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Correlations between the eigenenergies of a system’s spectrum can be a defining feature of quan-
tum chaos. We characterize correlations between energies for all spectral distances by studying
the distributions of k-th neighbor level spacings (knLS) and compute their associated k-th neigh-
bor spectral form factor (knSFF). Specifically, we find analytical expressions for these signatures
in paradigmatic models of quantum chaos, namely the three Gaussian ensembles of random matrix
theory, and in integrable models, taken as systems with completely uncorrelated spectra (the Poisso-
nian ensemble). The spectral distance decomposition of the SFF allows us to probe the contribution
of each individual knLS to the ramp. The latter is a characteristic feature of quantum chaos, and we
show how each spectral distance participates in building it—the linear ramp cannot be formed by
short-range energy correlations only. We illustrate our findings in the XXZ spin chain with disorder,
which interpolates between chaotic and integrable behavior.

Quantum many-body systems are studied in fields as
diverse as condensed matter, statistical mechanics, quan-
tum information, and high-energy physics. Although
their spectra are usually too complicated to be described
and studied analytically, certain statistical properties are
universally shared among different systems. These spec-
tral statistical properties have become a probe of whether
a quantum system is chaotic or integrable. Specifically,
the statistics of spectral spacings is one such probe of
the underlying nature of a system. In a quantum chaotic
system, it evidences that the eigenenergies are not in-
dependently distributed but rather correlated in such a
way that no two values can lie too close together. By
contrast, the spectral spacings of quantum integrable sys-
tems exhibit no such correlations—a property that can
be attributed to the existence of an extensive number
conserved charges in such systems [1].

The distributions of nearest-neighbor level spacings are
closely related to the statistics of certain random matri-
ces: those of quantum chaotic systems are close to Gaus-
sian random ensembles, while those of generic integrable
systems follow the statistics of a diagonal matrix with
(real) random entries. Hence, the study of random ma-
trices has become central to the study of complex chaotic
and integrable quantum systems. The relation between
random matrices and quantum chaos is described in e.g.
[2, 3], with some of the foundational works related in e.g.
[4–11].

Importantly, the analogy between complex quantum
systems and random matrices does not stop at the level
of nearest-neighbor spacing distribution. The existence
(or not) of spectral correlations extends beyond nearest-
neighbor level spacings and can be probed by other mea-
sures, including the spectral rigidity, the number vari-
ance, and the spectral form factor (SFF) [3, 12]. These
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quantities can be computed analytically with random
matrix theory [2]. The statistical spectral properties of
complex quantum systems follow the random matrix pre-
dictions pretty well, with deviations occurring mainly at
long-range spectral distances.

A large part of this work focuses on the spectral form
factor, which is a dynamical signature of quantum chaos.
The SFF is the Fourier transform of the two-point eigen-
value correlation function of a matrix. As such, it in-
cludes all spectral distances. It is related to physical
time-dependent observables such as operator autocor-
relation functions, the survival probability of quantum
states, or the analytical continuation of the partition
function. It has been used to study spectral properties of
quantum systems ranging from nuclear physics and phys-
ical chemistry, all the way to black holes, see e.g. [13–21].
As a time-dependent function, the behavior of the SFF
at different time scales depends on the underlying spec-
trum. For complex systems (whose energies are usually
not related to each other in any special way, i.e. they
are incommensurate), a single set of eigenvalues results
in a very noisy time-dependent function [22], such that
some kind of averaging is required to see its key features.
After such averaging, the SFF can be used to distinguish
between chaotic and integrable spectra. In both kinds
of systems, it starts with an initial decay at early times
and, for systems of finite size, stabilizes at a ‘plateau’ at
late times (times proportional to the inverse of the av-
erage level spacing). The behavior in-between depends
on whether the spectrum is chaotic—in which case the
SFF first goes below the plateau value before joining it
up via a linear ‘ramp’, forming a ‘correlation hole’—or
integrable—the SFF then goes almost directly from the
decay to the plateau without any hole. Since the SFF
involves all energy differences, it probes all ranges of cor-
relations (with equal weight at infinite temperature) in a
system’s spectrum.

Our results, based on the kth neighbor spectral distri-
butions in random matrices, show how each spectral dis-
tance contributes to the SFF. Specifically, we derive the
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kth neighbor level spacing distributions (knLS). Their
Fourier transforms allow us to introduce the kth neigh-
bor spectral form factors (knSFF) and thus perform a
spectral distance decomposition of the SFF. We then show
how the latter builds up, with time, from contributions
of correlations between eigenenergies further apart.

We provide analytical results for the three Gaus-
sian ensembles, namely the Orthogonal (GOE), Unitary
(GUE), and Symplectic (GSE) ensembles, whose spectral
statistics is representative of that in quantum chaotic
systems—the ensemble depending on the properties of
their Hamiltonian under time reversal. We also provide
results for the ‘Poissonian’ ensemble, constructed from
diagonal matrices with random entries taken from a uni-
form distribution, and whose statistics are representative
of the spectral statistics of quantum integrable systems.
Our analytical results are based on tractable approxi-
mations, that we detail and verify. As such, a first re-
sult of this work is to derive the probability of the knLS
based on Wigner’s original approach, that is, considering
the joint probability density of eigenvalues of the largest
possible matrix with a k-th spacing. The variance of this
distribution can help identify when a physical model de-
viates from the idealized chaotic or integrable models.
Knowledge of those distributions allows us to analyti-
cally find the contribution of each level distance to the
SFF (knSFF). Specifically, we show how the knSFF can
be written as a Gaussian envelope and an oscillating func-
tion, part of the latter capturing the non-Gaussianity of
the knLS distributions. We show how this specific form is
important to build the linear ramp, and how correlations
between eigenvalues further apart participate in building
the linear ramp. Such decomposition also allows us to
introduce refined dynamical signature of chaos. Indeed,
we find that the minimum value of the knSFF behaves
very differently for the Gaussian ensembles than for the
Poissonian case.

The tools and analytical results we introduce can
be used to see when and how a complex many-body
quantum system deviates from the ideal (chaotic or
integrable) cases mentioned above. We illustrate our
methodology by examining a physical system, namely,
an XXZ spin chain with disorder, a model which is often
used in the context of many-body localization (see e.g.
[23–28]) and whose SFF has been studied [28–31]. This
system shows a transition from chaos to integrability as
a function of the disorder’s strength.

The paper is structured as follows: Section I briefly
introduces the models we consider. Section II presents a
summary of our main results. The derivations and impli-
cations are detailed in the rest of the paper. In Sec. III
we study spectral statistics, first providing an approx-
imated derivation of the knLS distributions. We show
how the variance of the knLS distribution can be used
to diagnose quantum chaos, and discuss its results in the
XXZ spin chain with disorder. In Section IV we study
dynamical signatures of chaos. In particular, we intro-
duce a decomposition of the SFF in terms of the above-

mentioned kth neighbor level spacings. We introduce a
toy model whose spectrum has mixed features of spectral
correlations, namely, only nearest-neighbor correlations
according to the Wigner distributions of level spacings,
and verify that its SFF does not exhibit a linear ramp.
Section V details a dissipative protocol to measure cor-
relation functions related to the knSFF. Finally, Section
VI provides conclusions and a discussion of our results as
well as future directions in the light of this work.

I. THE MODELS

In this work, we consider Hermitian Hamiltonians,
each with a finite discrete spectrum (or energy window)
with N eigenvalues, {E1, E2, . . . , EN}, that we arrange
in increasing order. We define the set of kth nearest-
neighbor level spacings (knLS) for 1 ≤ k ≤ N − 1

as {s(k)1 , s
(k)
2 , . . . , s

(k)
N−k}, where s

(k)
i = Ei+k − Ei for

1 ≤ i ≤ N − k integer. For example, k = 1 gives the
usual set of nearest-neighbor spacings. We always unfold
the spectrum so that the average distance between eigen-
values is equal to one, ⟨s(1)⟩ = 1. Thus, it is expected
that ⟨s(k)⟩ = k.

A. Gaussian and Poissonian ensembles

A Gaussian random matrix can be described by the
joint probability density of its N eigenvalues, which reads
[2]

ρβ(E1, . . . , EN ) = C
∏

1≤i<j≤N

|Ei − Ej |β e−A
∑N

i=1 E2
i , (1)

where β is the Dyson index distinguishing the different
ensembles, namely β = 1, 2, 4 for the GOE, GUE, GSE,
respectively. The constant C will not play a role in this
work and A sets the energy scale, which we keep free for
now. A random matrix taken from a Gaussian ensem-
ble is constructed by sampling each matrix element from
Gaussian distributions, as we detail in Appendix A for
completeness.

A random matrix taken from the Poissonian ensemble
is a diagonal matrix with elements sampled from a uni-
form distribution. We label this ensemble with β = 0 for
convenience.

B. The XXZ spin chain with disorder

The tools and methodology we introduce in this work
are illustrated in a physical model. Specifically, we quan-
tify how closely a many-body quantum system follows the
Gaussian or Poissonian random matrix ensembles. We
choose the XXZ spin chain with a varying amount of dis-
order in on-site magnetic field, Ĥ = Ĥxxz+Ĥdis, because
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this model is known to interpolate between chaos and in-
tegrability as a function of disorder strength. The Heisen-
berg XXZ spin-chain Hamiltonian for L spins reads

Ĥxxz =

L∑
n=1

(
Ŝx
nŜ

x
n+1 + Ŝy

nŜ
y
n+1 + JzŜ

z
nŜ

z
n+1

)
, (2)

where Ŝx,y,z
n are spin 1/2 operators on site n. We assume

periodic boundary conditions. This model is known to be
integrable and can be solved using the Bethe ansatz [32].
Adding on-site magnetic fields with random strengths

Ĥdis =

L∑
n=1

hz
nŜ

z
n, (3)

where hz
n are real random numbers taken from a uni-

form distribution U[−W/2,W/2], changes the integrability
properties of the XXZ chain as a function of the disorder
strength W . Roughly speaking, when W is small (but
not too small), integrability is broken, while as W in-
creases, integrability is restored. In the chaotic regime,
the spectral statistics agree with those of GOE due to the
system’s time-reversal symmetry [33]. The XXZ Hamil-
tonian with the disorder term (3) conserves the total spin
in the z-direction; in other words, it commutes with the

operator Ŝz =
∑L

n=1 Ŝ
z
n. The Hamiltonian thus does not

mix sectors of different Ŝz eigenvalues, and we can work
in one such sector. We choose to work in the sector with
half of the spins up and half of the spins down, which is of
dimension

(
L

L/2

)
. We present results for L = 16 for which

the Hilbert space dimension in the above-mentioned sec-
tor is 12,870. In practice, however, we draw our statistics
from N = 200 eigenvalues around the densest part of the
spectrum.

II. SUMMARY OF MAIN RESULTS

This section provides an overview of our main results,
whose derivation is given in later sections, along with
further details.

A. Beyond Wigner’s surmise

For the Gaussian random matrix ensembles, the near-
est neighbor level-spacing (nnLS) distribution (k = 1)

follows the Wigner surmise, Pβ(s) = Cβs
βe−Aβs

2

, where
β is a parameter that distinguishes between the three
Gaussian ensembles, GOE (β = 1), GUE (β = 2) and
GSE (β = 4). We first derive the probability distribu-
tion for any energy spacing s(k) [34–39] by characterizing
its variance, which can probe spectral correlations.

As mentioned above, the average of the distribution of
s(k) for an unfolded spectrum is k. We show in Section III
that for the three Gaussian ensembles the kth neighbor

100 101 102

k

0.0

0.5

1.0

1.5

∆
(k

)
β

Surmise
Logarithmic
Numerical

FIG. 1. Variance of the distributions P(k)
β (s) as a func-

tion of spectral distance k for the different Gaussian ensem-
bles: GOE (red), GUE (green) and GSE (blue). We compare
numerical results (circles) with analytical results from the sur-
mise (4) and from the logarithmic behavior (6). Results are
sampled from random matrices of dimension 1000, from which
we sampled the N = 200 central eigenvalues and we average
over Nav = 1000 realizations of the ensembles.

level-spacing (knLS) distribution is approximately given
by

P(k)
β (s) ≈ Cα sα e−Aαs2 , (4)

where α depends on the spectral distance k and the en-
semble index β through

α =
k(k + 1)

2
β + k − 1 . (5)

The values of Aα and Cα are detailed in Eqs. (25a) and
(25b), respectively.

