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Abstract

We introduce a Hamiltonian lattice model for the (1+1)-dimensional SU(Nc) gauge the-
ory coupled to one adjoint Majorana fermion of massm. The discretization of the continuum
theory uses staggered Majorana fermions. We analyze the symmetries of the lattice model
and find lattice analogs of the anomalies of the corresponding continuum theory. An im-
portant role is played by the lattice translation by one lattice site, which in the continuum
limit involves a discrete axial transformation. On a lattice with periodic boundary condi-
tions, the Hilbert space breaks up into sectors labeled by the Nc-ality p = 0, . . . Nc − 1. Our
symmetry analysis implies various exact degeneracies in the spectrum of the lattice model.
In particular, it shows that, for m = 0 and even Nc, the sectors p and p′ are degenerate if
|p− p′| = Nc/2. In the Nc = 2 case, we explicitly construct the action of the Hamiltonian on
a basis of gauge-invariant states, and we perform both a strong coupling expansion and ex-
act diagonalization for lattices of up to 12 lattice sites. Upon extrapolation of these results,
we find good agreement with the spectrum computed previously using discretized light-cone
quantization. One of our new results is the first numerical calculation of the fermion bilinear
condensate.
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1 Introduction

The (1 + 1)-dimensional SU(Nc) gauge theory coupled to one adjoint multiplet of Majorana

fermions, sometimes referred to as adjoint QCD2, is an interesting model of non-perturbative

gauge dynamics. As in other models where all the dynamical fields are in the adjoint repre-

sentation of SU(Nc), the Wilson loop in the fundamental representation serves as a precise

criterion for confinement [1]. Furthermore, similarly to the one-flavor Schwinger model [2],

this theory has only massive bound states even when the fermion is massless [3–5]; hence, it

is a model of non-perturbative mass gap generation (the list of such gapped 2D gauge the-

ories can be found in [6]). Surprisingly however, when the adjoint fermion is massless, the

fundamental Wilson loop does not obey an area law [7–10]. For these and other reasons, the

model with one adjoint Majorana fermion has been a nice playground for exploring various

interesting phenomena. They include the existence of different “universes,” i.e. sectors of the

Hilbert space distinguished by the eigenvalue of a one-form symmetry generator [9, 11–14],

spontaneous breaking of a discrete chiral symmetry [12], confinement vs. screening [7–10,14],

and, more recently, the role of non-invertible symmetries [9].

Following ’t Hooft’s solution of the large Nc limit of SU(Nc) gauge theory with funda-

mental fermions [15], the bound state spectrum of adjoint QCD2 was studied using light-cone

quantization. By now there are quite precise estimates for the masses of the low-lying bound

states (for recent progress, see [10,16,17]). However, it is difficult to study the vacuum struc-

ture in the light-cone approach. In addition, it is not clear whether the results obtained from

the light-cone approach can fully capture all the universes of the theory. For these reasons,

it is very useful to study adjoint QCD2 on a spatial circle.1 In this paper, we introduce

a lattice Hamiltonian formulation of this model, which builds both on the Kogut-Susskind

approach to lattice gauge theory [18] and on the lattice formulation of relativistic Majorana

fermions [19, 20]. We show that our lattice model exhibits a number of desirable features,

such as the existence of different universes at any lattice spacing. For even Nc, we will see

that the translation by one lattice site relates different universes in a way that implies the

vanishing of the Nc

2
-string tension.2 This is somewhat analogous to the n-flavor Schwinger

model, where it was recently shown [21, 22] that the one-site translation involves a discrete

axial transformation in the continuum limit and, when n is odd, changes the theta-angle by

π.

1In the small circle limit, where the theory becomes weakly coupled, the Hamiltonian approach to adjoint
QCD2 was implemented in [13,14].

2The vanishing of the Nc

2 -string tension was established using anomaly arguments in the continuum theory
in [14].
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For Nc = 2, there are two distinct universes, with the non-trivial universe corresponding

to excitations on top of a chromoelectric flux tube in the fundamental representation. We

carry out a numerical study using exact diagonalization and demonstrate good convergence

to the continuum limit by comparing the spectrum we obtain with that obtained using light-

cone quantization [16]. We also confirm the presence of a non-vanishing fermion bilinear

condensate, ⟨tr ψ̄ψ⟩, and calculate its numerical value. Apart from the numerical challenge of

an exponential growth of the number of states, the main difficulty we overcome is developing

a formulation of our lattice model purely in terms of the gauge-invariant states.3

The rest of this paper is organized as follows. In Section 2 we start with a brief review of

the SU(Nc) adjoint QCD2 theory in the continuum and a few properties of the spectrum as

obtained from DLCQ. In Section 3 we introduce our lattice model, explain its relation to the

continuum, and develop a formulation involving only gauge-invariant states and observables.

In Section 4 we discuss the symmetries of the continuum and lattice model and explore

some of their consequences. While so far the discussion is for general Nc, in the rest of the

paper we focus on the simpler case Nc = 2. In Section 5, we use the lattice strong coupling

expansion to estimate the energy of the lowest-lying state and obtain good agreement with

the DLCQ. Section 6 contains results for the spectrum and other observables using exact

numerical diagonalization. We end with a discussion of our results in Section 7. Technical

details are relegated to the appendices.

2 Continuum Theory

Let us start by reviewing a few facts about the SU(Nc) gauge theory coupled to an adjoint

Majorana fermion ψ. The Lagrangian density is

L = tr

(
− 1

2g2YM

FµνF
µν + iψ̄γµDµψ −mψ̄ψ

)
, (2.1)

where Fµν = ∂µAν−∂νAµ− i[Aµ, Aν ] is the gauge field strength, and the covariant derivative

is defined to be Dµψ = ∂µψ− i[Aµ, ψ]. For an adjoint-valued field X (such as Aµ, ψ, or Fµν),

we can write X = XATA, where the TA are the Hermitian generators of SU(Nc) normalized

so that tr
(
TATB

)
= 1

2
δAB, with A,B = 1, . . . , N2

c − 1.

