
MULTILEVEL MONTE CARLO METHODS FOR THE

DEAN–KAWASAKI EQUATION FROM FLUCTUATING

HYDRODYNAMICS

FEDERICO CORNALBA∗ AND JULIAN FISCHER†

Abstract. Stochastic PDEs of Fluctuating Hydrodynamics are a powerful tool for

the description of fluctuations in many-particle systems. In this paper, we develop and

analyze a Multilevel Monte Carlo (MLMC) scheme for the Dean–Kawasaki equation, a

pivotal representative of this class of SPDEs. We prove analytically and demonstrate

numerically that our MLMC scheme provides a significant reduction in computational

cost (with respect to a standard Monte Carlo method) in the simulation of the Dean–

Kawasaki equation. Specifically, we link this reduction in cost to having a sufficiently

large average particle density, and show that sizeable cost reductions can be obtained

even when we have solutions with regions of low density. Numerical simulations are

provided in the two-dimensional case, confirming our theoretical predictions.

Our results are formulated entirely in terms of the law of distributions rather than

in terms of strong spatial norms: this crucially allows for MLMC speed-ups altogether

despite the Dean–Kawasaki equation being highly singular.

Key words. Multilevel Monte Carlo methods; Dean–Kawasaki equation; Fluctuating Hy-

drodynamics; Many-particle Systems; Noise coupling.

MSc codes. 65C05, 60H15, 35R60, 65N06, 82M36, 82C22.

1. Introduction

In the regime of large particle numbers, the behavior of interacting particle systems

often gives rise to a classical PDE description, for instance in form of the classical equa-

tions of continuum mechanics. For medium-sized particle systems consisting of only, e.g.,

105–109 particles, this idealized description often becomes insufficient, as thermal fluc-

tuations may begin to impact the behavior. The theory of Fluctuating Hydrodynamics

augments the classical PDEs of continuum mechanics with suitable noise terms to account

for thermal fluctuations, giving rise to SPDE models; we refer the reader to Landau and

Lifshitz [21], Spohn [24], and te Vrugt, Löwen and Wittkowski [25].

In this work, we are concerned with the numerical approximation of one of the most

basic equations of Fluctuating Hydrodynamics, the Dean–Kawasaki equation

∂tρ =
1

2
∆ρ+∇ · (ρ(∇V ∗ ρ)) +N−1/2∇ · (√ρξ) . (1.1)
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It describes the effective behavior of the density ρ of a system of N weakly interacting

diffusing particles {Xi(t)}Ni=1 in the regime of large particle numbers N ≫ 1. Here, V is

a (sufficiently regular) interaction potential and ξ denotes vector-valued space-time white

noise. While the McKean-Vlasov equation ∂tρ̄ = 1
2∆ρ̄+∇·(ρ̄(∇W ∗ρ̄)), obtained formally

in the limit N → ∞, describes the mean-field limit profile ρ̄ of the particle system, the

Dean–Kawasaki equation (1.1) for N ≫ 1 in addition captures the law of the density

fluctuations due to the finite number of particles.

The Dean–Kawasaki equation (1.1) is a highly singular SPDE; namely, it is even too

singular to be renormalized by approaches like regularity structures or paracontrolled

calculus [17, 16]. As shown in [19, 20], the only martingale solutions to (1.1) are in

fact given by the empirical measures of the underlying particle system, that is ρ(x, t) ≡
µN
t (x) := N−1

∑N
i=1 δ(x−Xi(t)). Nevertheless, a justification of SPDEs related to (1.1)

has recently been given in [12, 10] in terms of large-deviation principles. Justifications

for Dean–Kawasaki type models with regularized noise have been developed in [10, 11].

Recently, the authors and collaborators [7, 8] have shown that the Dean–Kawasaki

equation may be viewed as a recipe for accurate and efficient simulations of the density

fluctuations in the interacting particle system: When applying a formal spatial semi-

discretization to (1.1), the law of density fluctuations predicted by the discretization

accurately describes the law of density fluctuations in the underlying particle system, as

long as the grid size h is such that Nhd ≫ 1 (d is the spatial dimension) – that is, as long

as on average there is substantially more than one particle per grid cell.

Nevertheless, computing statistical properties of particle density fluctuations ρ̄ such as

variances E
[
|N1/2

´
(µN

T − ρT )(x)φ(x) dx|2
]
(or, more generally, of random variables of

the form

Q = ψ

(
N1/2

ˆ
(µT

N − ρT )(x)φ(x) dx
)

(1.2)

for sufficiently regular test functions ψ,φ) via discretizations of (1.1) is still a compu-

tationally demanding task, as in addition to solving an SPDE one needs to sample over

many realizations of the noise. Multilevel Monte Carlo (MLMC) methods are a pow-

erful numerical tool that often allows to offset a large amount of the sampling cost by

performing the computation for most samples only on a much coarser numerical grid.

Some of the first applications of MLMC methods have been in the context of statistical

physics [3] and stochastic differential equations in mathematical finance [13]; they have

since found widespread applications for random and stochastic PDEs, see for instance

[2, 1, 4, 6, 9, 14, 15, 18].

In this work, we develop and analyze MLMC methods to approximate E[Q], for Q of

type (1.2), using discretizations of the Dean–Kawasaki equation (1.1). To the best of our

knowledge, our present work is one of the first mathematical results on Multilevel Monte

Carlo methods both for singular stochastic PDEs, and for stochastic PDEs involving

multiplicative space-time white noise.

1.1. Summary of main results. In order to approximate E[Q] (see (1.2)), we set up

a sequence of random variables (Pℓ)ℓ associated with space-time discretizations of (1.1)

over levels ℓ = 0, . . . , L (the higher the ℓ, the smaller the spatial grid size hℓ and time
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step1 τℓ, and the more accurately Pℓ approximates Q). A key tool of our analysis is to

couple the noises of discretized versions of (1.1) on consecutive levels ℓ− 1, ℓ. We provide

two different ways of doing this. The first way is to couple the noises over the Fourier

frequencies, thus having the noise on level ℓ− 1 share all of its frequencies with the noise

on level ℓ (“Fourier coupling”, cfr & 3.1). The second way is to construct the noise on level

ℓ− 1 using only local spatial information coming from the noise on level ℓ (“Right-Most

Nearest Neighbours (NN) coupling”, cfr &3.2).

We can now informally state our main result:

Theorem 1.1. Let ε > 0 be a given accuracy. Consider a sequence of levels for which

the finest grid size hmin satisfies h2min ≲ ε. Under the technical assumptions 4.1–4.2–4.3–

4.4–4.5, which in particular require the average particle density Nhdmin to satisfy

Nhdmin ≳ h−βmin, where β :=

{
4, for Fourier coupling, cfr &3.1

2, for NN coupling, cfr &3.2
(1.3)

we can set up a Multilevel Monte Carlo estimator µMLMC for the simulation of (1.1)

which achieves a mean-square error E
[
|µMLMC − E[Q]|2

]
of order ε2, while carrying a

computational cost CMLMC bounded by

E
[
CMLMC

]
≲


ε−2 for d = 1 and Fourier coupling, cfr &3.1

ε−2 · (log ε)2, for d = 2 and Fourier coupling, cfr &3.1

ε−2 · ε−(d−2)/2, for d ≥ 3 and Fourier coupling, cfr &3.1

ε−2 · ε−d/2, for d ≥ 1 and NN coupling, cfr &3.2

(1.4)

as opposed to the standard MC method, whose cost bound is

E
[
CMC

]
≲ ε−2 · ε−d/2−1.

As a key challenge for our analysis, unlike in Multilevel Monte Carlo approaches for

parabolic SPDEs in the literature [2, 15], the highly singular nature of (1.1) equation

prevents strong (pathwise) convergence of numerical solutions in the limit of arbitrarily

fine discretizations. Instead, convergence takes place only up to a minimal h ≫ N−1/d,

below which the sequence begins to diverge in C0. For an illustration of this lack of regu-

larity and convergence of solutions, we refer to Figures 2–3. Moreover, while microscopic

fluctuations in (1.1) may be drastic, the macroscopic impact of fluctuations in (1.1) –

i.e., the impact of fluctuations on weighted spatial averages like
´
ρt(x)φ(x) dx – is rather

small due to the N−1/2 prefactor of the noise. This discrepancy is directly related to the

singular nature of the SPDE (1.1). In particular, this forces us to work with stochastically

weak convergence estimates – i.e., convergence estimates for the law of distributions – to

achieve the MLMC cost bound (1.4).