The average of this distribution P(k)
β (s) is ⟨s⟩ = k, and

its variance is ∆
(k)
β ≡ ⟨s2⟩ − ⟨s⟩2 =

(
α+1
2Aα

)
− k2, which

saturates to 1/β for large k. In fact, this variance of the
generalized surmise (4) does not appropriately capture
the behavior of the exact distribution at large k. Instead,
it follows

∆
(k)
β =

2

π2β
ln k + const . (6)

Interestingly, this result behaves as the number-variance,
Σ2(L) at L = k, for the Gaussian ensembles, apart from
the constant value and the fact that k is discrete here. In
[40] it was observed that Σ2

β(k) = ∆
(k)
β +1/6, from which

the constant can be read off as 2
π2 [ln 2π+γ+1−π2/8]−1/6

for GOE, 1
π2 [ln 2π+γ+1]−1/6 for GUE and 1

2π2 [ln 4π+

γ+1+π2/8]−1/6 for GSE, where γ ≈ 0.57721 is Euler’s
constant. Figure 1 illustrates the different results for the
variance of the kth level distribution for the three random
matrix ensembles [41].
For the Poissonian ensemble (which we will label with

β = 0), the kth neighbor spacing distribution reads

P(k)
0 (s) =

1

(k − 1)!
sk−1e−s , (7)
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FIG. 2. Variance of the knLS distribution as a func-
tion of the neighbor degree k for the XXZ model (solid
blue lines), GOE (red lines, dashed for the surmise, plain for
the log) and Poisson (dashed black line). The color scale
shows different disorder strengths W .

with variance given precisely by

∆
(k)
0 = k , (8)

which is exactly the result for the number variance,
Σ2(L), of the Poissonian ensemble at integer L = k.
So the variance of the Poissonian ensemble increases

linearly with k, which contrasts with the logarithmic
scaling in the Gaussian ensembles. This can be un-
derstood because the energies in the Poisson ensem-
ble are completely uncorrelated—thus unconstrained to
spread— while the correlations in the Gaussian ensem-
bles restrict the width of the spacing distributions for
longer ranges k. The variance thus witnesses the strength
of energy correlations, and can be used to distinguish sys-
tems with integrable or chaotic spectral statistics. This
can be useful to identify when a many-body system starts
deviating from the Gaussian random matrices and Pois-
sonian results, as Fig. 2 illustrates for the disordered
XXZ chain.

B. Spectral-distance decomposition of the SFF

After having found the structure of level spacing dis-
tributions beyond nearest neighbors, we ask how each
set of level spacings contributes to the spectral form
factor. As may be expected, nearest-neighbor correla-
tions are not enough to determine its full time-dependent
profile and longer-range spectral correlations are needed
as time increases. The SFF is the simplest nontriv-
ial measure of spectral correlations and indistinguish-
ably accounts for all energy neighbors. We will take
its simplest definition, at infinite temperature, as St =〈∑N

m,n e
−i(En−Em)t/N2

〉
, where the angle brackets de-

note an ensemble average. We are interested in charac-
terizing the contribution of each knLS to the SFF, and
in a similar spirit to Wilkie and Brumer [14], we define

the kth neighbor SFF (knSFF) as

S
(k)
t ≡ 2

N2

〈N−k∑
i=1

cos [t s
(k)
i ]

〉
. (9)

This allows us to perform a spectral distance decompo-
sition of the SFF, that is, write the complete SFF as
composed of the kth neighbor SFFs,

St =
1

N
+

N−1∑
k=1

S
(k)
t , (10)

where the first term originates from contributions of the
zero frequencies [42].
Given a distribution P(k)(s) for the probability that

the distance between a level and its kth neighbor is s,
the ensemble-averaged knSFF reads

S
(k)
t =

2(N − k)

N2

∫
dsP(k)(s) cos[t s]. (11)

This expression assumes that the contribution of each
spacing does not depend on the location in the spectrum,
which gives the 2(N − k) factor counting the number of
k-neighbor distances in the spectrum. As we will show,
the details of the distributions P(k)(s) and the number of
energy levels accounted for are important to build up the
ramp (or correlation hole); not only the nearest neigh-
bor distribution, P(1)(s), but also further correlations
are crucial to get a linear ramp. In particular, assuming
only nearest neighbor correlations results in a correlation
hole but no linear ramp (see Section IVF).
In Section IVB, we show that the approximated dis-

tribution (4) yields a simple form to approximate the
knSFF for the Gaussian ensembles, namely

S
(k)
t ≈ 2(N − k)

N2
e−

ω2
kt2

4α

[
cos(ωkt)

+
1

12α
ωkt

(ω2
kt

2

2α
− 3

)
sin(ωkt)

]
. (12)

Here, α measures the amount of level repulsion and is
given by (5), while the frequency is defined as

ω2
k =

α

2Aα
. (13)

So we find that the knSFF for each of the Gaussian en-
sembles can be written as a Gaussian envelope multiplied
by an oscillating function. For increasing k, the number
of oscillations increases, while their amplitude is being
suppressed by the Gaussian decay. Interestingly, the fre-
quency becomes linear for large enough k, ωk → k, such
that summing up only the odd/even knSFF’s yields a
resonance/anti-resonance at t = π. We find such reso-
nances both for the folded and for the unfolded cases.
By contrast, such resonances do not appear for the inte-
grable case, which we turn to next. Figure 3 illustrates
this phenomenon for XXZ with disorder, where we ob-
serve that this structure disappears as we increase the
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FIG. 3. Even and Odd neighbor decomposition of the SFF for the XXZ model along the chaos to integrability transition.
Eq. (12) predicts a ‘resonance’ for the even contributions and an ‘anti-resonance’ for the odd contributions. The results have
been averaged over Nav = 150 realizations of the noise. The parameters are L = 16, Nup = 8, Jz = 2.21, and the system has
periodic boundary conditions. The black dotted line shows the connected part of the SFF, detailed in App. D.

disorder. In Appendix E we show that this phenomenon
is also present without unfolding the spectrum.

For the Poissonian (integrable) case, the exact result
for the knSFF reads

S
(k)
t =

2(N − k)

N2

cos(k arctan t)

(1 + t2)k/2
. (14)

Here, the oscillations in time die out fairly quickly be-
cause of the arctan(t) term which saturates to π/2, in
addition to the Lorentzian envelope becoming more and
more suppressed with increasing k.

We now have the tools to ask how the correlation hole
and ramp build up (or not) in different systems. This
can be answered by introducing the partial SFF, which
we define as

St,K ≡ 1

N
+

K∑
k=1

S
(k)
t , (15)

and represents the SFF with a cut-off on the energy
ranges contributing to it. Note that St,N−1 = St. When
it exists, the ramp incrementally builds up by adding

up contributions S
(k)
t with larger range k. The partial

SFF for different cut-offs is illustrated in Figures 4 and
5, respectively in the Poissonian and Gaussian random
ensembles, and for the XXZ model with increasing disor-
der. We highlight the ‘dip time’, defined as the time for
which St,K starts showing a ramp (and discussed in detail
in App. C), and see how this time moves further to the
left as the number of energy ranges is increased. In other
words, the ramp builds up from the plateau time to the
left, with smaller k contributing at late times and longer-
range correlations needed to increase the duration of the
linear ramp at early times. Along the same line, note
that it is evident from the relationship between the two-
level correlation function R2(s) =

∑∞
k=1 P(k)(s) and the

probability densities P(k)(s) given in [43], see Appendix
D, that small, medium, and large k neighbor probability
distributions contribute to the structure of the SFF.

In Section IVA we expand on the relationship of the
knSFF decomposition for general autocorrelation func-
tions.

III. SPECTRAL STATISTICS

We now detail how to derive and characterize the kth
neighbor distributions for Gaussian random matrix en-
sembles as well as for the Poissonian ensemble.

A. A surmise for the Gaussian random matrix
ensembles

We look for the probability distribution of the kth level

spacing, P(k)
β (s). Let us start with k = 1. For a random

matrix taken from a Gaussian ensemble (GOE, GUE or

GSE), the nearest-neighbor level spacings {s(1)i }N−1
i=1 of

the unfolded spectrum (see Appendix E) are well approx-
imated by random variables taken from the Wigner sur-
mise distribution,

P(1)
β (s) = Cβ,1 s

β e−Aβ,1s
2

, (16)

where Cβ,1 and Aβ,1 are constant in s and depend only
on β (since k = 1); they are set by the conditions that
P(1)(s) is normalized and that the average level spacing
is equal to unity, ⟨s⟩ =

∫∞
0

sP(1)(s)ds = 1.
This result can be derived by considering the distribu-

tion of the spacing |E2 − E1| between the eigenenergies
of a 2× 2 random matrix, which is the smallest possible
random matrix to have a nearest-neighbor spacing. As
Wigner rightly conjectured [7], this is a good approxi-
mation to the level spacing distribution also for matrices
with N > 2; the distribution of nearest-neighbor level
spacings in a Gaussian random matrix of any size very
closely follows his surmise, provided that the spectrum is
unfolded. For exact results at N = 3, see e.g. [44, 45].



6

10−1 101

t

10−5

10−3

10−1

S
t,
K

m
ax

β = 0

20
120
180
200

10−1 101

t

β = 1

10−1 101

t

β = 2

10−1 101

t

β = 4

FIG. 4. Spectral distance decomposition of Spectral Form Factor for Random Matrix summing the first Kmax =
20, 120, 180, 200 spectral distances for Poisson, GOE, GUE and GSE. Dip time (dashed line). The results are computed by
summing the approximated analytics. The black dotted line shows the connected part of the SFF, as detailed in App. D.
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FIG. 5. Spectral distance decomposition of Spectral Form Factor for XXZ model summing the first Kmax =
10, 50, 170, 200 spectral distances. The black dotted line shows the connected part of the SFF for GOE, see App. D. The
results have been averaged over Nav = 150 disorder realizations. The parameters are L = 16, Nup = 8, Jz = 2.21, and the
system has periodic boundary conditions.

For energy levels further apart, we follow Wigner’s
footsteps and use the smallest possible random matrix
ensemble with that particular spectral distance. Specif-
ically, to find the distribution of the kth neighbor level
spacing, s(k), we use an N = k + 1 dimensional random
matrix with energy levels E1 ≤ E2 ≤ · · · ≤ Ek+1 and
look for the distribution

P(k)
β (s) =

∫ ∞

−∞
dE1

∫ ∞

E1

dE2 · · ·
∫ ∞

Ek

dEk+1ρ(E1, . . . , Ek+1)

× δ
[
s− (Ek+1 − E1)

]
, (17)

where ρ is the joint probability distribution (1), and
where we have written the integration limits explicitly,
taking into account the ordering of the levels.

Following the derivation in [44], we change variables
from {E1, E2, . . . , Ek+1} to {E1, s1, s2, . . . , sk}, where

si ≡ s
(1)
i are all the nearest-neighbor spacings. So

P(k)
β (s) ∝

∫ ∞

−∞
dE1

∫ ∞

0

ds1· · ·
∫ ∞

0

dsk ρ(E1, s1 . . . , sk)

× δ
(
s−

k∑
i=1

si

)
, (18)

where we omit the constant Jacobian which is not rele-
vant in this work because we will eventually normalize
the final result. Notice that E1 appears only in the expo-

nential term of ρ(E1, s1 . . . , sk) =
[
p(s1, s2, . . . , sk)

]β ×
e−A[E2

1+(E1+s1)
2+(E1+s1+s2)

2+···+(E1+s1+···+sk)
2], written

here with the k(k + 1)/2 degree polynomial

p(s1, s2, . . . , sk) = s1(s1 + s2) . . . (s1 + s2 + · · ·+ sk)

× s2(s2 + s3) . . . (s2 + s3 + · · ·+ sk)

× · · · × sk−1(sk−1 + sk)× sk . (19)

Since si ≥ 0 for all i, this polynomial is positive every-
where. Performing the Gaussian integral over E1, we find
(up to an irrelevant constant)

P(k)
β (s) ∝

∫ ∞

0

ds1· · ·
∫ ∞

0

dsk
[
p(s1, s2, . . . , sk)

]β
× e−Aq(s1,...,sk) δ

(
s−

k∑
i=1

si

)
, (20)

where we defined the quadratic polynomial resulting from
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FIG. 6. k-th neighbor level spacing distribution for the Poisson (black), GOE (red), GUE (green), and GSE (blue)
ensembles for different spectral distances k = 1, 5, 20, 40. The data and the analytics are rescaled as s̃ = s/k for ease of
plotting, and thus the average of all distributions is always located at 1. The analytical Wigner surmise (lines), Eqs. (7)
and (4), is in good agreement with the unfolded numerical data (histogram). Numerical results are obtained averaging over
Nav = 1000 realizations of random matrices of dimension N = 100.

the integration over E1 as

q({si}) =
k∑

i=1

i(k + 1− i)

k + 1
s2i +

k∑
i<j=1

2i(k + 1− j)

k + 1
sisj .

