or by the weaker condition that only the combination on its r.h.s. is O(ϵ). Along this

paper, we will adopt the stronger condition to justify our claim that ∂iN
j = O(ϵ2),

in agreement with [4, 5, 15, 26].

Moreover, just as done in some previous works [4, 5, 15], we will also neglect
(3)Rij ∼ R ∼ Ŝij = O

(
ϵ2
)
since all of these terms contain double spatial derivatives.

For what concerns the anisotropic stress Ŝij , this is given by combinations of double

spatial derivatives acting on the scalar fields in the matter sector. The condition Ŝij =

O(ϵ2) was relaxed in [26] only for Bianchi geometries and on [27, 28] due to the

presence of gauge fields.

With these considerations, we can decompose again the metric evolution provided

by the first of Eqs. (9) thanks Eqs. (12). Hence, at first order in the gradient expansion,

we obtain3

dΞ

dλ
=

Θn

3
,

df̂ij
dλ

= 2Âij . (19)

Moreover, we can prove that Âij is at least a second order term in the gradient

expansion at every order in perturbation theory. In fact, following [15], from Eq. (15)

we get
d

dλ
Âij = −1

3
ΘnÂij + 2ÂikÂ

k
j +O

(
ϵ2
)
, (20)

and we choose a coordinate system such that Aij vanishes on the background4. Hence,

at O(δ) in perturbation theory, we get that ÂikÂ
k
j ∼ O(δ2) and then Eq. (20), with

first of Eqs. (19), becomes

d

dλ
Âij = −dΞ

dλ
Âij +O

(
δ2, ϵ2

)
. (21)

The latter equation is clearly solved by

Âij ∝ e−Ξ , (22)

3Note that, although Eqs. (19) are very similar to Eqs. (14), after the gradient expansion we have replaced
d
dλ̃

= d
dλ + O(ϵ2).

4This is a quite general condition for isotropic spaces and, as we will show later, this is also the case for

an isotropic LC background
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and proves that the O(1) term in the gradient expansion of Âij decays when Ξ grows

in time. Then it can be neglected. Therefore, we obtain that Âij is at least first order

in ϵ. As a consequence, ÂikÂ
k
j is not only second order in δ expansion but also at least

O
(
ϵ2
)
. Thanks to this result, this proof can be repeated iteratively to any order n-th

in perturbation theory, leading then to

d

dλ
Âij = −dΞ

dλ
Âij +O

(
δn+1, ϵ2

)
. (23)

The solution in Eq. (22) solves also Eq. (23) and this proves that also the term Âij ,

which is O(ϵ), is decaying and can be neglected. So we have proven our initial claim

that Âij is at least of order ϵ2. Hence, considering the evolution of the spatial metric

in Eqs. (19), we have that

d

dλ
f̂ij = O

(
ϵ2
)
, (24)

at any order in perturbation theory.

The above analysis was performed in [15] leading also to N i = O (ϵ) when N i

vanishes at the background. For the sake of clarity, we underline that in [15] the UCG

has been fixed and then f̂ij corresponds to the tensor modes. This also shows that the

evolution of the tensor modes can be neglected at linear order in ϵ.

Finally, our complete set of equations to order O
(
δn+1, ϵ2

)
is given by the energy

and momentum constraints

E =
Θ2

n

3
, pi =

2

3
DiΘn , (25)

with their respective evolution equations given by

dE

dλ
= −Θn

(
E +

1

3
S

)
,

dpi
dλ

= − 1

3M
Di (MS)−Θnpi . (26)

In order to complete our set of SU equations we also need the decomposed spatial

metric evolution given by Eqs. (19) and (24). Also we have that the expansion rate

evolution is given by

dΘn

dλ
=− 1

3
Θ2

n − 1

2
(S + E) . (27)

As one can easily see, Eqs. (19) and (24)-(27), valid at first order in the gradient

expansion and to all orders in perturbation theory, exactly correspond to the homoge-

neous and isotropic background equations if one neglects the momentum constraint.
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These then prove that the condition

(∂t − LN ) fij =
1

M
d

dλ
fij +O

(
δn+1, ϵ2

)
, (28)

with the fact that ∂iN
i, Ŝij , Rij and R are O

(
δn+1, ϵ2

)
, reproduces the SU picture,

and matches with previous works [4, 5, 15] if λ = t and N i∂i = O(ϵ2).

In the next section, we will specialize this construction to non-linear LC pertur-

bations on the top of a FLRW background. Thanks to the freedom of the choice of

the lapse function in the LC gauge, we will then provide a general SU formalism. Fur-

thermore, within the synchronous fixing of the lapse function, our formalism will be

extended also to the GLC gauge.

