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INTERMEDIATE LONG WAVE EQUATION

IN NEGATIVE SOBOLEV SPACES

ANDREIA CHAPOUTO, JUSTIN FORLANO, GUOPENG LI,
TADAHIRO OH, AND DIDIER PILOD

Abstract. We study the intermediate long wave equation (ILW) in negative Sobolev spaces.
In particular, despite the lack of scaling invariance, we identify the regularity s = − 1

2
as the

critical regularity for ILW with any depth parameter, by establishing the following two results.
(i) By viewing ILW as a perturbation of the Benjamin-Ono equation (BO) and exploiting the
complete integrability of BO, we establish a global-in-time a priori bound on the Hs-norm of a
solution to ILW for − 1

2
< s < 0. (ii) By making use of explicit solutions, we prove that ILW is

ill-posed in Hs for s < − 1

2
. Our results apply to both the real line case and the periodic case.
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1. Introduction

We consider the intermediate long wave equation (ILW) on M = R or T = (R/Z):
{
∂tu− Gδ∂

2
xu = ∂x(u

2)

u|t=0 = u0,
(t, x) ∈ R×M (1.1)

for 0 < δ <∞. The operator Gδ is given by

Gδ = Tδ − δ−1∂−1
x , (1.2)

where Tδ is the Fourier multiplier operator with symbol

T̂δf(ξ) = −i coth(δξ)f̂ (ξ), ξ ∈ M̂. (1.3)

Here, M̂ denotes the Pontryagin dual of M, i.e. M̂ = R if M = R, and M̂ = Z if M = T.

The ILW equation (1.1) was introduced in [14, 23] as a model describing the propagation of

an internal wave at the interface of a stratified fluid of finite depth δ, with further applications

in modeling wave phenomena in oceanography and meteorology. Furthermore, it appears as
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an “intermediate” equation of finite depth 0 < δ < ∞ between the Benjamin-Ono equation

(deep-water limit: δ → ∞) and the KdV equation (shallow-water limit: δ → 0), attracting wide

attention from both the applied and theoretical scientific communities. Even from the purely

analytical point of view, (1.1) is of great interest due to its rich structure; it is a dispersive

equation, admitting soliton solutions. Moreover, it is completely integrable with an infinite

number of conservation laws. See [35, 20] for an overview of these topics and more on the

physical significance of ILW.

Despite recent popularity of the ILW equation and its deep connection to the well-known

Benjamin-Ono and KdV equations, there remain many open questions in well-posedness of (1.1)

and convergence as δ → 0 or ∞. In this paper, we focus on the former question; see [1, 32,

30, 11, 6] for the known well-posedness results for ILW. See also [1, 25, 26, 6, 7] for results on

convergence issues from both deterministic and statistical viewpoints.

It is known (see [31, 22]) that, just like the Benjamin-Ono equation (see (1.4) below), ILW (1.1)

is quasilinear in the sense that a contraction argument can not be used for constructing solu-

tions, which makes the well-posedness question rather challenging, especially in a low-regularity

setting.1 In [11], Ifrim and Saut proved global well-posedness of ILW (1.1) in L2(R). In a recent

preprint [6], the first, third, fourth, and fifth authors provided a unified argument for L2-global

well-posedness of (1.1) on both the real line and the circle. We point out that the basic strategy

in [11, 6] is to view ILW (1.1) as a perturbation of the Benjamin-Ono equation (BO):

∂tu−H∂2xu = ∂x(u
2), (1.4)

where H denotes the usual Hilbert transform with multiplier2 −i sgn(ξ), ξ ∈ M̂, and to suitably

adapt the known well-posedness arguments for the BO equation [13, 29, 12]. We will elaborate

this viewpoint further in the following.

Our main goal in this paper is to study issues related to well-posedness of ILW (1.1) in negative

Sobolev spaces. It is well known that a scaling symmetry, if it exists, provides an important

threshold (called a scaling critical regularity) on well-posedness for a dispersive equation. For

example, BO (1.4) on the real line is known to be invariant under the following Ḣ− 1

2 -invariant

scaling:

uλ(t, x) = λ−1u(λ−2t, λ−1x), λ > 0. (1.5)

This scaling symmetry induces the scaling critical regularity s = −1
2 for BO. While ILW does not

enjoy a scaling symmetry, it was remarked in [6, Remark 4.2] that if u is a solution to ILW (1.1)

on R (with the depth parameter δ), then the rescaled function uλ in (1.5) solves (1.1) with the

depth parameter λδ. Namely, the family of the ILW equations with depth parameters 0 < δ <∞
is invariant under the scaling (1.5). This observation hints that the regularity s = −1

2 may be

critical for ILW in an appropriate sense. We show that this is indeed the case by establishing

the following results.

Theorem 1.1. Let M = R or T and 0 < δ <∞. Then, the following statements hold.

1We point out that, under the mean-zero assumption, the periodic BO and ILW posed on the circle T may
be semilinear just like the KdV equation, at least in a smooth setting. See [28, Theorem 1.2], where, for s ≥ 0,
the solution map for BO (1.4) on T was shown to be real-analytic from the subspace Hs

0(T) ⊂ Hs(T), consisting
of mean-zero functions, into itself. At this point, however, there is no known well-posedness argument via a
contraction argument for the mean-zero periodic BO and ILW.

