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Fractonic constraints can lead to exotic properties of quantum many-body systems. Here, we investigate
the dynamics of fracton excitations on top of the ground states of a one-dimensional, dipole-conserving Bose-
Hubbard model. We show that nearby fractons undergo a collective motion mediated by exchanging virtual
dipole excitations, which provides a powerful dynamical tool to characterize the underlying ground state phases.
We find that in the gapped Mott insulating phase, fractons are confined to each other as motion requires the
exchange of massive dipoles. When crossing the phase transition into a gapless Luttinger liquid of dipoles,
fractons deconfine. Their transient deconfinement dynamics scales diffusively and exhibits strong but subleading
contributions described by a quantum Lifshitz model. We examine prospects for the experimental realization
in tilted Bose-Hubbard chains by numerically simulating the adiabatic state preparation and subsequent time
evolution, and find clear signatures of the low-energy fracton dynamics.

Introduction.—Fractonic systems, in which elementary ex-
citations exhibit restricted mobility, have attracted much in-
terest over recent years [1–8]. A prominent example are
systems that conserve higher multipole moments of a global
U(1) charge [9–12]. Such multipole conservation laws dras-
tically impact nonequilibrium properties, entailing Hilbert
space fragmentation [13–15], anomalous diffusion [16–20]
and a slowdown in the spread of information [21]. A promis-
ing approach to realize such phenomena in experimental se-
tups is the preparation of ultracold atomic gases in tilted op-
tical lattices, whose effective behavior is governed by dipole-
conserving Bose- or Fermi-Hubbard models. Experimental
realizations of such systems have demonstrated subdiffusive
dynamics [22] as well as Hilbert space fragmentation [23, 24]
for high-energy initial states. At low energies, a duality be-
tween fractons and elasticity theory indicates a wealth of
possible ground state phases [25–31]. Recent theoretical
work has explored such low-energy properties in microscopic
dipole-conserving lattice models, establishing Mott insulating
phases, Luttinger liquids of dipoles, and supersolids [32–35].
However, preparing and probing such low-energy states in ex-
perimental setups remains a significant challenge.

In this work, we examine dynamical probes of fractonic
properties using few-fracton excitations on top of the ground
states of a dipole-conserving Bose-Hubbard model. We inves-
tigate the collective motion of two initially nearby fractons,
mediated by virtual dipole excitations, and study how their
mobility depends on the underlying ground-state phase (see
also the setup discussed in Ref. [36]); Fig. 1. For the dipole
Mott insulator with gapped dipole excitations, fractons remain
confined. By contrast, for the gapless dipole Luttinger liq-
uid, kinematic constraints are eased and we analyze the result-
ing deconfining dynamics both numerically and analytically.
Furthermore, a numerical simulation of adiabatic state prepa-
ration demonstrates how the confinement-deconfinement dy-
namics may be realized with quantum simulators of ultracold
atoms in optical lattices. We argue that local dynamical probes
are crucial to confirm low-energy dipole-conserving dynamics

in lieu of static measurements.
Dipole-conserving Bose-Hubbard model.—We consider a

one-dimensional model of lattice bosons with a constrained
hopping term [32–34] of the form

Ĥ = −td
∑

j

(
b̂†j b̂

2
j+1b̂†j+2 + h.c.

)
+

U
2

∑
j

n̂ j(n̂ j − 1), (1)

where td is the strength of the correlated hopping and U a re-
pulsive on-site interaction. This Hamiltonian conserves both
the total charge (or particle number) N̂ =

∑
j n̂ j and the asso-

ciated dipole moment (or center of mass) P̂ =
∑

j jn̂ j. Due
to the dipole constraint, single charge excitations created by
b̂†j act as mobility-restricted fractons, and can move only by

emitting or absorbing a mobile dipole excitation d̂†j ≡ b̂†j b̂ j+1,
see Fig. 1 (a). For a theoretical description of Eq. (1) at low
energies, it is convenient to introduce a local dipole charge
q̂d, j, defined via q̂d, j =

∑ j
ℓ=0(n̂ℓ − n) [20, 34, 37]. Here, n is

the average charge density, and we take n ∈ N to be integer
throughout this work. Crucially, assuming a finite energy gap
for single charge excitations, the local dipole charge qd, j re-
mains bounded in the ground state of Eq. (1) [34]. A standard
bosonization procedure gives a counting field ϕ(x) and phase
field θ(x) for the fractons, which satisfy [∂xϕ(x), θ(x′)] =
−iπδ(x − x′) [38]. Considering the definition of the dipole
density q̂d, j, one can bosonize the dipole degrees of freedom
to find the relation between the fracton and the dipole fields
∂xϕd(x) = ϕ(x) and θd(x) = −∂xθ(x) leading to equivalent
commutation relations [∂xϕd(x), θd(x′)] = −iπδ(x − x′) (for
details see Supplemental Material [39]). The effective low-
energy description of the system is then given by the sine-
Gordon model [33, 34]

HSG =

∫
dx
2π

{
udKd (∂xθd)2 +

ud

Kd
(∂xϕd)2 + g cos (ϕd)

}
, (2)

with Luttinger parameter Kd and Luttinger velocity ud. For
Kd < 2, realized at small hopping td/U, the cosine is relevant,
pinning the counting field ϕd(x) and driving the system into
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FIG. 1. Deconfinement of two fractons. (a) Fractons in dipole
moment conserving systems move collaboratively by exchanging
dipoles [36]. (b) Time evolution of the excess density ⟨n̂ j(τ) − n⟩
after adding two particles at adjacent sites on top of the ground state
at filling n = 2. Deep in the dipole Mott insulator (left), the con-
fined particles follow a breathing motion. In the dipole Luttinger
liquid (right), they spread diffusively over accessible time scales in
accordance with a semi-classical picture (dashed gray line). (c) Time
evolution of the local excess density ⟨n̂0(τ) − n⟩ on a site where a
particle was added. The excess density remains finite for the Mott
state but decays diffusively in the Luttinger liquid.

a Mott insulator of dipoles with finite mass gap. At a critical
hopping strength td/U

∣∣∣
BKT, the system undergoes a BKT tran-

sition at Kd = 2 as the cosine becomes irrelevant. The dipole
gap closes and the system enters a Luttinger liquid of dipoles,

HLL =
ud

2π

∫
dx

{
Kd (∂xθd)2 +

1
Kd

(∂xϕd)2
}
. (3)

Previous numerical studies demonstrated that the lowest inte-
ger filling at which a transition into this Luttinger liquid oc-
curs is n = 2, with td/U

∣∣∣
BKT ≈ 0.113 [34]. We thus restrict

to n = 2 for the remainder of this work, operating within the
phase diagram shown in Fig. 1 (b).

Two-Fracton dynamics.—We consider the ground states
|Ω⟩ of the dipole-conserving Bose-Hubbard model Eq. (1) and
add two particles on adjacent sites |ψ2F⟩ = b̂†0b̂†1 |Ω⟩. We
note that |Ω⟩ = |Ω (td/U)⟩ depends on the ratio td/U. Time
evolving |ψ2F⟩ under Ĥ, the fractons can hop in opposite di-
rections by the exchange of virtual dipoles acting as ‘force

carriers’, reminiscent of mediated interactions in gauge theo-
ries [35, 36, 40]; Fig. 1 (a). Our goal is to determine the de-
pendence of this dynamical process on the underlying ground
state.