3 Light-Cone gauge

Let us now introduce the LC gauge [44]. This is a generalization of the GLC gauge

[29], where the lapse function is left unfixed and is built as a foliation of the space-

time thanks to a set of four coordinates adapted to the observed past light-cone. In

particular, the proper time of a generic observer is described by the coordinate t. This

corresponds to the proper-time of a free-falling observer when the GLC fixing of the

lapse function occurs. The coordinates w and θa satisfy the same properties as in the

GLC gauge, i.e. w describes the observer’s past light-cone and θa = const describes

the light-like geodesics. Given that, the non-linear line element is [44]

ds2LC = Υ2dw2 − 2MΥdwdt+ γab (dθ
a − Uadw)

(
dθb − U bdw

)
. (29)

In this case, the vector nµ in Eq. (2) is given by

nµ =

(
1

M
,
1

Υ
,
Ua

Υ

)
. (30)

The advantage of the metric (29) is that it simplifies the description of light-like

signal. For instance, the light-like geodesics are exactly solved by kµ = −ωδwµ , where kµ
is the four-momentum of the photon and ω is its physical frequency. Moreover, for the

GLC gauge where M = 1, also the time-like geodesic is exactly solved by uµ = −∂µt.
In this case uµ = nµ is the four-velocity of the geodesic observer and is perpendicular

to the three-dimensional hypersurfaces of t = const. This particular choice simplifies

the description of late-time cosmological observables and allows a completely non-

linear description of such observables as a factorization of the metric entries [29–40].

As relevant examples, the expressions for the cosmological redshift and the angular
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distance are given, in a exact way and for an arbitrary geometry, directly as [29, 33]

1 + z =
(uµk

µ)s
(uνkν)o

=
Υo

Υs
, d2A =

√
γ(

det∂τγab

4
√
γ

)
o

, (31)

where z is the redshift of the source, the subscript s and o stands for a quantity

evaluated at the source and observer position, and γ is the determinant of γab.

3.1 LC gauge shift vector

Here, we will use N i
LC (instead of N i)5 to describe the shift vector of the LC gauge,

thus avoiding confusion when we relate N i
LC to the standard N i. Hereafter, we will

provide a SU picture allowing for different lapse function fixings within the LC gauge

[44]. This is a crucial step to obtain the δN formalism on the past light-cone.

In [44] was shown that the non-linear LC gauge can be interpreted as a 1 + 1 + 2

ADM decomposition with coordinates xµ = (t, w, θa). This proviso, the shift vector

for the first 1 + 3 decomposition is then given by

N i
LC = −M

(
1

Υ
,
Ua

Υ

)
, NLC

j = −Υδwj . (32)

For what concerns the shift vectorN i
LC , this is orthogonal to the surface at constant

t and w. Hence, if we recall that the photon four-momentum in the LC coordinates is

kµ = ωM−1Υ−1δµt , within the 1+3 decomposition we can write the shift vector as

N i
LC =

ki

ω
− ni . (33)

Hence, since nµ is a time-like vector, N i
LC can be interpreted as the space-like compo-

nent of the propagation direction of an incoming photon (see [48]). To completely fix

the LC gauge, we still have to fix three conditions. These are given by the following

ones

fww = Υ2 + U2 , fwa = −Ua , fab = γab . (34)

As one can see, Nw
LC = 1

a on the background level, so it does not vanish when

ϵ → 0. We then have that Nw
LC = O (1). With this choice of coordinates, however,

we will show that the condition ∂iN
i
LC = O

(
ϵ2
)
holds. In order to do so, we first

perform a finite background coordinate transformation on the metric in Eq. (1), from

the xi = (r, θa) coordinates to the light-cone ones yi = (w, θa), given by

dr = dw − dt

a
, dθa = dθa , dt = dt , (35)

5For the LC metric, Latin indices will always refer to the coordinates w and θa.
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in order to relate N i to N i
LC . A direct computation for the controvariant components

of N i returns that

Nr =
1

a
− M

Υ
, Na = −U

a

a

(
1− 1

a
+

M
Υ

)
, (36)

or, equivalently, in a covariant form

Nr = −MΥ+
Υ2 + U2

a
, (37)

and

Na = −Ua

a
. (38)

Finally, using Eqs. (32) and (36), the gradient expansion condition of Eq. (18)

given by N i = O(ϵ) returns ∂iN
i = ∂iN

i
LC = O

(
ϵ2
)
. Within the gradient expansion,

we then have

∂rN
r =− ∂w

(
M
Υ

)
= O

(
ϵ2
)
,

∂aN
a =− 1

a
(1−Nr) ∂aU

a + Ua∂aN
r = O

(
ϵ2
)
, (39)

which indeed show that ∂wΥ
−1 ∼ ∂wM ∼ ∂aU

a = O
(
ϵ2
)
. This comes from the

fact that both M and Υ have background counterparts, therefore, both ∂wΥ
−1 and

a−1∂wM are of order ϵ2. The condition ∂aU
a = O(ϵ2) is obtained by using the fact

that Nr = O(ϵ) on the second of Eqs. (39).

3.2 Separate Light-Cones

As it has been shown in Sect. 2.1, one can still obtain a SU picture when the shift

vector combines to form an integral along the geodesics and only its spatial derivatives

are neglected. We will prove that this is the case for ∂iN
i in Eq. (18) and for ∂iN

i
LC

in Eq. (39). Additionally, we need the trace-less part of the extrinsic curvature Âij to

be negligible in order to obtain the SU scheme for the LC metric.