The definition of the gauge coupling constant used here differs from the convention used

in much of the light-cone quantization literature, for instance in [3–5, 10, 16, 17]; the gauge

3See also [23, 24] for gauge-invariant formulations of lattice models for SU(2) QCD2 with fundamental
fermions.
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coupling used there is gDLCQ = gYM/
√
2. We will use gYM as defined in (2.1) throughout this

paper. Furthermore, let us take γ0 = σ2, γ
1 = −iσ3, and γ5 = σ1. In these conventions, the

Majorana spinor ψ is real and consequently ψ̄ = ψTγ0, with the transpose acting only on

the spinor indices.

As pointed out in [14], it is of further interest to consider a modified model where the

double-trace 4-fermion interaction of Gross-Neveu (GN) type is present:

δLGN = κ(tr ψ̄ψ)2 . (2.2)

This term, which is forbidden by the super-renormalizibility of the theory (2.1), as well as

by a non-invertible symmetry [9], can make the model confining even when the adjoint mass

vanishes [14]. However, the resulting model has rather different UV properties from the

basic model with κ = 0, because the coupling κ undergoes a logarithmic running [?]. To

distinguish the model including the 4-fermion term from the basic adjoint QCD2, one may

refer to it as “adjoint GN-QCD2.” Our numerical diagonalizations in the Nc = 2 case appear

to be consistent with κ = 0.

The bound state spectrum of the adjoint QCD2 theory with gauge group SU(Nc) has

been studied using the method of discretized light-cone quantization (DLCQ), which was

introduced in [25]. In the large Nc limit one can make a restriction to the single-trace

states, which simplifies the calculations [3–5, 7, 8, 10, 26–30]. Some results at finite Nc are

also available [16,31].

A salient feature of the DLCQ spectrum is that it is gapped for all Nc and m. In

particular, it is gapped at m = 0, with the lightest particle being a fermion of mass Mf and

the second lightest being a boson of mass Mb. The DLCQ spectrum of the SU(Nc) theory

was found in [16]:4

m = 0 : M2
f ≈ 5.7

g2YMNc

2π
, M2

b ≈ 10.8
g2YMNc

2π
. (2.3)

As m increases, Mf grows at a faster rate than Mb, and for any Nc the two meet at

m2 =
g2YMNc

2π
. At this value of m, the theory becomes supersymmetric [4, 30]. The exact

supersymmetry generators of the (1, 1) supersymmetry are known in the light-cone quan-

tization of the theory [4, 27, 30]. Note that the light-cone Hamiltonian is invariant under

m → −m, so the spectrum obtained from DLCQ will have the same property. As already

mentioned in the Introduction, it is not clear, however, whether the DLCQ spectrum repro-

4For the squared masses of lightest bound states, the coefficients of
g2
YMNc

2π exhibit weak dependence on Nc.
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duces the spectrum of a single universe of the adjoint QCD2 theory or of all the universes.

We will come back to this question in Section 6.

3 Lattice model

We will now formulate a Hamiltonian lattice theory corresponding to a discretization of

the continuum theory (2.1), defined on a spatial circle of length L with periodic boundary

conditions both for the fermions and the gauge field.

3.1 Lattice Hamiltonian

Let N be the number of lattice sites, taken to be an even positive integer, and a = L/N be

the lattice spacing. The lattice Majorana fermions live on the lattice sites. They satisfy the

reality condition χA†
n = χA

n and the canonical anti-commutation relation

{χA
n , χ

B
m} = δmnδ

AB . (3.1)

The lattice analog of the spatial component of the gauge field5 are the unitary matrices Un

representing the parallel propagators in the fundamental representation of the gauge group.

The operators Un live on links where, for each link, the corresponding Un represents the

coordinate of a quantum particle moving on the group manifold. (For a brief review of a

particle moving on a group manifold, see Appendix A.) We use the convention where link n

joins sites n and n + 1, with the identification n ∼ n + N . The conjugate variables to Un

are the left-acting and right-acting electric fields, which are Lie-algebra valued Hermitian

operators with SU(Nc) components LA
n and RA

n , respectively, obeying

[LA
n , Um] = δnmT

AUn , [RA
n , Um] = δnmUnT

A . (3.2)

The LA
n and RA

n are related via RA
n = LB

nU
BA
n , with UAB

n ≡ 2 tr(TAUnT
BU−1

n ).

The lattice Hamiltonian is

H =
N−1∑
n=0

[
g2YMa

2
LA
nL

A
n − i

2

(
a−1 + (−1)nm

)
χA
nU

AB
n χB

n+1

]
, (3.3)

5In the Hamiltonian formulation, the time component of the gauge field is eliminated and one has to
impose the Gauss law by hand.
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with n ∼ n + N identified, as mentioned above. The Hamiltonian (3.3) is invariant under

local gauge transformations parameterized by a gauge parameter Vn on every site

Un → VnUnV
−1
n+1 ,

Ln → VnLnV
−1
n ,

χn → VnχnV
−1
n .