2On T, we set sgn(0) = 0.
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(i) (global-in-time a priori bound). Let −1
2 < s < 0. Given u0 ∈ H∞(M), let u be the (unique)

smooth solution to the ILW equation (1.1). Then, given small ε > 0, there exist positive constants

Cs and Aδ,s ∼ δ−2(1 + δ−|s|− 1

2
−ε), independent of u0 ∈ H∞(M), such that

‖u(t)‖Hs ≤ C |s|+1
s eAδ,s|t|

(
1 + 2Cse

Aδ,s|t|‖u0‖Hs

) 2|s|
1−2|s| ‖u0‖Hs (1.6)

for any t ∈ R.

(ii) (ill-posedness) Let s < −1
2 . Then, the ILW equation (1.1) is ill-posed in Hs(M). Moreover,

when M = T, given any α ∈ R, the ILW equation (1.1) is ill-posed in Hs
α(T), where Hs

α(T)

denotes the subspace of Hs(T) consisting of functions with spatial mean α.

It follows from the proof of Theorem 1.1 (ii) that if the solution map Φ : Hs(M) →
C([−T, T ];Hs(M)), sending initial data u0 to solutions u = Φ(u0) of ILW (1.1), extended

to s < −1
2 , then it would be discontinuous at u0 = −2πδ0 for any T > 0, where δ0 denotes

the Dirac delta function. The known global well-posedness of ILW in L2(M) [11, 6] and the

ill-posedness result in Hs(M) for s < −1
2 (Theorem 1.1 (ii)) leave the gap −1

2 ≤ s < 0. While

the a priori bound in Theorem 1.1 (i) indicates that well-posedness should extend, at least, to

the range −1
2 < s < 0, the actual well-posedness of ILW in the range −1

2 ≤ s < 0 on either

geometry is completely open. In view of the positive and negative results in Theorem 1.1, we

propose that s = −1
2 is the critical regularity for the ILW equation (1.1), which is in particular

independent of the depth parameter δ.

Let us briefly discuss the strategy for proving Theorem 1.1. As for the ill-posedness claim

in Theorem 1.1 (ii), we follow closely the strategy in [5, 4] for ill-posedness of BO in Hs(M),

s < −1
2 ; see also [15]. Namely, we make use of explicit traveling wave solutions to ILW (1.1)

which approximate, at time t = 0, (a constant multiple of) the Dirac delta function as the speed

of the wave diverges to infinity. On the circle, the BO equation (1.4) is known to be ill-posed

in the critical space H− 1

2 (T) whose proof heavily relies on the complete integrability via the

use of the Birkhoff map; see [9, Section 7]. It would be of interest to investigate if a similar

ill-posedness result in H− 1

2 (T) holds for ILW.

Let us now turn to Theorem 1.1 (i). While ILW is known to be completely integrable, we do

not make use of its integrable structure (which is not well understood) to prove Theorem 1.1(i).

We instead view ILW (1.1) as a perturbation of BO (1.4) (just as in [11, 6]) and exploit the

integrable structure of the BO equation. Define Qδ by

Qδ = (Tδ −H)∂x, (1.7)

where Tδ is as in (1.3). Then, in view of (1.2), we can write ILW (1.1) as

∂tu−H∂2xu = ∂x(u
2)− δ−1∂xu+Qδ∂xu. (1.8)

As seen in [11, 6],3 the operator Qδ enjoys a strong smoothing property (see Lemma 2.1), which

allows us to view the last term in (1.8) as a perturbation in a suitable sense.

3In [11, 6], a Galilean transform (see (1.11) below) was applied to remove the linear term −δ−1∂xu in (1.8).
While we could apply the same Galilean transform to remove this term and study a renormalized ILW, it turns
out that such a procedure is not necessary for establishing an a priori bound, since the generator for this linear
term (i.e. δ−1M(u), where M(u) is the mass defined in (3.8)) Poisson-commutes with the key quantity βs(κ;u)
defined in (3.9); see Lemma 3.1.
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There have been two successful approaches to the well-posedness study of BO, exploiting

its complete integrability. In [9], Gérard, Kappeler, and Topalov proved sharp global well-

posedness of the periodic BO in Hs(T), s > −1
2 , by building a suitable Birkhoff map. In a

recent preprint [16], Killip, Laurens, and Vişan applied the method of commuting flows [17] to

the BO equation (1.4) and proved sharp4 global well-posedness in Hs(M), s > −1
2 , on both

the real line and the circle. In the following, we use the completely integrable structure for BO

as presented in the latter work [16]. In [16], for κ ≫ 1, the authors constructed the quantity

βs(κ;u) (see (3.9) below) which is conserved under the flow of BO and is equivalent to the

Hs-norm, provided that −1
2 < s < 0; see Lemma 3.1 below. While this quantity βs(κ;u) is

not conserved under the flow of ILW (1.8), the only non-zero contribution to its time derivative

comes from the last term Qδ∂xu in (1.8). As this term is linear and enjoys sufficient smoothing,

we can apply a Gronwall argument to control the growth of βs(κ;u). This explains the reason

for the time-dependent growth in (1.6).

We conclude this introduction with several remarks.