(21)

Note that since si ≥ 0 for all i and the coefficients of
this quadratic polynomial are always positive, we have
q(s1, . . . , sk) ≥ 0 everywhere. Next, we rescale the spac-
ings through xi = si/s. Taking into account the Jaco-
bian of this transformation, which is sk, the homogeneity
of p(s1, . . . , sk) and of q(s1, . . . , sk), and using the delta
function identity δ(ax) = δ(x)/|a|, we arrive at

P(k)
β (s) ∝ sk−1s

k(k+1)
2 β

∫ ∞

0

dx1· · ·
∫ ∞

0

dxk (22)

×
[
p(x1, x2, . . . , xk)

]β
e−As2q(x1,...,xk) δ

(
1−

k∑
i=1

xi

)
.

This is an integral over a (k − 1) simplex. Using the δ-
function to set xk = 1−x1−x2−· · ·−xk−1 and restricting
the integration limits, we replace the quadratic function

by q({xi}k−1
i=1 ) =

k
k+1−2

∑k−1
i=1 Bixi+

∑k−1
i,j=1 Aijxixj and

detail the elements of the vector B and the matrix A be-
ing detailed in Appendix B; at the same time, we denote
the change of the polynomial p({xi}ki=1) as p({xi}k−1

i=1 ).
After completing the square, we arrive at the (k − 1)-
dimensional integral

P(k)
β (s) ∝ s

k(k+1)
2 βsk−1e−

A
2 s2 (23)

×
∫ 1

0

dx1

∫ 1−x1

0

dx2· · ·
∫ 1−

∑k−2
i=1 xi

0

dxk−1

×
[
p(x1, x2, . . . , xk−1)

]β
e−As2(xT−mT )A(x−m),

where m = A−1B and where we have used A
[

k
k+1 −

BTA−1B
]
= A/2 for all k. It can be verified that m

simplifies to (1/2, 0, . . . , 0) which means that the Gaus-
sian is centered at zero for all xi except x1.

The integral over the simplex is challenging to compute
exactly. For small s the Gaussian in the integral can be
expanded to second order in s, resulting in a correction
to the width of the pre-factor Gaussian function, while
at large s the integral gives corrections to the power law
(as we discuss below).

We can thus approximate the distribution of knLS by
(4) with α given in (5) and Aα, Cα set by the normaliza-
tion conditions resulting from the unfolding process, see
Eqs. (25) below. Note that αβ,k ∈ N for the all possible
k = 1, 2, . . . , N − 1 and β ∈ N.

Since similar results have been reported in the litera-
ture, let us review their argument to contextualize our
derivation. The first generalization of Wigner surmise
that we are aware of assumes a Brody-like ansatz, which
essentially leaves the power-law α as a free parameter
[35]. In Ref. [46], the power-law in (5) is found using a
small s expansion and the generalized Wigner surmise,
Eq. (4), is obtained assuming a Gaussian behavior at
large s. This approach is also followed in [38] in the con-
text of 2D Poisson point processes. These references thus
find the same distribution through heuristic arguments.
Formal results for the knLS probability distribution can
be obtained exactly using tools from RMT, see e.g. [2],
and there are even connections between the different
knLS distributions [39]. Since these results are formal
and exact, they lack an explicit expression for the knLS
distribution reminiscent of the Wigner surmise, which is
itself an approximation [3]. More recently, an extension
of these results to spacing ratios was tested numerically
[37] but with no analytical proof. Lastly, Rao [34] claims
to have an analytic derivation of the generalized Wigner
distribution from the joint probability density of eigen-
values. However, since the energies are not ordered, the
spacing Ek+1−E1 need not be a kth spacing. In turn, our
derivation gives a derivation based on Wigner’s original
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argument, i.e. considering the joint probability density
of eigenvalues of the largest possible matrix with a k-th
spacing; we have explicitly stated the approximations in-
volved in getting the generalized Wigner distribution and
discuss the corrections to the distribution below.

The generalized Wigner surmise (4) has been obtained
starting from the joint probability distribution of eigen-
values (1)—without unfolding. It gives a good approx-
imation of the knLS distribution for small k, provided
that the spectrum is unfolded. As in the case of Wigner’s
surmise (16), unfolding the spectrum sets the constants
Aβ,k and Cβ,k from the conditions∫ ∞

0

P(k)
β (s) ds = 1, (24a)∫ ∞

0

sP(k)
β (s) ds = k . (24b)

The first condition normalizes the distribution, while the
second condition fixes the average spacing between a level
and its kth neighbor to equal k. The constants can be
found to be

Aα =

[
Γ
(
α
2 + 1

)
k Γ

(
α+1
2

)]2

(25a)

Cα =
2

Γ
(
α+1
2

) [Γ (
α
2 + 1

)
k Γ

(
α+1
2

)]α+1

, (25b)

where α is given in Eq. (5) and depends on β and on
k. Fig. 6 shows that our analytical results (4) capture
the numerical simulation for all matrices of the Gaussian
ensembles.

Expanding the expressions (25a) and (25b) in large α
provides approximations for Aα and Cα that work par-
ticularly well when comparing with numerical results:

Aα ≈ 1

k2

(
α

2
+

1

4
+

1

16α

)
, (26a)

Cα ≈ 1 + 12α

12
√
πα k1+α

e
1
4+

α
2 . (26b)

From (24b), the distribution P(k)(s) has average ⟨s⟩ =
k, and its variance is therefore

∆
(k)
β ≡ ⟨s2⟩ − ⟨s⟩2 =

(
α+ 1

2Aα

)
− k2 . (27)

This result is illustrated in Fig. 1. As mentioned in Sec.
II, the variance of the exact distributions follows Eq. (6).
Corrections at large s.—As mentioned, we expect cor-
rections to the generalized Wigner surmise (4) at large
s. Starting back from Eq. (23), we can bound the re-
sulting integral by a saddle-like approximation, namely,
replacing p(x1, x2, . . . , xk−1) by its maximum pmax over
the simplex. Since, at large s, the Gaussian has a very
narrow peak (located on the boundary of the simplex),
we can take the limits to infinity; the integral thus in-
troduces an s-dependence of (1/s)k−1. The probability

distribution has a resulting s-dependence for large s cor-
rected as

P(k)
β (s) −−−→

s→∞
s

k(k+1)
2 βe−

1
2As2 . (28)

Note that the behaviour at large s is not the same as the
behaviour at large k, as diagnosed for example by (6),
for which we would need further work to account for.
Note that, since the power k(k+1)

2 β is linear in β, this
distribution can be interpreted as the Boltzmann factor
of a Coulomb or ‘log gas’ [47, 48], which models a 1-
dimensional array of atoms in a harmonic trap interacting
with an effective potential taken as a logarithmic function
of their distance. This interpretation as a log gas does
not hold for the α coefficient in (5) because of zero-th
order terms in β that would need to be canceled out
with temperature-dependent interaction strengths in the
effective model.

B. ‘Poisson’ ensemble: uncorrelated energy levels

We revisit the kth neighbor distribution for ensem-
bles with uncorrelated energy levels, which we label with
β = 0 for convenience. This is known in the literature
as the “Poissonian” case whose nearest-neighbor spectral
statistics satisfy P(1)(s) = e−ρ̄s, where ρ̄ is the average
density of states, taken to be the uniform distribution
ρ̄(E) = ρ̄ = 1. Assuming no correlations whatsoever
between the energies, the joint probability distribution
of the set of (uncorrelated) nearest-neighbor differences
{s1, s2, . . . , sk} is just a product of the individual distri-
butions,

P (s1, s2, . . . , sk) = P (s1)P (s2) . . . P (sk) = e−
∑k

i=1 si .(29)

As in the case of the Gaussian ensembles, the joint distri-
bution P (s1, s2, . . . , sk) allows us defining the probability
that the kth nearest neighbor spacing is s as

P(k)
0 (s) ∝

∫ ∞

0

ds1 . . . dsk P ({si}ki=1)δ(s−
k∑

i=1

si). (30)

This integral can also be carried out using rescaled vari-
ables xi = si/s. The Jacobian brings a factor sk and the
integration over the delta function contributes a s−1 and

sets everywhere xk = 1−∑k−1
i=1 xi. This yields

P(k)
0 (s) ∝ sk−1e−s

∫ 1

0

dx1

∫ 1−x1

0

dx2· · ·
∫ 1−

∑k−2
i=1 xi

0

dxk−1

= sk−1e−s × constant , (31)

where the second equality follows from the fact that the
integral over the simplex is a finite constant. The nor-
malized distribution follows as

P(k)
0 (s) =

1

(k − 1)!
sk−1e−s .
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FIG. 7. k-th neighbor level spacing distribution in XXZ for spectral neighbors, k = 1, 10, 40, 80, in the chaotic W = 1
(light blue) and integrable W = 20 (dark blue) phases along with the analytical results for Poisson (black line) and GOE (red
line) models. The plot shows the rescaled spacing s̃ = s/k. The deviation between the integrable phase and Poissonian starts
to be seen at k = 35 and is very apparent at k = 70 where the numerical distribution is much narrower. The considered XXZ
model has L = 16 spins in the zero magnetization sector Nu = 8, the hopping is Jz = 2.21, with PBC, the energy window size
is Nen = 200 and the results include Nav = 50 disorder realizations. The variance of the distribution as function of k is given
in Fig. 2.

This distribution is illustrated in Fig. 6. We verify that
the average value is ⟨s⟩ = k, as expected. Note that al-
though for k ≥ 2, the probability for very small kth spac-
ing goes to zero, this does not reflect ‘level repulsion’ but
rather reflects the fact that there is a small probability of
having two levels that have k− 2 levels between them be
very close together. It is worth noting that this contrast
with the behavior in Gaussian ensembles, where the ‘re-
pulsion’ of two such levels is much stronger and goes as

sk−1+
k(k+1)

2 β .
The variance of the knLS distribution for the Poisso-

nian ensemble is ∆
(k)
0 = k, as mentioned in Eq. (8).

Comparing this result with the large k behavior of ∆
(k)
β

(6), we see that the Gaussian ensemble kth neighbor
distributions are much more narrow than those of the
completely uncorrelated (Poissonian) ensemble. Thus,
as mentioned in the summary, the variance is a good in-
dicator of the strength of spectral correlations—also c.f.
Fig. 2.

C. Spectral statistics in the disordered XXZ model

To study the correlations in the spectrum of the XXZ
spin chain with disorder and their dynamical signatures,
we average over many realizations of its Hamiltonian Ĥ =
ĤXXZ+Ĥdis for each value ofW and focus on a window in
the densest part of the spectrum, upon which we perform
global unfolding using a polynomial fit. The procedure
is detailed in App. E.