We first discuss the Mott insulating phase. Deep in the
strong-coupling limit td/U ≪ 1, the ground state |Ω⟩ ≈
|222...⟩ is close to the homogeneously filled state. The dy-
namics then takes place in a degenerate subspace spanned by
the states |r⟩ ≡ b̂†−rb̂

†

1+r |Ω⟩, in which the left (right) particle
excitation is shifted r sites to the left (right) from its original
position. The initial state is given by |ψ2F⟩ = |r = 0⟩. The de-
generacy of this subspace is subsequently lifted by exchanging
a single virtual dipole carrying an energy cost ∝ U. In degen-
erate perturbation theory, we obtain an effective Hamiltonian

Ĥ2F = −
∑
r≥0

Jr |r + 1⟩ ⟨r| + h.c., (4)

with a position-dependent hopping Jr ∝ t2
d/U exp (−r/ξ) that

decays exponentially over a distance ξ determined by the ra-
tio td/U (for details see Supplemental Material [39]). The
exponential suppression arises as the massive dipole has to
travel further to transmit the interaction, dynamically confin-
ing the two fractons [36]. At very strong repulsion td/U ≪ 1,
only the states |r = 0⟩ and |r = 1⟩ contribute significantly to
the dynamics, leading to a periodic breathing motion between
these states. To substantiate this picture of confinement on
top of the Mott insulator, even away from td/U ≪ 1, we per-
form Matrix Product State (MPS) simulations for the model
Eq. (1). We compute the microscopic ground state |Ω⟩, add
two particles on sites 0 and 1, and evaluate the time-evolved
local excess densities ⟨n̂ j(τ) − n⟩ ≡ ⟨ψ2F |eiĤτ n̂ j e−iĤτ|ψ2F⟩−n.
Throughout the Mott insulator, the excess density ⟨n̂0(τ) − n⟩
at the initial position of a fracton excitation retains a finite
long-time value, in agreement with confinement; Fig. 1 (c),
blue curves. At very small td/U, oscillations in ⟨n̂0(τ) − n⟩ be-
come apparent. The full spatio-temporal profile of ⟨n̂ j(τ) − n⟩
shown in Fig. 1 (b), left panel, reveals that this is indeed due
to the breathing motion of the confined fractons.

Moving across the phase transition into the dipole Luttinger
liquid, the gap of the dipole exchange particles closes, lifting
the exponential suppression of the correlated hopping. We
thus expect the two fractons to deconfine and propagate apart.
In a semi-classical picture, we assume that the rate dr/dτ at
which the distance r between the fractons increases is de-
termined by the time r/ud it takes a dipole at velocity ud to
travel between them, i.e., dr

dτ ∝ r−1. This leads to a diffusive
space-time scaling r ∝

√
τ. We observe dynamics consistent

with this semi-classical description on numerically accessi-
ble time scales in the diffusive decay of ⟨n̂0(τ) − n⟩ ∼ 1/

√
τ

throughout the Luttinger liquid; Fig. 1 (c), red curves. This
diffusive transport is reflected in the full profile of the excess
density ⟨n̂ j(τ) − n⟩, which in the center of the system broad-
ens as

√
τ, see Fig. 1 (b), right panel. However, intriguingly,

⟨n̂ j(τ) − n⟩ further exhibits strong oscillations beyond this fea-
ture, spreading behind a ballistically moving light cone and
bending in a seemingly diffusive fashion. In order to explain
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FIG. 2. Dynamics of a dipole. Time evolution of an additional
dipole on top of the n = 2 ground state. Left column: dipole
charge ⟨q̂ j,d(τ)⟩. Right Column: Rescaled dipole density cuts at sev-
eral times. (a) A dipole excitation on top of the Mott insulator ex-
pands ballistically and is effectively described by a single free parti-
cle (black line, evaluated at tdτ = 4). (b) A dipole excitation in the
Luttinger liquid exhibits pronounced diffusive waves at early times,
obeying the Lifshitz scaling relation Eq. (6) (black line). The late-
time dynamics are eventually dominated by the ballistic Luttinger
modes (dashed lines).

the origin of this feature, we will examine the dynamics of
local dipole excitations in the following.

Local dipole excitation.— In addition to fracton excita-
tions, we can directly study the ‘force-carrying’ dipole exci-
tations by considering the initial state |ψD⟩ = b̂†0b̂1 |Ω⟩. Deep
in the Mott insulator, the effective Hamiltonian governing the
dynamics of the dipole excitation corresponds to a single par-
ticle nearest-neighbor hopping model (see [39] for details).
The dipole excitation thus spreads ballistically. We confirm
this numerically by evaluating the time-evolved local dipole
charges ⟨q̂d, j(τ)⟩ ≡ ⟨ψD|eiĤτ q̂d, j e−iĤτ|ψD⟩, see Fig. 2 (a).

Turning to the dipole Luttinger liquid, the low energy
model Eq. (3) predicts two sharp sound modes in the dipole
charge ⟨q̂d, j(τ)⟩, moving right/left with velocity ±ud and yield-
ing a dynamical exponent z = 1. Our numerical results in-
deed indicate the emergence of these sound modes at the lat-
est accessible times, see Fig. 2 (b). The observed dipole den-
sity is not inversion symmetric around the origin of the exci-
tation, since the Hamiltonian is not particle-hole symmetric.
However, similar to the two-fracton case discussed before, the
finite-time dynamics is characterized by additional, strongly
oscillating contributions. This suggests the following picture:
While Eq. (3) provides the correct asymptotic description for
late times/low energies, subleading corrections to Eq. (3) are
important on accessible, finite times.

In order to understand these corrections, we recall that
Eq. (3) provides the correct low-energy description of the mi-
croscopic Hamiltonian Eq. (1) in the presence of a finite gap
for single charge excitations. Previous studies have estab-

lished a finite charge gap for all td/U [33, 34]. However, in
practice, this gap can become very small and at finite times the
system appears as if charge excitations were gapless. Accord-
ing to the fracton-dipole field relations, the finite charge gap
is due to the second term ∼ (∂xϕd(x))2 = ϕ2(x) in Eq. (3). As-
suming this term is small, we drop it for the purpose of effec-
tively describing early time dynamics. Including the next-to-
leading order term ∼ (∂2

xϕd(x))2 then gives rise to a quantum
Lifshitz model [32, 41, 42],

HLif =
v

2π

∫
dx

(
K(∂xθd)2 +

1
K

(∂2
xϕd)2

)
, (5)

which we express in dipole degrees of freedom and where the
parameters v and K are named in analogy to the Hamiltonian
(3). The energy spectrum follows a quadratic relation ω ∝ k2

and induces a dynamical exponent z = 2. A recent numerical
study of the dipole spectral function in the Luttinger liquid in-
deed confirmed a quadratic dispersion at higher energies [43].
We discuss the relation between the two field theories Eq. (3)
and Eq. (5) in detail in the Supplemental Material [39]. Using
Eq. (5) as an approximation for early times, we evaluate the
time-evolved dipole charge in closed form,

⟨q̂d, j(τ)⟩ ∝

δ( j), τ = 0
1

2
√

vτ

[
cos

(
j2

4vτ

)
+ sin

(
j2

4vτ

)]
, else.

(6)

This oscillating function follows a diffusive scaling as ex-
pected from the dynamical exponent z = 2.

This expression violates Lieb-Robinson bounds on infor-
mation spreading, however, causal behavior is restored by a
high-momentum cutoff Λ = O(1/a), which in a lattice system
is naturally set by the lattice spacing a. The cutoff induces a
light cone with finite velocity that approximately corresponds
to the group velocity of the quadratic Lifshitz dispersion at the
momentum cutoff, ∂kω(k)|Λ = 2vΛ.

Our numerical results for the early-time dipole dynamics
agree remarkably well with the scaling relation predicted by
the Lifshitz theory; Fig. 2 (b), right column. Also indicated is
the Luttinger velocity, extracted from ground state numerics
of the Luttinger parameter Kd and the dipole compressibility
κd using the relation κd = Kd/udπ [34], which is slow com-
pared to the diffusive Lifshitz oscillations. These oscillations
are inherited in the two-fracton case discussed previously, and
constitute a process distinct from the virtual dipole exchange
between fractons.