Remark 1.2. (i) While we expect that there are time-independent a priori bounds for ILW, it

seems that one would have to develop an appropriate completely integrable structure of ILW

for this purpose. We chose not to pursue this direction to exemplify the point that ILW can be

thought of as a perturbation of BO to obtain the a priori bound. We note that (the proof of)

the a priori bound in Theorem 1.1 also holds for suitable (potentially) non-integrable variants

of BO; see, for example, Part (ii) of this remark and also Remark 1.3.

(ii) A close look at the proof of Theorem 1.1 (i) (see (3.22) in the proof of Lemma 3.2) shows that

we only need smoothing5 of order 3
2 −s+ε (for some ε > 0) from the operator Qδ in proving the

a priori bound (1.6). This in particular implies that if we instead consider the following variant

of the BO equation:

∂tu−H∂2xu = ∂x(u
2) + c1∂xu+ c2I∂xu, (1.9)

where c1, c2 ∈ R and I is a linear operator with smoothing of order 3
2 − s + ε for some ε > 0,

then a slight modification of the proof of Theorem 1.1 (i) yields an analogous a priori bound

on the Hs-norm of a solution to (1.9) for −1
2 < s < 0. We point out that, under a weaker

assumption on I being smoothing of order 1, a slight modification of the argument in [6] yields

global well-posedness of (1.9) in L2(M). Our proof of ill-posedness in Theorem 1.1 (ii) relies on

the explicit solutions to ILW (1.1) and thus it does not extend to (1.9).

(iii) By using a differencing technique as in [18], we expect that our approach of building a (time-

dependent) a priori bound (as in Theorem 1.1 (i)) will extend to positive regularities. See also

[32, 6] for persistency-of-regularity arguments, controlling the Hs-norms of solutions to (1.1), at

least for 0 < s < 1.

(iv) Following [18], a quantity based on a series expansion of the perturbation determinant was

used in [36] to establish an a priori bound on the Hs-norm of a solution to BO for −1
2 < s < 0.

See also [34, 19]. For our purpose, however, we find the quantity βs(κ;u) in (3.9) more convenient

especially because it does not involve a series expansion.

(v) We point out a similarity between our argument for establishing the a priori bound (Theo-

rem 1.1 (i)) and the work of Laurens [24] who studied low-regularity well-posedness of the KdV

4Except for the endpoint s = − 1

2
on the real line.

5Namely, mapping L2(M) into H
3

2
−s+ε(M).
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equation with a space-time potential. The presence of the potential also broke the conservation

laws and thus a Gronwall argument was needed to control their growth.

Remark 1.3. In [23], the equation for the motion of an internal wave in a finite depth fluid

was derived with two depth parameters δj, j = 1, 2, where δ1 and δ2 represent the depths of the

upper and lower fluids, respectively, and is given by

∂tu− c1Gδ1∂
2
xu− c2Gδ2∂

2
xu = ∂x(u

2), (1.10)

where c1, c2 > 0. By applying the Galilean transform6

v(t, x) = u(t, x+ γt), γ := c1
δ1

+ c2
δ2
, (1.11)

we see that v satisfies the renormalized equation:

∂tv − c1Tδ1∂2xv − c2Tδ2∂2xv = ∂x(v
2). (1.12)

Then, we rewrite (1.12) as

∂tv − (c1 + c2)H∂2xv = ∂x(v
2) + c1Qδ1∂

2
xv + c2Qδ2∂

2
xv. (1.13)

By viewing (1.13) as a perturbation of the following BO equation:

∂tv − (c1 + c2)H∂2xv = ∂x(v
2), (1.14)

a slight modification of the argument in [6] yields global well-posedness of (1.12) (and of (1.10))

in L2(M), and, moreover, the solutions converge to solutions of (1.14) as min(δ1, δ2) → ∞.

Similarly, a slight modification of the proof of Theorem 1.1 (i) yields an a priori bound on the

Hs-norm of a solution to (1.10) for −1
2 < s < 0. We point out that (1.10) is not expected to be

completely integrable.

2. Notations

We write A . B to denote that there exists C > 0 such that A ≤ CB, and A ≪ B when

A ≤ CB with sufficiently small C > 0.

Next, we go over our convention for Fourier transforms, following [16]. On the real line, we

write

f̂(ξ) =
1√
2π

ˆ

R

f(x)e−iξxdx and f(x) =
1√
2π

ˆ

R

f̂(ξ)eiξxdξ, (2.1)

while on the circle, we set

f̂(ξ) =

ˆ

T

f(x)e−iξxdx and f(x) =
∑

ξ∈2πZ

f̂(ξ)eiξx.