As with any MLMC method, we need to provide suitable bounds for the systematic

error |E[Pℓ −Q]| and the cross-level variance V ar[Pℓ − Pℓ−1] in order to have a cost

reduction. Specifically, we have the systematic error bound

|E
[
Pℓ −Q

]
| ≲ (Nhdℓ )

−1 + h2ℓ (1.5)

1since we will link hℓ and τℓ via a standard Courant-Friedrichs-Lewy (CFL for short) condition, many

of our considerations will be stated – for notational convenience – just in terms of the spatial discretization

parameters (hℓ)ℓ.
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(which is a relatively straightforward consequence of results in [7]) and a non-trivial,

similarly-looking bound for V ar[Pℓ − Pℓ−1] (cfr. Proposition 5.1), which reads

V ar[Pℓ − Pℓ−1] ≲ (Nhdℓ )
−1 + hβℓ , (1.6)

where β is defined in (1.3). Apart from some polynomial numerical error in hℓ, both of

the bounds (1.5)–(1.6) feature the inverse of the average particle density Nhdℓ : crucially,

these bounds are geometrically decaying in the level ℓ – and therefore conform to the

assumptions of the general MLMC complexity theorem [14, Theorem 2.1] – so long as the

average particle density is sufficiently large on all levels required to achieve the systematic

error O(ε). The presence of the term (Nhdℓ )
−1 in (1.5)–(1.6) is rooted in the singular na-

ture of the Dean–Kawasaki equation, as discussed above. However, and most importantly,

having a large density requirement is not a limitation, but is in fact absolutely natural:

it corresponds to a regime in which our SPDE models are computationally more efficient

to simulate than the underlying particle systems.

Finally, in addition to the general complexity bound (1.4), we also show in Proposition

5.4 that our MLMC method achieves a variance reduction factor F (with respect to the

standard MC method) given by

F ∝

{ [
(Nhdmin)

−1 + h
(d+2)∧4
min L∗

]−1
| log(hmin)|−1, for Fourier coupling, cfr &3.1[

(Nhdmin)
−1 + h2min

]−1 | log(hmin)|−1, for NN coupling, cfr &3.2
(1.7)

where we have set L∗ = 1 if d ̸= 2, and L∗ = | log(hmin)| if d = 2.

Remark 1.2. While the bound (1.7) is closely tied to the results of Theorem 1.1, we

choose to present it on its own: the reason for this is that (1.7) shows an explicit and

interpretable dependence on the average particle density Nhdmin.

Remark 1.3. For simplicity, we focus on the non-interacting case V ≡ 0 in (1.1) (in this

case, ρ̄t ≡ E
[
µN
t

]
), although we expect that with the ideas of [8] one could generalize

the result to interacting particles. Moreover, we limit ourselves to the analysis of a finite

difference scheme; due to the lack of regularity of solutions (see Figure 3 for a plot of a

sample path), a finite element scheme would not offer compelling advantages.

1.2. Structure of the paper. Notation is introduced in Section 2 (discrete Dean–

Kawasaki model) and Section 3 (Multi Level Monte Carlo setup). Assumptions, state-

ments of main results and proofs of all main results are given in Sections 4, 5, and 6

respectively. Numerical results are discussed in Section 7. Final considerations are given

in Section 8.

2. Basic notation

We work with uniformly spaced grids on the spatial domain Td of the type Gh,d :=

{−π;−π+h; . . . ;π−h}d, for any compatible mesh-size h > 0. We denote by (fh, gh)h :=

hd
∑

x∈Gh,d
fh(x) · gh(x) (respectively, ∥ · ∥h) the inner product (respectively, the norm)

on L2(Gh,d). We denote by Ih : C(Td)→ L2(Gh,d) the pointwise interpolation operator.

Furthermore, ∆h, ∇h denote discrete counterparts of Laplace and gradient operators

(precise details are given later on). As for time, we work on a fixed interval [0, T ], and
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consider uniform partitions of the type Sτ = {0, τ, . . . , T}, for a compatible time-step

τ > 0.

Whenever we want to provide a lower (respectively, upper) bound which holds up to

a constant depending on a specific parameter a, we write ≳a (respectively, ≲a).

Definition 2.1 (Space-time discretised Dean–Kawasaki model approximating an under-

lying system of N non-interacting Brownian particles in Td). We denote by ρh,τ the

solution to the following finite-difference the Dean–Kawasaki equation:

ρmτ
h,τ = ρ

(m−j)τ
h,τ + τ

1∑
j=0

bj
1

2
∆hρ

(m−j)τ
h,τ

+N−1/2∇h ·

 ∑
(y,r)∈

(Gh,d,{1,...,d})

√[
ρ
(m−1)τ
h,τ

]+
edh,y,r ∆β

m−1
(y,r)

 , (2.1)

started from ρ0h,τ = ρh,0, where [y]+ := max{y; 0}, and where

• ∆βm−1
(y,r) := β(y,r)(mτ)−β(y,r)((m−1)τ) are increments for a family of independent

Brownian motions {β(y,r)}(y,r)∈(Gh,d,{1,...,d});

• ρh,0 is a suitable – possibly random – initial profile;

• {edh,y,r}(y,r)∈(Gh,d,{1,...,d}) is the orthonormal basis of [L2(Gh,d)]
d given by edh,y,r(z) :=

h−d/21y=zfr, where {fr}dr=1 is the canonical basis of Rd.

• b0, b1 are fixed, non-negative weights such that b0 + b1 = 1. These weights deter-

mine the specific nature of the (one-step) time discretisation scheme.

3. MLMC framework

The goal is to compute statistical properties of the particle density fluctuations. Specif-

ically, we aim to compute the expected value of random variables of the form (1.2)

Q = ψ

(
N1/2

ˆ
(µT

N − ρT )(x)φ(x) dx
)

for sufficiently regular test functions ψ,φ. In order to approximate E[Q], we can compute

the expected value of the quantity

P := ψ
(
N1/2

(
ρTh,τ − E

[
ρTh,τ

]
, Ihφ

)
h

)
, (3.1)

where ρh,τ is the solution to the discrete Dean–Kawasaki model (2.1) with space (respec-

tively, time) discretisation parameter h (respectively, τ). We think of the parameters

(h, τ) in the random variable P introduced in (3.1) as being the smallest in a sequence

of space/time parameters (so, effectively, h = hmin, τ = τmin): therefore, we construct a

MLMC scheme for approximating E[P ] by using the auxiliary quantities

Pℓ := ψ
(
N1/2

(
ρThℓ,τℓ

− ρThℓ,τℓ
, Ihℓ

φ
)
hℓ

)
, (3.2)

on levels ℓ = 0, . . . , L, and for some {(hℓ, τℓ)}Lℓ=0. Since the deterministic dynamics of

(2.1) is just a finite-difference approximation of the Laplacian operator, it is natural to

define the sequences {hℓ}Lℓ=0 and {τℓ}Lℓ=0 in terms of a Courant-Friedrichs-Lewy (CFL for
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short) ratio. Namely, we choose {hℓ}Lℓ=0 and {τℓ}Lℓ=0 to be geometric progressions with

fixed CFL ratio across levels. That is, we assume

τℓ/h
2
ℓ = µ, ∀ℓ ∈ {0, . . . , L}, (3.3)

for some fixed µ > 0. The ratio of the sequence {hℓ}Lℓ=0 (which, by (3.3), also uniquely

determines the ratio of the sequence {τℓ}Lℓ=0) will depend on the specific choice of coupling

across levels, as discussed in Subsections 3.1 and 3.2 below.

Remark 3.1. Upon imposing sensible assumptions, there would be no harm in also

letting the ratios τℓ/h
2
ℓ in (3.3) depend on the level ℓ. We do not do this, as this would

entail further notational burden.

With this notation, PL = P , (hmin, τmin) = (hL, τL), and (hmax, τmax) = (h0, τ0).

When there is no ambiguity, we may choose to simplify the notation related to the level

ℓ: for instance, we abbreviate ψ(N1/2(ρTℓ − ρTℓ , φℓ)ℓ) ≡ ψ(N1/2(ρThℓ,τℓ
− ρThℓ,τℓ

, Ihℓ
φ)hℓ

).

We consider two alternative ways to couple the noise on consecutive levels ℓ− 1, ℓ.

3.1. First coupling: Fourier coupling. We split the spatial grid in three at each level

increment (i.e., hℓ−1 = 3hℓ). We write the stochastic noise of (2.1) using a Fourier

expansion in space, and standard coupling in time. In words, at the coarse level ℓ− 1:

• all Fourier frequencies coming from the finer level ℓ are reused, and

• noise increments are obtained by summing up noise increments at level ℓ.

Explicitly, denoting the set of frequencies Iℓ := {−πh−1ℓ ;−πh−1ℓ +1; . . . ;πh−1ℓ − 1}d, and
setting A := {−πh−1ℓ ; 0}d, the noise increments at levels ℓ− 1 and ℓ are given by

Wℓ(x, t+ τℓ)−Wℓ(x, t)

:=
∑

(ξ,r)∈(Iℓ,{1,...,d})

eix·ξfr(βξ,r(t+ τℓ)− βξ,r(t)), for (x, t) ∈ Gℓ,d × Sℓ,

Wℓ−1(x, t+ τℓ−1)−Wℓ−1(x, t)

:=

κt−1∑
j=0

∑
(ξ,r)∈(Iℓ−1,{1,...,d})

eix·ξfr [βξ,r(t+ (j + 1)τℓ)− βξ,r(t+ jτℓ)] ,

for (x, t) ∈ Gℓ−1,d × Sℓ−1,

where

{(βξ,r, β−ξ,r)}(ξ,r)∈(Iℓ−1\A,{1,...,d}) ∪ {βξ,r}(ξ,r)∈(A,{1,...,d}) =: BIℓ−1\A ∪ BA

is an independent family with complex conjugate couples of Brownian motions for the set

BIℓ−1\A, and standard real-valued Brownian motions for the set BA.