(3.4)

The Hilbert space that this Hamiltonian acts on is a tensor product of the fermionic

Hilbert space and the bosonic one, HF ⊗HB. For the fermionic factor, since we have N(N2
c −

1) Majorana fermions χA
n obeying the Clifford algebra (3.1), HF must form a representation

of this algebra. Since N is even, HF will be the direct sum of the two spinor representations

of so(N(N2
c − 1)), for a total dimension of 2

N(N2
c−1)

2 . The bosonic factor HB is the tensor

product of the space of square integrable functions on SU(Nc) on each link. By the Peter-

Weyl theorem, on each link we can consider a basis consisting of matrix elements of the

SU(Nc) group element in all possible irreducible representations.

As in any Hamiltonian lattice gauge theory model, the description of the model is not

complete without specifying the Gauss law. For us, the Gauss law takes the form

LA
n −RA

n−1 = QA
n , for all n = 0, . . . , N − 1 , (3.5)

where we defined the matter gauge charge QA
n = − i

2
fABCχB

nχ
C
n , with f

ABC being the struc-

ture constants. The physical states are those states in HF ⊗HB for which (3.5) is obeyed.

Starting in Section 3.4, we will work directly with the gauge-invariant states.

3.2 Relation to the continuum theory

Let us now explain how the lattice Hamiltonian introduced in the previous subsection arises

from the continuum theory (2.1). Denoting the lattice sites as xn ≡ na, we make the

following staggered identification between the lattice fermion χn and the spinor field ψ(x)

χn =


√
2aψu(xn) , if n is even ,

√
2aψd(xn) , if n is odd ,

where ψ(x) =

(
ψu(x)

ψd(x)

)
, (3.6)

where the upper and lower components of the fermions are discretized on alternating lattice

sites. For the gauge variables, we have link variables Un and site variables ϕn that are related,
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respectively, to the spatial and time components of the gauge field.

Un = e−iaA1(xn) , ϕn = A0(xn) . (3.7)

It is then straightforward to check that the lattice Lagrangian

L =
N−1∑
n=0

tr

[
1

g2a

(
iU̇nU

−1
n + ϕn − Unϕn+1U

−1
n

)2
+ iχnχ̇n − ϕn[χn, χn]

+
i

a
χnUnχn+1U

−1
n + im(−1)nχnUnχn+1U

−1
n

] (3.8)

is an approximation to (2.1) as a→ 0.

One can introduce the left-acting electric fields LA
n = − 2

g2a
tr

[
TA
(
iU̇nU

−1
n +ϕn−Unϕn+1U

−1
n

)]
as the canonically-conjugate variables to the angles parameterizing Un, and then pass to the

Hamiltonian

H =
N−1∑
n=0

(
g2a

2
LA
nL

A
n − i

2a
χA
nU

AB
n χB

n+1 −
im

2
(−1)nχA

nU
AB
n χB

n+1

)

+
N−1∑
n=0

ϕA
n

(
LA
n −RA

n−1 −QA
n

)
.

(3.9)

It is then clear that on the gauge-invariant subspace where (3.5) is obeyed, our Hamiltonian

reduces to (3.3).

If we want to study the more general space of models which includes the 4-fermion term

(2.2), we should generalize this lattice Hamiltonian. The simplest corresponding term on

the lattice appears to be

δH = −κlat
N−1∑
n=0

(trχnUnχn+1U
−1
n )2 . (3.10)

Even if we are interested in the basic adjoint QCD2 model without the 4-fermion term in

the continuum, it is possible that on the lattice κlat needs to be turned on and appropriately

tuned in the large N limit. It is also possible that the sign of κlat induced by the lattice

regulator is such that the 4-fermion coupling flows to zero at long distances. The study of

these issues is beyond the scope of this paper.
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3.3 General properties of gauge-invariant states

As already mentioned, the 2N(N2
c−1)/2-dimensional fermionic Hilbert space HF is a sum of

the two spinor representations of so(N(N2
c − 1)). These two spinor representations are

distinguished by the eigenvalues under the so(N(N2
c − 1)) chirality matrix

F = F0F1 · · · FN−1 , Fn ≡ (2i)(N
2
c−1)/2χ1

nχ
2
n · · ·χN2

c−1
n . (3.11)

Up to an overall sign which is a matter of convention, the non-trivial normalization in

(3.11) ensures that F = F † and F2 = 1. The operator F should be identified with the

fermion parity operator, because under conjugation by it the lattice fermions χA
n change

sign: FχA
nF−1 = −χA

n . F can thus be used to split the Hilbert space into bosonic and

fermionic states.

The fermionic operators χA
n transform in the vector representation of so(N(N2

c − 1)).

In order to impose the Gauss law (3.5), we need to know how the states transform under

the charge operators QA
n , which generate an su(Nc)

N subalgebra of so(N(N2
c − 1)). The

embedding of su(Nc)
N into so(N(N2

c −1)) is such that the vector representation of so(N(N2
c −

1)) decomposes as the direct sum

(adj,1,1, . . .)⊕ (1, adj,1, . . .)⊕ (1,1, adj, . . .) + · · · , (3.12)

where adj is the adjoint representation of su(Nc). The decomposition (3.12) follows from

the fact that the χA
n transform in the adjoint of the su(Nc) factor for site n.

A group theory exercise (see Appendix B) shows that under su(Nc)
N , the fermionic

Hilbert space HF decomposes as

2N(N2
c−1)/2 = 2N(Nc−1)/2(R,R, . . . ,R) , (3.13)

where R is the su(Nc) representation with Dynkin label [111 . . . 1]. The Young diagram of

R consists of one column of each length ranging from 1 to Nc − 1,

R =

· · ·

· · ·

· · ·
...

...
... . .

.


Nc − 1 rows , dimR = 2Nc(Nc−1)/2 , (3.14)
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and it has dimension 2Nc(Nc−1)/2. We can interpret (3.13) as saying that HF can be realized

as a tensor product

HF = Hqubits ⊗Hspins (3.15)

of a vector space Hqubits of N(Nc − 1)/2 qubits, which has dimension 2N(Nc−1)/2, and the

Hilbert space Hspins of N SU(Nc) spins where each site hosts representation R of su(Nc).