Experimental realization: Tilted lattices.—Having estab-
lished the dynamics of few-fracton initial states as charac-
teristic signatures of the underlying dipole Mott insulator
and Luttinger liquid phases, we now turn to the question
how to realize these phases and their dynamical signatures
in experiments. An accessible platform to implement dipole-
conserving dynamics are ultra-cold gases of atoms in an opti-
cal lattice with a strong tilt. The Hamiltonian of such a system
is given by

Ĥ = −t
∑

j

(
b̂†j b̂ j+1 + h.c.

)
+

U
2

∑
j

n̂ j(n̂ j−1)+∆
∑

j

jn̂ j, (7)
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FIG. 3. Fractonic dynamics in a tilted lattice. (a) Sequence for
adiabatic preparation of ground states with a two-particle excitation.
After a rapid ramp of the tilt ∆, the hopping strength is slowly in-
creased to a finite value t. Subsequently, additional particles are
introduced for example by optical tweezer potentials. (b) Density
profile of the two-particle state for weak (left) and strong (right) final
hopping strength. Weak hopping results in the predicted breathing
motion. For strong hopping, Lifshitz-like oscillations emerge, with
an approximately diffusive scaling. Inversion symmetry is explicitly
broken due to the linear potential. (c) Time evolution of dipole mo-
ment fluctuations in a segment of size ℓ = 80 after preparing the
excitations on top of an n = 2 state. The dipole fluctuations in
the tilted lattice do not increase over a significant period of time,
suggesting dipole-conserving dynamics (green lines). By contrast,
fluctuations on top of a conventional (untilted) n = 1 Mott state in-
crease quadratically (gray lines). Fluctuations of adiabatically pre-
pared ground states are subtracted in both cases.

where ∆ is the strength of the tilt. In the limit of strong
∆ ≫ t,U, only correlated processes that conserve the total
dipole moment are energetically allowed. A Schrieffer-Wolff
transformation yields the dipole-conserving Hamiltonian (1)
with effective correlated hopping td,eff = t2U/∆2 and a renor-
malized Ueff = U(1 − 4t2/∆2), alongside a nearest-neighbor
interaction of strength 2t2U/∆2 [14, 23, 24, 44]; see Supple-
mental Material [39] for the full derivation.

The first step is to prepare low-energy states within sectors
of fixed dipole moment at integer filling. We propose the fol-
lowing protocol: (i) Initialize the system in a homogeneous
state |222...⟩ at integer filling at vanishing hopping t = 0 and
zero tilt ∆ = 0. (ii) The tilt is then ramped up quickly to a
value ∆, leaving the state invariant. This realizes the ground
state of the dipole Mott insulator in the limit of vanishing cor-
related hopping, td,eff = 0. (iii) Next, the depth of the optical

lattice is lowered adiabatically, increasing t (and thus td,eff) un-
til the desired point in the phase diagram is reached; Fig. 3 (a).
This results in a state |Ω̃⟩ that depends on the final values t,
∆, U of hopping, tilt and interactions, as well as the specific
adiabatic ramp. (iv) Finally, additional particles on top of |Ω̃⟩
may be introduced to create the state |ψ̃2F⟩ = b̂†0b̂†1 |Ω̃⟩, for ex-
ample using optical tweezers, see e.g. Refs. [45–47]. Other
excitations may be probed as well: Using digital micromirror
devices, tunneling between neighboring sites can be induced
to access a single-dipole state |ψ̃D⟩ = b̂†0b̂1 |Ω̃⟩. One can also
dope holes in a similar vein; as we can expect hole dynamics
over a sufficiently high-filling background to resemble that of
particle excitations, this strategy can likewise be used to study
single- and few-fracton states.

To demonstrate this protocol, we numerically simulate the
adiabatic preparation of |Ω̃⟩ and the subsequent dynamics
from the two-particle excitation state |ψ̃2F⟩ using MPS meth-
ods. For a given final value t of the single particle hopping,
we set U = 0.5t and allocate a time τt = 20 for a linear
adiabatic ramp; Fig. 3 (a). We show the dynamics of the ex-
cess charge ⟨n̂ j(τ) − n⟩ from the two-particle state |ψ̃2F⟩ in
Fig. 3 (b). For weak hopping, ∆/t = 5, the fractons remain
confined with clear signatures of breathing dynamics, distinct
from the much faster Bloch oscillations induced by the linear
potential. In constrast, for larger final hopping, ∆/t = 3.5,
we observe dynamical deconfinement of the fractons. The
spread of the excess density ⟨n̂ j(τ) − n⟩ scales approximately
diffusively, with strong oscillations reminiscent of the scaling
function (6). This suggests that the dynamical properties of
the dipole Luttinger liquid – including strong subleading con-
tributions from a quantum Lifshitz model – are well captured
in this setup.

It remains to verify that the observed diffusive charge dy-
namics is indeed dipole-conserving. For this purpose, we de-
fine the dipole moment P̂ℓ =

∑ℓ
j=1 q̂d, j−ℓ/2 in a large linear

segment of size ℓ around position j = 0. In experiment, P̂ℓ

can be measured from snapshots using quantum gas micro-
scopes [48, 49]. We then consider fluctuations of the time-
evolved dipole moment P̂ℓ(τ), which we label as

(
∆P(2F)

ℓ
(τ)

)2

for the initial state |ψ̃2F⟩, and
(
∆P(Ω)

ℓ
(τ)

)2 for |Ω̃⟩. We note that
the latter are non-trivial since |Ω̃⟩ is not a true eigenstate. The
difference

(
∆Pℓ(τ)

)2
≡

(
∆P(2F)

ℓ
(τ)

)2
−

(
∆P(Ω)

ℓ
(τ)

)2 then quan-
tifies the fluctuation of the dipole moment due to dynamics
of charge excitations. We numerically evaluate the dynamics
of

(
∆Pℓ(τ)

)2 for a segment of ℓ = 80 and for different tilt-to-
hopping ratios ∆/t; Fig. 3 (c) (green lines). The fluctuations
do not increase, confirming effective dipole conservation on
a prethermal time scale. By contrast, the dipole fluctuations
from two charge excitations on top of a regular n = 1 Mott in-
sulator with vanishing tilt ∆ = 0 increase rapidly (gray lines).
In this case, we predict that the free ballistic movement of the
particles leads to

(
∆Pℓ(τ)

)2
∼ τ2 at late times, consistent with

our numerical results.
Finally, one may be tempted to probe the static fluctuations(
∆P(Ω)

ℓ

)2 of the state |Ω̃⟩ directly: For the ground states of the
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model Eq. (1) with exact dipole-conservation, these fluctua-
tions scale with ℓ as

(
∆P(dMI)

ℓ

)2
∼ const. in the dipole Mott

insulator, and
(
∆P(dLL)

ℓ

)2
∼ log(ℓ) in the dipole Luttinger liq-

uid (analogous to particle number fluctuations in a regular
Mott state/Luttinger liquid [50–52]). By contrast, in a regu-
lar Mott insulator without dipole-conservation, a finite density
of particle-hole fluctuations leads to

(
∆P(MI)

ℓ

)2
∼ ℓ, provid-

ing a clear distinction to dipole-conserving states. Crucially
however, the tilted model Eq. (7) enforces dipole-conservation
in a rotated basis given by a Schrieffer-Wolff transforma-
tion. Since measurements are taken in the standard occupation
number basis, this mismatch leads to

(
∆P(Ω)

ℓ

)2
∼ ℓ despite ef-

fective dipole-conservation because of the ’wrong’ measure-
ment basis.