Remark 3.2. Note that, for each ℓ, the noise increments Wℓ have the same distribution

as the noise increments of the noise prescribed in (2.1) for correspoding hℓ, τℓ, irrespective

of whether Wℓ is associated with the “fine” or the “coarse” discretisation in a given pair

of discretisations. In particular, this ensures that the Multilevel Monte Carlo estimator

for P is unbiased: specifically, we have that E[PL] = E[P0] +
∑L

ℓ=1 E[Pℓ − Pℓ−1].
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3.2. Second coupling: Right-Most Nearest Neighbours (NN) coupling. While

the coupling in time is the same as in the previous case, coupling in space is obtained

by summing up noise increments in a “Right-Most” neighbourhood of each spatial point.

Specifically, splitting the spatial grid in two at each level increment (i.e., hℓ−1 = 2hℓ), if

we set B→ℓ−1(x) := {x+ hℓv : v ∈ {0; 1}d} for each x ∈ Gℓ−1,d, we define

Wℓ(x, t+ τℓ)−Wℓ(x, t)

:=
∑

(y,r)∈(Gℓ−1,d,{1,...,d})

edhℓ,y,r
(x)(βy,r(t+ τℓ)− βy,r(t)), for (x, t) ∈ Gℓ,d × Sℓ,

Wℓ−1(x, t+ τℓ−1)−Wℓ−1(x, t)

:=
∑

(y,r)∈(Gℓ−1,d,{1,...,d})

edhℓ−1,y,r
(x)

κt−1∑
j=0

(β̃y,r(t+ (j + 1)τℓ)− β̃y,r(t+ jτℓ)),

for (x, t) ∈ Gℓ−1,d × Sℓ−1,

where β̃y,r := 2−d/2
∑

z∈B→ℓ−1(y)
βz,r, with {βℓ,z,r}(z,r)∈(Gℓ−1,d,{1,...,d}) being standard in-

dependent Brownian motions.

The contents of Remark 3.2 apply verbatim also for this coupling.

Remark 3.3. As suggested by one of the referees, the coupling in Subsection 3.2 could,

alternatively, be set up in a symmetric way: this would entail keeping the coupling as is,

but using the shifted grid points {−π + h/2;−π + (3/2)h; . . . ;π − h/2}d.

4. Assumptions

We work under the following assumptions.

Assumption 4.1 (Parameter scaling). Let L ∈ N be the number of levels being consid-

ered, and let hmin be the smallest associated grid size. We choose N to be sufficiently

large so that the following scaling holds

Nhdℓ ≳ h−βℓ (1 ∨ µ2) |log hℓ| , ℓ ∈ {0, . . . , L}, (4.1)

where µ := τℓ/h
2
ℓ and where

β :=

{
4, for Fourier coupling, cfr &3.1

2, for NN coupling, cfr &3.2

Assumption 4.2 (Continuous Mean Field Limit). We assume the continuous mean field

limit ρt to be strictly positive and bounded (0 < ρmin ≤ ρt(x) ≤ ρmax), and satisfying

ρt ∈ CR+3 for some R > 4 + d/2 in the case of Fourier coupling (Subsection 3.1), or

ρt ∈ C2 in the case of Right-Most Nearest Neighbours coupling (Subsection 3.2).

Assumption 4.3 (Discrete Dean–Kawasaki dynamics). With regards to (2.1): i) the

operators ∆h and ∇h are second-order finite difference operators in the spatial discreti-

sation; ii) the couples {hℓ, τℓ}ℓ are such that the noise-less version of the scheme (2.1)

(i.e., the discrete Mean Field Limit) is stable for all ℓ, and satisfies the discrete maximum

principle.
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Assumption 4.4 (Test functions). For ψ,φ introduced in (3.1), we require that

sup
z∈RK

|∇ψ(z)|/(1 + |z|r) ≤ C, for some r > 0, (4.2)

and that φ ∈ CR+4 for some R > 4 + d/2 in the case of Fourier coupling (Subsection

3.1), or φ ∈ C3 in the case of Right-Most Nearest Neighbours coupling (Subsection

3.2). Furthermore, we use the notation ϕt (respectively, ϕtℓ) to indicate the solution

to the continuous (respectively, discrete) backwards heat equation ending at ϕT = φ

(respectively, at ϕTℓ = Iℓφ).

Assumption 4.5 (Initial datum). We set the initial condition of the discrete mean field

limit ρ0ℓ := Ihℓ
ρ0. We require the following bound for large fluctuations

E
[
∥ρ0ℓ − ρ0ℓ∥

j
∞
]
≲ jj

(
N−1/2h

−d/2
ℓ

)j
, j ∈ N, (4.3)

see for instance [5, Theorem 3.4–3.5] and [22], as well as the fluctuation bound

E
[∣∣∣∣N1/2

(
ρ0ℓ − ρ0ℓ , ϕ0ℓ

)
ℓ
−N1/2

ˆ
(µN

0 − ρ0)(x)ϕ0(x) dx
∣∣∣∣4]1/4 ≲ C(φ)h2ℓ , (4.4)

see also [8, Bound (3.10)].

Remark 4.6. The existence of ρmin and ρmax in Assumption 4.2 is guaranteed by the

maximum principle for the continuous heat equation, provided we start from a strictly

positive initial datum ρ0. The same ρmin and ρmax then also bound the discrete Mean

Field Limit ρh,τ thanks to Assumption 4.3.

Remark 4.7. Assumption 4.5 is related to a fairly standard concentration inequality,

see also similar discussions in [7, 8].

Remark 4.8. If we considered the case V ̸= 0 (which is not treated in this paper), then

we would need to require strict positivity of the continouos mean-field limit (Assumption

4.2) and guarantee strict positivity of the discrete mean-field limit (Assumption 4.3).

5. Cross-level variance bound, and variance reduction result

The main result of this paper (MLMC complexity, Theorem 1.1) and the variance

reduction results (Proposition 5.4) rely heavily on the following Proposition.

Proposition 5.1 (Bounding V ar {Pℓ − Pℓ−1}). Assume the validity of Assumptions 4.1,

4.3, 4.2, 4.4, 4.5, and set µ := τℓ/h
2
ℓ . We have the estimate

V ar[Pℓ − Pℓ−1] (5.1)

≲φ min

{
exp

(
−Cρmin

ρ
1/2
max

[ Nhdℓ
µ2 ∨ 1

] 1
2

)[
N−1h−dℓ (µ2 ∨ 1)

] 1
2

+ ρ−1min

[
N−1h−dℓ (µ2 ∨ 1)

]
;

[
N−1h−dℓ (µ2 ∨ 1)

] 1
2

}
+ Errnum := Errmod + Errnum,

where

Errnum ≲

{
min[ρ−1min(h

4
ℓ + τ2ℓ );h

2
ℓ + τℓ] + C(ρmin)[h

4
ℓ + τ2ℓ ], for Fourier coupling,

min{ρ−1min(h
2
ℓ + τℓ);hℓ + τℓ}, for R-M coupling.
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Remark 5.2. The name Errmod above simply reflects the fact the such an error is –

morally – of modelling type (as it is directly related to the average particle density). On

the other hand, Errnum is a purely numerical error.

Remark 5.3. Bound (5.1) takes different forms, depending on the choice of coupling,

on which of the arguments in the minima is smaller. As we do not want to unnecessarily

overcomplicate the statement of our main Thorem 1.1 (which stems directly from Propo-

sition 5.1), we limit ourselves to stating Proposition 5.4 in two relevant subset of cases,

one for each coupling.