Figure 7 shows results for the rescaled distributions
P(k)(s̃) for different spectral distances k in the model’s
chaotic (W = 1) and integrable (W = 20) phases. The
results from the random matrices relevant to each phase,
respectively the GOE (Eq. (4) with β = 1) and Pois-
sonian (8), are illustrated for comparison. Small devia-

tions appear for larger k. Those deviations between the
physical model and idealized random matrices are bet-
ter characterized by the variances of the distributions
P(k)(s), presented above in Figure 2, and extracted from
numerical data for the disorder XXZ spin chain. Up to a
certain value of k both the chaotic and integrable phases
follow the expected GOE and Poisson behavior, respec-
tively. For larger k we find deviations in both phases,
particularly noticeable for the integrable phase, which
can be understood as follows.
For large disorder, the dominant contribution to the

Hamiltonian is Ĥdis, which on its own, can be thought of
as a free, non-interacting Hamiltonian with energy levels

given by Ei =
∑L

n=1 ±hz
n, with i = 1, 2, . . . , N . In the

zero magnetization sector in which we are working, there
are as many pluses as minuses. The energy level structure
can be understood by ordering the hz

n according to their
absolute value. Then, the lowest energy level is obtained
by distributing the ± such as to attribute minuses to the
|hz

n| with larger values and pluses to the |hz
n| with smaller

values. The highest energy level has the same structure
but with pluses and minuses flipped. This small exercise
shows that energy levels which are far away are actually
correlated in Ĥdis, thus explaining the deviation from
Poissonian statistics observed in Figures 2 and 7.

IV. DYNAMICAL SIGNATURES OF CHAOS

In this section we turn to the effect of spectral statistics
on dynamical quantities, focusing on the SFF. We intro-
duce the kth neighbor SFFs and study their properties.
We then sum them up (with appropriate coefficients) to
obtain the complete SFF. In this process, we learn about
the underlying structure which can be unveiled via the
decomposition of the SFF into knSFF components.
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A. The ensemble averaged kth neighbor SFF

The spectral form factor (SFF) is a time- and
temperature-dependent quantity that probes the spec-
trum of a given quantum system. For a system at
inverse temperature β̃, it can be defined as St(β̃) =

|Z(β̃ + it)/Z(β̃)|2, with the partition function Z(β̃) =∑N
i=1 e

−β̃Ei including all the energies {Ei}Ni=1 of the
Hamiltonian’s spectrum (N can be infinite). In more
detail,

St(β̃) =

∑N
i,j=1 e

−β̃(Ei+Ej)e−it(Ei−Ej)∑N
i,j=1 e

−β̃(Ei+Ej)
. (32)

In the infinite temperature limit, β̃ → 0, the SFF be-
comes

St(0) ≡ St =
N + 2

∑
i>j cos[t(Ei − Ej)]

N2
, (33)

whose numerator can be divided into terms according to

spectral distances s
(k)
i . This decomposition of the SFF is

thus

St =
1

N
+

N−1∑
k=1

S(k)
t , (34)

and is formed by summing the k-th neighbor spectral form
factors (knSFFs)

S(k)
t ≡ 2

N2

N−k∑
i=1

cos[t s
(k)
i ] . (35)

As mentioned, the SFF is not self-averaging [22]; so
we wish to compute the ensemble average St = 1/N +∑N−1

k=1 ⟨S(k)
t ⟩, which boils down to computing the en-

semble average of the individual contributions from each

spectral distance, ⟨S(k)
t ⟩ ≡ S

(k)
t —also introduced earlier

in the main results, Eq. (10). We show below a series
of approximations that allow us to derive an analytical

expression for the S
(k)
t which provides a good approxima-

tion and is obtained starting from the distributions P(k)

derived in Section III.
As discussed above, the ensemble average of the SFF

can be decomposed according to the contributions from
the various spectral spacings k. The latter can them-
selves be decomposed according to the energy levels i as

S
(k)
t =

2

N2

N−k∑
i=1

∫
dE1 . . . dEN ρ({Ei}) cos[t s(k)i ]. (36)

Note that the energies Ei are ordered. In the first step,

we approximate all energy spacings s
(k)
i = Ei+k − Ei as

being independent of the absolute energy level [49] and

set i = 1 as the reference level, so s
(k)
i → s

(k)
1 and the

sum over i just becomes an (N − k) factor. Then, in the

same spirit as the knLS distribution, we use the largest
possible matrix which describes the k level spacings and
take N → (k + 1). We recognize the distribution of the
knLS, Eq. (17), and the knSFF (36) becomes

S
(k)
t ≈ 2(N − k)

N2

∫
ds(k)P(k)(s(k)) cos[t s(k)],

≡ C
(k)
N f

(k)
t , (37)

where in the second line, we have introduced the following
function and constant for later notational convenience:

f
(k)
t ≡

∫
dsP(k)(s) cos(t s) (38a)

C
(k)
N ≡ 2(N − k)

N2
. (38b)

Let us mention that this result can be generalized to
quantities related to the SFF, such as autocorrelation
functions. Indeed, the autocorrelation function at infinite
temperature of a Hermitian operator Ô = Ô† (i.e. any
observable) can be decomposed in a similar manner using

f
(k)
t and changing only the coefficients C

(k)
N , as follows.

Consider the autocorrelation function:

Ct ≡
Tr(ÔÔ(t))

Tr(Ô2)
=

1

N 2

N∑
i,j=1

|Oij |2 cos [(Ei − Ej)t] , (39)

where Oij are the matrix elements of the operator Ô in

the energy basis and N 2 =
∑N

i,j=1 |Oij |2. The ensemble
average of Ct can be decomposed into kth neighbor au-
tocorrelation functions (see Appendix I for more details)
as

C
(k)
t ≡ O

(k)
N f

(k)
t , (40)

where f
(k)
t are defined in (38a) and we define the coeffi-

cients:

O
(k)
N ≡ 2

N 2

N−k∑
i=1

|Oi,i+k|2 . (41)

An explicit relation between correlation functions and
the knSFF’s, along with a possible dissipative protocol
to measure them, will be detailed in Sec. V.

We now turn to derive analytical expressions for f
(k)
t

(and for S
(k)
t ) for the GOE, GUE and GSE as well as

for completely uncorrelated energy levels (Poissonian en-
semble).

B. The knSFF in Gaussian random matrix
ensembles

1. Analytical results

With the approximated analytical result for P(k)(s)
obtained in (4), we can look for an expression of the
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FIG. 8. Time evolution of the knSFF for Poisson (black), GOE (red), GUE (green) and GSE (blue) for different spectral
neighbors, k = 1, 5, 20, 40 in systems of dimension N = 100. The plots for k = 5, 20, 40 show analytical results (thin lines)
from (14) and (12), while for k = 1 we show the exact expression (47), and numerical results for random matrices averaged
over Nav = 1000 realizations (thick transparent lines). While we do not expect the approximation (12) to be good for small k,
it works already quite well for GSE and k = 1 and less so for GUE and GOE, in that order. Note the different scales in the
time axis, chosen to better represent the increasing number of oscillations with the spectral neighbor k, see Eq. (55).

knSFF S
(k)
t for the Gaussian random matrix ensembles,

starting from (37):

f
(k)
t ≡

∫ ∞

0

dsP(k)(s) cos(ts) =

∞∑
n=0

(−1)n

(2n)!
t2n⟨s2n⟩ (42)

where

⟨s2n⟩ =
∫ ∞

0

ds s2n P(k)(s) =

(
α+ 1

2

)
n

(Aα)
−n (43)

where we have used the Pochhammer symbol (a)n =
a(a + 1) . . . (a + n − 1) = Γ(a + n)/Γ(a). In turn, the
function becomes

f
(k)
t =

∞∑
n=0

(
α+1
2

)
n

(1/2)n

(
−t2/4Aα

)n
n!

. (44)

This sum can be expressed in terms of a hypergeometric
function

f
(k)
t = e−

t2

4Aα 1F1

(
−α

2
;
1

2
;

t2

4Aα

)
. (45)

Since the coefficient 1/(2
√
Aα) appears in the t-

dependent exponent, it is homogeneous to a frequency
ωk. We thus set

1

2Aα
≡ ω2

k

α
, (46)

and we will see that this quantity sets the width of the
Gaussian envelope. The hypergeometric function can it-
self be expressed in terms of a Laguerre function, so we
get

f
(k)
t = e−

1
2αω2

kt
2

1F1

(
−α

2
;
1

2
;
ω2
kt

2

2α

)
=

√
πα

2

k

ωk
e−

ω2
kt2

2α L
−1/2
α/2

(
ω2
kt

2

2α

)
. (47)

The Laguerre function, La
µ with m − 1 < µ < m for

m ∈ N and a > −1, is defined by the infinite sum [50]

La
µ(z) =

∞∑
k=0

(
µ+ a

µ− k

)
(−z)k

k!
. (48)

When α is even, α = 2m for m ∈ N, in (47), the Laguerre
function becomes a Laguerre polynomial of degree m:

La
m(z) =

m∑
k=0

(
m+ a

m− k

)
(−z)k

k!
. (49)

Since the degree of the Laguerre polynomial (or func-
tion, for non integer α/2) grows quadratically with k, we
can use the approximation for Laguerre polynomial of
high degree [51]:

La
n(x) =

na/2−1/4

√
πxa/2+1/4

ex/2
[
cos(θa,n(x))

(
1 +O

(
1

n

))
+sin(θa,n(x))

(
ba(x)√

n
+O

(
1

n

))]
(50)

where θa,n(x) = 2
√
nx− aπ/2− π/4 and ba(x) =

(
4x2 −

12a2 − 24ax − 24x + 3
)
/(48

√
x). Note that b−1/2(x) =

√
x

12 (x− 3).
In our case, we have a Laguerre polynomial of degree

n = α/2 (not necessarily integer), a = −1/2 and x =
ω2

kt
2

2α , so the above approximation reads

L
− 1

2
α
2

(x) ≈
√

2

πα
e

x
2

[
cos (ωkt) +

b− 1
2
(x)√
α/2

sin (ωkt)
]
. (51)

As can be seen in (50), the terms in the square brackets of
(51) are an approximation up to (not including) O(1/α).
Thus, when plugging this result into (47) we must make
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sure that the combined coefficient of the square brackets
is expanded to the same order in α

1√
α/2

Γ(α/2 + 1)

Γ(α/2 + 1/2)
= 1 +O(1/α) . (52)

Eventually, we find that f
(k)
t can be approximated by [52]

f
(k)
t =

(
1 +O(1/α)

)
e−

ω2
kt2

4α (53)

×
[
cos(ωkt) +

√
2

α
b− 1

2

(
ω2
kt

2

2α

)
sin(ωkt) +O(1/α)

]
,

We note that the frequency is well approximated at large
k by a linear function in k:

ωk ≈ k − 1

2βk
+O(1/k2) . (54)

Let us make several remarks about expression (53):

• The initial value is always equal to unity, f
(k)
t=0 = 1

for all k;

• For t → ∞, the overall exponential factor, e−
ω2
kt2

4α ,

makes f
(k)
t → 0;

• f
(k)
t is expressed as a sum of a cosine and a sine
with the same frequency ωk → k at large k;

• Apart from the overall exponential factor, the
coefficient of cos(ωkt) is 1 while the coefficient
of sin(ωkt) is time-dependent and is equal to√

2
α b−1/2

(
ω2

kt
2

2α

)
= 1

12αωkt
(

ω2
kt

2

2α − 3
)
. It is of

O(1/k) and thus of less consequence for large k.
Note that, at the same time, it is more significant
at large t. This is compatible with the fact that
small k terms (corresponding to low frequencies)
are more significant at long time scales.

• We can compute the number of oscillations in one
standard deviation of the envelope

√
2α/ωk, by

comparing it with the period of the oscillations
Tk = 2π/ωk. We thus find

√
2α

2π
−−−−→
k→∞

√
β

2π
k. (55)

So the number of oscillations of the knSFF in the
envelope is proportional to

√
α, and scales linearly

with the neighbor degree k for large k, as illustrated
in Fig. 8. The figure also illustrates that the largest
number of oscillations that happen before the signal
flattens because of the exponential decays is for the
GSE, which has the largest β;

• Were the knLS distribution a perfect Gaussian cen-
tered at ⟨s(k)⟩ = k, the knSFF would only in-
volve the Gaussian envelope and the cosine term

f
(k)
t = e−k2t2/(4α) cos(kt) with frequency ωk = k,
since the Fourier transform of a Gaussian is an-
other Gaussian. The non-zero mean is accounted
for by including ei⟨s

(k)⟩t, whose real part is cos(kt).
Thus the sine term in the knSFF comes from the
non-Gaussianity of the knLS distribution. This is
studied in more detail in App. F.