Then, Plancherel’s identity takes the form

‖f‖L2(R) = ‖f̂‖L2(R) and ‖f‖L2(T) = ‖f̂‖L2(2πZ) =

( ∑

ξ∈2πZ

|f̂(ξ)|2
) 1

2

,

6We point out that the Galilean transform (1.11) is needed only for proving L2-global well-posedness of (1.10),
following the argument in [6], and that it is not needed to establish an a priori bound in Hs(M), − 1

2
< s < 0.
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and ∂̂xf(ξ) = iξf̂(ξ). Given s ∈ R and κ > 0, we define the L2-based Sobolev spaces Hs
κ(R) and

Hs
κ(T) via

‖f‖Hs
κ(R)

=

(
ˆ

〈ξ〉2sκ |f̂(ξ)|2dξ
) 1

2

and ‖f‖Hs
κ(T)

=

( ∑

ξ∈2πZ

〈ξ〉2sκ |f̂(ξ)|2
) 1

2

,

where 〈ξ〉κ = (κ2 + |ξ|2) 1

2 ; see also [21, 33]. When κ = 1, Hs
κ(M) reduces to the standard

L2-based Sobolev space Hs(M). For s < 0, the Hs
κ-norm of f is decreasing in κ, which plays an

important role in proving (3.10) below; see [16, the proof of Lemma 4.3]. Moreover, for s < 0

and κ ≥ 1, we have

‖f‖Hs ≤ κ−s‖f‖Hs
κ
. (2.2)

We define the Cauchy-Szegő projector Π+ by setting

Π̂+f(ξ) = 1[0,∞)(ξ) · f̂(ξ).
Then, the Hardy space Hs

+(M) is defined by Hs
+(M) = Π+H

s(M). Recall that when M = R,

functions in Hs
+(R) are the boundary values (on the real line) of holomorphic functions on the

upper half-plane, and that when M = T, functions in Hs
+(T) are the boundary values (on the

circle) of holomorphic functions on the unit disc.

Next, we record the following smoothing property of the operator Qδ∂x.

Lemma 2.1. Let M = R or T and 0 < δ < ∞. Then, given s1, s2 ∈ R with s1 ≤ s2, there

exists Cs1−s2 > 0, independent of 0 < δ <∞, such that

‖Qδ∂xf‖Hs2 (M) ≤ Cs1−s2 δ
−2(1 + δs1−s2)‖f‖Hs1 (M). (2.3)

Proof. We proceed as in the proof of [6, Lemma 2.3]; see also [11, Lemma 2.2]. With a slight

abuse of notation, let Q̂δ(ξ) denote the multiplier for the operator Qδ in (1.7). Then, we have

Q̂δ(ξ) = ξ
(
coth(δξ) − sgn(ξ)

)
=

2|ξ|
e2|δξ| − 1

for ξ 6= 0. Then, (2.3) follows from noting that xσ ≤ Cσ(e
2x − 1) for any x ≥ 0, provided that

σ ≥ 1. �

3. Global-in-time a priori bound

In this section, we present the proof of Theorem 1.1 (i) by viewing ILW (1.8) as a perturbation

of the BO equation (1.4) and exploiting the completely integrable structure of BO.

3.1. Completely integrable structure of the BO equation. In this subsection, we recall

from [16] the completely integrable structure of the BO equation (1.4) and relevant results. Note

that our convention for the signs in (1.4) differ from that in [16]. In order to translate between

the two, one should use the map u 7→ −u. First, recall that BO is a Hamiltonian PDE with the

Hamiltonian:

Hamiltonian: HBO(u) =
1

2

ˆ

M
uH∂xudx+

1

3

ˆ

M
u3dx, (3.1)

where the Poisson bracket is given by

{F,G} =

ˆ

M

∂F

∂u
∂x
∂G

∂u
dx. (3.2)
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Moreover, BO is completely integrable with a Lax pair (L,B) = (Lu, Bu) given by

L = −i∂x +Π+u and B = −i∂2x + 2∂xΠ+u− 2(∂xΠ+u) (3.3)

such that ∂tL = [B,L], when u is a solution to BO. We also denote by L0 = −i∂x the Lax

operator with the zero potential. The following lemma summarizes the basic properties of the

Lax operator L (see Part (i) below for the definition of L = Lu with a proper domain) and its

resolvent from [16]; see Propositions 3.2, 4.1, 4.3, and 4.7 and Lemma 4.11 in [16].

Lemma 3.1. Let M = R or T, −1
2 < s < 0, and σ = 1

2 (
1
2 + s) ∈ (0, 14). Then, there exists a

constant Cs ≥ 1 such that whenever u ∈ Hs(M) satisfies

κ ≥ Cs

(
1 + ‖u‖Hs

κ

) 1

2σ (3.4)

for some κ ≥ 1, the following statements hold true.

(i) There exists a unique self-adjoint, semi-bounded operator L = Lu associated to the qua-

dratic form

f 7→ 〈f, L0f〉L2 +

ˆ

M
u(x)|f(x)|2dx

with H
1

2

+(M) as the domain for the quadratic form, where 〈·, ·〉L2 denotes the L2-inner

product given by 〈f, g〉L2 =
´

M f(x)g(x)dx. The resolvent R(κ;u) = (L + κ)−1 exists

and maps H
− 1

2

+ (M) into H
1

2

+(M).

(ii) Let m(κ;u) = −R(κ;u)Π+u. Then, we have

‖m(κ;u)‖
Hs+1

κ
. ‖u‖Hs

κ
and ‖m(κ;u)‖Hs . κ−1‖u‖Hs . (3.5)

Moreover, if u ∈ H∞(M), then m ∈ H∞(M).