Proposition 5.4 (Variance reduction). Assume the validity of Assumptions 4.2–4.3–

4.4–4.5. Let Mℓ, ℓ ∈ {0, . . . , L} be the number of samples of Pℓ − Pℓ−1 (we understand

P−1 ≡ 0), and let M0 be be the number of samples of P0. Choose

Mℓ := (hℓ/hmin)
d · (τℓ/τmin) = (hℓ/hmin)

d+2 (5.2)

and L ∝ | log(hmin)|. Assume ρ to be regular enough so that the order in the h-bound

for Errnum in (5.1) is the highest of the two available (i.e., 4 for Fourier coupling, 2

for Right-Most Nearest Neighbours coupling). Then the variance of the Multilevel Monte

Carlo estimator

µMLMC :=M−10

M0∑
i=1

P0,(i) +

L∑
ℓ=1

M−1ℓ

Mℓ∑
i=1

(Pℓ,(i) − Pℓ−1,(i)) (5.3)

satisfies the bound

V ar [µMLMC ] ≲

{
(Nhdmin)

−1 + h
(d+2)∧4
min L⋆, for Fourier coupling, cfr &3.1

(Nhmin)
−1 + h2min, for NN coupling, cfr &3.2

(5.4)

where we have set

L∗ :=

{
1, if d ̸= 2,

| log(hmin)|, if d = 2,
(5.5)

while carrying a total computational cost

Costtot(µMLMC) ∝ h−(d+2)
min · | log(hmin)|. (5.6)

As a result of (5.4)–(5.6), using the MLMC estimator µMLMC defined in (5.3) to ap-

proximate E
[
ψ
(
N1/2

´
(µT

N − ρT )(x)φ(x) dx
)]

(see (1.2)) – as opposed to a standard MC

estimator on the finest scale (hmin, τmin) – grants a variance reduction factor

F ∝

{ [
(Nhdmin)

−1 + h
(d+2)∧4
min L∗

]−1
|log(hmin)|−1, for Fourier coupling, cfr &3.1[

(Nhdmin)
−1 + h2min

]−1 | log(hmin)|−1, for NN coupling, cfr &3.2
(5.7)

Remark 5.5. Although the choice of samples in (5.2) amounts to a slightly less efficient

MLMC estimator than what we would otherwise have if we followed standard cost opti-

misation (see Algorithm 1 below), it however enables us to obtain the variance reduction

factor (5.7) with a short and intuitive proof. The standard cost optimisation procedure

is instead followed when producing the computational results associated with Theorem

1.1 (see [14] and Algorithm 1 below).
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6. Proofs of Proposition 5.1, Theorem 1.1, and Proposition 5.4

The following Lemma – whose proof is deferred to Appendix B – is needed for proving

Proposition 5.1.

Lemma 6.1. Under Assumptions 4.1 and 4.5 we have

P
[
sup
t∈Sτ
∥ρth,τ − ρth,τ∥∞ ≥

Bρmin

4

]
≲ exp

(
−Cρmin

ρ
1/2
max

[
Nhd

µ2 ∨ 1

]1/2
B√
B + 1

)
(6.1)

for any B ≥ 0, and where µ = τ/h2. Furthermore, we have the estimates

E
[
sup
t∈Sτ
∥ρth,τ − ρth,τ∥j∞

]1/j
≲ C(j)ρ1/2max(N

−1h−d)1/2(µ2 ∨ 1)1/2, (6.2)

E
[∣∣(ρth,τ − ρth,τ , Ihφ)ℓ∣∣j]1/j ≲ C(j)ρ1/2maxN

−1/2∥φ∥C1 . (6.3)

6.1. Proof of Proposition 5.1 with Fourier coupling. For notational convenience,

we occasionally drop the time dependence, and the vectorial notation over the d compo-

nents of the noise (i.e., we write eix·ξ instead of {eix·ξfr}dr=1).

Step 1: rewriting V ar[Pℓ − Pℓ−1]. A first-order Taylor expansion on ψ gives

V ar[Pℓ − Pℓ−1] ≤ E
[
|Pℓ − Pℓ−1|2

]
= E

[∣∣∣ψ (N1/2
(
ρTℓ − ρTℓ , φℓ

)
ℓ

)
− ψ

(
N1/2

(
ρTℓ−1 − ρTℓ−1, φℓ−1

)
ℓ−1

)∣∣∣2]
≤ E

[
|∇ψ(z)|4

] 1
2E
[∣∣∣N 1

2

[(
ρTℓ − ρTℓ , φℓ

)
ℓ
−
(
ρTℓ−1 − ρTℓ−1, φℓ−1

)
ℓ−1

]∣∣∣4] 1
2

(6.4)

for some random z such that

|z| ≤ max
{∣∣N1/2

(
ρTℓ − ρTℓ , φℓ

)
ℓ

∣∣ ; ∣∣N1/2
(
ρTℓ−1 − ρTℓ−1, φℓ−1

)
ℓ−1

∣∣} . (6.5)

Step 2: bounding E[|∇ψ(z)|4] in (6.4). Using (4.2), (6.5) and (6.3), we get

E
[
|∇ψ(z)|4

]
≤ C(ρmax, r)∥φ∥4rC1 . (6.6)

Step 3: Itô formula for second term in right-hand-side of (6.4). Let the test functions

ϕℓ (respectively, ϕℓ−1) satisfy the backwards evolution (A.1) ending in φℓ (respectively,

in φℓ−1). Thanks to the discrete martingale property in Lemma A.5 and a simple inter-

polation argument on the noise, we can define a continuous-time martingale Dt
ℓ,ℓ−1 such

that, crucially,

Dt
ℓ,ℓ−1 = N1/2

(
ρtℓ − ρtℓ, ϕtℓ

)
ℓ
−N1/2

(
ρtℓ−1 − ρtℓ−1, ϕtℓ−1

)
ℓ−1 for all t ∈ Sℓ−1.
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Now abbreviate tℓ← := max{m ∈ Sτℓ : m < t}. Using the continuous Itô Lemma, the

noise coupling as stated in Subsection 3.1, and the error bound (A.4), we deduce

E
[
(Dz

ℓ,ℓ−1)
4
]

≲ E
[
(D0

ℓ,ℓ−1)
4
]

+

ˆ z

0

E

[
(Dt

ℓ,ℓ−1)
2 × τ2ℓ + (Dt

ℓ,ℓ−1)
2×

×

{ ∑
ξ∈Iℓ−1

∣∣∣∣(√ρtℓ←,+
ℓ eiξ(·),∇ℓϕ

tℓ←
ℓ

)
ℓ

−
(√

ρt
ℓ−1
← ,+
ℓ−1 eiξ(·),∇ℓ−1ϕ

tℓ−1
←
ℓ−1

)
ℓ−1

∣∣∣∣2

+
∑

ξ∈Iℓ\Iℓ−1

∣∣∣∣(√ρtℓ←,+
ℓ eiξ(·),∇ℓϕ

tℓ←
ℓ

)
ℓ

∣∣∣∣2
}]

dt

=: E
[
(D0

ℓ,ℓ−1)
4
]
+ τ4ℓ +

ˆ z

0

E
[
(Dt

ℓ,ℓ−1)
2 ×

{
AIℓ−1

+AIℓ\Iℓ−1

}]
dt, (6.7)

where (·) in eiξ(·) is reserved for the spatial variable x. The inequality (6.7) implies

E
[
(Dz

ℓ,ℓ−1)
4
]

≲ E
[
(D0

ℓ,ℓ−1)
4
]
+ τ4ℓ +

ˆ z

0

E
[
(Dt

ℓ,ℓ−1)
4
]
dt+

ˆ z

0

E
[
A2

Iℓ−1
+A2

Iℓ\Iℓ−1

]
dt. (6.8)

Step 4: bounding A2
Iℓ−1

in (6.8). By adding and subtracting zero we get

AIℓ−1
≲

∑
ξ∈Iℓ−1

∣∣∣∣(√ρtℓ←,+
ℓ eiξ(·),∇ℓϕ

tℓ←
ℓ

)
ℓ

−
(√

ρt
ℓ
←eiξ(·),∇ϕt

ℓ
←

)
ℓ

∣∣∣∣2

+
∑
ξ∈Iℓ

∣∣∣∣(√ρtℓ←eiξ(·),∇ϕtℓ←)
ℓ

−
(√

ρt
ℓ−1
← eiξ(·),∇ϕt

ℓ−1
←

)
ℓ

∣∣∣∣2

+
∑

ξ∈Iℓ−1

∣∣∣∣(√ρtℓ−1
← eiξ(·),∇ϕt

ℓ−1
←

)
ℓ

−
(√

ρt
ℓ−1
← eiξ(·),∇ϕt

ℓ−1
←

)
ℓ−1

∣∣∣∣2

+
∑

ξ∈Iℓ−1

∣∣∣∣(√ρtℓ−1
← ,+
ℓ−1 eiξ(·),∇ℓ−1ϕ

tℓ−1
←
ℓ−1

)
ℓ−1
−
(√

ρt
ℓ−1
← eiξ(·),∇ϕt

ℓ−1
←

)
ℓ−1

∣∣∣∣2
=: Rℓ +Rtℓ←,tℓ−1

←
+Rℓ,ℓ−1 +Rℓ−1. (6.9)

Adding and subtracting zero (and dropping the dependence on tℓ←), we obtain

Rℓ ≲
∑

ξ∈Iℓ−1

∣∣∣∣([√ρ+ℓ −√ρ]eiξ(·),∇ℓϕℓ

)
ℓ
−
(√

ρeiξ(·), [∇ϕ−∇ℓϕℓ]
)
ℓ

∣∣∣∣2 (6.10)

≲
∥∥∥[√ρ+ℓ −√ρ]∇ℓϕℓ

∥∥∥2
ℓ
+
∥∥√ρ[∇ϕ−∇ℓϕℓ]

∥∥2
ℓ

≲ 1inf ρℓ≤K

∥∥∥[√ρ+ℓ −√ρ]∇ℓϕℓ

∥∥∥2
ℓ
+ 1inf ρℓ>K · ρ−1min ∥[ρℓ − ρ]∇ℓϕℓ∥2ℓ

+
∥∥√ρ[∇ϕ−∇ℓϕℓ]

∥∥2
ℓ
=: Rℓ,1 +Rℓ,2 +Rℓ,3,
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with K to be specified later. An analogous bound holds for Rℓ−1.