With the approximation (53), the final expression for

S
(k)
t becomes

S
(k)
t ≈ 2(N − k)

N2
e−

ω2
kt2

4α

[
cos(ωkt)

+
1

12α
ωkt

(ω2
kt

2

2α
− 3

)
sin(ωkt)

]
,

as also given in the summary, Eq. (12). Figure 8 shows
that our analytical approximation above reproduces well
the numerical data for all three Gaussian ensembles.

Before turning to the complete SFF, we study some
more properties of the kth neighbor SFF: the kth dip

time td and depth of S
(k)
t as a function of k, and the

scaling of the deepest k∗ neighbor as a function of N .

2. Dip time and depth of the kth neighbor SFF

We define the kth dip time [53] for each S
(k)
t as the

time the function reaches its minimal value. It can be
computed from the exact expression with f

(k)
t given by

(47), or from the approximate one, Eq. (12). However it
may not be possible to analytically determine the mini-
mum of those functions. One possibility to overcome this
is to look at (12), where for large enough k (and not too
large t), the main contribution comes from the cosine.
We know that its minimum happens when its argument
is equal to π, therefore

td(k) ≈
π

ωk

(54)≈ π

k
. (56)

Note that this result suggests that the kth dip time does
not depend on the ensemble β, but only on the neighbor
degree k. For a more detailed analysis of this approxi-
mation, see Appendix H. From this estimate, we can also
find the knSFF depth as a function of k, by plugging (56)
into (12), we find the behavior

S
(k)
td

∼ −2(N−k)

N2
e−

π2

2k(βk+β+2) . (57)

Figure 9 shows that the approximation (56) for the dip
time agrees with the numerical simulation from the dif-
ferent Gaussian ensembles and for the XXZ model, pro-
vided that the spectrum is unfolded. Figure 10 (left)
shows that (57) characterizes well the kth dip time ob-
tained from numerical random matrices.
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FIG. 9. knSFF dip time as a function of the neighbor degree
for (a) ideal ensembles: Poisson (black), GOE (red), GUE
(green) and GSE (blue) computed numerically from the un-
folded spectrum along with the approximate expression (56)
(dashed grey). Inset: same plot in log-log scale that shows
explicitly the td(k) ∼ k−1 dependence; and (b) for the XXZ
spin chain for different values of the disorder (blue colorscale)
along with the analytical result td(k) = π/k (dashed gray).

3. Scaling of the deepest k-th neighbor SFF

The deepest k-th neighbor SFF, denoted by k∗, is com-
puted from the minima of Eq. (57) for the Gaussian ran-
dom matrix ensembles and (62) for the Poissonian en-
semble (see next section). The physical significance of
this value is the spectral distance k after which the kth
dip of the knSFF starts getting shallower. It is challeng-
ing to extract the minimum from the exact expression.
If we take the large k approximation, we find the deepest
k∗ to be given approximately by the solutions of

k∗2(2 + β + βk∗) = Nπ2, (58)

whose exact solution can be found exactly using Math-
ematica but which is too cumbersome to understand.
However, a large N expansion yields

k∗ ∼ C 1
3
N

1
3 + C0 + C− 1

3
N− 1

3 +O(N− 2
3 ) (59)

for the Gaussian ensembles, where the coefficients are

given by C 1
3
=

(
π2

β

) 1
3

, C0 = −β+2
3β , C− 1

3
= (2+β)2−3βπ2

9β
5
3 π

2
3

.

Figure 10 (right) shows a good agreement between this
expression and numerical random matrices for the three
Gaussian ensembles.

To end this section, we recall that the total SFF is not
self-averaging. We refer the reader to Appendix G which
shows that the knSFF for GUE (with similar conclusions
for the other ensembles) is also not self-averaging.

C. kth neighbor SFF for the Poissonian ensemble

The averaged kth neighbor SFF can be computed for
matrices with uncorrelated eigenenergies, in the same

100 101 102

k

−0.010

−0.005

0.000

min(S
(k)
t )

101 102 103

N

101

102 k∗

FIG. 10. (left) Minimum value of knSFF S
(k)
t as a

function of the spectral distance k. Approximate an-
alytical results (dashed lines) for the RMT ensembles (57)
and Poisson distribution (62), and numerical results (solid
lines). Colors are as in Fig. 1, i.e. Poisson (black), GOE
(red), GUE (green) and GSE (blue). The numerical results
are obtained from matrices of dimension N = 200 and av-
eraged over Nav = 2000 elements of the ensemble. (right)
Scaling of the deepest neighbor k∗ as a function of the
system sizeN computed numerically for RMT and Poisson en-
sembles (circles) and the analytical approximations (59) and
(64) rounded to the nearest integer (lines). Numerical results
are averaged over Nav = 200 matrices. We show a guide for
the eye at N = 200 (gray dotted line) which agree with the
values of k∗ used in Figure 12 for the Poissonian and GOE
endpoints of W .

manner as for the Gaussian ensembles case, but now us-
ing the corresponding probability distribution, Eq. (7).
We thus find

S
(k)
t =

2(N − k)

N2

cos(k arctan t)

(1 + t2)k/2
. (60)

The kth dip time, which we define to be the first minima
of this function, can then be computed exactly as

td(k) = tan

(
π

1 + k

)
. (61)

Note that it diverges at k = 1 because the first knSFF for
the Poissonian ensemble shows no dip and asymptotically
goes as π/k, similarly to the Gaussian ensembles. The

value of ⟨S(k)
t ⟩ at the dip time is

S
(k)
td

=
2(N − k)

N2
cosk

(
π

1 + k

)
cos

(
kπ

k + 1

)
. (62)

This expression admits the asymptotic expansion

S
(k)
td

=
2(N − k)

N2

(
−1 +

π2

2k
− 4π2 + π4

8k2
+O(k−3)

)
,

(63)
which leads to a third-order polynomial equation whose
solution can be expanded for large N . We thus find the
deepest knSFF to scale as

k∗0 ∼ π√
2
N

1
2 −

(
1 +

π2

4

)
+O(N− 1

2 ), (64)



14

which scales faster than for the Gaussian ensembles.
Thus, the deepest knSFF in the Poissonian ensemble hap-
pens for k∗ larger than in the chaotic case, as seen in Fig.
10, which also shows good agreement of the above ana-
lytical approximation with the numerics.

D. Dynamical signatures of chaos (knSFF) in the
disordered XXZ

To test how the dynamical signatures of a real sys-
tem match those of idealized models, we extract data for
the knSFF from the XXZ model with disorder. Figure
11 shows numerical results for the kth neighbor SFF for
various values of k, where the behavior for a disorder
strength of W = 1 can be compared with W = 20. The
plot shows how the numerical data deviate from Poisson
and GOE. In particular the frequency of the oscillations
is well captured by the analytical expressions, but the
deviations from the analytical knSFFs show up in the
envelope, i.e. in the amplitude of the oscillations, which
is narrower than GOE for W = 1 and broader than Pois-
son for W = 20.

Figure 12 shows results for the minimum value of S
(k)
t

as a function of k as well as the values of k∗ as a func-
tion of the disorder strength W . The minimum of the
knSFF agrees very well with the Poisson and GOE lim-
its because, as discussed previously, the most relevant
corrections to the knSFF are in the envelope, which for
the first oscillation still does not have a big contribu-
tion. In particular, k∗ exhibits a transition, similar
to that probed by ⟨r⟩, as coded in the colorscale. The
values of k∗ at the two ends of the range of W , which
correspond to integrable (large W ) and chaotic (small
W ), are exactly those predicted from the Poissonian and
GOE ensembles respectively, for the window size we used
to extract the data (compare with Figure 10). The full
SFF shown in Figure 26 follows the general behaviour
of Poisson and GOE for large and small disorder respec-
tively, even though Figure 2 shows more correlations than
Poisson and less correlations than GOE at large k. The
works [30, 31] consistently find no ‘correlation hole’ for
large disorder in this model.

E. Summing it up: the complete SFF

We now add up the contributions from all spectral dis-
tances to write the total SFF and compare our approx-
imate analytical results to numerical simulations. Using
the approximations (12) for the kth neighbor SFF, the
total averaged SFF for the Gaussian ensembles is given

approximately by:

St ≈
1

N
+

N−1∑
k=1

2(N − k)

N2
e−

ω2
kt2

4α

[
cos(ωkt) (65)

+
1

12α
ωkt

(ω2
kt

2

2α
− 3

)
sin(ωkt)

]
.

Figure 13 compares our analytical results with numeri-
cal results for the random matrix ensembles. It shows
that for the Gaussian ensembles, the above approximate
expression gives good results, even without using any ex-

act results for S
(k)
t . In particular, the transition between

the ramp and plateau is well captured for the three en-
sembles: smooth for GOE, ‘kink’ for GUE and ‘spike’
for GSE. The time at which this transition happens was
first discussed in [15] and we provide an alternative ra-
tionale for it by decomposing the SFF into the contribu-
tions from odd and even spectral distances, see below.
Importantly, all the ensembles, when unfolded, show the
plateau time at tp = 2π. This is consistent with the
results in [15] which show the plateau for the Gaussian
ensembles at tp/(2πρ̄) = 1, in our case unfolding the
spectra sets ρ̄ = 1 and thus tp = 2π. In Appendix J, we
test the accuracy of the total result given in Eq. (65).
One question that naturally arises from the discussion

below Eq. (54) is: how important is the contribution of
the sines? Can we recover the full SFF from just sum-
ming over the cosine part? i.e. with a Gaussian approxi-
mation for the knLS distribution. The answer is that we
get a correlation hole, but no linear ramp, and that the
sines contributions are especially important at the begin-
ning of the ramp and at the transition to the plateau.
The total averaged SFF for the Poissonian ensemble is

given exactly by

S
(Poisson)
t =

1

N
+

N−1∑
k=1

2(N − k)

N2

cos(k arctan t)

(1 + t2)k/2
. (66)

Although for k > 1 the kth neighbor SFF for the
Poissonian ensemble has a dip and shows some oscil-
lations before flattening out (as can be seen in Figure
8), the full Poissonian SFF has no ‘dip’ or ‘correla-
tion hole’, as expected for completely uncorrelated levels.