(iii) The quantity β(κ;u) defined by

β(κ;u) = −
ˆ

u(x)m(x;κ, u)dx = 〈Π+u,R(κ;u)Π+u〉L2

is finite, real-valued, and real-analytic as a function of u, and satisfies

∂β

∂u
= −

(
m+m+ |m|2

)
. (3.6)

Moreover, we have

{β(κ;u);HBO(u)} = {β(κ;u);M(u)} = 0, (3.7)

where M(u) is the mass defined by

M(u) =
1

2

ˆ

M
u2dx. (3.8)

Finally, by setting

βs(κ;u) =

ˆ ∞

κ

τ2sβ(τ ;u)dτ, (3.9)

we have

C−1
s ‖u‖2Hs

κ
≤ βs(κ;u) ≤ Cs‖u‖2Hs

κ
. (3.10)

Recalling that when s < 0, the Hs
κ-norm is decreasing in κ ≥ 1, we see that if, given u ∈

Hs(M), the condition (3.4) is satisfied for κ = κ0 for some κ0 ≥ 1, then (3.4) holds for any

κ ≥ κ0. In view of (3.7) and (3.9), we see that βs(κ;u) is conserved under the BO dynamics.
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3.2. Proof of Theorem 1.1 (i). In this subsection, we present the proof of Theorem 1.1 (i).

Let us state a lemma, where, under some assumption, we control the growth of βs(κ;u) via a

Gronwall argument.

Lemma 3.2. Let M = R or T and 0 < δ <∞. Given −1
2 < s < 0, let Cs and σ = 1

2(
1
2 + s) be

as in Lemma 3.1. Let u be a smooth global solution to ILW (1.1) such that

κ ≥ sup
t∈[0,T ]

Cs

(
1 + c0‖u(t)‖Hs

) 1

2σ (3.11)

for some κ ≥ 1, T > 0, and c0 ≥ 1. Then, there exists Aδ,s > 0, independent of κ ≥ 1, T > 0,

and c0 ≥ 1, such that

βs(κ;u(t)) ≤ eAδ,stβs(κ;u(0)) (3.12)

for any 0 ≤ t ≤ T .

In the following, we first present the proof of Theorem 1.1 (i) by assuming Lemma 3.2 whose

proof is presented at the end of this section.

Proof of Theorem 1.1 (i). We only consider the case t ≥ 0. Fix T > 0, and set

c0 = Cse
Aδ,sT ≥ 1 (3.13)

where Cs > 0 is as in Lemma 3.1 and Aδ,s > 0 is as in Lemma 3.2. Given u0 ∈ H∞(M), fix

κ ≥ 1 such that

κ ≥ Cs(1 + 2c0‖u0‖Hs
κ
)

1

2σ , (3.14)

where σ = 1
2(

1
2 + s) is as in Lemma 3.1. Then, it follows from the continuity in time of u with

values in Hs
κ(M) (recall c0 ≥ 1) that there exists 0 < T0 ≤ T such that

‖u(t)‖Hs
κ
≤ 2c0‖u0‖Hs

κ
(3.15)

for any 0 ≤ t ≤ T0. It follows from (3.14) and (3.15) that the condition (3.11) in Lemma 3.2 is

satisfied on [0, T0]. Hence, by applying Lemma 3.2 with (3.10) and (3.13), we have

‖u(t)‖Hs
κ
≤ c0‖u0‖Hs

κ
(3.16)

for any 0 ≤ t ≤ T0. Therefore, by a continuity argument, we conclude that (3.16) holds on the

entire interval [0, T ].

Finally, by choosing

κ = Cs(1 + 2c0‖u0‖Hs)
1

2σ , (3.17)

we obtain from (2.2), (3.17), (3.16), and the monotonicity of the Hs
κ-norm in κ that

‖u(t)‖Hs ≤ κ|s|‖u(t)‖Hs
κ

≤ C |s|+1
s eAδ,sT

(
1 + 2Cse

Aδ,sT ‖u0‖Hs

) 2|s|
1−2|s| ‖u0‖Hs

for 0 ≤ t ≤ T , from which we conclude (1.6) for any t ≥ 0. �

We conclude this section by presenting the proof of Lemma 3.2.
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Proof of Lemma 3.2. Let HILW,δ be the Hamiltonian for ILW (1.1) (with the Poisson bracket

in (3.2)):

HILW,δ(u) =
1

2

ˆ

M
uGδ∂xudx+

1

3

ˆ

M
u3dx.

In view of (1.2), (1.7) (3.1), and (3.8), we then have

HILW,δ(u) = HBO(u)− δ−1M(u) +HQδ
(u), where HQδ

(u) =
1

2

ˆ

M
uQδudx. (3.18)

Noting that Qδ is a symmetric operator, we have

∂HQδ

∂u
= Qδu. (3.19)

Fix κ ≥ 1 and T > 0. Let u be a smooth global solution to (1.1), satisfying (3.11). Since

s < 0 and κ ≥ 1, we have ‖u(t)‖Hs
κ
≤ ‖u(t)‖Hs . Thus, the hypothesis (3.11) implies that (3.4)

is satisfied. In particular, βs(κ;u(t)) is well defined for every t ∈ [0, T ] and all the results of

Lemma 3.1 hold. Recalling that ∂tF (u(t)) = {F,HILW,δ}(u(t)) for a smooth function F (u) (see