Conclusions and Outlook.—We have studied the dynam-
ics of local excitations on top of the integer-filling ground
states of the dipolar Bose-Hubbard model. Fractons undergo
a confinement-deconfinement transition when tuning the ini-
tial state from a dipole Mott insulator to a dipole Luttinger
liquid. Future work may be dedicated to developing an effec-
tive theory of the collective fracton motion and to elucidat-
ing its eventual asymptotic late-time behavior. Moreover, it
would be interesting to explore the consequences of a mod-
ified Mermin-Wagner theorem for our protocols in higher-
dimensional dipole-moment conserving systems [32, 53, 54].

We have furthermore studied the adiabatic preparation and
subsequent dynamics of the two-fracton state in a tilted op-
tical lattice setup, identifying dynamical probes as crucial
tools to observe fractonic properties at low energies. Our
results present clear strategies to realize and probe frac-
tonic low-energy phases. Future studies may explore non-
integer commensurate fillings which realize metastable su-
persolids [33, 34]. Quasi-two-dimensional gases of polar
molecules may offer alternative routes to study fracton decon-
finement dynamics, as those systems are effectively described
by the elasticity theory of two-dimensional quantum crystals,
and in fact supersolid phases have already been demonstrated
experimentally [55].
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A. Derivation of effective Hamiltonians for the dipole Mott state

In this section, we derive effective Hamiltonians for the
dynamics of excitations deep in the dipole Mott state of the
dipole-conserving Bose-Hubbard model (1), which we restate
for completeness here:

Ĥ = Ĥkin + ĤU

= −td
∑

j

(
b̂†j b̂

2
j+1b̂†j+2 + h.c.

)
+

U
2

∑
j

n̂ j(n̂ j − 1). (S1)

We now consider the strong-interaction limit td/U ≪ 1 at fill-
ing n = 2. In this case, the ground state |Ω⟩ is very close to
the homogeneously filled product state, |Ω⟩ ≈ |222...⟩.

The first effective Hamiltonian we consider governs the
time evolution of a single dipole excitation on top of the
ground state. In this case, the space of possible states is
spanned by a set of states | jd⟩ = b̂†j b̂ j+1 |Ω⟩, where a single
dipole sits on the j-th bond in the system. Other configura-

tions are separated from this space due to dipole moment con-
servation and the fact that further excitations are prohibited
by the strong on-site repulsion. To first order, the states | jd⟩
are connected by the hopping term Ĥkin, realizing a nearest-
neighbor hopping for the dipole. We can directly evaluate all
transition elements as

⟨ jd | Ĥkin |id⟩ = ⟨ | Ĥkin | ⟩ δ j,i±1 = −6tdδ j,i±1. (S2)

The effective Hamiltonian can therefore be diagonalized in
momentum modes, as

Ĥ1Dip = − 6td
∑

j

|( j + 1)d⟩ ⟨ jd | + h.c.

= − 12td
∑

k

cos (k) |kd⟩ ⟨kd | ,
(S3)

where |kd⟩ =
1
√

L

∑
j e−ik j | jd⟩. From this, the time evolution of

a local dipole in the middle of the chain, |ψD(τ = 0)⟩ = |0d⟩,
can be derived exactly, which in the continuum limit yields:

|ψD(τ)⟩ = e−iĤ1Dipτ |0d⟩ = e−iĤ1Dipτ
1
√

L

∑
k

|kd⟩ =
1
√

L

∑
k

ei12tdτ cos (k) |kd⟩ =
1
L

∑
k, j

e−i(k j−12tdτ cos (k)) | jd⟩

→
∑

j

∫
dk
2π

e−i(k j−12tdτ cos (k)) | jd⟩ =
∑

j

J j(12tdτ) | jd⟩ ,
(S4)

where J j is the Bessel function with integer index j.

The strong-coupling limit also allows for a perturbative
treatment of a state where we put two particles on adjacent
sites, |ψ2F⟩ = b̂†0b̂†1 |Ω⟩. The strong repulsive interactions
severely restrict the low-energy subspace in which this state
lies, which is furthermore split into distinct sectors with differ-
ent dipole moment. No further excitations from the Mott state
are possible, while conservation of the center of mass implies
that the state in question can only be connected to states that
can be accessed by moving one particle by r sites to the right,
moving the second one by r sites to the left to conserve the
dipole moment. We label these states using this integer r; |r⟩
is therefore the state in which the distance in bonds of the two
particles is 2r + 1, with |ψ2F⟩ = |r = 0⟩ being the initial state.

These states are connected to each other by the exchange
of virtual dipoles: A particle may hop into one direction by
emitting a dipole; this dipole may then travel to the other parti-
cle and be absorbed, returning to the original low-energy sub-
space. In this section, we will only consider the lowest-order
transition for each state; this is the process where a state |r⟩
is connected to |r ± 1⟩ by exchange of a single virtual dipole,
which hops directly to the second particle without further ado.
Thus, higher-order processes related to the emission of multi-
ple dipoles are neglected.

For the transition from |r = 0⟩ to |r = 1⟩, we only have
one intermediary state. In this case, we can apply non-
degenerate perturbation theory to obtain the transition element
⟨r = 1| Ĥ2F |r = 0⟩:



S2

⟨ | Ĥkin | ⟩ = ⟨ | Ĥkin | ⟩ = −6
√

2td (S5)

The energy difference between the excited state and the low-
energy subspace is ∆E = 2U. With an additional factor of 2 as
we have two possible intermediary states, the total transition
element to second order is ⟨r = 1| Ĥ2F |r = 0⟩ = −72 t2

d
U .

For larger distances, there are more intermediary states as
the virtual dipole has to pass from one fracton to the other.
If we consider only one direction in the transition from |r⟩
to |r + 1⟩, 2r + 1 states will be involved in the effective in-
teraction, which corresponds to all possible positions of the
dipole between the fractons. Labeling these as |r, j⟩, where
j = 1, . . . , 2r + 1 denotes the distance of the dipole from
the emitting fracton, it is important to note that all |r, j⟩ for
j , 2r + 1 are degenerate under ĤU , with an energy differ-
ence to the low-energy subspace of ∆E = U. Therefore, one
has to apply degenerate perturbation theory. The perturbation
Ĥkin lifts the degeneracy as it couples adjacent states. The
problem is equivalent to a free particle on a chain of length

2r with open boundary conditions, leading to new eigenstates
of the form |r, k⟩ = N−1

k
∑2r

j sin (k j) | j⟩ with k = π
2r+1 i for i =

1, . . . , 2r and energy difference ∆E = U − 12td cos(k), where

Nk =

√∑2r
j sin2 (k j) is a normalization constant. The right-

most state |r, 2r + 1⟩ has a higher energy difference ∆E = 2U
and thus can be treated separately. Again taking into account
both directions, the full expression for the transition element
is

⟨r + 1| Ĥ2F |r⟩ =

= 2
∑

k

{
⟨r, j = 2r + 1| Ĥkin |r, k⟩ ⟨r, k| Ĥkin |r⟩

2U(U − 12td cos(k))
×

× ⟨r + 1| Ĥkin |r, j = 2r + 1⟩
}
.