The Nc-ality of the representation R is

Nc-ality of R =
Nc(Nc − 1)

2
(mod Nc) =

Nc

2
if Nc is even ,

0 if Nc is odd ,
(3.16)

a fact that will be useful later.

For example, when Nc = 2, Hqubits is the Hilbert space of N/2 qubits, and R = 2 is the

spin-1/2 representation of SU(2). In this case, we will make the decomposition (3.15) more

explicit in the next subsection. When Nc = 3, Hqubits is the Hilbert space of N qubits, and

R = 8 is the adjoint representation of SU(3).

To construct gauge-invariant states, note that Hqubits is invariant under su(Nc)
N , so only

the Hspins factor participates non-trivially in this construction. In other words, the gauge-

invariant sector of the Hilbert space takes the form

H = Hqubits ⊗H′ , H′ ⊂ Hspins ⊗HB (3.17)

where HB is the bosonic Hilbert space.

The construction of H′ is as follows. Let us consider a basis for Hspins to be

basis for Hspins: |R, m⃗0⟩ |R, m⃗1⟩ · · · |R, m⃗N−1⟩ (3.18)

where m⃗n is a multi-index used to label the states of representation R on site n. As already

mentioned, on each link n the bosonic Hilbert space HB is that of L2-functions on SU(Nc).

Let |rn, m⃗nL, m⃗nR⟩ be a basis for this Hilbert space, with rn being an irrep of su(Nc) and

m⃗nL and m⃗nR being multi-indices each labeling the states in this representation. A basis for

the bosonic Hilbert space HB on all N links is then

basis for HB: |r0, m⃗0L, m⃗0R⟩ |r1, m⃗1L, m⃗1R⟩ · · · |rN−1, m⃗(N−1)L, m⃗(N−1)R⟩ . (3.19)
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A basis for the gauge invariant subspace H′ is then of the form

∑
m⃗n,m⃗nL,m⃗nR

N−1∏
n=0

|R, m⃗n⟩ ⊗
N−1∏
n=0

(
C

rn−1Rrn
m⃗(n−1)Rm⃗nm⃗nL

|rn, m⃗nL, m⃗nR⟩
dim rn

)
, (3.20)

where Cr1r2r3
m⃗1m⃗2m⃗3

≡ ⟨r3m⃗3|r1m⃗1r2m⃗2⟩ are su(Nc) Clebsch-Gordan coefficients.6 A basis for the

full gauge-invariant Hilbert space H is obtained by taking the tensor product of the basis

(3.20) for H′ with a basis for Hqubits.

Note that after fixing r0, the set of possible representations rn that can appear is restricted

by Nc-ality. The rn must obey the property that for any adjacent links the tensor product

rn−1 ⊗ R must contain the representation rn. Thus, the Nc-ality of the representations rn

must change by (3.16) when we move from one site to the next. For odd Nc, this means

we have Nc universes of the Hilbert space where in each universe the Nc-ality of all the link

irreps is the same. When Nc is even, we also have Nc universes, but in each universe the

Nc-ality of the link irreps alternates on even and odd links between values that differ by

Nc/2 (mod Nc). This interplay between the Nc-ality and the translation by one site has

interesting consequences that we will explore in more detail in Section 4.

3.4 Gauge-invariant formulation for Nc = 2

Let us now specialize the general discussion from the previous subsections to the case Nc = 2,

and further determine the action of the Hamiltonian on the gauge-invariant subspace H′.

For Nc = 2, we can take TA = σA/2, where σA are the Pauli matrices, and fABC = ϵABC ,

with A,B,C = 1, 2, 3.

The decomposition HF = Hqubits ⊗Hspins in (3.13)–(3.15) can be made explicit with an

appropriate choice of gamma matrices. In this case Hqubits is the Hilbert space of N/2 qubits

and Hspins is the Hilbert space of N spin-1/2 particles. Let Xk, Yk, Zk be the Pauli matrix

operators acting on the kth qubit, k = 0, . . . , N
2
− 1, and let SA

n be the Ath SU(2) generator

acting on the nth spin as σA/2, with n = 0, . . . , N − 1. With this notation, let us define

χA
2k =

√
2 (Z0Z1 · · ·Zk−1Xk)⊗ SA

2k ,

χA
2k+1 =

√
2 (Z0Z1 · · ·Zk−1Yk)⊗ SA

2k+1 .
(3.21)

One can check that these operators obey the correct anti-commutation relations (3.1). This

6For Nc > 2, the Clebsch-Gordan coefficients need an additional index to account for the multiplicity of
rn in rn−1 ⊗R.
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Clifford algebra representation has the nice property that the SU(2) generators on site n

QA
n = − i

2
ϵABCχB

nχ
C
n and the fermion parity operator F defined in (3.11) each act in only

one of the two factors of the tensor product and take the simple forms

QA
n = 1⊗ SA

n , F = Z0Z1 · · ·ZN
2
−1 ⊗ 1 . (3.22)

Thus, the SU(2) degrees of freedom are carried by the spins, while the fermion parity is

carried by the qubits. In particular, the fact that each spin transforms as a doublet under its

corresponding SU(2) and the qubits are SU(2)-invariant confirms the decomposition (3.13).