In order to treat Rℓ,ℓ−1 (we drop the time dependence tℓ−1← for this term), we abbreviate

g :=
√
ρ∇ϕ and perform the rewriting(√

ρeiξ(·),∇ϕ
)
ℓ
−
(√

ρeiξ(·),∇ϕ
)
ℓ−1

=
∑

x∈Gℓ−1,d

hdℓ−1

(
eix·ξg(x)−

∑
Gℓ,d∋y∼x

3−deiy·ξ(y)g(y)

)
, (6.11)

where y ∼ x indicates all points y ∈ Gℓ,d such that |y− x| ≤ hℓ. In order to sum up over

the frequencies ξ, we integrate by parts on the lattice Gℓ−1,d. More specifically, we rely

on the increment relation

eiξ·(x+hej) − eiξ·x = eiξ·x (eiξjh − 1)︸ ︷︷ ︸
=:P (ξjh)

, j ∈ {1, . . . , d}. (6.12)

Take ξ ̸= 0. Using (6.12) with the same increment h = hℓ−1 in all sums of (6.11), we

perform discrete integration by parts R times in direction j such that ξj ̸= 0, and get(√
ρeiξ(·),∇ϕ

)
ℓ
−
(√

ρeiξ(·),∇ϕ
)
ℓ−1

=

[
−1

P (ξjh)

]R ∑
x∈Gℓ−1,d

hdℓ−1

(
eix·ξ∂Rh,jg(x)−

∑
Gℓ,d∋y∼x

3−deiy·ξ(y)∂Rh,jg(y)

)
, (6.13)

where ∂Rh,jf(x) :=
∑R

i=0 (−1)i
(
R
i

)
f(x − ihej) is the standard backwards finite difference

operator satisfying the relation

∂Rh,jf(x) = hR∂Rj f(x) + hR+1C(R)∂R+1f(ζ), for some ζ = ζ(x) ∈ Td. (6.14)

By using the order-two bound |f(x + hej) − 2f(x) + f(x − hej)| ≲ h2∥f∥C2 in the

round bracket of (6.13) (with f(x) := eiξ·x∂Rh,jg(x)), and the equivalence sin(z) ∝ z for

z ∈ [−π/2, π/2], we rely on Assumptions 4.2–4.4 to integrate by parts R times in all

directions j with ξj ̸= 0 (with R to be determined), and deduce∣∣∣(√ρeiξ(·),∇ϕ)
ℓ
−
(√

ρeiξ(·),∇ϕ
)
ℓ−1

∣∣∣
≤ 1

(
∑d

j=1 |P (ξjhℓ−1)|)
R

∑
y∈Gℓ,d

hdℓ−1∥g∥CR+3hRℓ−1h
2
ℓ−1|ξ|4

≤ |ξ|4−R∥g∥CR+3h2ℓ−1, (6.15)

where we have also used (6.14) in the second-to-last inequality and the fact that |P (ξjh)| =
| sin(ξjh/2)|,∀j ∈ {1, . . . , d}, in the last inequality. The estimate for ξ = 0 is even simpler,

and requires no integration by parts at all. Provided R > 4+ d/2, (6.15) implies that we

can sum up the terms making up Rℓ,ℓ−1 in (6.9) and get

Rℓ,ℓ−1 ≲ ∥g∥2CR+3h
4
ℓ−1. (6.16)
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Step 5: bounding A2
Iℓ\Iℓ−1

in (6.8). Dropping the dependence on tℓ←, we write

AIℓ\Iℓ−1
≲

∑
ξ∈Iℓ\Iℓ−1

∣∣∣(√ρ+ℓ eiξ(·),∇ℓϕℓ

)
ℓ
−
(√

ρeiξ(·),∇ϕ
)
ℓ

∣∣∣2
+

∑
ξ∈Iℓ\Iℓ−1

∣∣(√ρeiξ(·),∇ϕ)
ℓ

∣∣2 =: Rℓ +RIℓ\Iℓ−1
. (6.17)

The term Rℓ obviously has the same bound as the previously treated Rℓ. Furthermore,

as R > 4 + d/2, and reusing computations from (6.15), we get

RIℓ\Iℓ−1
≤

∑
ξ∈Iℓ\Iℓ−1

1

|P (ξhℓ−1)|2R
∥g∥2CRh

2R
ℓ−1

≤
∑

ξ∈Iℓ\Iℓ−1

1

|ξ|2R
∥g∥2CR ≤ ∥g∥2CRh

4
ℓ−1. (6.18)

Step 6: taking the expectations in (6.8). In order to bound E
[
R2

ℓ,1 +R2
ℓ,2

]
, we consider

the best estimate originating from picking either K = ρmin/2 or K =∞ in (6.10): More

precisely, using Hölder’s inequality, Lemma 6.1, and the simple estimate ∥ρ − ρℓ∥ℓ ∝
h2ℓ + τℓ, we obtain

E
[
R2

ℓ,1 +R2
ℓ,2

]
≲φ min

{
exp

(
−Cρmin

ρ
1/2
max

[ Nhdℓ
µ2 ∨ 1

] 1
2

)[
N−1h−dℓ (µ2 ∨ 1)

]
+ ρ−1min

[
N−1h−dℓ (µ2 ∨ 1)

]2
;

[
N−1h−dℓ (µ2 ∨ 1)

]}
+min{ρ−2min(h

8
ℓ + τ4ℓ );h

4
ℓ + τ2ℓ }.

As ∥∇ϕ − ∇ℓϕℓ∥ ∝ h2ℓ + τℓ (cfr. Lemma A.3), we get E
[
R2

ℓ,3

]
≤ Cφ(h

8
ℓ + τ4ℓ ), and

an analogous bound holds for Rℓ−1. Similar arguments (involving the same thresholds

K = ρmin/2 or K =∞), a Taylor expansion, and the discrete Parseval identity grant the

estimate Rtℓ←,tℓ−1
←

≲φ min{ρ−1minτ
2
ℓ , τℓ}.

Step 7: concluding the argument. Combining the estimates in Steps 4–6, we get

E
[
A2

Iℓ−1
+A2

Iℓ\Iℓ−1

]
≲φ min

{
exp

(
−Cρmin

ρ
1/2
max

[ Nhdℓ
µ2 ∨ 1

] 1
2

)[
N−1h−dℓ (µ2 ∨ 1)

]
+ ρ−1min

[
N−1h−dℓ (µ2 ∨ 1)

]2
;

[
N−1h−dℓ (µ2 ∨ 1)

]}
+min{ρ−2min(h

8
ℓ + τ4ℓ );h

4
ℓ + τ2ℓ }+ C(ρmin){h8ℓ + τ4ℓ }.

Using the above inequality, (4.4), (6.4) and (6.6), we apply Gronwall’s Lemma in (6.8)

and conclude the proof.

Remark 6.2. The proof of Proposition 5.1 with Right-Most Nearest Neighbours coupling

is similar to the one we have provided for the Fourier coupling. The main adjustment

concerns adapting the cross-variation structure (i.e., replacing the terms AIℓ−1
+AIℓ\Iℓ−1
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in (6.7)). It is easy to see that that the term AIℓ−1
+AIℓ\Iℓ−1

in (6.7) is replaced by∑
x∈Gℓ,d

hdℓρ
+
hℓ
(x)|∇hℓ

ϕhℓ
(x)|2 +

∑
x∈Gℓ−1,d

hdℓ−1ρ
+
hℓ−1

(x)|∇hℓ−1
ϕhℓ−1

(x)|2

− 2
∑

y∈B→ℓ−1(x)

∑
x∈Gℓ−1,d

hdℓ

√
ρ+hℓ

(y)∇hℓ
ϕhℓ

(y) ·
√
ρ+hℓ−1

(x)∇hℓ−1
ϕhℓ−1

(x)

=
∑

y∈B→ℓ−1(x)

∑
x∈Gℓ−1,d

hdℓ

∣∣∣√ρ+hℓ
(y)∇hℓ

ϕhℓ
(y)−

√
ρ+hℓ−1

(x)∇hℓ−1
ϕhℓ−1

(x)
∣∣∣2. (6.19)

From (6.19), it is relatively straightforward to get the Errnum contribution using similar

techniques to those deployed in (6.10) (i.e., choosing the best cutoff for the square-root

between K = ρmin/2 and K =∞). All other components of the estimate do not change

with respect to the proof in the Fourier case.

Remark 6.3. Having two separate estimates originating from two cut-off values K =

ρmin/2 or K =∞ helps providing a reliable estimate for Errnum in (5.1): However, these

two estimates can – in many cases – still be substantially suboptimal, as they do not rely

on the local structure of the mean field limit ρ. A relevant example is discussed in our

simulations in Section 7.