The condition for the shift vector is given by

∂iN
i
LC = ∂w

(
M
Υ

)
+ ∂a

(
MUa

Υ

)
= O

(
ϵ2
)
, (40)

which, with Eqs. (9), implies

d

dλ
fij = 2Kij +O

(
ϵ2
)
, (41)

13



where in LNfij we have neglected ∂iN
i but not N i∂ifjk. In fact, the latter combines

with ∂tfij to reconstruct d
dλfij , following the general prescription given in Eq. (16).

One may note the similarity between Eqs. (41) and (9). This is because Eq. (9) is

the non-perturbative version in the gradient expansion of Eq. (41), where we consider

instead the gradient expansion on the parameter d
dλ̃

= d
dλ +O(ϵ2).

Using Eqs. (34) at the background level, i.e.

fww = a2 , fwa = 0 , fab = a2r2q̄ab , (42)

one gets that dfij/dλ = 2Hfij , where H is the background expansion rate defined as

H ≡ Θ̄n/3, Θ̄n is the extrinsic curvature on the background and q̄ab = diag (1, sin θ).

Thus, from Eq. (41), we also see that Âij vanishes on the background. Following the

same procedure adopted in Eqs. (21) and (23), we get that Âij = O
(
ϵ2
)
also when

the LC gauge is fixed.

Now, by taking the trace of Eq. (41), we obtain

Θn =
1√
−g

∂µ
(√

−gnµ
)

=
1

MΥ
√
γ

d

dλ
(MΥ

√
γ) + ∂µn

µ

=
1

Υ
√
γ

d

dλ
(Υ

√
γ) +

1

M
d

dλ
M+ ∂µn

µ

=
1

Υ
√
γ

d

dλ
(Υ

√
γ) +

1

M

[
∂w

(
M
Υ

)
+ ∂a

(
MUa

Υ

)]
=

1

Υ
√
γ

d

dλ
(Υ

√
γ)− 1

M
∂iN

i
LC . (43)

Thanks to this last equation, within the fixing M = 1, we realize that the difference

between Θu ≡ ∇µu
µ and Θn is of order ϵ2. We also have from Eq. (19), where we

neglect ∂iN
i
LC in Θn

dΞ

dλ
=

1

3Υ
√
γ

d
(
Υ
√
γ
)

dλ
+O

(
ϵ2
)
, (44)

which preserves the background form.

Considering now the homogeneous and isotropic LC background, namely Ῡ
√
γ̄ =

a3r2, where the bar refers to background quantities, Eqs. (25) return

Θ̄2
n

3
= 3H2 = 3

(
∂ta

a

)2

= Ē , background

Θn
2

3
=

1

3

[
1

(Υ
√
γ)

d
(
Υ
√
γ
)

dλ

]2

= E +O
(
δn, ϵ2

)
. non-perturbative (45)

14



Moreover, Eqs. (26) and (27) give at the background level

∂tĒ = −3H

(
Ē +

1

3
S̄

)
, ∂tΞ̄ = H , ∂tH = −3H2 − 1

2

(
Ē + S̄

)
.

(46)

Here we remark that Eqs. (45) mean that the non-linear LC perturbations in a FLRW

universe at first order in the gradient expansion do evolve as a set of glued background

universes with a different set of (a, E, S) in each patch. Within this picture, then Υ
√
γ

can be linked to the effective local scale factor. To complete the set of equations that

have the same form for the background (last of Eq. (46)) and the perturbed universe,

we also have from Eq. (27)

d

dλ

[
1

(Υ
√
γ)

d(Υ
√
γ)

dλ

]
= −1

3

[
1

(Υ
√
γ)

d(Υ
√
γ)

dλ

]2
− 1

2
(S + E) +O

(
δn, ϵ2

)
. (47)

Therefore, the SU scheme holds with the universe evolving as a set of homogeneous

and isotropic LC background, where λ provides the evolution of inhomogeneities along

nµ. So far we have provided a consistent SU on the past light-cone in terms of LC

gauge entries, which is a fundamental step to provide the δN formalism on the past

light-cone in the next Sect. 4.

3.3 The Geodesic Light-Cone gauge

Let us now apply the SU scheme described in the previous subsection to the case of the

GLC gauge given by Eq. (29) with M = 1, and show how it simplifies the evolution

of the density perturbations on the past light-cone. This gauge automatically provides

∇µu
µ=∇µn

µ, then, one can relate the expansion of the 3D-hypersurfaces orthogonal

to nµ to the matter content described in terms of uµ.

Hence, we recall that the comoving four velocity is given by uµ =
(
1,Υ−1,Υ−1Ua

)
[29, 48], we then have that the expansion of the 3D-hypersurfaces is

Θu = ∇µu
µ =

∂tΥ

Υ
+
γab∂tγab

2
+
γab

2Υ
∂wγab +

1

Υ
∂aU

a +
Uaγbc

2Υ
∂aγbc , (48)

which can be re-written in a more suitable form as

Θu =
1

Υ
√
γ

d
(
Υ
√
γ
)

dλ
+ ∂µu

µ , (49)

where d
dλ ≡ uµ∂µ accounts for inhomogeneities along the geodesics and ∂µu

µ = ∂iN
i

is O(ϵ2), as shown in Eqs. (39).
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An interesting feature of Eq. (49) is that the first term contributes both to the

background and to the perturbative level whereas the last term contributes only to

the perturbative level. We thus obtain a separate universe description using Eq. (49)

as aimed.