The construction of the gauge-invariant states is a simple specialization of the discussion

of the previous subsection, with the replacements R → 1
2
, r → ℓ, m⃗ → m, and m⃗ → m,

reflecting the fact that su(2) representations are labeled by the spin ℓ and there is only one

quantum number (the magnetic quantum number) labeling the states of these representa-

tions. Thus, we have the bases

basis for Hqubits : |s0s1 . . . sN
2
−1⟩ ,

basis for Hspins : | 1
2
,m0⟩ | 12 ,m1⟩ · · · | 12 ,mN−1⟩ ,

basis for HB : |ℓ0,m0L,m0R⟩ |ℓ1,m1L,m1R⟩ · · · |ℓN−1,m(N−1)L,m(N−1)R⟩

(3.23)

where sk ∈ {−1, 1} is the eigenvalue of Zk, mn ∈ {− 1
2
, 1

2
} is the eigenvalue of S3

n, ℓn =

0, 1
2
, 1, . . ., and both mnL and mnR range from −ℓn to ℓn in integer steps. (In the position

representation, the wavefunction on the group manifold associated with |ℓn,mnL,mnR⟩ is

Ψℓn,mnL,mnR
(Un), as defined in (A.17).) The gauge-invariant states in H are uniquely labeled

by the qubit quantum numbers (s0, s1, . . . , sN
2
−1) for the states in Hqubits and by a string of

SU(2) angular momenta (ℓ0, ℓ1, . . . , ℓN−1) for the representations on the links for the states

in H′:

|s0 . . . sN
2
−1⟩ ⊗ |ℓ0 . . . ℓN−1⟩

with |ℓ0 . . . ℓN−1⟩ =
∑

mn,mnL,mnR

N−1∏
n=0

| 1
2
,mn⟩ ⊗

N−1∏
n=0

(
C

ℓn−1
1
2
ℓn

m(n−1)RmnmnL

|ℓn,mnL,mnR⟩√
2ℓn + 1

)
,

(3.24)

with the condition that

|ℓn+1 − ℓn| =
1

2
, and ℓ−1 = ℓN−1 . (3.25)
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ℓmax\N 4 6 8 10 12

2 40 224 1312 7808 46720
3 64 384 2432 15872 105472
4 88 544 3552 23936 164608

Table 1: The dimensions of the Hilbert space for various values of N and ℓmax. For the plots in
this paper we use up to N = 12 and ℓmax = 4.

The space of gauge configurations is of course infinite, but we can truncate it by requiring

ℓn ≤ ℓmax for all n, for some ℓmax. In Table 1, we give the sizes of the truncated Hilbert

space for different N and ℓmax.

Having established a basis for the gauge invariant subspace, we need to determine the

action of the Hamiltonian (3.3) on these states. The gauge kinetic term Hgauge =
g2YMa

2
LA
nL

A
n

is diagonal in this basis, and it acts only on the H′ factor:

Hgauge |ℓ0 . . . ℓN−1⟩ =

(
g2YMa

2

N−1∑
n=0

ℓn(ℓn + 1)

)
|ℓ0 . . . ℓN−1⟩ . (3.26)

For each link, the second term in (3.3) is proportional to the operator − i
2
χA
nU

AB
n χB

n+1. This

operator acts on both factors of the Hilbert space non-trivially. Based on whether n is even

or odd, the action is:

− i

2
χA
2kU

AB
2k χB

2k+1 = Zk ⊗O2k , On ≡ SA
n U

AB
n SB

n+1 , (3.27a)

− i

2
χA
2k+1U

AB
2k+1χ

B
2k+2 = (−F)

δ
k,N2 −1XkXk+1 ⊗O2k+1 . (3.27b)

It is straightforward to determine the actions of the first factors in (3.27) on the qubits since

the basis states |s0 . . . sN
2
−1⟩ are eigenstates of Zk with eigenvalue sk, and Xk simply flips

the sign of sk. The action of On on the states of H′ is harder to determine, but we show in

Appendix C that this action is

On |ℓ0 . . . ℓN−1⟩ =
∑

ℓ′n∈{ℓn−1,ℓn,ℓn+1}

f(ℓn−1, ℓn+1; ℓ
′
n, ℓn) |ℓ0 . . . ℓn−1ℓ

′
nℓn+1 . . . ℓN−1⟩ , (3.28)

with the expression for f given in (C.13).

It would seem that this gauge invariant formulation of the lattice theory does not share

the symmetry of translating by two sites that is manifest in the Hamiltonian (3.3). However,

the insertion of the operator (−F) in χA
N−1U

AB
N−1χ

B
0 is unitarily equivalent to an insertion

12



of (−F) in any other hopping term χA
2k−1U2kχ

B
2k. Specifically, the unitary that moves (−F)

between a hopping term with a given k and that with k + 1 is implemented by

Uk =
1

2
(1−F) +

1

2
Zk(F + 1) . (3.29)

If we denote the naive translation by two sites as T ′
2 then the genuine symmetry of the

Hamiltonian T2 can be written as T2 = UN/2T
′
2.

4 Symmetries

In this section, we discuss the symmetries of the adjoint QCD2 theory. We start with a

discussion of the continuum theory (2.1) in Section 4.1, and then in Section 4.2 we proceed

with an analogous discussion for the lattice model (3.3) introduced in the previous section.

As we will see, the symmetries of the two models mirror each other very closely. The

consequences of the various anomalies on the spectrum, which we discuss in Section 4.3

below, will be the same in the two cases.