6.2. Proof of Theorem 1.1. Let κ be the common ratio of the geometric sequence

(hℓ)ℓ. Assumption 4.1 implies that, for all levels needed to get to the minimum grid size

h2min ≲ ε, we have the bound

V ar[Pℓ − Pℓ−1] ≲ hβℓ ∝ κ
−βℓ, β =

{
4, for Fourier coupling, cfr &3.1

2, for NN coupling, cfr &3.2

while a simple extension of the results in [7] give

|E
[
Pℓ −Q

]
| ≲ h2ℓ ∝ κ−αℓ, α = 2. (6.20)

Additionally, the computational cost for simulating a single sample of Pℓ grows like

Cost(Pℓ) ≲ h−d−2ℓ ∝ κ(d+2)ℓ, γ = d+ 2. (6.21)

Then (1.4) follows from applying the general MLMC complexity theorem [14, Theorem

2.1].

6.3. Proof of Proposition 5.4. Since ρ is assumed to be regular, we have from Propo-

sition 5.1 that V ar[Pℓ − Pℓ−1] ≲ (Nhdℓ )
−1 + hβℓ , with β = 4 for the Fourier coupling and

β = 2 for the NN coupling. Using (5.2), and denoting by κ the common ratio of the

geometric sequence (hℓ)ℓ, we deduce

V ar [µMLMC ] ≲M−10 +

L∑
ℓ=1

M−1ℓ

[
(Nhdℓ )

−1 + hβℓ

]
≲M−10 +

L∑
ℓ=1

(
hmin

hℓ

)d+2 [
(Nhdℓ )

−1 + hβℓ

]
≲M−10 + (Nhdmin)

−1 + hd+2
min

L∑
ℓ=1

(hminκ
L−ℓ)β−d−2 (6.22)
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The choice L ∝ | log(hmin)| and (6.22) readily imply the variance bound (5.4). Proving

(5.6) is immediate. Finally, the variance reduction factor (1.7) can be readily deduced

by dividing the MLMC variance (6.22) with the variance of the standard MC estimator

with the same cost as (5.6). Proposition 5.4 is thus proved.

7. Numerical simulations

We provide numerical simulations demonstrating the validity of our theoretical results

in the two dimensional case (d = 2), and with the NN coupling.

7.1. Types of experiments. The experiments conducted are of two types:

Type 1 : in this type of experiment, we provide computational results for Theorem 1.1

by running the MLMC implementation as described in [14, Algorithm 1]. A minimal

version of the pseudocode of this implementation is given in Algorithm 1.

In essence, to reach a given accuracy ε, Algorithm 1 recursively keeps on adding levels

and computing the optimal number of samples

Mℓ =

⌈
2ε−2

√
Vℓ/Cℓ

(
L∑

ℓ=0

√
VℓCℓ

)⌉
(7.1)

for all ℓ = 0, 1, . . . , L, where L is the current maximum level, Vℓ := V ar[Pℓ − Pℓ−1],

ℓ = 0, . . . , L (for notational simplicity, we always understand the notation P−1 to mean

P−1 ≡ 0) and Cℓ is the cost of computing one sample on level ℓ. The convergence criterion

identifying the level L at which the algorithm stops is given by the following robust check

for the systematic error2:

stop on level L if max
ℓ̃∈{0;1;2}

{2−ℓ̃α|E
[
PL−ℓ̃ − PL−ℓ̃−1

]
|}/(2α − 1) <

ε√
2
. (7.2)

for α as in (6.20).

Algorithm 1 (see [14, Algorithm 1])

Choose accuracy ε > 0 and M ∈ N.
Start with L = 2, initial target of M samples on levels ℓ = 0, 1, 2.

while extra samples need to be evaluated do

evaluate extra samples on each level

compute/update estimates for Vℓ := V ar[Pℓ − Pℓ−1], ℓ = 0, . . . , L.

define optimal Mℓ, ℓ = 0, . . . , L, according to (7.1).

test for weak convergence using (7.2).

if not converged then

set L← L+ 1

initialize target ML.

end if

end while

2the criterion (7.2) is the same as the one in [14], which is derived under the power law decay as-

sumption for the systematic error on all ℓ ∈ N. As we do not have power law decay on all ℓ ∈ N, we
heuristically expect good performance of this convergence criterion under the – usual – assumption of

large average particle density.
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Type 2 : for this type of experiment, the number of samples Mℓ is chosen to be propor-

tional to a given, specified geometric progression. The variance of the resulting MLMC

estimator is then evaluated against the variance of the corresponding standard MC es-

timator with the same computational time. A computational estimate of the variation

reduction factor in Proposition 5.4 is thus produced.

7.2. Setting and specifics. The precise details of our setting are as follows:

• Space domain: we work on discretizations of T2 = (0, 2π)2.

• Initial condition for mean-field dynamics: we use two different initial conditions.

The first one

ρ0,reg = Z−1reg

(
1 + e−(sin

2(x−π/2)+sin2(y−3π/2))/2/(
√
2π)
)

(7.3)

– where Zreg is the normalising constant – is bounded away from zero, and with

relatively low ratio
√
ρmax/ρmin ≈ 13.4. The second initial condition

ρ0,irreg = Z−1irrege
−(sin2(x−π/2)+sin2(y−3π/2))/(2·0.1) (7.4)

has ultra-low density regions, and much larger ratio
√
ρmax/ρmin ≫ 106. The two

initial conditions are shown in Figure 1.

Figure 1. Left : 3d heat map of ρ0,reg; Right : 3d heat map of ρ0,irreg

• Time-stepping: we stick to a simple explicit Euler-Maruyama scheme, i.e., we

pick b0 = 0, b1 = 1 in (2.1).

• Multilevel Monte Carlo discretisation: we consider at most L = 5, and use Right-

Most Nearest Neighbours coupling, see Subsection 3.2. When L = 5, for the finest

level in space, each axis is split in 27 = 128 parts, i.e., hmin = 2π · 2−7 ≈ 0.05.

Furthermore, the finest level in time has time-step tmin = 10−3. Consecutive

levels are designed to preserve the CFL condition: specifically, we choose hℓ−1 =

2hℓ and τℓ−1 = 4τℓ, so that µ = τℓ/h
2
ℓ is constant over ℓ. Putting all together, we

have

hℓ = 2π · 2−(2+ℓ), τℓ = 10−3 · 45−ℓ.
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Concerning the number of samples on each level:

– For the purpose of estimating the computational gain of the MLMC method

for given accuracy ε (so for the experiments of Type 1 ), the number of sam-

ples is determined by Algorithm 1 (i.e., by (7.1)).

– For the purpose of validating the variance reduction factor estimate (1.7)

(so for the experiments of Type 2 ), we instead run the MLMC with the

pre-determined geometric progression3 Mℓ−1 = 4Mℓ.

For qualitative illustration purposes, we show snapshots of a given trajectory

of (2.1) in Figure 2 (2d heat maps) and Figure 3 (3d heat maps)4.

Figure 2. 2d snapshots of a trajectory of the discrete Dean–Kawasaki

equation (2.1) started from ρ0,reg and with N = 2 · 106 particles. Left

plot : finest discretisation level (h = 2π · 2−7, τ = 0.001); Right plot :

coarser discretisation level (h = 2π · 2−4, τ = 0.001 · 43).

• Time domain: we run simulations on the interval [0, 210 · tmin] = [0, 1.024].

• Differential operators: the second-order operators used in (2.1) are

∆hah(x) :=
−4ah(x) +

∑
y∼x ah(y)

h2
,

∇h · bh(x) :=
d∑

r=1

[bh]r(x+ hfr)− [bh]r(x− hfr)
2h

where y ∼ x indicates that x, y are adjacent grid points, the brackets [bh]r indicate

the r-th component of the vector bh, and {fr}dr=1 is the canonical basis of Rd.

• Test functions: we use ψ(x) := x2 and ϕ(x) := sin(x) + sin(y).

3We chose this geometric progression for Mℓ – which is slightly different than that indicated in (5.2)

– for purely practical implementation reasons. Note that this choice does not affect the scaling of the

variance reduction factor (1.7), and this is also verified numerically.
4The graphics commands used to generate Figure 2 are based on the code available at: https:

//scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/

https://scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/
https://scipython.com/book/chapter-7-matplotlib/examples/the-two-dimensional-diffusion-equation/
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Figure 3. 3d snapshots at time T = 1024 ms of a trajectory of the

discrete Dean–Kawasaki equation (2.1) started from ρ0,reg, and withN =

2 · 106 particles, on different levels (h = 2π · 2−7, τ = 0.001 for Left plot,

h = 2π · 2−5, τ = 0.001 · 42 for Right plot).