(S6)

All transition elements can be evaluated directly and given in
a concise form. The respective expressions are

⟨r, k| Ĥkin |r⟩ = N−1
k sin (k) ⟨r, j = 1| Ĥkin |r⟩ = N−1

k sin (k) ⟨ | Ĥkin | ⟩ = −N−1
k 3
√

6td sin (k)

⟨r, j = 2r + 1| Ĥkin |r, k⟩ = N−1
k sin (2rk) ⟨r, j = 2r + 1| Ĥkin |r, j = 2r⟩ = N−1

k sin (2rk) ⟨ | Ĥkin | ⟩ = −N−1
k 4
√

3td sin (2rk)

⟨r + 1| Ĥkin |r, j = 2r + 1⟩ = ⟨ | Ĥkin | ⟩ = −6
√

2td.
(S7)

The explicit form of the transition element for two states with
r , 0 is

⟨r + 1| Ĥ2F |r⟩ =

− 36
t2
d

U

2r∑
i

sin ( 2rπ
2r+1 i) sin ( π

2r+1 i)(∑2r
j sin2 ( π

2r+1 i j)
) (

U
12td
− cos ( π

2r+1 i)
) (S8)

Therefore, the effective Hamiltonian of the two-fracton states
in this dipole sector can be written as

Ĥ2F = −
∑
r≥0

Jr |r + 1⟩ ⟨r| + h.c., (S9)

where we have introduced the position-dependent hopping
strengths Jr = − ⟨r + 1| Ĥ2F |r⟩. These can be evaluated nu-
merically, which yields a strong exponential suppression of
the hopping strength at high distances, of the form Jr ∝

t2
d/U exp (−r/ξ) for some correlation length ξ which depends

on the ratio td/U, as expected from the physical picture of a
massive dipole as a virtual interaction carrier. The effective
Hamiltonian (S9) is reminiscent of a single particle on a semi-
infinite chain, the mass of which increases exponentially with
distance. In particular, at very strong interaction td/U ≪ 1 the
states |r = 0⟩ and |r = 1⟩ are strongly energetically separated

from the higher states due to the decay of the coupling, effec-
tively spanning a two-state low-energy subspace. This struc-
ture leads to the breathing motion of the initial state consid-
ered in the main text, which is confirmed by numerical studies.

B. Low-energy charge and dipole field theories

The defining relation q̂d, j =
∑ j

l=0(n̂l−n) between the charge
density n̂ j and the dipole density n̂d, j = q̂d, j+nd (where nd ∈ N
is a suitable integer average dipole density, such that the lo-
cal dipole density nd, j is non-negative) allows a dual descrip-
tion at low energies. In this section, we discuss the connec-
tion in terms of the continuum field theories that govern the
ground state physics at integer filling. To understand this in-
terplay, we first introduce a bosonic counting field ϕ(x) and a
related phase field θ(x) following standard bosonization tech-
niques [38]. They fulfill canonical commutation relations of
the form

[∂xϕ(x), θ(x′)] = −iπδ(x − x′) (S10)

Continuum operators such as the particle density n(x) and
the single particle creation operator b†(x) can be expressed
in terms of these two fields:
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n(x) =
[
n −

1
π
∂xϕ(x)

]∑
m∈Z

e2im
(
πnx−ϕ(x)

)
,

b†(x) =
√

n(x)e−iθ(x),

(S11)

where n is the average particle density. In the continuum, the
dipole-charge density relation becomes ∂xnd(x) = n(x). The
dipoles can also be expressed in a respective counting field
ϕd(x) and a phase field θd(x). The counting field inherits the
differential relation between the densities. A partial integra-
tion of the commutation relation (S10) then establishes the
connection between the two pictures as

ϕ(x) = ∂xϕd(x)
∂xθ(x) = −θd(x) .

(S12)

With this relation, one can express all low-energy theories ei-
ther in particle or in dipole degrees of freedom. We note that
the dipole density nd(x) and the dipole creation operator d†(x)
can be expressed in the same fashion as in Eq. (S11) by re-
placing the charge fields with dipole fields.

The naive approach to obtain a low-energy field theory of
the dipolar Bose-Hubbard model consists of performing a gra-
dient expansion of the Hamiltonian (1), keeping only the low-
est order terms [33, 58]. The resultant continuum Hamiltonian
is then, in each respective picture,

HLif =
v

2π

∫
dx

(
K(∂2

xθ
2) +

1
K

(∂xϕ)2
)

=
v

2π

∫
dx

(
K(∂xθd)2 +

1
K

(∂2
xϕd)2

)
.

(S13)

This is the one-dimensional version of the quantum Lifshitz
theory, fully described by the two parameters v and K and
gapless in both charges and dipoles. The higher derivatives in
θ(x) compared to more common field theories follow from the
quenched hopping term which enforces dipole symmetry, here
manifest in the invariance under θ(x) → θ(x) + a + bx. The
z = 2 dynamical exponent of this theory furthermore leads to
a dispersion of ω = vk2.

Lattice effects can destabilize such a theory at rational fill-
ings. A renormalization group analysis shows that the opera-
tor eiϕ(x) has long-range correlation for all possible parameter
values in the Lifshitz theory (S13), implying that the cosine
terms in the Hamiltonian which have to be added due to the
lattice structure are always relevant and need not be neglected.
At commensurate fillings n = p/q, one therefore has to con-
sider an additional interaction term of the form

g cos (2qϕ). (S14)

This term gaps out the charges and spoils the emergence of
the Lifshitz model at all rational fillings on general grounds.

The cosine is the most relevant term in the full Hamiltonian.
One can therefore safely expand it to obtain a Hamiltonian of
the form (setting q = 1 for simplicity)

H =
∫

dx
{

v
2π

[
1
K

(∂xϕ)2 + K(∂2
xθ)

2
]
+ 2gϕ2

}
. (S15)

This theory formally looks like a Lifshitz theory with an ad-
ditional mass term for the charge density field ϕ(x). Yet, its
spectrum is still gapless:

ω = v|k|
√

k2 + 4πgK/v. (S16)

While the mass term changes the dynamical exponent to z = 1,
it still allows gapless dipole excitations. In fact, using the
relation ϕ2(x) = (∂xϕd(x))2 and neglecting the higher-order
term (∂xϕ(x))2 = (∂2

xϕd(x))2, one can see how this mass term
induces the Hamiltonian of the dipolar Luttinger liquid

HLL =
1

2π

∫
dx

{
udKd (∂xθd)2 +

ud

Kd
(∂xϕd)2

}
, (S17)

where ud =
√

4πgKv and Kd =
√

Kv/4πg. Further lattice
cosines for the dipole field ϕd(x) can then be added, resulting
in the sine-Gordon model (2). In this case, however, the cosine
is only relevant for Kd < 2, thereby allowing the stabilization
of the Luttinger liquid in the system.

While any non-zero g therefore destabilizes the Lifshitz
model in favor of the Luttinger liquid, at early-times Lifshitz-
like physics may still emerge. While for low momenta
k ≪

√
4πgK/v, the dispersion (S16) indeed results in the

typical linear Luttinger relation ω = ud |k|, high momenta
k ≫

√
4πgK/v are well approximated by the Lifshitz pre-

diction ω = vk2. As the charge gap ∆c is proportional to the
coupling ∆c ∼

g
Kv , momenta above this energy scale effec-

tively behave as if the system were gapless. Numerical studies
confirm that that the charge gap ∆c rapidly approaches small
values at filling n = 2 [34]. This implies that a large part of the
spectrum follows the quadratic Lifshitz prediction [43]. Cor-
respondingly, the Lifshitz theory describes the time evolution
of local excitations adequately up to very late times, at which
point the low-momentum Luttinger modes finally enforce bal-
listic spreading.

C. Dynamics of local dipole excitations

The time evolution of a single localized excitation in the
above quadratic field theories is directly accessible in ana-
lytical terms. For an initial local dipole excitation created
by d̂†(x), we are interested in the dynamics of the dipole
charge qd(x, τ) = nd(x, τ) − nd. Expanding the expressions
in Eq. (S11) to lowest order, we obtain

qd(x, τ) =⟨d(0, 0)(nd(x, τ) − nd)d†(0, 0)⟩

∼ −
nd

π
⟨eiθd(0,0)∂xϕd(x, τ)e−iθd(0,0)⟩.

(S18)
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FIG. S1. Lifshitz dynamics deep in the Luttinger liquid. Time evolution of the two-fracton excitation |ψ2F⟩ in the density profile ⟨n̂ j − n⟩
(a) and the dipole excitation |ψD⟩ in the dipole charge profile ⟨q̂d, j⟩ (b) deep in the Luttinger liquid at t/U = 0.16. As the charge gap ∆c is
much smaller in this region, the Lifshitz theory (S13) is a valid description on all numerically accessible time scales. Due to the duality of the
Lifshitz theory in charge and dipole fields, both states exhibit the characteristic oscillatory diffusive modes. The Luttinger velocity ud is much
slower than these modes, pushing the emergence of the low-energy ballistic dynamics to later times.