4.1 Symmetries of the continuum theory

As shown in [14], the internal (non-space-time) symmetries of the continuum theory (2.1)

are

m ̸= 0 :

Z[1]
2 × (Z2)F , for Nc = 2 ,[
Z[1]

Nc
⋊ (Z2)C

]
× (Z2)F , for Nc > 2 ,

(4.1)

for generic m ̸= 0, and

m = 0 :

Z[1]
2 × (Z2)F × (Z2)χ , for Nc = 2 ,[
Z[1]

Nc
⋊ (Z2)C

]
× (Z2)F × (Z2)χ , for Nc > 2 ,

(4.2)

form = 0. In particular, for everyNc we have a fermion parity symmetry (Z2)F and a discrete

axial symmetry (Z2)χ (present only when m = 0) that act by sending ψ → −ψ and ψ →
γ5ψ, respectively, while leaving Aµ invariant. We also have a ZNc one-form symmetry Z[1]

Nc

corresponding to the center symmetry of SU(Nc), under which the fundamental Wilson lines

have charge e2πi/Nc . Lastly, for Nc > 2, we also have a charge conjugation symmetry (Z2)C ,

which acts by sending ψ → ψT and Aµ → −AT
µ , where the transpose acts on the generators
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in the fundamental representation. (We will write this transformation more explicitly later in

the lattice model.) This charge conjugation symmetry does not commute with the one-form

center symmetry because it takes a fundamental Wilson line to an anti-fundamental one, so

the symmetry group involves a semi-direct product between these two symmetries. Lastly,

when Nc = 2, the charge conjugation symmetry is absent because ψ → ψT and Aµ → −AT
µ

is a gauge transformation.

Let us restrict ourselves to the theory compactified on a spatial circle with periodic

boundary conditions, because this is what the lattice model introduced in the previous

section approximates.7 Let us denote the generators of Z[1]
Nc
, (Z2)C , (Z2)F , and (Z2)χ by

Û(x), Ĉ, F̂ , and V̂ , respectively, where x is the coordinate parameterizing the circle. (We

use hats when denoting the unitary operators in the continuum theory in order to distinguish

these operators from those in the lattice model, for which we will not use hats.) These are

unitary operators that act on the Hilbert space, and they can be discussed regardless of

whether the corresponding transformations they implement are symmetries of the theory or

not. As shown in [14], the algebra obeyed by the non-chiral symmetries Z[1]
Nc
, (Z2)C , and

(Z2)F is the same at the classical and quantum levels, namely:

Û(x)Nc = 1 , Ĉ2 = F̂2 = 1 ,

Û(x)Ĉ = ĈÛ(x)−1 , Û(x)F̂ = F̂Û(x) , F̂ Ĉ = ĈF̂ .
(4.3)

However, the algebra involving the axial symmetry V̂ is realized projectively, and [14] found

that

V̂2 = 1 , Û(x)V̂ = (−1)Nc−1V̂Û(x) ,

F̂V̂ = (−1)Nc−1V̂F̂ , ĈV̂ = (−1)
(Nc−2)(Nc−1)

2 V̂Ĉ .
(4.4)

The non-trivial signs in these expressions would not have been present classically and are sig-

nals of quantum anomalies. They show that the algebra of the unitary operators introduced

above is realized projectively on the Hilbert space.

Lastly, let us discuss how these unitary operators act on the Hamiltonian. Let us denote

the continuum analog of the Hamiltonian (3.3) by Hm so we can keep track of the mass m.

Since Z[1]
Nc
, (Z2)C , and (Z2)F are symmetries for allm, the corresponding generators commute

with the Hamiltonian, or, equivalently, the Hamiltonian is invariant under conjugation by

7It is possible to also study both the continuum theory and the lattice model with anti-periodic boundary
conditions for the fermions.
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these unitary operators:

Û(x)HmÛ(x)−1 = Hm , ĈHmĈ−1 = Hm , F̂HmF̂−1 = Hm . (4.5)

On the other hand, the (Z2)χ axial transformation is a symmetry only for m = 0, so conju-

gation by it does not leave the Hamiltonian invariant for m ̸= 0. Since the operator tr ψ̄ψ

changes sign under the axial transformation, the conjugation of the Hamiltonian by V̂ has

the simple effect of changing the sign of m:

V̂HmV̂−1 = H−m . (4.6)

The relations (4.3)–(4.6) have important consequences for the spectrum and other observ-

ables. (See also the discussion in [14].) Let us postpone the discussion of these consequences

until after we present the analogous relations to (4.3)–(4.6) on the lattice, because the con-

sequences will be the same in both cases.

4.2 Symmetries of the lattice model

The lattice model (3.3) exhibits a very similar set of symmetries and anomalies as the

continuum model. In particular, there exist unitary operators representing a lattice one-

form symmetry Un, fermion parity F , and charge conjugation C. The lattice analog of the

(Z2)χ generator will be the translation operator by one lattice site, V , which in the continuum

limit reduces to the product between a (Z2)χ transformation and an infinitesimal translation.

Let us discuss these unitary operators one by one.

4.2.1 Definitions of unitary operators

The lattice one-form symmetry is defined as follows. Let Zn be the generator of the ZNc center

of su(Nc) acting on the bosonic Hilbert space on link n (before imposing the Gauss law). On

a basis state |rn, m⃗nL, m⃗nR⟩, Zn acts as Zn |rn, m⃗nL, m⃗nR⟩ = e2πi(Nc-ality of rn)/Nc |rn, m⃗nL, m⃗nR⟩.
Clearly, ZNc

n = 1 because this relation holds on all basis states. In term of Zn, the generator

of the lattice ZNc one-form symmetry can be written as

Un = (−1)(n+1)(Nc−1)Zn . (4.7)
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Both Zn and Un commute with the lattice Hamlitonian (3.3) because acting with the Hamil-

tonian does not change the Nc-ality of the states. However, only Un is a one-form sym-

metry for all Nc because it further obeys the property that it is topological, namely that

Un = Un+1 when acting on gauge-invariant states. Indeed, this property holds because the

(−1)(n+1)(Nc−1) factor in (4.7) accounts for the change in Nc-ality when going from one link

to the next, as given by combining the Gauss law (3.5) with the Nc-ality (3.16) of the states.