[10, Lemma 2.8]), it follows from (3.9), (3.18), (3.7), and (3.2) with (3.6) and (3.19) that

d

dt
βs(κ;u(t)) =

ˆ ∞

κ

τ2s
d

dt
β(τ ;u(t))dτ

=

ˆ ∞

κ

τ2s{β(τ),HILW,δ}(u(t))dτ

=

ˆ ∞

κ

τ2s{β(τ),HQδ
}(u(t))dτ

= −
ˆ ∞

κ

τ2s
ˆ

M
(m(τ ;u(t)) +m(τ ;u(t)) + |m(τ ;u(t))|2)Qδ∂xu(t)dxdτ

=: I1 + I2 + I3,

(3.20)

where I1, I2, and I3 represent the contributions from m(τ ;u(t)), m(τ ;u(t)), and |m(τ ;u(t))|2,
respectively. From Cauchy-Schwarz’s inequality (on the Fourier side), (3.5), Lemma 2.1, (2.2),

and (3.10), we have

|I1|+ |I2| .
ˆ ∞

κ

τ2s‖m(τ ;u(t))‖Hs‖Qδ∂xu(t)‖H−s dτ

. δ−2(1 + δ−2|s|)‖u(t)‖2Hs

ˆ ∞

κ

τ2s−1dτ

. δ−2(1 + δ−2|s|)κ2|s|‖u(t)‖2Hs
κ
κ−2|s|

. δ−2(1 + δ−2|s|)‖u(t)‖2Hs
κ

. δ−2(1 + δ−2|s|)βs(κ;u(t)).

(3.21)

Similarly, from Hölder’s inequality, the Sobolev embedding theorem (with small ε > 0),

Lemma 2.1, (2.2), 〈ξ〉s+1
τ ≥ τ s+1 (recall that s > −1

2), (3.5), and the monotonicity of the
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Hs
κ-norm (in κ), we have

|I3| ≤ ‖Qδ∂xu(t)‖
H

1
2
+ε

ˆ ∞

κ

τ2s‖m(τ ;u(t))‖2L2dτ

. δ−2(1 + δ−|s|− 1

2
−ε)κ|s|‖u(t)‖Hs

κ

ˆ ∞

κ

τ2s−2(s+1)‖m(τ ;u(t))‖2
Hs+1

τ
dτ

. δ−2(1 + δ−|s|− 1

2
−ε)κ|s|‖u(t)‖Hs

κ

ˆ ∞

κ

τ−2‖u(t)‖2Hs
τ
dτ

. δ−2(1 + δ−|s|− 1

2
−ε)κ|s|‖u(t)‖3Hs

κ

ˆ ∞

κ

τ−2dτ

. δ−2(1 + δ−|s|− 1

2
−ε)

‖u(t)‖3Hs
κ

κ1+s
.

(3.22)

By separately considering the cases ‖u(t)‖Hs
κ
< 1 and ‖u(t)‖Hs

κ
≥ 1 (where, in the latter case,

we use (3.11) with 2σ ≤ 1 + s which follows from the definition of σ in Lemma 3.1), the fact

that κ, c0 ≥ 1, and (3.10), we have

|I3| . δ−2(1 + δ−|s|− 1

2
−ε)‖u(t)‖2Hs

κ

. δ−2(1 + δ−|s|− 1

2
−ε)βs(κ;u(t)).

(3.23)

Hence, from (3.20), (3.21), and (3.23), we have

d

dt
βs(κ;u(t)) ≤ Cδ−2(1 + δ−|s|− 1

2
−ε)βs(κ;u(t)) =: Aδ,sβs(κ;u(t)),

where Aδ,s is independent of κ ≥ 1, T > 0, and c0 ≥ 1. Then, the desired bound (3.12) follows

from Gronwall’s inequality. �

4. Ill-posedness

In this section, we prove ill-posedness of ILW (1.1) in Hs(M) for s < −1
2 (Theorem 1.1 (ii)).

In Subsection 4.1, we discuss the real line case, while we treat the periodic case in Subsection 4.2.

4.1. Ill-posedness on the real line. We first recall the following traveling wave solutions for

ILW (1.1); see [14, 3, 2]. Given c > 0, let a = a(c) ∈
(
0, π

δ

)
be the unique solution of the

equation

aδ cot(aδ) = 1− cδ.

Then, uc defined by

uc(t, x) =
−a sin(aδ)

cosh(a(x− ct)) + cos(aδ)
(4.1)

satisfies (1.1). Our strategy is to follow the work [5] by Biagioni and Linares for the BO equation

and to take c→ ∞ (which is equivalent to π
a
→ δ). From the formula [8, (6) on p. 30]:

ˆ

R

e−iξx

cosh(ax) + cos(aδ)
dx =

2π

a sin(aδ)

sinh(δξ)

sinh(πξ
a
)
,

we see that

ûc(0, ξ) = −
√
2π

sinh(δξ)

sinh(πξ
a
)

(4.2)
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with the understanding that

sinh(δξ)

sinh(πξ
a
)

∣∣∣∣
ξ=0

= lim
ξ→0

sinh(δξ)

sinh(πξ
a
)
=
aδ

π
. (4.3)

Observe that ûc(0, ξ) enjoys the following properties: (i) it is bounded for |ξ| ≤ 1, (ii) since

δ < π
a
, it decays exponentially as |ξ| → ∞, and (iii) for each fixed ξ ∈ R, we have