7.3. Numerical results. We report quantitative results of the simulations for

• N = 2 · 109 and ρ0 = ρ0,reg (Figure 4 and Table 1);

• N = 2 · 105 and ρ0 = ρ0,reg (Figure 5 and Table 1);

• N = 2 · 109 and ρ0 = ρ0,irreg (Figure 6 and Table 1).

Figures 4, 6, 5 are made of six plots, namely: variance estimate across levels (Top-Left),

expected value estimate across levels (Top-Right), time-dependent estimate of variance for

MC (Middle-Left), variance reduction factor between MC and MLMC for various varying

hmin (Middle-Right), MLMC and MC computational cost versus accuracy ε (Bottom-

Left), and ε2 times the MLMC and MC computational cost versus accuracy ε (Bottom-

Right).

We summarise our findings.

7.3.1. Variance estimates. The quadratic decay O(h2ℓ) for V ar[Pℓ−Pℓ−1] in (5.1) is clearly

visible for the simulation withN = 2·109 and ρ0 = ρ0,reg (Figure 4). The same clear decay

also holds in the case N = 2 · 109 and ρ0 = ρ0,irreg (Figure 6), even though (5.1) would

only predict linear decay O(hℓ) in this case. The reason for the better-than-expected

result (cfr. Remark 6.3), is likely to be the specific nature of the mean-field limit, in

which areas of low density coincide with areas of low gradient values, thus making the

constant multiplying the quadratic contributions sufficiently low so as to win over linear

decay. When N is decreased to N = 2 · 105 (with ρ0 = ρ0,reg), the quadratic decay

breaks down for the lowest value of h (Figure 5): this is to be expected from (5.1), as the

contribution ∝ N−1h−2ℓ starts dominating over the numerical error ∝ h2ℓ at this point.

7.3.2. Expected values estimates. Quadratic decay O(h2ℓ) for E[Pℓ − Pℓ−1] is clearly visible

in Figures 4, 6, where N = 2 · 109. When N = 2 · 105 (Figure 5), the bound saturates its
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h-accuracy, and breaks down just like the one for the variance. This is consistent with

the results showed in [7], and validates the systematic error of our method.

7.3.3. Variance decay for MC. We plot the variance of the standard Montecarlo estimator

on level L = 5 as a function of the computational time.

7.3.4. Variance reduction of MLMC over MC. In all cases with the exception of the

simulation with N = 2 · 105, there is clear agreement between the variance reduction

between MC/MLMC methods, and its ideal predicted growth O(h−2min| log2(hmin)|−1).
For N = 2 · 105, the variance reduction factor stops increasing once the smallest value of

hmin is reached. This is consistent with (5.7).

7.3.5. Accuracy ε versus computational time (and ε2×computational time). For all ex-

periments involving the regular initial condition ρ0 = ρ0,reg, we run Algorithm 1 for these

values for the accuracy ε:

ε = 10−1.4, 10−1.7, 10−2, 10−2.2, 10−2.4, 10−2.6. (7.5)

For the experiment involving the irregular initial condition ρ0 = ρ0,irreg, we run Algorithm

1 for these values for the accuracy ε:

ε = 10−1.4, 10−1.7, 10−2, 10−2.2, 10−2.4, 10−2.75. (7.6)

Concurrently, for each one of the accuracy values, we also run the standard MC method

on the finest level reached by the MLMC method on that very accuracy value. Due to

high computational cost, the running time for the MC method for the smallest values of

ε is extrapolated based on the MC variance trend.

We see that the MLMC provides a tangible computational gain across all simulations.

This is especially visible for the smallest accuracy value across all simulations (see Table

1). In the experiment with ρ0 = ρ0,irreg, the MLMC method reaches level L = 5, while

in all other simulations the maximum level reached is level L = 4 (this is reflected with

a higher MLMC gain, see Table 1). This is simply due to the systematic error decay

having lower multiplicative constants for the experiments with regular datum ρ0 = ρ0,reg.

Therefore, in order to see the level change L = 5 also for these simulations, we would have

had to set a much lower accuracy (even lower that ε = 10−2.75), and this was beyond our

computing capabilities.

In the experiment with ρ0 = ρ0,irreg, where level L = 5 is reached, we see the beginning

of the asymptotic region in ε, with MLMC and MC rates aligning with those given by

Theorem 1.1. This is visible in Figure 6, where the trend of ε2×(computational time)

starts behaving like O(ε2 · ε−2 · ε−2/2) = O(ε−1) for the MLMC algorithm, and like

O(ε2 · ε−2 · ε−2/2−1) = O(ε−2) for the standard MC method.

Remark 7.1. Additionally, note that the performance of the MLMC algorithm with

N = 2 · 105 and regular datum is similar to that of those with same datum and larger

number of particles N = 2 ·109. This is because, for the accuracies considered, level L = 5

– at which the variance estimate breaks down – is never reached.
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8. Summary of work done, and final considerations

In this paper, we have proved analytically and verified numerically that MLMC meth-

ods provide a speed-up in the computation of discretizations of the Dean-Kawasaki equa-

tion (1.1), despite this being a highly singular SPDE. We have proposed two different

types of noise couplings (“Fourier coupling”, Subsection 3.1, and “Nearest Neighbours

(NN) coupling”, Subsection 3.2) which grant bounds decaying like a power law in 2ℓ for

cross-level variance and systematic error on all levels ℓ for which the average particle den-

sity Nhdℓ if sufficiently large (see (1.3)). This has allowed us to get the MLMC complexity

result (1.4), and the MLMC/MC variance reduction result (1.7).

While the simulations conducted so far provide, in our opinion, a clear indication of

the effectiveness of our results (at least in the cases we have analyzed), we also believe

that further testing is needed to consolidate the results. In this respect:

• It would be interesting to implement the Fourier coupling, and assess its compet-

itive advantage against the NN coupling.

• With the exception of the experiment started from ρ0 = ρ0,irreg, it is difficult to

see whether the predicted rate of growth of the MLMC cost is indeed behaving

like O(ε−2 ·ε−1), as it is given in (1.4). This is mainly due to the MLMC algorithm

staying of relatively low levels5. A thorough and comprehensive validation of the

ε-dependence of the bound (1.4) goes beyond the scope of this paper.

Smallest ε L reached speed-up: time MC
time MLMC

N = 2 · 109, ρ0 = ρ0,reg 10−2.6 4 ≈ 5.6

N = 2 · 105, ρ0 = ρ0,reg 10−2.6 4 ≈ 5.4

N = 2 · 109, ρ0 = ρ0,irreg 10−2.75 5 ≈ 22.8

Table 1. MLMC/MC speed-up factors for smallest accuracies consid-

ered across experiments.

Appendix A. Estimates for fully discrete setting

In what follows, it is convenient to use the short-hand notation µ := τ/h2 for the

standard CFL quotient.

Lemma A.1 (Discrete energy estimates). We define the test function dynamics

ϕmτ
h,τ = Ahϕ

(m+1)τ
h,τ , (A.1)

with Ah := (Id − τb0
1
2∆h)

−1(Id + τb1
1
2∆h), and where b0, b1 are the coefficients from

(2.1), see also Assumption 4.3. If b1 > b0, the energy estimate for ϕh,τ

τ
∑
m

∥∇hϕ
mτ
h,τ∥2h ≲ (µ2 ∧ 1)∥ϕTh,τ∥2h (A.2)

5This appears to be due – for the case of regular initial datum ρ0 = ρ0,reg – to systematic error

estimates having very low leading constants for the setup considered, and thus preventing the MLMC

algorithm from adding too many levels.
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Figure 4. Computational results (N = 2 · 109, ρ0 = ρ0,reg).

holds subject to µ being sufficiently small. If b1 ≤ b0, then (A.2) holds with no smallness

requirement on µ.
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Figure 5. Computational results (N = 2 · 105, ρ0 = ρ0,reg).

Proof. We multiply both sides in (A.1) by (Id− τ b0
2 ∆h), compute the ∥ · ∥2h norm of both

resulting sides, reshuffle the terms, use the integration-by-parts formula (fh,∆hfh)h =
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Figure 6. Computational results (N = 2 · 109, ρ0 = ρ0,irreg).

−∥∇hfh∥2, ∀fh ∈ L2(Gh,d), and obtain

b0τ∥∇hϕ
mτ
h,τ∥2h + b1τ∥∇hϕ

(m+1)τ
h,τ ∥2h
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= ∥ϕ(m+1)τ
h,τ ∥2h − ∥ϕmτ

h,τ∥2h + τ2
b21
4
∥∆hϕ

(m+1)τ
h,τ ∥2h − τ2

b20
4
∥∆hϕ

mτ
h,τ∥2h.

Summing over m, we control the sum of the contributions τ2(b21/4)∥∆hϕ
(m+1)τ
h,τ ∥2h −

τ2(b20/4)∥∆hϕ
mτ
h,τ∥2h by using a telescopic argument if b1 ≤ b0, or by absorbing the

term τ2(b21/4)∥∆hϕ
(m+1)τ
h,τ ∥2h in the term b1τ∥∇hϕ

(m+1)τ
h,τ ∥2h (subject to µ being suffi-

ciently small) if instead b1 > b0. In all cases, (A.2) follows by additionally using that

b21τ
2∥∆hϕ

T
h,τ∥h ≲ µ2∥ϕTh,τ∥2h. □

Remark A.2. As this is not crucial in this paper, we do seek to obtain the optimal

dependency on µ in Lemma A.1.