Un generates a ZNc symmetry because UNc
n = (−1)(n+1)Nc(Nc−1)ZNc

n = 1 after using ZNc
n = 1

and the fact that Nc(Nc − 1) is always an even integer.

The fermion parity operator F was already defined in (3.11). It commutes with the

Hamiltonian and it obeys F2 = 1.

The definition of the charge conjugation symmetry operator that most closely resembles

the continuum analog is that for which

CχnC−1 = −χT
n , CUnC−1 = (U−1)T = U∗ , (4.8)

where the transpose acts on the color indices when χn and Un are represented as Nc × Nc

matrices acting in the fundamental representation of su(Nc). The minus sign in the first

equation is a matter of convention and can be removed by replacing C → FC. To make

(4.8) more explicit, let us order the su(Nc) generators T
A such that the first NI =

Nc(Nc−1)
2

generators are represented by pure imaginary anti-symmetric matrices in the fundamental

representation, while the last NR = (Nc+2)(Nc−1)
2

generators are represented by real traceless

symmetric matrices. In components, the transformations (4.8), as well as the corresponding

transformations of the electric fields can then be written as

CχA
nC−1 = −(−1)θAχA

n , CUAB
n C−1 = (−1)θA+θBUAB

n ,

CLA
nC−1 = −(−1)θALA

n , CRA
nC−1 = −(−1)θARA

n ,
(4.9)

where θA = 1 for the anti-symmetric generators and θA = 0 for the symmetric ones:

θA ≡

1 for 1 ≤ A ≤ NI ,

0 for NI < A ≤ NI +NR .
(4.10)

When checking that the transformations (4.9) are consistent with the various commutation

relations (for instance (A.11)), it is useful to note that the structure constants fABC obey

the property (−1)θA+θB+θCfABC = −fABC . This property can also be used to check that
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CQA
nC−1 = −(−1)θAQA

n , which implies that the transformation rules (4.9) are also consistent

with the Gauss law (3.5). Furthermore, one can also see that (4.9) imply that conjugation

by C leaves the Hamiltonian invariant.

The unitary operator C that implements (4.9) can be written as a product of two unitaries

C = CFCB, where CF acts on the fermions and CB on the bosons. We will not need an

expression for CB because for the bosons there are no non-trivial signs that can be generated

at the quantum level. However, let us write CF explicitly because its expression will be

needed for computing the algebra of operators:

CF = CF0CF1 · · · CF,N−1 , CFn ≡ (2i)
NR
2 χNI+1

n χNI+2
n · · ·χNI+NR

n . (4.11)

This definition ensures that C2
F = 1 and CF = C†

F , so if CB is defined to obey the same

properties, then so will C. We will assume this is the case.

Lastly, we also consider the unitary operator V that implements lattice translation by

one site. For our purposes it will be enough to know that

VχnV−1 = χn+1 , VUnV−1 = Un+1 , VLnV−1 = Ln+1 , VRnV−1 = Rn+1 , (4.12)

of course with understanding that the indices obey the identification n ∼ n + N . The

operator V commutes with the Hamiltonian when m = 0, but when m ̸= 0 it flips the sign

of m, just like in the continuum. Thus, if we denote the lattice Hamiltonian (3.3) by Hm

in order to keep track of m, then VHmV−1 = H−m. With an appropriate normalization,

one can realize V on the Hilbert space in a way that VN = 1. This is the main difference

between the translation by one site and the (Z2)χ transformation in the continuum: while

in the continuum V̂2 = 1, on the lattice we have VN = 1 instead. In the language of recent

papers [20, 32], the (Z2)χ symmetry of the continuum theory “emanates” from the lattice

translation by one site, V .

4.2.2 Operator algebra

With the definitions above, we can determine the algebra obeyed by the various unitary

operators. The operators Un, C, and F obey the same algebra that their hatted counterparts

obey in the continuum (see (4.3)):

UNc
n = 1 , C2 = F2 = 1 ,

UnC = CU−1
n , UnF = FUn , FC = CF .

(4.13)

17



Now also including the V operator, we have a lattice analog of (4.4),

VN = 1 , UnV = (−1)Nc−1VUn ,

FV = (−1)Nc−1VF , CV = (−1)
(Nc−2)(Nc−1)

2 VC ,
(4.14)

with the only difference being that VN = 1 instead of V̂2 = 1, as mentioned above.

Conjugating the Hamiltonian Hm by the four unitary operators, we obtain an exact

analog of the continuum relations (4.5)–(4.6):

UnHmU−1
n = Hm , CHmC−1 = Hm , FHmF−1 = Hm ,

VHmV−1 = H−m .
(4.15)

4.3 Consequences for the spectrum

The consequences of the relations (4.13)–(4.15) are precisely the same as those of the con-

tinuum relations (4.3)–(4.6). Let us describe these consequences in the language of the

lattice model, but the exact same conclusions hold for the spectrum of the continuum theory

compactified on a circle with periodic boundary conditions for the fermions.

First, the lattice one-form symmetry can be used to split the Hilbert space intoNc distinct

universes. Let the pth universe be the sector of the Hilbert space where Un = e2πip/Nc (p

is an integer identified modulo Nc). Similarly, the fermion parity operator can be used to

split the Hilbert space into bosonic and fermionic states based on whether F = +1 or −1.

Since Un, F , and Hm commute, they are simultaneously diagonalizable, so one can consider

a basis of eigenstates of Hm that are also eigenstates of Un and F .