In order to provide the conservation of ζ, when the pressure is adiabatic, we need

to analyze the energy-momentum conservation in the GLC gauge for the case of a

perfect fluid. Starting from

Tµν = (ρ+ p)uµuν + gµνp , (50)

where ρ and p respectively describes the energy-density and pressure as measured by an

free-falling observer. The conservation law along the direction of uν , i.e. uν∇µT
µ
ν = 0,

exactly returns
dρ

dλ
= − (ρ+ p)Θu . (51)

Hence, by using Eq. (49), we have

dρ

dλ
= − (ρ+ p)

[
1

Υ
√
γ

d
(
Υ
√
γ
)

dλ
+ ∂µu

µ

]
. (52)

Eq. (52) is a fully non-linear relation between geometry and matter content. As an

important remark, since Eq. (52) is a fully non-linear equation, it can be seen as a

dynamic equation for the exact density perturbations.

According to what outlined so far, within the gradient expansion, where ∂µu
µ =

∂iN
i = O

(
ϵ2
)
, Eq. (52) can then be written as

dρ

dλ
=− (ρ+ p)

1

Υ
√
γ

d
(
Υ
√
γ
)

dλ
+O(ϵ2) . (53)

In general, pressure and energy density are linked by an equation of state as p = qρ.

The value of q can be time-dependent, accordingly to the specific era when inho-

mogeneities are evolving (as happens, for instance, during the slow-roll inflationary

stage). This makes Eq. (53) in general quite complicated to be solved. However, dur-

ing the late time epochs (e.g. radiation, matter or cosmological constant dominated

universe), q is constant. In this case, Eqs. (53) becomes

dρ

dλ
=− ρ

1 + q

Υ
√
γ

d
(
Υ
√
γ
)

dλ
+O(ϵ2) , (54)

which is exactly solved by

ρ(λ) = A (Υ
√
γ)

−(1+q)
(λ) +O(ϵ2) , (55)
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where A is a constant. Eq. (55) gives the exact link between the geometry and the

energy density in terms of light-cone metric entries. It is also the starting point to

describe non-linear features of inhomogeneities on super-horizon scales. In fact, in

the following we will discuss how Υ
√
γ relates with the gauge invariant curvature

perturbation ζ and how both can be computed using the δN formalism. Furthermore,

we will show under which conditions the quantity ζ is conserved on super-horizon

scales.

4 Curvature perturbation evolution

In this section we will study the curvature perturbations along the past light-cone using

the SU scheme developed in the previous section. To this aim, we will start by con-

sidering the linear order in perturbation theory, and by using the scalar-pseudoscalar

decomposition developed in [36, 42]. Hence, we will first review this perturbation the-

ory, following the approach of [4, 5] to show the conservation of ζ along the past

light-cone. Thereafter, we will generalize this proof to non-linear order in the ampli-

tude of the perturbations and to first order in the gradient expansion, which allow us

to obtain ζ at this perturbative level in terms of light-cone perturbations. Finally, we

will generalize the δN formalism on the past light-cone.

4.1 Linear evolution and comparison with previous results

In this section, we want to linearize Eqs. (54). To this aim, we first recall the linear

perturbation theory for the GLC coordinates, presented in [36, 42]. Firstly, we consider

general perturbations, i.e. without fixing the GLC gauge. The metric and its perturbed

inverse are then given by

gµν = ḡGLC
µν + δgµν = a2


 0 −a−1 0⃗

−a−1 1 0⃗

0⃗T 0⃗T γ̄ab

+

 L M Vb

M N Ub

V T
a UT

a δγab


 , (56)

and

δgµν =

−
(
a2L+N + 2aM

)
−a−1

(
a2L+ aM

)
−a (aV a + Ua)

−a−1
(
a2L+ aM

)
−L aV a

−a (aV a + Ua) aV a −a−2δγab

 , (57)

where, following [36, 42], we can decompose Ua, Va and δγab as

Ua = r2
(
Dau+ D̃aû

)
,

Va = r2
(
Dav + D̃av̂

)
,
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δγab = a2r2
[
(1 + 2ν) q̄ab +Dabµ+ D̃abµ̂

]
. (58)

Here, u, v, ν and µ are scalars, and û, v̂ and µ̂ are pseudoscalar degrees of freedom

under spatial rotations. Moreover, the angular derivatives are defined as

Dab = D(aDb) −
1

2
qabD

2 , D̃ab = D(aD̃b) , (59)

where D̃a = ϵbaDb, and ϵ
b
a is the anti-symmetric tensor. We remark that Dab and D̃ab

are trace-less, so that the trace of δγab is given by the trace of qab = (1 + 2ν) q̄ab.