Even and odd contributions.— The approxima-
tion (12) for the ensemble average of the kth component
of the Gaussian ensembles SFF is expressed as a combi-
nation of cosines and sines with frequency ωk given by
(54). Figure 14 presents the numerical results for the
even and odd level contributions, defined as

⟨S(even)
t ⟩ ≡ 1

2N
+

∑
k even

⟨S(k)
t ⟩ (67a)

⟨S(odd)
t ⟩ ≡ 1

2N
+

∑
k odd

⟨S(k)
t ⟩, (67b)

for random matrices taken from GOE, GUE, and GSE
ensembles of dimension N = 100. Inspecting the plots,



15

0.0 2.5 5.0
t

−0.01

0.00

0.01
S

(k
)

t
k = 1

0 2 4
t

k = 10

0 1 2
t

k = 30

0 1 2
t

k = 70

FIG. 11. k-th neighbor Spectral Form Factor for the disordered XXZ spin chain for different neighbor levels
k = 1, 10, 30, 70 in the chaotic (W = 1, light blue dots) and the integrable (W = 20, dark blue dots) phases along with the
Poissonian (black line) and GOE (red line) curves. The deviation between the integrable phase and the Poissonian results is
apparent starting from k = 10, and increases for larger k. Note that the oscillations differ only in their amplitude but not in
their frequency. We emphasis the different scales in the time axis.
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FIG. 12. (a) Minimum of the knSFF as a function of
the neighbor degree k, the colored dots mark the deepest
knSFF, (b) deepest k-th neighbors SFF k∗ as a function
of the disorder strength, the colorscale marks the ⟨r⟩ pa-
rameter. The values of k∗ for GOE and Poisson are k∗ = 11
and k∗ = 28 respectively, which can be obtained from the
expansions for k∗ (59), (64) respectively with N = 200 which
is the energy window size.

we find a constructive interference for ⟨S(even,odd)
t ⟩ at

t ≈ π. More specifically, there is a “resonance” for

⟨S(even)
t ⟩ and an “anti-resonance” for ⟨S(odd)

t ⟩ at t ≈ π.
This observation can be explained by our analytical re-
sults,

S
(even)
t ≈ 1

2N
+

∑
k even

C
(k)
N f

(k)
t (68a)

S
(odd)
t ≈ 1

2N
+

∑
k odd

C
(k)
N f

(k)
t , (68b)

where C
(k)
N is given by (38b) and f

(k)
t is given by the ap-

proximation (53). Taking ωk ≈ k, the sum (68a) involves
a sum of cos(k t) with k = 2, 4, 6, . . . which interfere con-
structively at t = π to create a “peak” or a “resonance”;
similarly, the sum (68b) involves a sum of cos(k t) with
k = 1, 3, 5, . . . which interfere constructively at t = π to
create a “dip” or an “anti-resonance”. Interestingly, Fig.
14 also shows that most of the ramp is constructed from

the even neighbors. We also note that the ‘spike’ seen in
the complete SFF for GSE (as can be seen in Fig. 13) is
nothing but the next constructive interference from both
the even and odd contributions, and happens (for the
unfolded spectrum) at t = 2π. Note that the transition
from the ramp to the plateau also happens at tp = 2π
for GUE and at a similar time for GOE.
Note that the fact that the GSE exhibits a spike is

related to the Gaussian attenuation that multiplies the
sum of cosines and sines in (65), which has the largest
width of the Gaussian ensembles. Indeed, the width is set
by

√
α, which is proportional to

√
β, as per its definition

in Eq. (5), and the GSE has the largest β (equal to 4).
Fig. 15 shows the ratio of the plateau time tp = 2π to
the width of the Gaussian envelope for GOE, GUE and
GSE. The envelope width is the largest for the GSE, in
which the plateau time lies between 2 and 3 standard
deviations of the Gaussian envelope.
The partial SFF.— In Eq. (15), we defined St,K which

is the result of summing up S
(k)
t from k = 1 to k = K.

This helps us see how the total SFF is built up out of
contributions from increasing values of k. In particular,

as we add more and more S
(k)
t the minimum of the SFF

moves to the left and gets deeper, as can be from the dip
time in Fig. 16 (see App. C for further details on how
the dip time is computed).

F. The complete SFF with only nearest-neighbor
correlations

As we have shown extensively in this article, the
nearest-neighbor level spacing, although indicative of
chaotic or regular behavior, is not a sufficient condition
for chaos, since truly chaotic models (as modeled by RM)
have correlations all over the spectrum. In this spirit, we
construct a toy model which only has energy correlations
to nearest neighbors, but nowhere else in the spectrum.
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FIG. 13. Spectral Form Factor for: Poisson (black), GOE (red), GUE (green) and GSE (blue) computed numerically
(thick transparent line) and using the analytical results (thin solid line) given by (66) (black) and (65) (red, green, blue). The
connected SFF for each of the ensembles, see App. D, is also shown (black dotted line). The plots show results for random
matrices with dimension N = 100 and the numerics have been averaged over Nav = 1000 matrices. The dotted gray line marks
the start of the plateau at tp = 2π.
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FIG. 14. Odd vs even neighbor contributions to the SFF and their sum for Poisson, GOE, GUE and GSE;
computed numerically from Nav = 1000 matrices of dimension N = 100. For visualization of the data in log-log scale, an extra
factor of 1/2N was added to the even and odd contributions. The even contributions construct a ‘resonance’ while the odd
ones construct an ‘anti-resonance’. The vertical lines highlight the time at which the resonance and anti-resonance happen,
t∗ = π (dashed gray), and at which the plateau starts for the Gaussian ensembles, tp = 2π (dotted gray).

What would be the SFF of such a system? To answer
this, let us recall that the probability distribution of the
sum of two uncorrelated random variables z = x + y is
given by their convolution. So, in this toy model, the
second level spacing distribution simply reads

P(2)(s(2)) = P(1)(s(1)) ∗ P(1)(s(1)) (69)

=

∫ s(2)

0

dsP(1)(s)P(1)(s(2) − s).

The convolution theorem states that the Fourier trans-
form of a convolution is the product of the Fourier trans-
form, and vice versa. The knSFF for this toy model
follows as

S
(k)
t = Re(F [P(1)]k(t)), (70)

where the Fourier transform of the nnLS distribution,

F [P(1)](t), admits the exact expression

F [P(1)](t) = 1F1

(
β + 1

2
,
1

2
,− t2

4Aβ

)
(71)

− it 1F1

(
β

2
+ 1,

3

2
,− t2

4Aβ

)
.

The sum of the knSFF is shown in Fig. 17 for the GUE
ensemble. The SFF of this toy model shows a correlation
hole since it decays and grows back, but the ramp is not
linear and therefore there is no chaos. Similar non-linear
ramps in the SFF have been reported for integrable mod-
els like the SYK2 [54, 55]. Thus, we conclude that cor-
relations beyond the nearest energy levels are needed to
find the linear ramp in the SFF characteristic of chaotic
systems.
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√
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lines) and plateau time tp = 2π (dotted gray line). (b) Ratio
between the plateau time tp = 2π and the width of the Gaus-
sian envelope

√
2α/ωk as a function of the neighbor degree k

for the three Gaussian ensembles: GOE (red), GUE (green)
and GSE (blue).
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FIG. 16. Dip time (left) and relative depth of the dip
(right) as a function of the maximum number of neighbors
summed for the GOE (red), GUE (green) and GSE (blue).The
plot also displays the ”dip time” of Poisson (black), note that
Poisson in general should have no dip, however some of its
partial SFF’s display a dip (see the plot in the right). When
the relative depth is larger or equal to zero this time is asso-
ciated with the plateau time. The results are computed from
the analytical approximation of the SFF.

V. A DISSIPATIVE PROTOCOL TO MEASURE
THE kNSFF

The autocorrelation function of a general operator Ô
(39) can be obtained from knowledge of the spectrum and
the operator. We propose a protocol, based on dissipa-
tive dynamics, to measure the k-neighbor autocorrelation
function, introduced in (40).

Assuming that we are able to prepare an ini-
tial operator with non-zero weight only in its main

and k-th diagonal, namely Ô(k) =
∑N

n=1 Oii |i⟩ ⟨i| +∑N−k
i=1 Oi+k,i |i+ k⟩ ⟨i| + h.c.. Its autocorrelation func-

tion will be related to the knSFF since it only contains

10−2 10−1 100 101

t

10−2

100

S
t

FIG. 17. SFF computed numerically for the GUE (green)
and for the toy model with energy correlations to nearest
neighbors only (purple), eq. (71).

spectral information from the knLS,

C(k)
t =

1

N 2
Tr(Ô(k)Ô

(k)
t ) (72)

=
∑
i

|Oii|2
N 2

+

N−k∑
i=1

|Oi+k,i|2
N 2

cos[(Ek+i − Ei)t)].

If at this point we further assume that we unfold the
spectrum, so that the knLS Ei+k − Ei does not depend
on the density of states ρ(Ei), and average over a suitable
ensemble, we find that the time evolution (40) will de-

pend on time only through f
(k)
t , which in turn completely

determines the knSFF.
The initial operator Ô(k) might look somewhat arti-

ficial, so let us propose a way to engineer it through a
dissipative evolution. In the case of dissipative dynam-
ics in which the unitary part is dictated by Ĥ0 and the
dissipator consists of a single Hermitian jump operator
L̂ = L̂†, any system operator evolves according to the
adjoint Lindblad equation [56, 57]

∂tÔt = i[Ĥ0, Ôt]− γ
[
L̂, [L̂, Ôt]

]
, (73)

where γ is the dissipation rate associated with L̂. Con-
sidering commuting operators, [Ĥ0, L̂] = 0, which then

share a common eigenbasis, Ĥ =
∑

i Ei |i⟩ ⟨i| , L̂ =∑
i li |i⟩ ⟨i|, the solution of the above equation simply

reads

Ôt =
∑
i,j

Oije
−i(Ei−Ej)t−γ(li−lj)

2t |i⟩ ⟨j| . (74)

We now assume that we do not apply the Hamiltonian
dynamics yet (e.g going to a rotating frame such that
they are not relevant) and that we can engineer the jump
operator in a way such that its eigenvalues repeat once
after the k-th element, namely

L̂ = diag(l1, . . . , lk, l1, . . . , lk, l2k+2, . . . , lN ), (75)
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where we have set lk+i = li for 1 ≤ i ≤ k, and we also con-
sider no extra degeneracies li ̸= lj ∀ i, j ∈ {1, . . . , k, 2k+
2, . . . N}. The evolution at a time T becomes ÔT =∑

i,j Oije
−γ(li−lj)

2T |i⟩ ⟨j|. All off-diagonal elements de-
cay exponentially fast with time, except for those with
|i− j| = k and i, j ∈ {1, . . . , k} which are preserved due

to the structure of L̂. Thus we see that limT→∞ ÔT =
Ô(k) =

∑N
i=1 Ôii |i⟩ ⟨i|+

∑2k
i=1 Oi+k,i |i+ k⟩ ⟨i|+h.c., i.e.

this protocol leads to a matrix with 2k nonzero elements
only in the k-th diagonal. The full diagonal could be ob-
tained by repeating the sequence of eigenvalues l1, . . . , lk
more times in (75), but this would lead to higher “har-
monics”, i.e. nonzero terms for |i−j| = 2k, 3k, . . . , which
would contain contributions from higher degree knSFFs.

Other possible experimental probes are to experimen-
tally measure the energy levels of the system, and com-
pute the knLS distribution and the associated knSFF
by a Fourier transform. Alternatively, another way
could be to use the formalism introduced in [58]. More
specifically, one would need to find a partition the to-
tal Hilbert space in two, H = HA ⊗ HB , such that
the condition TrB(ρB(Ei)ρB(Ej)) ∝ δ|i−j|,k holds, where
ρB(Ei) = TrA(|Ei⟩ ⟨Ei|). If there exists such a subspace
HA, then the randomized measurement protocol devised
in [58] could be readily used to compute the knSFF’s and
knLS distribution.

VI. SUMMARY AND DISCUSSION

In this work, we studied short, medium, and long-range
spectral correlations and characterized their dynamical
manifestation in the SFF. We found analytical results in
random matrices taken from the three Gaussian ensem-
bles (GOE, GUE, and GSE) and a model representative
of integrable systems, i.e. an ensemble of completely un-
correlated energy levels (Poissonian ensemble) with uni-
form density of states. Real systems, as illustrated by
the disordered XXZ spin chain, have spectral properties
that lie in-between these ensembles.

Specifically, we focused on long-range spectral statis-
tics in the form of the kth neighbor level spacing probabil-
ity distribution and on the resulting kth neighbor spec-
tral form factor. For the knLS distributions, we intro-
duced its variance as a probe that distinguishes chaos
from integrability, with significantly different behaviors,
and the Poissonian value k for the spacings s(k) acting as
an upper bound on the possible width of any P(k)(s) of
a spectrum with correlated levels. We note here that the
knLS distributions can also be used to find the eigenvalue
distribution of the Liouvillian superoperator, which con-
sists of all energy differences, as we discuss in Appendix
K. They also relate to the large N sine-kernel, see Ap-
pendix D.

Taking a Fourier transform of the knLS distributions,
we found expressions for the kth neighbor SFFs for the
random matrix ensembles and for the Poissonian ensem-
ble. By applying a few approximations, we could ex-

press the Gaussian ensemble knSFF as a sum of cosines
and sines with appropriate polynomial coefficients and
an overall Gaussian envelope function. This realization
of the knSFF provides insight into the transition between
the ramp and plateau for the different Gaussian ensem-
bles. From studying the knSFFs, we found that their
minimum value as a function of k is markedly differ-
ent between chaotic and integrable systems. In a similar
spirit, we defined the kth neighbor decomposition of the
autocorrelation function for operators.