ûc(0, ξ) → −
√
2π

as c→ ∞ (i.e. π
a
→ δ). These three properties with the dominated convergence theorem ensure

that,7 as c → ∞, uc(0) → −2πδ0 in Hs(R) for any s < −1
2 , where δ0 denotes the Dirac delta

function on R. Together with (4.1), this convergence implies

lim
c→∞

‖uc(t)‖Hs(R) = lim
c→∞

‖uc(0)‖Hs(R) = 2π‖δ0‖Hs(R) (4.4)

for any t ∈ R. On the other hand, for any test function ψ ∈ C∞
c (R) and any fixed t 6= 0, we

have

〈uc(t), ψ〉L2 =

ˆ

R

uc(0, x)ψ(x + ct)dx =

ˆ

R

− sin(aδ)

cosh(x) + cos(aδ)
ψ(x

a
+ ct)dx→ 0

as c→ ∞, since uc(0) decays exponentially as |x| → ∞. In particular, for t 6= 0, uc(t) converges

to 0 in the distributional sense as c→ ∞, which implies that uc(t) does not converge in Hs(R)

in view of (4.4). This completes the proof of Theorem 1.1(̇ii) in the real line case.

4.2. Ill-posedness on the circle. We go over the following construction of a periodic traveling

wave solution for (1.1) in [27]. We start with the profile uc(0) in (4.1) for the traveling wave

solution on the real line and apply the Poisson summation formula which, with our convention

for the Fourier transforms, reads as
∑

n∈Z

f(x+ n) =
√
2π

∑

ξ∈2πZ

FR(f)(ξ)e
iξx, (4.5)

where f : R → R and its Fourier transform FR(f) decay sufficiently rapidly. Let Uc be the

periodization of uc(0) in (4.1). Then, from (4.5) and (4.2), we have

Uc(x) =
∑

n∈Z

−a sin(aδ)
cosh(a(x+ n)) + cos(aδ)

= −2π
∑

ξ∈2πZ

sinh(δξ)

sinh(πξ
a
)
eiξx, (4.6)

where a ∈
(
0, π

δ

)
. Here, we used the convention (4.3).

We now verify that there exists a choice for both c = c(δ, a) and a constant of integration

B = B(δ, a) such that Uc solves

−cUc + δ−1Uc − Tδ∂xUc − U2
c = B, (4.7)

where Tδ is as in (1.3). Fix x ∈ R. For n ∈ Z, define bn = bn(x) and dn = dn(x) by

bn =
1

cosh(a(x+ n)) + cos(aδ)
and dn = bn sinh(a(x+ n)). (4.8)

Note that

Uc = −a sin(aδ)
∑

n∈Z

bn. (4.9)

7Recall our convention (2.1) for the Fourier transform.
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From (4.6) and (1.3), we have

TδUc(x) = 2πi
∑

ξ∈2πZ

cosh(δξ)

sinh(π
a
ξ)
eiξx = −

∑

n∈Z

a sinh(a(x+ n))

cosh(a(x+ n)) + cos(aδ)
, (4.10)

where the second equality follows from (4.5) and [8, (7) on p. 88]. Thus, from (4.10) with (4.8),

we have

−Tδ∂xUc(x) = a2
∑

n∈Z

1 + cos(aδ) cosh(a(x+ n))
[
cosh(a(x+ n)) + cos(aδ)

]2

=
∑

n∈Z

a2
[
1 + cos(aδ) cosh(a(x+ n))

]
b2n.

(4.11)

Next, we compute U2
c . By (4.9), we have

U2
c =

∑

n∈Z

a2 sin2(aδ)b2n + a2 sin2(aδ)
∑

n,m∈Z
n 6=m

bnbm. (4.12)

In order to compute the second term above, we use the following identity (see [27, (A 1) on

p. 622]):

2bnbm = − cos(aδ)

sinh2(a2 (m− n)) + sin2(aδ)
(bn + bm)

+
coth(a2 (n−m))

sinh2(a2 (m− n)) + sin2(aδ)
(dn − dm)

(4.13)

for all n,m ∈ Z, n 6= m. Putting n = k + ℓ and m = k − ℓ, it follows from (4.13) that

2
∑

n,m∈Z
n 6=m

bnbm = − lim
N→∞

∑

ℓ∈Z\{0}

cos(aδ)

sinh2(a2ℓ) + sin2(aδ)

N∑

k=−N

(bk+ℓ + bk−ℓ)

+ lim
N→∞

∑

ℓ∈Z\{0}

coth(a2 ℓ)

sinh2(a2ℓ) + sin2(aδ)

N∑

k=−N

(dk+ℓ − dk−ℓ).

(4.14)

Since bk > 0 for any k ∈ Z, the monotone convergence theorem implies

lim
N→∞

∑

ℓ 6=0

cos(aδ)

sinh2(a2 ℓ) + sin2(aδ)

N∑

k=−N

(bk+ℓ + bk−ℓ)

= 4

( ∞∑

ℓ=1

cos(aδ)

sinh2(a2 ℓ) + sin2(aδ)

)∑

k∈Z

bk.