At this point, let us also linearize the energy density as

ρ = ρ̄ (1 + δρ) . (60)

In this expansion, however, we keep both ρ̄ and δρ as function of the time-like param-

eter λ. By doing this, we then keep track of the perturbations as projected onto the

exact time-like geodesic. Starting from Eqs. (58), we then obtain that

√
γ = a2

√
γ̄ (1 + 2ν) . (61)

At this point, we want to use the metric in Eq. (56) to compute the expansion

volume Θn = ∇µn
µ of the hypersurfaces orthogonal to t defined in Eq. (2). Then, the

volume expansion will be given by

Θn =
1√
−g

∂µ
(√

−g nµ
)
=

1

2
gαβ

d

dλ
gαβ + ∂µn

µ , (62)

where nµ∂µ = d
dλ . Using this last equation, and the fact that Θn = Θu + O(ϵ2), as

shown in Eq. (43), we then have

Θu = 3H

[
1 +

1

2

(
a2L+N + 2aM

)]
+

1

2

d

dλ
(N + 4ν) +O(ϵ2) , (63)

where we are neglecting the terms(
∂w +

2

r

)
(N + aM) = O

(
ϵ2
)
, Da (Ua + aV a) = O

(
ϵ2
)
, (64)

since they are proportional to ∇iBi in standard perturbation theory (see [36, 42]).

The same happens in the standard approach, see [4, 5]. The reason why ∇iBi can be

neglect is that, in the language of the gradient expansion applied to the ADM metric,

this term is the divergence of the shift vector, hence second order in the gradient
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expansion. As a side remark, we underline that Eq. (62) is given in terms of the cosmic

time by

Θn = 3H − 3∂tψ +O(ϵ2) , (65)

which is in agreement with [4].

Let us now consider the energy-momentum tensor conservation projected onto uµ.

From Eq. (51), we have that

dρ

dλ
+ (ρ+ p)Θu = 0 . (66)

Thanks to Eqs. (60) and (63), and by using the equation of state p = qρ, Eq. (66) gives

dρ̄

dλ
+ 3Hρ̄(1 + q) = 0 ,

d (ρ̄δρ)

dλ
+ ρ̄ (1 + q)

{
3H

[
δρ+

1

2

(
a2L+N + 2aM

)]
+

1

2

d

dλ
(N + 4ν)

}
+O(ϵ2) = 0 ,

(67)

for the background and perturbed quantities respectively. Let us now fix the GLC

gauge, which satisfies the following conditions [36]

a2L+N + 2aM = 0 ,

∂w (N + aM) =
1

2
∂wN = O(ϵ2) ,

∂a (Ua + aV a) = ∂aUa = O
(
ϵ2
)
. (68)

Then, by inserting first of Eqs. (67) into the second one, by using the GLC gauge

conditions given in Eqs. (68), and, finally, by integrating over the affine parameter λ,

we get

δρ(λ) = −1 + q

2
(N + 4ν) . (69)

It is worth to stress that we would obtain the same result by linearizing Eqs. (55).

Therefore, this show the self-consistency of our gradient expansion method.

At first order in the gradient expansion, for a generic adiabatic equation of state,

i.e. p = p(ρ), and by fixing the GLC gauge, we obtain, from Eqs. (63), (66) and (68),

that
1

ρ+ p(ρ)

dρ

dλ
= −3H − 1

2

d (N + 4ν)

dλ
. (70)

This equation can be integrated between two different hypersurfaces marked by the

values λ1 and λ2, and gives

1

6
(N + 4ν) |λ2

λ1
+ N̄ (λ2, λ1) = −1

3

∫ ρ(λ2,x
i)

ρ(λ1,xi)

dρ

ρ+ p(ρ)
, (71)
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where the dependence on xi in the extremes of integration denotes that we are

considering inhomogeneous hyper-surfaces. At the same time, we have defined N̄ as

N̄ (λ2, λ1) ≡
∫ λ2

λ1

Hdλ (72)

Moreover, as done for standard perturbations in [5], we want to extract the background

contribution of Eq. (71). Therefore, we start by doing this in the r.h.s. of Eq. (71),

which can then be written as∫ ρ(λ2,x
i)

ρ(λ1,xi)

dρ

ρ+ p(ρ)
=

∫ ρ(λ2,x
i)

ρ̄(λ2)

dρ

ρ+ p(ρ)
−
∫ ρ(λ1,x

i)

ρ̄(λ1)

dρ

ρ+ p(ρ)
+

∫ ρ̄(λ2)

ρ̄(λ1)

dρ

ρ+ p(ρ)
, (73)

where ρ̄ determines the background value of ρ. The last term is the background value

given by N̄ (see Eq. (72)). Therefore, we have

1

6
(N + 4ν) (λ1) +

1

3

∫ ρ(λ1,x
i)

ρ̄(λ1)

dρ

ρ+ p(ρ)
=

1

6
(N + 4ν) (λ2) +

1

3

∫ ρ(λ2,x
i)

ρ̄(λ2)

dρ

ρ+ p(ρ)
,

(74)

then, the quantity

ζ̃ = −1

6
(N + 4ν)− 1

3

∫ ρ(λ,xi)

ρ̄(λ)

dρ

ρ+ p(ρ)
, (75)

is conserved. One interesting aspect of Eq. (75) is that the geometrical terms N and

ν, present on the conservation of ζ̃, are precisely the same terms that contribute to

the linearized angular distance-redshift relation for the linearized GLC gauge [36].