For the Gaussian ensembles, the several approxima-
tions we made to achieve simple, tractable expressions
capture the main properties of the complete SFF, as veri-
fied against numerical simulations. Our results show that
the ramp feature found in the SFF of chaotic systems
is a result of intricate relationships between knSFFs of
increasing spectral distances k. Specifically, the nearest-
neighbor level repulsion only is not enough to induce a
ramp. Also, the specific shape of the set of P(k)(s) and,
in particular, the strong suppression at small s are im-
portant in achieving the specific features of the knSFF
which eventually build up the complete SFF. In partic-
ular, if the knLS probability distributions were perfectly
Gaussian, the results for the knSFF would involve only
a Gaussian envelope and a cosine term. Such a structure
would not give rise to the specific features of the com-
plete SFF, particularly around the transition from the
ramp to the plateau. Hence, the non-Gaussianity of the
knLS distributions is crucial to capture the full chaotic
signature of the SFF. We probe the non-Gaussianity of
these distributions through the skewness and kutorsis in
Appendix F. We further discuss the self-averaging prop-
erties of the individual knSFFs in Appendix G.

This work opens many new directions for future study;
we mention some below. We have made several approxi-
mations in our derivation of the kth neighbor level spac-
ing distributions. While they capture the main behavior,
we expect corrections at large k, and it would be inter-
esting to study their effect on the knSFFs and the full
SFF in future work. Other possible directions include
the study of how finite temperature affects the knSFFs
[59], or extending the knLS and knSFFs to the dissi-
pative case, where mostly only nearest-neighbor corre-
lations and SFF have been studied [60, 61]. We only
began investigating how far the correlations between en-
ergy levels should persist in finding a linear ramp in the
full SFF. We leave to future research the investigation of
the kth neighbor autocorrelation functions we defined in
this work. In particular, they can be used to understand
better the behavior of the autocorrelation function for
different operators. Lastly, one other possible extension
of our results is in the field of log-gases [47]. In this con-
text, the knLS distribution P(k)(s) gives the strength of
interaction between a particle and its k-th neighbor, re-
summing all the interactions with all the other particles.

To summarize, our results suggest that to investigate
quantum chaos fully, it is important to include correla-
tions at all spectral distances. Correlations beyond first
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energy neighbors have a clear manifestation in dynamical
quantities such as the spectral form factor, and will also
show up in other time-dependent correlation functions.
The specific nature of the level repulsion beyond just
nearest-neighbor eigenenergies plays an important role in
accurately capturing the complex features of many-body
quantum systems at all time scales.
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Appendix A: Numerical implementation of the
Gaussian ensembles

In this appendix, we review the definitions and numer-
ical construction of the three Gaussian random matrix
ensembles: GOE, GUE, and GSE.

GOE : We sample a N × N random matrix X with
entries given from a real normal distribution with σ = 1,
i.e.

Xij = N (0, 1), 1 ≤ i, j ≤ N.

Matrices from GOE are symmetric, therefore H ∈
GOE(N) is given by

H =
1

2
(X +XT ).

GUE : Matrices from GUE are Hermitian, so their ele-
ments are generated from complex numbers, i.e.

Xij = N (0, 1) + iN (0, 1), 1 ≤ i, j ≤ N.

From X, we can generate a Hermitian matrix simply by

H =
1

2
(X +X†), H ∈ GUE(N).

GSE : Generating matrices from the symplectic ensem-
ble is slightly more involved. We need to generate a ma-
trix X of dimension 2N

Xij = N (0, 1) + iN (0, 1), 1 ≤ i, j ≤ 2N,

and introduce the skew Hermitian matrix J defined as

J =

(
0 −1
1 0

)
⊗ 1N .
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FIG. 18. Dip time (left) and relative depth of the dip
(right) as a function of the maximum number of neighbors
summed for XXZ model through the chaos to integrability
transition.

Then, an element of the GSE(N) is given by

H =
1

2
√
2

(
X +X† − J(X +X†)TJ

)
.

Appendix B: Details of proof for kth neighbor level
spacing distribution

This appendix provides the explicit forms of A and B
which appear in the quadratic polynomial q({xi}k−1

i=1 ).
The quadratic polynomial q({xi}ki=1) written in (21),

once restricted by xk = 1−∑k−1
i=1 xi, takes the form

q({xi}k−1
i=1 ) =

k

k + 1
− 2

k−1∑
i=1

k − i

k + 1
xi (B1)

+

k−1∑
i=1

(k − i)(i+ 1)

k + 1
x2
i + 2

k−1∑
i<j=1

(k − j)(i+ 1)

k + 1
xixj .

From here, we can read off the elements Bi and Aij for
i, j = 1, . . . , k − 1 as

Bi =
k − i

k + 1
, (B2)

Aii =
(k − i)(i+ 1)

k + 1
, (B3)

Ai ̸=j =
(k −max(i, j))(min(i, j) + 1)

k + 1
. (B4)

It can be checked that A is positive definite. The inverse
of A is a tridiagonal, almost Toeplitz matrix [62], with
diagonal A−1

11 = 3/2 and A−1
ii = 2 for i ̸= 1, and off-

diagonals A−1
i,i+1 = A−1

i−1,i = −1. Also, it can be verified

that m = A−1B = (1/2, 0, 0, . . . , 0).

Appendix C: Computing the dip time of the SFF

The dip time is the time after which the SFF starts
showing the linear ramp. Since the SFF in general has
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non-universal behavior at short times, in particular for
the unfiltered case it shows some oscillations which go
under the dip, we cannot define the dip time just as the
time at which the SFF has the deepest minimum. To
overcome this problem in here we use the following algo-
rithm :

1. Compute the array of relative maxima Stmax and
minima Stmin of the SFF.

2. Compute the absolute minimum of the array of rel-
ative maxima, i.e. the maximum closest to the dip
time tdmax = mintmax Stmax .

3. The dip time of the full SFF is then the clos-
est minimum to the deepest maximum, tdip =
mintmin |tmin − tdmax|.

Since in the ramp the SFF shows a lot of small oscil-
lations because it is not self-averaging, these ensure that
this algorithm will work correctly for as long as an ac-
tual dip exists. When the dip does not exist, e.g. in
the integrable phase of the XXZ spin chain, the deepest
maximum will be very affected by the quantum noise in
the SFF signal. To capture the depth of the correlation
hole we can define the relative depth as

Ddip = N

(
Stdip

+
1

N

)
. (C1)

In Fig. 18 we show the dip time and relative depth
of the correlation hole for the partial Kmax neighbors
SFF. The results for W = 1 follow the general trend
from GOE: i.e. summing the first few neighbors gives
a larger contribution to the dip time while the further
apart neighbors do not affect the dip time so much. As
we get closer to the integrable zone most of the dip time
is explained by the first few neighbors, with the further
apart ones having much smaller contribution. We do
not show the dip time in the integrable phase because it
is completely governed by noise, but the depth suggests
that the correlation hole closes.

Appendix D: The connected SFF for Gaussian
ensembles and sine-kernel

The 2-point spectral connected correlation function
ρc(E,E′) of a certain ensemble is defined as [3]

ρc(E,E′) = ⟨ρ(E)ρ(E′)⟩ − ⟨ρ(E)⟩⟨ρ(E′)⟩, (D1)

where ρ(E) =
∑

j δ(E−Ej) and ⟨•⟩ represents a suitable
average, e.g. over the random matrix ensemble. Thus
⟨ρ(E)⟩ is the average density of states. After unfolding,
i.e. introducing the rescaled energies ε = EN⟨ρ(E)⟩, the
renormalized 2-point correlation function reads

ρc(E,E′)

⟨ρ(E)⟩⟨ρ(E′)⟩ = δ(ε− ε′)− Y (ε, ε′), (D2)
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FIG. 19. P(k)(s) distribution for GUE for the first 12 neigh-
bors (green lines), along with sine kernel 1−sinc2(πs) (orange)
and sum of the distributions (green dashed lines).

where Y (ε, ε′) is Dyson’s two-level cluster function, de-
fined as

Y (ε, ε′) = 1−
〈∑

m ̸=n

δ(ε− εn)δ(ε
′ − εm)

〉
. (D3)

This function depends only on the difference s = ε − ε′

and for the GUE in the large N limit reads [3]

Y gue(s) = sinc2(πs), (D4)

where the sinc function is defined as sinc(x) = sin(x)/x.
This is typically known in the literature as the sine-
kernel. The 2-point correlation function is closely related
to it through R2(s) = 1− Y2(s). Which can be obtained
as a sum of the knLS level spacing distributions [43]

R2(s) =

∞∑
k=1

P(k)(s). (D5)

Figure 19 compares the sum of the knLS distributions
with the two level correlation function, as obtained from
the sine kernel 1− sinc2(πs), showing a very good agree-
ment between the two.
The connected SFF is defined as the Fourier transform

of the connected correlation function. For the random
matrix ensembles it can be obtained from the cluster
function, for GUE it reads [3]

bgue(t) =

{
t

2πN for t ≤ 2π
1
N for t > 2π,

(D6)

where we adapted it to our Heisenberg time of tp = 2π
and the plateau value of limt→∞ St = 1/N . For GOE it
reads

bgoe(t) =

{
t

πN − t
2πN log(1 + t

π ) for t ≤ 2π
2
N − t

2πN log t+π
t−π for t > 2π.

(D7)
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And lastly, for the GSE, it is

bgse(t) =

{
t

4πN − t
8πN log(1− |t|

2π ) for t ≤ 4π
1
N for t > 4π.

(D8)

Appendix E: Unfolding the spectrum

The spectrum of a system is a property which a priori
depends on the system under consideration. However,
its energy correlations can obey some universal laws. To
study the latter, we need to remove the dependence of
the spectrum on non-universal features, like the density
of states ρ̄(E). In doing so, systems that are originally
completely different can be compared. The procedure to
remove the dependence on the local density of states is
known as unfolding (see e.g. [63]). In this appendix, we
explain how we unfold a generic spectrum. We then study
some aspects of the effect of unfolding on our results.

Our method of unfolding involves computing the func-
tion

f(E) = N

∫ E

−∞
dE′ ρ̄(E′) . (E1)

where ρ̄(E) is the average density of states, and then pass
the energy eigenvalues {Ei}Ni=1 into this function to get
the set of unfolded energy levels {ei}Ni=1 = {f(Ei)}Ni=1.
For the random matrix ensembles we study, the average
density of states is given by the Wigner semicircle dis-

tribution, ρ̄(E) = 1
πβN

√
2Nβ − E2. This leads to an

analytical form for the function f(E), which reads [64]

f(E) =
N

2
+

1

πβ

(
Nβ arcsin

E√
2Nβ

+
E

2

√
2Nβ − E2

)
,

(E2)
for −√

2βN < E <
√
2βN , while it is f(E) = 0 for

E ≤ −√
2βN and f(E) = N for E ≥ √

2βN , see also
[65].

For the disordered XXZ spin chain, there is no analyt-
ical expression for the average density of states. We thus
rely on a numerical polynomial fit for f(E) for each real-
ization of disorder. We used a larger window of energies
to perform the fit, and then discarded the two edges, thus
focusing our analysis on a window of around N = 200 en-
ergies.

Our numerical unfolding depends on two parameters:
the maximum order of the polynomial fit η and the num-
ber of bins with which we construct our histogram (re-
lated to the bin’s width). These parameters, especially
the polynomial order, can critically change the results
since we can be overfitting the spectrum and include some
of the universal correlations into the density of states.
To check which minimum order gives a reasonable fit,
we compare the numerical and analytical unfolding on a
random matrix and define a quality of the fit, Q, as the
square of the difference between the histograms of the
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FIG. 20. Quality of the unfolding as a function of the order
and the number of bins for the GOE.

analytical and numerical unfolded spectra, namely

Q =
∑

n∈bins

(Histn(f
ana(E))−Histn(f

num(E)))
2
. (E3)

Figure 20 shows that η = 3 is an unfolding order with
already good results. So, we chose this order to avoid
over-fitting. The parameter of the number of bins is not
too critical, and we set Nbins = 50 to have enough bins
and enough points per bin.