As the theories in question are non-interacting, we can diag-
onalize them by going to an oscillator representation in mo-
mentum modes. The commutation relations (S10) imply that
the Fourier modes fk = 1

√
L

∫
dxe−ikx f (x) of the fields can be

expressed in raising and lowering operators a(†)
k :

(∂xϕd)k =
1
√

2
A(k)(ak + a†

−k)

1
π
θd,k =

i
√

2

1
A(k)

(ak − a†
−k),

(S19)

where a(†)
k follow the standard momentum mode relations and

A(k) = A(−k) is a non-universal pre-factor which ensures nor-
malization. All quadratic Hamiltonians we consider are diag-

onal in the new operators, taking on the form

H =
∑

k

ω(k)
(
a†kak +

1
2

)
, (S20)

where ω(k) is the relevant dispersion. In particular, the time
evolution of the creation and annihilation operators is given
by a(†)

k (τ) = e±iω(k)τa(†)
k .

The expectation value (S18) can be successively simplified
by going to momentum space and using the introduced repre-
sentation. As operators at different momenta k always com-
mute, we can treat each k mode separately by splitting up the
exponential functions and commuting factors whose k values
differ from the density field momentum. The only non-trivial
contributions that remain are

qd(x, τ) = −
nd

π
√

2L

∑
k

A(k)
(
ei(kx+ω(k)τ)⟨e

π
√

2LA(k)
a†k ake−

π
√

2LA(k)
a†k ⟩ + ei(kx−ω(k)τ)⟨e−

π
√

2LA(k)
ak a†ke

π
√

2LA(k)
ak
⟩
)
. (S21)

These terms can be evaluated by a Taylor expansion of the exponentials. Only zeroth- and first-order contributions are of
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relevance, as higher orders vanish due to different numbers of
raising and lowering operators. The final expression is

qd(x, τ) =
nd

L

∑
k

eikx cos (ω(k)τ)

→nd

∫
dk
2π

eikx cos (ω(k)τ),
(S22)

where in the second line we go to a continuum limit. This
can be seen as a superposition of plane waves with dispersion
ω(k). For the Luttinger liquid (S17) with linear dispersion
ω(k) = ud |k|, this naturally amounts to two ballistic counter-
propagating modes

qd(x, τ) =
nd

2
[δ(x − udτ) + δ(x + udτ)] (S23)

while for the quadratic Lifshitz mode the scaling function (6)
is reproduced. Dispersions which go faster than linear, such
as in the Lifshitz model, lead to superluminal behavior in the
continuum limit, as the velocity of high-momentum modes
grows unbounded. In actual microscopic lattice Hamiltoni-
ans, a finite bandwidth ∼ 1/a where a is the lattice spacing
is present which prevents such unphysical behavior to arise.
In continuum momentum integrals, this can be mimicked by a
high-momentum cutoff of the order of the bandwidth.

For the massive Lifshitz model (S15) with the spectrum
as given in Eq. (S16), this derivation predicts the emergence
the characteristic diffusive Lifshitz oscillations at early times,
before the two Luttinger modes arise which push the oscilla-
tions in front of them and become the dominant feature at later
times. The charge mass ∆c is biggest close to the phase transi-
tion into the Mott insulator; in Fig. 2 (b) the emergence of the
Luttinger modes is already visible on accessible time scales.
Deeper in the Luttinger liquid, the charge gap ∆c rapidly de-
creases: we show the dynamics of the two-fracton and the
dipole state at t/U = 0.16 in Fig. S1. As the Lifshitz theory is
valid for much longer time scales, the respective density pro-
files in charges and dipole charges both exhibit the diffusive
Lifshitz modes.

D. Schrieffer-Wolff transformation in tilted Bose-Hubbard
chains

In this section, we restate the emergence of the dipolar
Bose-Hubbard model as an effective early-time description of
a tilted Bose-Hubbard chain. The derivation here follows a
scheme already discussed in the literature [23, 24, 33, 44].

The dipole-moment conserving dynamics in the presence
of a linear tilt can be made explicit by the application of
a Schrieffer-Wolff (SW) transformation to the Hamiltonian
(7) [59]. Most generally, the SW transformation is applied
to a Hamiltonian Ĥ which can be split into an already diag-
onal part Ĥ0 and an off-diagonal part V̂ which serves as the
perturbation:

Ĥ = Ĥ0 + λV̂ . (S24)

Here, λ is the coupling strength of the perturbation and is as-
sumed to be small. The goal is to find a unitary transforma-
tion that diagonalizes the Hamiltonian Ĥ to some order O(λn).
This transformation can be written as

Ĥeff = eŜ Ĥe−Ŝ (S25)

where Ŝ is an anti-hermitian operator. Especially in our case,
it is paramount to note that the Hamiltonian Ĥeff is diagonal
in a rotated basis which is connected to the original computa-
tional basis by

|n′⟩ = eŜ |n⟩ . (S26)

One can expand the transformation (S25) using the Baker-
Campbell-Hausdorff formula, which yields for the first few
terms

Ĥeff = Ĥ+[Ŝ , Ĥ]+
1
2

[Ŝ , [Ŝ , Ĥ]]+
1
6

[Ŝ , [Ŝ , [Ŝ , Ĥ]]]+... (S27)

The final step to obtaining a controllable expression is to
also expand the generator of the transformation Ŝ in orders of
λ, where the zeroth-order term vanishes as there are no off-
diagonal terms in H at order O(λ0):

Ŝ = λŜ 1 + λ
2Ŝ 2 + λ

3Ŝ 3 + O(λ4) (S28)

This expansion is now plugged into Eq. (S27) and all terms
are organized in orders of λ. At each order, the O(λn) com-
ponent of Ŝ is determined successively from the lower orders
by enforcing that all off-diagonal terms vanish. The effective
Hamiltonian is calculated from the remaining commutators at
the respective order.

We apply the Schrieffer-Wolff transformation to a Bose-
Hubbard chain in the limit of a strong tilt ∆ ≫ t,U to obtain
an effective Hamiltonian to a certain order in t/∆ and U/∆.
The goal is to eliminate the dipole moment violating hopping
term. Prethermalization arguments suggest that the center
of mass conserving dynamics describe the system adequately
up to an exponentially long timescale τpre-th ∼ exp (∆/t), as
we can always write a Schrieffer-Wolf Hamiltonian conserv-
ing dipole moment to an arbitrary order (t/∆)n. This can be
more physically interpreted as a severe restriction of the space
of possible moves due to energy conservation: While dipole
moment conserving processes leave the dominant tilt energy
unchanged, any other process implies dissipation of tilt en-
ergy by means of the kinetic part of the Hamiltonian, which
can only be achieved by a complicated multi-particle scatter-
ing [14, 60].
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We split the Hamiltonian of the tilted system into different
parts:

Ĥ = −t
∑

j

(
b̂†j b̂ j+1 + h.c.

)
+ t

(U
2t

)∑
j

n̂ j(n̂ j − 1)

+∆
∑

j

jn̂ j = tĤkin + tĤU + Ĥ∆
(S29)

The eigenbasis of the diagonal Hamiltonian Ĥ∆ are the Fock
states which have a well-defined particle number N and dipole
moment P.