Let us now link our results to the standard perturbation theory. We follow the

notation of [36, 42], where the standard metric is given by

ds2 = a2
[
− (1 + 2ϕ) dη2 − 2Bidx

idη + (γ̄ij + Cij) dxidxj
]
, (76)

and the SVT decomposition given by

Bi = Bi + ∂iB ,

Cij = −2γ̄ijψ + 2DijE + 2∇(iFj) + 2hij , (77)

where Bi and Fi are divergenceless vectors and hij is a trace-less and divergenceless

tensor. We also have

DijE =

(
∇(i∇j) − γ̄ij

∆3

3

)
E . (78)
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In this case, the trace of gij is proportional to −ψ, and then by using the relation

between standard and GLC perturbations given by [36, 42]

ψ = −1

6
(N + 4ν) , (79)

we get that

ζ̃ = ψ − 1

3

∫ ρ(λ,xi)

ρ̄(λ)

dρ

ρ+ p(ρ)
, (80)

or, equivalently, with the use of Eq. (60),

ζ̃ = ψ − 1

3

∫ ρ(1+δρ)

ρ̄(λ)

dρ

ρ+ p(ρ)
≈ ψ − 1

3

ρ̄δρ

ρ+ p(ρ)
, (81)

where we have expanded at linear order in the density perturbations in the last equal-

ity. Since we are working at first order in the gradient expansion, where the spatial

gauge modes occur at the next-to-leading order, and the time gauge mode is fixed,

the quantity ζ̃ given in Eq. (75) is gauge invariant. Hence, within this approxima-

tion scheme, we may identify it with the curvature perturbation ζ. For the complete

expression of ζ to order O(δ, ϵn), see Eqs. (2.27) of [42], where we also provide its

gauge invariance proof in terms of light-cone perturbations.

4.2 Non-linear ζ

As we have seen, our non-linear SU approach in the GLC gauge allowed us to obtain

Eq. (53) by neglecting the last term in Eq. (52), which we have shown to correspond

to the terms neglected in the standard perturbation theory [4] at linear order. Now,

with the aim of going beyond this result, we leave the lapse function M unspecified

and use the SU approach on the light-cone to prove the non-linear conservation of

the curvature perturbation in terms of LC parameters. Just as done in the previous

subsection, we start from Eq. (51) which gives

Θu = − 1

(ρ+ p)

dρ

dλ
. (82)

Moreover, we consider Eq. (43) and the approximation exploited after Eq. (62), namely

Θn ≡ ∇µn
µ ≃ Θu. We then get that

1

Υ
√
γ

d
(
Υ
√
γ
)

dλ
= − 1

(ρ+ p)

dρ

dλ
. (83)
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We now integrate this equation along λ and consider that the pressure is adiabatic.

In this way, one obtains that

ln

[(
Υ
√
γ
)
λ2(

Υ
√
γ
)
λ1

]
= −

∫ ρ(λ2,x
i)

ρ(λ1,xi)

dρ

ρ+ p (ρ)
. (84)

At this point, the r.h.s. can be manipulated in the same spirit of what done in

Eq. (73) (see also [4]). By doing so, we get that

∫ ρ(λ2,x
i)

ρ(λ1,xi)

dρ

ρ+ p(ρ)
=

∫ ρ(λ2,x
i)

ρ̄(λ2)

dρ

ρ+ p(ρ)
−
∫ ρ(λ1,x

i)

ρ̄(λ1)

dρ

ρ+ p(ρ)
+

∫ ρ̄(λ2)

ρ̄(λ1)

dρ

ρ+ p(ρ)

=

∫ ρ(λ2,x
i)

ρ̄(λ2)

dρ

ρ+ p(ρ)
−
∫ ρ(λ1,x

i)

ρ̄(λ1)

dρ

ρ+ p(ρ)
− ln

(
Ῡ
√
γ̄|λ2

Ῡ
√
γ̄|λ1

)
, (85)

where, from the first to the second line, we have used Eq. (84) at the background level.

Now, thanks to Eq. (85), we can rewrite Eq. (84) as

ln

(
Υ
√
γ

Ῡ
√
γ̄

)
λ2

+

∫ ρ(λ2,x
i)

ρ̄(λ2)

dρ

ρ+ p(ρ)
= ln

(
Υ
√
γ

Ῡ
√
γ̄

)
λ1

+

∫ ρ(λ1,x
i)

ρ̄(λ1)

dρ

ρ+ p(ρ)
. (86)

This shows that there is a conserved quantity at first order in the gradient expansion.

This quantity corresponds to the non-linear curvature perturbation ζ

ζ =
1

3
ln

(
Υ
√
γ

Ῡ
√
γ̄

)
+

1

3

∫ ρ(t,xi)

ρ̄(t)

dρ

ρ+ p(ρ)
+O

(
ϵ2
)
. (87)

which then generalizes the linear result in Eq. (75).

Thus, the curvature perturbation defined in Eq. (87) generalizes at the non-linear

level, but at the first order in the gradient expansion, the expression of the gauge invari-

ant curvature perturbation in the LC gauge formalism given in [42]. In fact, the first

term corresponds to the curvature perturbations whilst the second term corresponds

to density perturbations in the same spirit as done in Eq. (80). Finally, we remark

that we have obtained Eq. (87) without specifying the lapse function M, therefore we

still have the freedom to fix the time gauge mode, as we will see better later.