1. Our results without unfolding
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)

FIG. 21. Dip time as a function of the neighbor degree for
Poisson (black), GOE (red), GUE (green) and GSE (blue)
computed numerically from the folded spectrum along with
an td(k) ∼ k−1 dependence (dashed gray).

Although our results refer to the unfolded spectrum,
we study here some of the same results for the folded (i.e.
the original, not unfolded spectrum), namely, the dip
times for the knSFFs and the even-odd signatures dis-
cussed in Section IVE. We also compare the total folded
vs unfolded SFF for disorder XXZ spin chain at two val-
ues of the disorder parameter W representative of the
integrable and chaotic phases.



22

As can be seen in Figure 21, the dip times for the folded
knSFFs of the Gaussian ensembles no longer follow the
relation td ≈ π/k perfectly. However, they still follow a
td(k) ∼ k−1 decay with small corrections.
Another interesting aspect of unfolded versus folded

results is whether the even-odd signatures, described in
Section IVE, are still present without unfolding. Figure
22 confirms that such a signature is still present in Ran-
dom Matrices and Fig. 23 shows how the anti-resonance
dies out in the chaos to integrability transition for the
XXZ spin chain without unfolding. The main differ-
ence is in the time at which the ‘resonance’ and ‘anti-
resonance’ appear: while for the unfolded spectrum, they
appear at t = π, for the folded spectrum, they appear at
a time scale related to the matrix dimension.

The spectral distance decomposition of the SFF can
also be applied to the SFF for the not unfolded XXZ
spin chain, see Fig. 24. In this plot we see how in the
chaotic phase adding more and more neighbors builds
a longer and longer ramp. This still happens right be-
fore the transition, for W = 5, where we see a smaller
correlation hole, which can be built from the first few
neighbors. Figure 25 shows how adding more and more
neighbors contributes to the dip time and the relative
depth of the dip. Interestingly, for the chaotic phase the
dip time follows a 1/

√
Kmax power law.

For completeness, we compare the unfolded with the
folded results for the total SFF of disordered XXZ spin-

chain at two values of W , see Figure 26.

Appendix F: How good is a Gaussian approximation
for the knLS distribution?

As discussed in the main text, the non-Gaussianity of
the knLS distributions is important for recovering the
specific features of the total SFF. The non-Gaussianity
of a distribution can be measured through quantities such
as the skewness, characterizing the asymmetry of the dis-
tribution, and the kurtosis, characterizing the tailed-ness
of the distribution. They are defined as

Skew(k) = E

[(
s(k) − µ

σ

)3
]
, (F1)

Kurt(k) = E

[(
s(k) − µ

σ

)4
]
, (F2)

where E[•] =
∫∞
0

P(s) • ds is the expectation value, µ
is the mean and σ is the standard deviation of the dis-
tribution. Note that these do not depend on whether or
not we rescale the spacings by the average k. Using the

generalized Wigner distribution, P(k)(s) = Cαs
αe−Aαs2

as in Eq. (4), we find

Skew
(k)
β =

√
2
(
4Γ

(
α
2 + 1

)3 − (2α+ 1)Γ
(
α
2 + 1

)
Γ
(
α+1
2

)2)(
(α+ 1)Γ

(
α+1
2

)2 − 2Γ
(
α
2 + 1

)2)3/2
, (F3)

Kurt
(k)
β =

−12Γ
(
α
2 + 1

)4
+ (α+ 1)(α+ 3)Γ

(
α+1
2

)4
+ π41−α(α− 1)Γ(α+ 1)2(

(α+ 1)Γ
(
α+1
2

)2 − 2Γ
(
α
2 + 1

)2)2 . (F4)

In turn, the distribution from the Poissonian ensemble
(7) yields

Skew
(k)
0 =

2√
k
, and Kurt

(k)
0 = 3 +

6

k
. (F5)

The expressions for the Gaussian ensembles admit the
asymptotic expansions

Skew
(k)
β =

1√
2α

+O(α−3/2), Kurt
(k)
β = 3+

3

4α2
+O(α−3),

(F6)
which show that both the (excess) kurtosis and the skew-
ness go to zero faster as a function of k in RMT than in
Poisson. In other words, as we increase k, the generalized
Wigner distribution approaches a Gaussian distribution
faster than the Poisson results do. This result is expected
in the literature for the distribution of knLS [66]. Figure

27 shows the comparison with numerical random matri-
ces. We see that a real random matrix has a skewness
that follows the derived power-law for small k, but starts
decaying faster until it changes sign at k = N/2, i.e. the
distribution after this point becomes asymmetric with a
tail to the right. Interestingly, the skewness for k ∼ N
looks opposite to the one for small k, which suggests
that the function is antisymmetric around k = N/2. The
kurtosis for random matrices, however, behaves very dif-
ferently from the derived power laws, from which we con-
clude that the tails of the knLS distribution are not well
captured by the generalized Wigner surmise. Note that
these results are considering the full extent of a random
matrix, while the validity of our results is constrained to
the center of the semicircle law.
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GOE, GUE, and GSE (left to right). The black solid line is the total SFF. The figure shows numerical data from random
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chaos (left) to integrability transition (right). Results are averaged over Nav = 50 realizations of the onsite disorder.

Appendix G: Self-averaging of the kth neighbor SFF

In this appendix, we discuss the self-averaging proper-
ties of the kth neighbor SFFs, as a function of k.

A quantity is said to be self averaging if its relative
variance becomes smaller as the system size is increased.
The SFF is known to be particularly not self-averaging
around its plateau (the flat part which the SFF tends
to at large t), i.e. the relative variance of its plateau
increases as N is increased. Here, we numerically study
the self-averaging of the plateau of the kth neighbor SFF.
The relative variance of the kth neighbor SFF can be
defined as (see e.g. [31]):

Rk(t) =
⟨(S(k)

t + S̄)2⟩ − ⟨S(k)
t + S̄⟩2

⟨S(k)
t + S̄⟩2

, (G1)

where S̄ = 1
N(N−1) is the value of the plateau divided

equally among the N − 1 possible neighbors, which we

added such that the average ⟨S(k)
t + S̄⟩ is non-zero.

Figure 28 shows the relative variance of the plateau as a
function of the neighbor degree k for different dimensions
of the random matrices. We can observe several features:

• S(k)
t is never self-averaging since the relative vari-

ance increases with the dimension of the matrix.

• The limiting value of the relative variance decreases
linearly with k in the following way

R̄plat
k =

1

T

∫ tp+T

tp

Rk(τ)dτ = (N − k)
N − 1

2N
, (G2)

where indeed Figure 28 suggests a linear function
of k with a constant slope independent of N and a
constant which scales linearly with N .
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Appendix H: Details on the k-th dip time

To complete the discussion of the dip time in Section
IVB, Fig. 29 compares the approximation (56) against
the numerical dip times computed from the exact (47)
and the approximate (12) analytical results. We see that
(56) is a very good approximation of the dip time for
k ≥ 2 and for k = 1, although there is a small dependence
on β in the exact result, (56) is a better approximation
than the dip time computed from (12). We therefore
confirm our conclusion that the dip time of the knSFF
shows almost no dependence on the ensemble β.

Appendix I: The kth neighbor autocorrelation
functions

In this appendix, we complete some of the steps leading
to the result (40) in Section IVA. Consider the infinite-
temperature operator autocorrelation function for a Her-

10−2 10−1 100 101

t

10−4

10−3

10−2

10−1

100

S
t

W = 1

10−2 10−1 100 101

t

W = 20

10−1 100 101 102 103 104

t

10−3

10−2

10−1

100

S
t

10−1 100 101 102 103 104

t

FIG. 26. Spectral Form Factor using the unfolded (up) or
folded (down) spectrum of the XXZ spin chain with disorder
strengths W = 1 (left) and W = 20 (right). The unfolded re-
sults (top) are compared with the RMT results (left, red dash-
dotted) and the Poisson ensemble (right, black dash-dotted).
The parameters are L = 16, N↑ = 8, Jz = 2.21, Nav = 100.

mitian operator O (i.e. an observable):

Ct ≡
Tr(O†O(t))

Tr(O†O)
=

1

N 2

N∑
i,j=1

|Oij |2 cos(Ei − Ei)t,

where Oij are the matrix elements of the operator O

in the energy basis and N 2 =
∑N

i,j=1 |Oij |2. This ex-
pression can be decomposed according to level-spacing
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1
T
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tp
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distances, as follows

Ct =
1

N 2

N∑
i=1

|Oii|2 (I1)

+
2

N 2

N−1∑
k=1

N−k∑
i=1

|Oi,i+k|2 cos(ts(k)i ).

Performing an ensemble average over the spectrum,
which taken as unfolded (Ei+k − Ei does not depend
on ρ(Ei)) so that P(k)(s) can be used, the ensemble-
averaged Ct can be re-written as

Ct =
1

N 2

N∑
i=1

|Oii|2 +
N−1∑
k=1

C
(k)
t , (I2)
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FIG. 29. Dip time as a function of neighbor-degree k for GOE
(red), GUE (green) and GSE (blue) as computed numerically
from exact expression (47) (circles), approximation of knSFF
(12) (crosses) and approximation of td(k) (56) (dotted line).
The inset highlights the deviations for close neighbors in en-
ergy k = 1, 2, 3. The approximation (56) cancels some errors
and gives a better estimate to the full analytics (47) than the
values computed from (12)

where we defined the kth neighbor autocorrelation func-
tion

C
(k)
t ≡ O

(k)
N f

(k)
t , (I3)

with f
(k)
t defined in (38a) and with the coefficients

O
(k)
N ≡ 2

N 2

N−k∑
i=1

|Oi,i+k|2 . (I4)

Appendix J: Test of the approximations for the SFF

Since we have made several approximations on the way
to our final expressions for the total SFF for the Gaussian
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FIG. 30. Difference between numerical and approximate analytical SFF for: Poisson, GOE, GUE and GSE. The
dashed line marks the 25% difference between the numerics and the analytics.

ensembles, (65), we test the validity of our approximate
analytical expression. Figure 30 shows the relative error
between the exact SFF (computed from numerical data)
and the expression (65) for the three Gaussian ensembles,
as well as a comparison between the Poissonian expres-
sion (66) and numerical data for the SFF taken from the
Poissonian ensemble. We see that in GOE and GUE the
approximation over-estimates slightly the ramp, and es-
pecially in GOE has a distance to it of around 25% of
the value of the SFF at that point.

Appendix K: Distribution of eigenvalues of the
Liouvillian

The distributions P(k)(s) are closely related to the
eigenvalue distribution of the Liouvillian, as we explain
in this appendix.

In the case of unitary dynamics, the Liouvillian super-
operator is defined as

L(•) ≡ [Ĥ, •], (K1)

in terms of the energies En and eigenvectors |n⟩ of Ĥ
the Liouvillian has the eigendecomposition L(|n⟩ ⟨m|) =
(En −Em) |n⟩ ⟨m|, i.e. the eigenvalues of the Liouvillian
are all the energy differences λnm = En−Em. The prob-
ability density of λnm for n ̸= m then is the sum of all
the knLS distributions [14]

P(λ) =
2

N(N − 1)

N−1∑
k=1

(N − k)P(k)(λ). (K2)

This sum is shown in Fig. 31 where the RMT ensem-
bles show the expected level repulsion around λ = 0,
the Poisson ensemble shows initially a linear decay with
Pβ(λ) ∼ −λ. After the initial growth due to level
repulsion GUE and GSE show oscillations, peaked at
λ = k ∈ N, with the oscillations being more pronounced
in GSE.

0.0 2.5 5.0 7.5 10.0
λ
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0.1

0.2

P β
(λ

)

FIG. 31. Distribution of eigenvalues of Liouvillian com-
puted from the analytical expressions with N = 10 for: Pois-
son (black), GOE (red), GUE (green) and GSE (blue).
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L. F. Santos, Self-averaging in many-body quantum sys-
tems out of equilibrium: Chaotic systems, Physical Re-
view B 101, 174312 (2020).

[32] H. Bethe, Zur theorie der metalle: I. eigenwerte und
eigenfunktionen der linearen atomkette, Zeitschrift für
Physik 71, 205 (1931).
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