(4.15)

As for the second term on the right-hand side of (4.14), by noting that, for each x ∈ R,

sgn(k)dk(x) → 1 as |k| → ∞, we have, for each fixed ℓ ∈ Z \ {0} and x ∈ R,

N∑

k=−N

(dk+ℓ(x)− dk−ℓ(x)) =

N+ℓ∑

k=N−ℓ+1

dk(x)−
−N+ℓ−1∑

k=−N−ℓ

dk(x) −→ 4ℓ, (4.16)
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as N → ∞. Putting (4.14), (4.15), and (4.16) together, we have

∑

n,m∈Z
n 6=m

bnbm = −2

( ∞∑

ℓ=1

cos(aδ)

sinh2(a2ℓ) + sin2(aδ)

)∑

k∈Z

bk + 4
∞∑

ℓ=1

ℓ coth(a2 ℓ)

sinh2(a2 ℓ) + sin2(aδ)
,

(4.17)

where we suppressed the x-dependence. See [27, (18) on p. 622]. Hence, from (4.12), (4.17),

and (4.9), we obtain

U2
c =

∑

n∈Z

a2 sin2(aδ)b2n + V Uc +D, (4.18)

where V = V (δ, a) and D = D(δ, a) are given by

V =

∞∑

ℓ=1

a sin(2aδ)

sinh2(a2 ℓ) + sin2(aδ)
,

D = 4a2 sin2(aδ)

∞∑

ℓ=1

ℓ coth(a2 ℓ)

sinh2(a2 ℓ) + sin2(aδ)
.

(4.19)

By substituting (4.11) and (4.18) into (4.7), we obtain

(−c+ δ−1 − V )Uc +
∑

n∈Z

a2
[
1 + cos(aδ) cosh(a(x+ n))− sin2(aδ)

]
b2n = B +D.

Using (4.9) with (4.8), this becomes
∑

n∈Z

ab2n
[
a+ a cos(aδ) cosh(a(x+ n))− a sin2(aδ)

− (−c+ δ−1 − V ) sin(aδ)(cosh(a(x+ n)) + cos(aδ))
]
= B +D.

(4.20)

Noting that the right-hand side of (4.20) is independent of x ∈ T (but still depends on δ and

a), we now impose the following three conditions:

a cos(aδ) = (−c+ δ−1 − V ) sin(aδ),

a− a sin2(aδ) = (−c+ δ−1 − V ) sin(aδ) cos(aδ),

B = −D.
(4.21)

Note that the last condition in (4.21) should be interpreted as a definition of B = B(δ, a) in

terms of D = D(δ, a) in (4.19). In view of the first condition in (4.21), we choose c such that

−c+ δ−1 − V = a cot(aδ). (4.22)

such that the first condition in (4.21) is satisfied. It is easy to check that with this choice of c,

the second condition in (4.21) is also satisfied. From (4.19) and (4.22), we have

c = δ−1 − a cot(aδ) −
∞∑

ℓ=1

a sin(2aδ)

sinh2(a2 ℓ) + sin2(aδ)
,

which shows that c→ ∞, as a→ π
δ
.

Having constructed the periodic traveling wave uc(t, x) := Uc(x − ct) (with c = c(δ, a)) as

above, we can proceed as in Subsection 4.1 to prove ill-posedness of ILW (1.1) on the circle. In

view of (4.6), by arguing as in Subsection 4.1, we see that, as c → ∞ (i.e. a → π
δ
), uc|t=0 = Uc
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converges to −2πδ0 in Hs(T) for s < −1
2 , where δ0 is the Dirac delta function on T. On the

other hand, we have

ûc(t, 2π) =

ˆ

T

Uc(x− ct)e−2πixdx = −2πe−2πict sinh(2πδ)

sinh(2π π
a
)
.

As a → π
δ
(and thus c → ∞), we have sinh(2πδ)

sinh(2π π
a
) → 1 but the exponential e−2πict diverges for

t 6= 0. Hence, for t 6= 0, uc(t) does not converge in the distributional sense (and in particular in

Hs(T)). This proves ill-posedness of ILW (1.1) in Hs(T) for s < −1
2 .

Next, let us briefly discuss ill-posedness in Hs
α(T) for given α ∈ R. Given c > 0, let µc denote

the spatial mean of Uc in (4.6). In view of (4.3), we have

µc = −2aδ −→ −2π = the spatial mean of −2πδ0, (4.23)

as c→ ∞ (and hence aδ → π). Given γ ∈ R, define a Galilean transform Γγ by

Γγ(u)(t, x) = u(t, x− 2γt)− γ. (4.24)

Note that if u is a solution to (1.1), then so is Γγ(u) for any γ ∈ R.

Fix α ∈ R. Given c > 0, let uc(t, x) = Uc(x − ct) be the traveling wave solution constructed

above. Then, by setting vc,α = Γµc−α(uc), it follows from the discussion above with (4.23)

and (4.24) that (i) vc,α(t) ∈ Hs
α(T) for any t ∈ R, (ii) vc,α(0) converges to −2πδ0 + (2π + α) in

Hs
α(T) for s < −1

2 , and (iii) we have

v̂c,α(t, 2π) = −2πe−2πi(c+2µc−α)t sinh(2πδ)

sinh(2π π
a
)

which is divergent as c→ ∞ for any t 6= 0. This proves ill-posedness of ILW (1.1) in Hs
α(T) for

s < −1
2 and α ∈ R. This concludes the proof of Theorem 1.1 (ii) on the circle.
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