4.3 δN formalism on the LC gauge

Let us begin by writing explicitly the exact expression for the expansion rate defined

by the normal vector nµ given by Eq. (30). This will then be applied to the evaluation

of the number of e-folds using the SU picture of the LC gauge. Such approach will
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allow us to obtain a generalization of the non-linear δN formalism in terms of LC

gauge metric entries. The expansion rate in the LC gauge is given by

Θn = ∇µn
µ =

1√
−g

∂µ
(
nµ

√
−g

)
=

1

MΥ
√
γ

d

dλ
(MΥ

√
γ) + ∂µn

µ , (88)

where, from Eqs. (30) and (40), we have that

∂µn
µ = −∂tM

M2
− ∂i

(
N i

LC

M

)
= −∂tM

M2
+O

(
ϵ2
)
. (89)

Now, using Eqs. (88) and (89), we obtain

Θn =
1

Υ
√
γ

d

dλ
(Υ

√
γ) +O

(
ϵ2
)
. (90)

An interesting thing about this result is that it is invariant in form on the past light-

cone, i.e. all the dependence on the lapse function is hidden in nµ∂µ ≡ d
dλ . Let us

now integrate Eq. (90) to compute the non-linear number of e-folds at first order in

the gradient expansion in terms of light-cone entries. We can then easily obtain the

following result

N (λf , λi) ≡
1

3

∫ λf

λi

Θndλ
′ =

1

3
ln

[(
Υ
√
γ
)
λf(

Υ
√
γ
)
λi

]
+O

(
ϵ2
)
. (91)

Let us note that N (λf , λi) from Eq. (91) is a biscalar, i.e. depends on the gauge

fixing both at the initial and final slicing. One possible fixing of the lapse function

is given by the uniform curvature light-cone (UCLC) gauge: in this case the effective

local scale factor is given by its background value6

(Υ
√
γ)UC = Ῡ

√
γ̄ . (92)

Therefore, if we fix both initial and final slices on the UCLC gauge, the number of

e-folds will be given by its background value, as

NUC (λf , λi) = N̄ (λf , λi) . (93)

Let us also introduce the uniform density light-cone (UDLC) gauge defined by

ρUD

(
λ, xi

)
= ρ̄ (λ) . (94)

6We will be using the subscript UC to describe the UCLC gauge fixing and the subscript UD to describe

the UDLC gauge fixing.
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Then, within the UDLC gauge, we have

ζ =
1

3
ln

[(
Υ
√
γ
)
λf UD(

Ῡ
√
γ̄
)
λi

]
=

1

3
ln

[(
Υ
√
γ
)
λf UD(

Υ
√
γ
)
λi UC

]
(95)

where from the first to the second equality we have used Eq. (92). We can now compare

Eqs. (91) and (95), and obtain that ζ can be related to the number of e-folds in the

following way

N (λf UD, λi UC) =
1

3
ln

[(
Υ
√
γ
)
λf UD(

Υ
√
γ
)
λi UC

]

=
1

3
ln

[(
Υ
√
γ
)
λf UD(

Ῡ
√
γ̄
)
λf

(
Ῡ
√
γ̄
)
λi(

Υ
√
γ
)
λi UC

]
+ N̄ (λf , λi)

=
1

3
ln

(
Υ
√
γ

Ῡ
√
γ̄

)
λf UD

+ N̄ (λf , λi)

=− ζ(λf ) + N̄ (λf , λi) . (96)

Hence, if we define

δN ≡ N (λf UD, λi UC)−N (λf UC , λi UC) , (97)

we straightforwardly get, from (93) and (96), that δN = −ζ, which is valid at any

order in perturbation theory, in agreement with [15]. As a remark, we underline that,

while Eq. (91) depends directly on the initial and final slice, Eq. (97) depends only

on the difference of the perturbations of the e-fold number in the UDLC and UCLC

on the final slices. Now we will give an example of how this last result can be used

to evaluate the power spectrum of ζ in terms of the LC metric entries. Following the

procedure used in [15], we fix the UCLC gauge and adopt the SU approximation. In

this way, the density perturbations can be written in terms of the background density

with perturbed initial conditions as follows

ρUC(NUC , x) = ρ̄(N̄ , φA
∗ (x)) , (98)

where we use Eq. (93). Also, φA
∗ is the field content of the underlying inflationary model

evaluated just after the horizon exit. The index A = 1, ..., d refers to the possibility

that inflation could happen with d scalar fields. Instead, by considering the UDLC

gauge, we would have

ρUD(NUD, x) = ρ̄(NUD) . (99)
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Since ρ is a scalar, we can then write

ρ′(N ′, x′) = ρ(N , x) , (100)

which holds between two generic sets of coordinates N , x and N ′, x′ i.e. the value of a

scalar function in a given physical point does not depend on the choice of coordinates.

Using Eqs. (98) and (99) on Eq. (100), we get

ρ̄(N̄ , φA
∗ (x)) = ρ̄(NUD) , (101)

where the x′ = x from Eq. (100) corresponds to the choice of the spatial threading to

fix the LC gauge. Also, we choose N ′ = NUC , and N = NUD. Then, Eq. (101) can be

inverted as

NUD = N̄ (ρ̄, φA
∗ (x)) . (102)

Hence, by expanding the fields in Eq. (102) at linear order as φA
∗ = φ̄A

∗ + δφA
∗ , using

Eq. (97), we obtain

1

3
ln

[(
Υ
√
γ
)
UD(

Υ
√
γ
)
UC

]
=N (ρ̄, φA

∗ (x))|UD − N̄ (ρ̄)|UC

=δφA
∗ ∂AN̄ +

1

2
δφA

∗ δφ
B
∗ ∂A∂BN̄ + ... . (103)

Therefore, given an inflationary model one may link the value of φA
∗ to the left hand

side of Eq. (103).