Before stating the explicit form of the first orders of the
generator (S28), we simplify the expression for the effective
Hamiltonian (S27). The first order of the effective Hamilto-
nian, achieved by combining Eq. (S27) with Eq. (S28), is

Ĥeff,1 = Ĥ∆ + t
(
Ĥkin + ĤU + [Ŝ 1, Ĥ∆]

)
(S30)

The commutator [Ŝ 1,H∆] has to be chosen such that it cancels
all terms off-diagonal in the dipole moment. At first order,
this is simply the kinetic term, which enforces the first-order
condition for the SW generator

[Ŝ 1, Ĥ∆] = −Ĥkin. (S31)

To this order, the Hamiltonian consists of the static terms gov-
erning the Hubbard interaction and the tilt. This is to be ex-
pected as no dipole-conserving process is possible at linear

order in t; a single particle hopping always changes the dipole
moment.

The second order of the expansion is:

Ĥeff,2 =t2
(

1
2

[Ŝ 1, [Ŝ 1, Ĥ∆] + [Ŝ 1, Ĥkin + ĤU] + [Ŝ 2, Ĥ∆]
)

=t2
(

1
2

[Ŝ 1, Ĥkin] + [Ŝ 1, ĤU] + [Ŝ 2, Ĥ∆]
)

(S32)
Here again, the commutator [Ŝ 2, Ĥ∆] is chosen in such a
way as to cancel all off-diagonal contributions from the other
terms. We can achieve this by investigating the structure of
all appearing operators: As Ĥkin is completely off-diagonal
and Ĥ∆ completely diagonal, the condition (S31) allows us to
define a completely off-diagonal Ŝ 1. This then implies that
the commutator [Ŝ 1, ĤU] is off-diagonal as well and must be
canceled; the second commutator [Ŝ 1, Ĥkin] may contain both
diagonal and off-diagonal contributions. Defining a projector
P that cancels all off-diagonal components, we thus arrive at
a second-order condition of the form

[Ŝ 2, Ĥ∆] = −[Ŝ 1, ĤU] −
1
2

(1 − P)[Ŝ 1, Ĥkin](1 − P) (S33)

which fixes the second-order part of the effective Hamiltonian
as

Ĥeff,2 =
t2

2
P[Ŝ 1, Ĥkin]P. (S34)

Finally, we also evaluate the third-order term, which is, after
collecting all terms and applying the above conditions:

Ĥeff,3 =t3
(

1
6

[Ŝ 1, [Ŝ 1, [Ŝ 1, Ĥ∆]]] +
1
2

(
[Ŝ 2, [Ŝ 1, Ĥ∆]] + [Ŝ 1, [Ŝ 2, Ĥ∆]] + [Ŝ 1, [Ŝ 1, Ĥkin + ĤU]]

)
+ [Ŝ 2, Ĥkin + ĤU] + [Ŝ 3, Ĥ∆]

)
=t3

(
1
3

[Ŝ 1, [Ŝ 1, Ĥkin]] +
1
2

[Ŝ 2, Ĥkin] + [Ŝ 2, ĤU] + [Ŝ 3, Ĥ∆]
)
.

(S35)

The structure of the commutator relation (S34) again makes
a completely off-diagonal choice for Ŝ 2 possible. Then, the
commutator [Ŝ 2, ĤU] is also off-diagonal and needs to be can-
celed, while the first two commutators in the last line of Ĥ3,eff
can have both diagonal and off-diagonal components. The rel-
evant condition reads

[Ŝ 3, Ĥ∆] = − [Ŝ 2, ĤU] −
1
2

(1 − P)[Ŝ 2, Ĥkin](1 − P)

−
1
3

(1 − P)[Ŝ 1, [Ŝ 1, Ĥkin]](1 − P),
(S36)

which leads to a final expression for the third-order Hamilto-
nian as

Ĥeff,3 = t3P

(
1
2

[Ŝ 2, Ĥkin] +
1
3

[Ŝ 1, [Ŝ 1, Ĥkin]]
)
P (S37)

This order will suffice to obtain the dipole-conserving Bose-
Hubbard model. We can therefore write down our effective
Hamiltonian in cubic order:

Ĥeff = Ĥ∆ + tĤU +
t2

2
P[Ŝ 1, Ĥkin]P + t3P

(
1
2

[Ŝ 2, Ĥkin] +
1
3

[Ŝ 1, [Ŝ 1, Ĥkin]]
)
P + O(t4) (S38)



S7

What remains to be specified is the precise structure of Ŝ 1
and Ŝ 2. The explicit calculation of these operators primarily
consists of the evaluation of several commutation relations.
Here, we limit ourselves to stating the results. The first order,
determined by Eq. (S31), can be expressed as

Ŝ 1 =
1
∆

∑
j

b̂†j b̂ j+1 − b̂†j+1b̂ j (S39)

In particular, this also leads to a vanishing second order in
the effective Hamiltonian, as [Ŝ 1, Ĥkin] = 0. In the non-
interacting case U = 0, this is actually even more severe; as
[Ŝ 1, [Ŝ 1, Ĥ∆ + Ĥkin]] = 0, the SW transformation stops at lin-
ear order, which allows a closed expression of the effective
Hamiltonian and the rotated basis which diagonalizes it. The

effective Hamiltonian then simply amounts to Ĥeff = Ĥ∆.
This implies that the interactions are necessary to allow

dipolar physics. For U , 0, the SW transformation does not
stop abruptly and continues to all orders. The second order
contribution Ŝ 2 can be obtained from Eq. (S33) by a lengthy
calculation, which results in a form of

Ŝ 2 = −
U

2∆2t

∑
j

{n̂ j, b̂
†

j−1b̂ j − b̂†j b̂ j−1 − b̂†j b̂ j+1 − b̂†j+1b̂ j} (S40)

where {Â, B̂} is the anti-commutator between two operators
Â and B̂. Plugging this into the equation for the effective
Hamiltonian (S38) returns a dipole moment conserving Bose-
Hubbard model with an additional nearest-neighbor interac-
tion:

Ĥeff = −
t2U
∆2

∑
j

(
b̂†j b̂

2
j+1b̂†j+2 + h.c.

)
+

(
U
2
−

2t2U
∆2

)∑
j

n̂ j(n̂ j − 1) +
2t2U
∆2

∑
j

n̂ jn̂ j+1 +
∑

j

(
j∆ −

2t2U
∆2

)
n̂ j. (S41)

This shows that dipolar physics is indeed realized in the
prethermal dynamics of an interacting tilted lattice.

However, one has to be careful when comparing this expec-
tation to the actual properties of the system. As stated in the
beginning of the section, the Hamiltonian realizes the desired
form not in the original basis, but rather in a dressed basis ob-
tained by the rotation (S26). This renders certain quantities
much more opaque, as we sketch in the following.

E. Dipole moment fluctuations in tilted systems

In the non-interacting case U = 0 a closed expression can
be found, where the effective Hamiltonian keeps the form of
the tilt contribution, Ĥeff = Ĥ∆. This is due to the fact that
the SW transformation stops at linear order, Ŝ = Ŝ 1. It is im-
mediately clear that due to the lack of interactions, this can
be treated as a single-particle problem in a tilted chain. This
is known as Wannier-Stark localization, where the presence
of a tilt of arbitrary strength ∆ , 0 leads to localization of
the eigenstates to a lattice site, a drastic change compared
to the plane wave eigenfunctions in the ∆ = 0 case [61].
A sharply localized orbital centered around a lattice site i is
mapped to the respective Wannier-Stark orbital, which, while
still strongly localized, exhibits a finite extension. Far away
from the central site, the asymptotic behavior features a super-
exponential decay

|ψ j| ∼ exp
(
−| j − i| log

(
| j − i|∆

et

))
, (S42)

where ψ j is the wave function amplitude at site j and e is the
Euler number. We see that a characteristic length scale t/∆

is introduced over which the particle is delocalized. To first
order, this is also the mapping in the fully interacting case; the
effective dipolar Hamiltonian Eq. (S41) is therefore expressed
in the Wannier-Stark orbitals, instead of the exactly localized
lattice site states.