Lemma A.3 (Error estimates for standard heat equation, cfr. [23]). Let ϕ satisfy the

continuous backwards heat equation ending in ϕT = φ ∈ C2, and let ϕh,τ satisfy the

discrete backwards heat equation (A.1) ending in Ihφ. Then, for all m, we have

∥ϕ(·,mτ)− ϕmτ
h,τ∥∞ ≲ h2 + τ. (A.3)

Lemma A.4. For any discrete function ϕh ∈ H2
h, we have∥∥|∇h

[
(Id − b0τ∆h)

−1ϕh − ϕh
]∥∥2

h
≲ b20τ

2∥ϕh∥2H2
h
, (A.4)

where H2
h is the discrete Sobolev space of order two.

Proof. This follows by taking the Fourier transform of yh := (Id − b0τ∆h)
−1ϕh, which

gives ŷh(ξ)− ϕ̂h(ξ) ∝ (τP (ξ)ϕ̂h(ξ))/(1 + τP (ξ)) for some P (ξ) ∝ |ξ|2. □

Lemma A.5 (Martingale property for discrete fluctuations). Let (A.1) be the dynamics

for the test function ϕh,τ . Let ρh,τ be the solution to (2.1). Then (ρh,τ , ϕh,τ )h is a discrete

time martingale.

Proof. The definition of Ah entails that ρ
(m+1)τ
h,τ = Ahρ

mτ
h,τ +Mm, where Mm encodes

the noise. Using the symmetry of Ah and (A.1), we end the proof by writing

(ρ
(m+1)τ
h,τ , ϕ

(m+1)τ
h,τ )h = (Ahρ

mτ
h,τ +Mm, ϕ

(m+1)τ
h,τ )h

= (ρmτ
h,τ , Ahϕ

(m+1)τ
h,τ )h + (Mm, ϕ

(m+1)τ
h,τ )h

= (ρmτ
h,τ , ϕ

mτ
h,τ )h + (Mm, ϕ

(m+1)τ
h,τ )h. □

□

Appendix B. Proof of Lemma 6.1

We need the following simple estimate.

Lemma B.1. For any β > 0, there exists a constant C > 0 such that for any α ≥ 1 we

have the inequality
´∞
0

exp{−αx1/β/
√
1 + x1/β}dx ≤ Cα−β .

Proof. Using the inequality 1 + x1/β ≤ x1/β(1 + α) (valid for x ≥ α−β) we write
ˆ α−β

0

exp

{
−α x1/β√

1 + x1/β

}
dx+

ˆ ∞
α−β

exp

{
−α x1/β√

1 + x1/β

}
dx

≲β α
−β +

ˆ ∞
0

exp

{
−
√
αy2√

2(4β)2

}
y4β−1 dy ≲β α

−β ,
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where we used the bound α/
√
1 + α ≥

√
α/
√
2 (which is valid for α ≥ 1), the change of

variables y = 4βx1/(4β) in the second-to-last inequality, and Gaussian moment bounds in

the last inequality. □

Proof of Lemma 6.1. Let x ∈ Gh,d and t ∈ Sτ be fixed. Let φh be the discrete Dirac

delta in x, namely δh := 1y=xh
−d. Moreover, let ϕh,τ be given by the discrete backwards

heat equation (A.1), and with final datum ϕth,τ = δh. We define the stopping time

T⊘ := min{s ∈ Sτ : ∥ρsh,τ − ρsh,τ∥∞ ≥ Bρmin/2}. Let j ∈ N be even. The same exact

reasoning as in Step 3 from the proof of Proposition 5.1 allows to define a continuous-

time martingale Ds such that Ds = (ρsh,τ − ρsh,τ , ϕsh,τ )h for all Sτ ∋ s ≤ t. Using the

continuous Itô formula, the bound λmax(Id − b0τ∆h)
−1) ≤ 1, the definition of T⊘, and

the notation s← := max{m ∈ Sτ : m < s}, we obtain

E
[
(Dt∧T⊘)j

]
≤ E

[
(D0)j

]
+
j2

N
E
[ˆ t∧T⊘

0

(Ds)j−2([ρs←h,τ ]
+, |∇hϕ

s←
h,τ |

2)h ds

]
≲ E

[
∥ρ0h,τ − ρ0h,τ∥j∞

]
∥ϕ0h,τ∥

j
L1

+
j2

N
E
[

sup
s≤t∧T⊘

(Ds)j−2
]
ρmax(B + 1)

∑
s∈Sτ ,s≤t

∥∇hϕ
s
h,τ∥2hτ.

Lemma A.1 with the fact that ∥ϕth,τ∥2 ∝ h−d, and Doob’ martingale inequality imply

E
[

sup
s≤t∧T⊘

(Ds)j
]
≲ E

[
(Dt∧T⊘)j

]
≤ (N−1h−d)

j
2 +N−1j2E

[
sup

s≤t∧T⊘
(Ds)j−2

]
ρmax(B + 1)(µ2 ∨ 1)h−d.

Using Hölder and Young inequalities with conjugate exponents j/2, j/(j−2) and absorb-

ing the term E
[
sups≤t∧T⊘(D

s)j
]
, we arrive at

E
[

sup
s≤t∧T⊘

(Ds)j
]
≲

(
Cj2

(B + 1)ρmax(µ
2 ∨ 1)

Nhd

)j/2

(B.1)

Using Chebyshev’s inequality and (B.1), we get

P
[

sup
s≤t∧T⊘

|Ds| ≥ Bρmin

4

]
≲

E
[
sups≤t∧T⊘(D

s)j
]

(Bρmin)j

≲

(
√
C

√
B + 1

B

√
ρmax

ρmin

{
µ2 ∨ 1

Nhd

}1/2
)j

· jj =: ηj · jj , (B.2)

where we have set

η := α−1 ·
√
B + 1

B
, α =:

(
√
C

√
ρmax

ρmin

{
µ2 ∨ 1

Nhd

}1/2
)−1

. (B.3)

If η ≲ 1, we can perform an optimisation argument over j ≥ 2 for the right-hand-side of

(B.2). Thus the optimal j is chosen as either ⌈e−1η−1⌉ or ⌊e−1η−1⌋. In either case, this
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optimisation procedure allows to carry on in (B.2) and obtain (for a different constant C

rescaled by e−1)

P
[

sup
s≤t∧T⊘

|Ds| ≤ Bρmin

4

]
≲ exp

(
−Cρmin

ρ
1/2
max

·
{
Nhd

µ2 ∨ 1

}1/2

· B√
B + 1

)
. (B.4)

Equation (B.4) holds also in the case η ≳ 1, thanks to the trivial bounds

P
[

sup
s≤t∧T⊘

|Ds| ≥ Bρmin

4

]
≤ 1 ≲ e−1 ≤ e−η

−1

.

In particular, (B.4) holds for all B ≥ 0. Using (B.4), and the fact that the test function

δh := 1y=xh
−d (being a discrete Dirac delta at point x) recovers the value ρth,τ − ρth,τ , we

obtain

P
[
t ≤ T⊘,

∣∣ρth,τ − ρth,τ ∣∣ (x) ≥ Bρmin

4

]
≲ exp

(
−Cρmin

ρ
1/2
max

·
{
Nhd

µ2 ∨ 1

}1/2

· B√
B + 1

)
, ∀B ≥ 0. (B.5)

Now (6.1) follows from applying (B.5) over the union of all (t, x) ∈ Sτ ×Gh,d.

We now move to proving (6.2). Assume that α ≥ 1, where α is defined in (B.3). Then

the inequality (6.2) is deduced from (6.1) using the equality E[X] =
´∞
0

P(X ≥ x) dx

(which is valid for every non-negative real-valued random variable X), a simple change of

variables, and Lemma B.1 with the aforementioned α. Namely,

E
[
sup
t∈Sτ
∥ρth,τ − ρth,τ∥j∞

]
=

ˆ ∞
0

P
(
sup
t∈Sτ
∥ρth,τ − ρth,τ∥j∞ ≥ x

)
dx

=

ˆ ∞
0

P
(
sup
t∈Sτ
∥ρth,τ − ρth,τ∥∞ ≥ B1/jρmin

)
ρjmin dB

≲
{
C−1/2(ρmin/ρ

1/2
max)[Nh

d/(µ2 ∨ 1)]1/2
}−j

ρjmin.

and (6.2) is proven. Adapting the proof of (6.2) in the case α < 1 so as to get a bound

which is independent of ρmin can be done by replicating the analysis leading up to (B.5)

by replacing ρmin with ρmax in the definition of the stopping time T⊘ and all relevant

thresholds (we omit the details). Finally, (6.3) is easily proved along the lines of [7,

Lemma 16]. □
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