Altogether, Eq. (103) can be a starting point for the evaluation of fNL in terms of

light-cone perturbations (see, for example, [13] for an evaluation of fNL using the δN
formalism). Therefore, the results presented in Eqs. (97) and (103) constitute a further

step to obtain non-Gaussian predictions on the past light-cone, from the primordial

universe and directly in terms of the metric entries.

5 Conclusions

In this manuscript we have developed a separate universe (SU) description in the non-

linear LC gauge. We provide the non-linear conditions to fix the LC and the GLC

gauges in terms of standard coordinates on the ADM formalism. The main difference

with the previous works [5, 15, 26], where the SU was considered, is that for the LC

and GLC gauges we cannot neglect the shift vector, since this contains information

about inhomogeneities along the world-line.
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As an application of our results, and a consistency check, we repeated the proce-

dures of [4] and [5] to prove the super-horizon conservation of the comoving curvature

perturbation ζ, when a light-like foliation of spacetime is taken. This conservation has

been achieved by neglecting the non-adiabatic pressure within the SU scheme.

We then generalize the δN formalism [5, 8–13, 15], in terms of the combination of

the LC metric entries Υ
√
γ within the uniform density light-cone gauge which is one of

our most important results. Let us remark that the gradient expansion employed here

simplifies the expression of the expansion rate at the non-linear level (see Eq. (88)).

This could help in simplifying also the perturbative expressions (see, for instance, the

one presented in Eq. (6.11) of [43]).

The separate universe formalism provides a procedure to investigate the evolu-

tion of the perturbations for different inflationary models. The extension of the δN
formalism on the past light-cone, as developed in this manuscript, allows the evalua-

tion of such dynamical evolution directly over the past light-cone. This moves us one

step forward to the evaluation of non-linear effects (such as backreaction effects and

non-Gaussianities) since the primordial universe until the late-time one along such

past light-cone. Indeed, as a future step, we aim to investigate primordial backre-

action effects on different expansion rates using the above-mentioned formalism and

well-posed averaging procedures on the past light-cone [29, 35].

Finally, for what regards the possible non-Gaussianities associated to any infla-

tionary model, the δN formalism is a very useful tool. In fact, as shown in [13], this

formalism provides very simple expressions for fNL in terms of N . In other words,

the overall goal of the research program is to obtain a formalism to compute the cur-

vature perturbations at horizon re-entry expressed in terms of light-cone entries. We

remark this point since the subsequent evolution of this metric entries could then be

compared to late-time expression of cosmological observables as, for instance, the ones

presented in Eq. (31). This would provide a self-consistent framework entirely given on

the light-cone to disentangle the primordial non-Gaussianities from the ones naturally

emerging during the non-linear late-time dynamics [49–51].
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Appendix A Linear δN formalism on the light-cone

In this appendix we derive the δN formalism at linear order in perturbation theory

using the framework developed in [36, 42] and reviewed in Sect. 4. In this way we

explicitly show the consistency of our results.

To begin, we linearize Eq. (97) and obtain

δN =
1

3
ln

[(
Υ
√
γ
)
UD(

Υ
√
γ
)
UC

]
+O(ϵ2)

=
1

3
ln

[(
Ῡ
√
γ̄
)
(1 + δΥ)(1 + 2ν)UD(
Υ
√
γ
)
UC

]
+O(δ2, ϵ2)

=
1

3
ln [1 + (δΥ+ 2ν)UD] +O(δ2, ϵ2)

=
1

3
(δΥ+ 2ν)UD +O(δ2, ϵ2) (A1)

where we have defined

Υ = Ῡ(1 + δΥ) (A2)

and we recall that (Υ
√
γ)UC is equal to the background value, being ψ = 0 within

the uniform curvature gauge. Also, we have used the metric in Eq. (56) and the

scalar/pseudoscalar decomposition of Eq. (58). Since δΥ = N/2, we then have that

δN (λ1,λ2,x
i) =

1

6
(N + 4ν)UD +O(δ2, ϵ2) . (A3)

From the relation between the light-cone perturbation and the standard ones in

Eq. (79), (see also [42]), one gets that

ψ = −1

6
(N + 4ν) . (A4)

Therefore, Eq. (A3) together with Eq. (A4) and the fact that ψUD = ζ, gives the well

known relation δN = −ζ [15].

The result obtained in Eq. (A3) proves that the δN formalism on the past light-cone

is consistent with the light-cone perturbation theory developed in [36, 42]. Thereby,

the δN formalism within the past light-cone framework, at linear order in perturbation
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theory, could also be obtained by starting from the results presented in Sect. 4. To this

aim, one should integrate Eqs. (62) and (63), evaluating them between the uniform

curvature and the uniform density slices.
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