In the main text, we have argued that this prevents a distinc-
tion of the dipolar ground states from a generic Mott insulator
by means of static measurements of dipole moment fluctua-
tions

(
∆Pℓ

)2 in subsegments of size ℓ of a tilted chain. These
are defined as

(
∆Pℓ

)2
=

〈(
P̂ℓ − ⟨P̂ℓ⟩

)2
〉
, (S43)

where P̂ℓ =
∑ℓ

j=1 q̂d, j−ℓ/2 measures the dipole moment in the
segment of size ℓ. However, even if we achieve a state that is
close to the desired ground state by an adiabatic preparation
(as our derivation of the effective Hamiltonian (S41) suggests,
provided it is slow enough), the relevant state conserves the
dipole moment not in the real-space measurement basis, but
in the space of Wannier-Stark Fock states. In these, the dipole
fluctuations in a segment of size ℓ follow the expected scal-
ing laws: They are constant in the dipole Mott insulator as
the dipole degrees are gapped, and increase logarithmically in
segment size in the gapless Luttinger liquid. However, the
Wannier-Stark orbitals are smeared out over a finite length
∝ t/∆, which implies further corrections to the scaling. Con-
cretely, as the density is constant provided we are far away
from the edges of the system, the number of particles in an
average Fock state picked from a snapshot measurement is
proportional to the segment length ℓ. As each of those con-
tributes constant dipole moment fluctuations due to the exten-
sion (S42), the dipole fluctuations in the measurement basis
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FIG. S2. Static dipole and particle fluctuations. We show the dipole (a) and particle (b) fluctuations both for a Mott insulator at unity filling
n = 1 in a regular Bose-Hubbard chain (gray lines) and for a state that is adiabatically prepared over 20 hopping times as described in the main
text (green lines). In both cases, the dipole fluctuations exhibit a linear dependence on the segment size, impeding a simple distinction on the
basis of static fluctuations, as the finite extent of the Wannier-Stark orbitals in the tilted lattice modifies the expected scaling. Similarly, the
charge fluctuations are constant in all cases as charges remain gapped both in the regular Mott insulator as well as in the effective Hamiltonian
of the tilted lattice.

actually scale as
(
∆Pℓ

)2
∼ ℓ. This is the same scaling as one

would expect from a regular Mott insulator: In such a state,
we would expect a finite and constant density of particle-hole
excitations due to the finite charge gap, each of which car-
ries a dipole charge of ±1. The dipole moment in the seg-
ment of a randomly picked Fock state should therefore follow
a binomial distribution. Therefore, the dipole moment fluctu-
ations should also increase proportionally to the segment size,(
∆PMI

ℓ

)2
∼ l. In particular, we see that the effective realiza-

tion introduces a subtlety that impedes a simple confirmation
of the dipole character. We have confirmed this expectation
using MPS simulations. In Fig. S2 (a), we show the dipole
fluctuations as a function of segment size both for a regular
Mott insulator at filling n = 1 in a standard Bose-Hubbard
model with ∆ = 0 (gray lines), and for a state at filling n = 2
which has been prepared adiabatically in the tilted system as
described in the main text (green lines). Both exhibit the same
scaling, as we would expect from our discussion.

One can also look at the particle fluctuations in a segment(
∆Nℓ

)2
=

〈(
N̂ℓ − ⟨N̂ℓ⟩

)2
〉
, (S44)

where N̂ℓ =
∑ℓ

j=1 n̂ j−ℓ/2 is the particle number in the mid-
dle segment of size ℓ. For this quantity, the Wannier-Stark
localization should not imply a modification of the scaling
law: Only at the edges of the segment might a particle escape
or intrude due to its orbit’s extension, which implies at most
constant fluctuations. As the charge degrees of freedom are
gapped both in the dipole-conserving model and in the regular
Mott state, all should in general exhibit constant charge fluc-

tuations
(
∆Nℓ

)2
∼ const. Indeed, an evaluation from the same

snapshots as for the dipole fluctuations shows a constant value
in both cases, Fig. S2 (b). While this does not confirm the
presence of dipole-conserving physics, this result does con-
firm a finite gap for charges in the tilted system at early times,
ruling out a regular Luttinger liquid of bosons as the realized
phase in spite of the low interaction-to-hopping ratio.

By contrast, dynamical probes as described in the main text
do allow for a distinction between the regular Mott state and
actual dipole ground states as the local processes that drive
changes in the dipole moment are much less affected by the
basis transformation.

F. Details on numerical methods

All our numerical data is obtained using Matrix Product
States (MPS) as implemented in the TeNPy library [56]. For
the simulation of the time evolution of local excitations in
the explicitly dipole-moment conserving model Eq. (1), we
first compute the ground state in an infinite-size system at
filling n = 2 for different hopping-to-interaction ratios t/U
using Density Matrix Renormalization Group (DMRG) [62–
64]. Besides the standard implementation of the U(1) par-
ticle number conservation [65, 66], we also directly enforce
dipole moment conservation to gain an additional computa-
tional speed-up [34] and use the subspace expansion method
to avoid local minima [67]. The unit cell of the state that is
to be optimized is L = 10, which afterwards is enlarged to
L = 140 by concatenating copies. Then, the relevant creation



S9

and annihilation operators are applied to obtain the sought-
after low-energy excitation. We time-evolve these using the
W II algorithm [68], which can treat longer-range terms as
present in this model. We fix a maximal local boson occu-
pation of nmax = 8 to ensure converged results. The maxi-
mal bond dimension for both the ground state search and the
time evolution is χmax = 1600. The results appear to be well-
converged even in the gapless Luttinger liquid for the times
considered.

The simulation of the proposed experimental scheme starts
from a homogeneous product state of filling n = 2 in a finite
system of size L = 140. The ramping process is modeled by
a time evolution using the Time-Evolving Block Decimation
(TEBD) algorithm [69], governed by the Hamiltonian Eq. (7)
with a time-dependent hopping parameter t(τ) and fixed in-
teraction strength U and tilt strength ∆. We start from the
static case t = 0. As a product state is an eigenstate of the
Hamiltonian with vanishing hopping parameter for arbitrary
values of the tilt ∆, we do not include the increase of the tilt
in our simulation, as this would amount only to a complex
phase. We increase t in discrete steps after a certain num-
ber of updates by re-initializing the TEBD representation of
the time evolution operator, until we reach the final value t
with t/U = 2 and the desired ratio ∆/t. The ramping pro-
cess takes place over twenty hopping periods in terms of the
final hopping parameter, tτ = 20. After applying a particle
creation operator on the two adjacent sites in the middle of

the chain, we further evolve the state with the now constant
time evolution operator with hopping strength t. At fixed time
steps, including just after the preparation of the excitation, we
sample N = 10 000 Fock states from the state by performing
projective measurements, thereby obtaining a distribution for
the local occupation numbers n j. From this, we can obtain
both the particle number fluctuations ∆N and the dipole mo-
ment fluctuations ∆P at these times for different segment sizes
l. The size l = 80 for Fig. 3 in the main text is chosen such
that we can be sure to consider only bulk effects, as the time
evolution from a non-eigenstate leads to excitations emerging
from the edges of the system. The maximal on-site particle
number is nmax = 6, while the maximal bond dimension is
χmax = 600. We also perform the same measurement scheme
in the case that no particles are added before the fixed-t time
evolution. The dipole fluctuations in time in this case are sub-
tracted from those of the excitation state. Thereby, we expect
to consider only fluctuations arising from the dynamics, as
further fluctuations that arise due to the imperfectness of the
preparation scheme are canceled.

For comparison, we also calculate the ground state of the
regular Bose-Hubbard model at filling n = 1 for different pa-
rameter sets in the Mott phase using DMRG, add two particles
in the middle, and perform the same measurement scheme in a
comparable time evolution. The results, with the pure ground
state fluctuations subtracted, are shown in Fig. 3 of the main
text as well.
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