If we act with V on a simultaneous eigenstate |ψ⟩ of Un, F , and Hm with eigenvalues

e2πip/Nc , f , and E, the relations (4.14)–(4.15) imply that V |ψ⟩ is a simultaneous eigenstate

of Un, F , and H−m with eigenvalues (−1)Nc−1e2πip/Nc , (−1)Nc−1f , and E. This means:

• If Nc is even, then the bosonic/fermionic eigenstates of Hm in the pth universe (0 ≤
p < Nc

2
) are exactly degenerate with the fermionic/bosonic eigenstates of H−m in the

(Nc

2
+ p)th universe. Note that this implies an exact degeneracy in the spectrum at

m = 0 between the pth and (Nc

2
+ p)th universes.

• If Nc is odd, then the bosonic/fermionic eigenstates of Hm in the pth universe (0 ≤ p <

Nc) are exactly degenerate with the bosonic/fermionic eigenstates of H−m in the same

universe. Thus, the energy spectrum of each universe is invariant under m → −m.
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However, note that this statement does not necessarily imply a degeneracy in the

spectrum at m = 0.

Also note that since the mass operator Omass =
i
2

∑
n(−1)nχA

nU
AB
n χB

n+1 changes sign when

conjugated by V , VOmassV−1 = −Omass, it follows that

⟨ψ|Omass|ψ⟩ = −⟨Vψ|Omass|Vψ⟩ . (4.16)

The same expression holds in the continuum where Omass = tr ψ̄ψ.

If on the same |ψ⟩ as above we act with C, the relations (4.13) and (4.15) imply that

C |ψ⟩ is a simultaneous eigenstate of Un, F , and Hm with eigenvalues e−2πip/Nc , f , and E.

Thus:

• For any Nc > 2, the bosonic/fermionic eigenstates of Hm in the pth universe are exactly

degenerate with the bosonic/fermionic eigenstates of Hm in the (Nc − p)th universe.

For m = 0 and Nc odd, V commutes with Un, F , and H0, so the four operators are

now simultaneously diagonalizable. Let |ψ⟩ now be a simultaneous eigenstate of these four

operators with eigenvalues v, e2πip/Nc , f , and E. Then C |ψ⟩ is also a simultaneous eigenstate

of the four operators, with eigenvalues (−1)
(Nc−2)(Nc−1)

2 v, e−2πip/Nc , f , and E. When Nc =

4k + 1 for some integer k, then (−1)
(Nc−1)(Nc−2)

2 = 1, and no additional conclusions can be

drawn. When Nc is of the form Nc = 4k + 3 for some integer k, then (−1)
(Nc−1)(Nc−2)

2 = −1,

and we conclude that the eigenvalue of V changes sign upon acting with C. Then:

• When m = 0 and Nc = 4k+3 for some integer k, the bosonic/fermionic eigenstates of

H0 in the pth universe (0 ≤ p < Nc

2
) with V-eigenvalue v are exactly degenerate with

bosonic/fermionic eigenstates of H0 in the (Nc − p)th universe with V-eigenvalue −v.

Lastly, one can make an additional statement about the p = 0 universe when Nc = 4k+3

and anym. When restricted to this universe, C acts as a symmetry, so one can simultaneously

diagonalize F , C, and Hm. Let f , c, and E be the corresponding eigenvalues of a state |ψ⟩.
Then V |ψ⟩ is also in the p = 0 universe and it is a simultaneous eigenstate of F , C, and Hm

with eigenvalues f , −c, and E. Thus:

• When p = 0 and Nc = 4k + 3, bosonic/fermionic eigenstates of Hm with C = ±1 are

exactly degenerate with bosonic/fermionic eigenstates of H−m with C = ∓1. Note this

implies that when we further set m = 0, the spectrum of the p = 0 universe has an

exact double degeneracy between states with C = +1 and C = −1.
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Note that the exactly degenerate states related by the action of V have opposite expectation

values for Omass according to (4.16).

4.4 Supersymmetry

In addition to the massless point, which is distinguished by the presence of the axial sym-

metry discussed in the previous sections, adjoint QCD2 has a special point

m2 = m2
SUSY ≡ g2YMNc

2π
. (4.17)

Using the light-cone quantization, it was shown that at this point the model exhibits (1, 1)

supersymmetry [4, 30]. This very interesting result has been checked using DLCQ [5, 16,

27, 33]. In this section, we briefly discuss the consequences of the supersymmetry for the

spectrum of the theory on a (discretized) spatial circle.

When m = 0, adjoint QCD2 has several degenerate vacua, which we expect to be split as

we turn on the mass. At m = mSUSY, we expect that the lowest vacuum will be annihilated

by the supersymmetry generator, while the other vacua exhibit spontaneous breaking of

supersymmetry. Thus, there will be massless Goldstinos in these higher vacua which contain

wound flux tubes [34], while the zero energy vacuum preserves supersymmetry.

There are two regimes in which we can understand the ordering of the vacua. For m ≫
gYM we can integrate out the adjoint fermion, and so the vacuum energy will be given by

the energy of the flux tube wrapping the spatial circle. This energy is proportional to the

lowest value of the quadratic Casimir of a representation with Nc-ality p. Thus, the vacua

of the universe with p = 0 will be the lowest in this limit, followed by p = 1, Nc− 1, followed

by p = 2, Nc − 2, etc. In the opposite limit, when |m| ≪ gYM, the vacuum energies will be

given approximately by m⟨Omass⟩. Thus, at m = mSUSY ∼ gYM, we expect that the vacuum

of the p = 0 universe that is continuously connected to the vacuum with the most negative

VEV of the mass operator at m = 0.

For Nc = 2, this manifests in a simple manner: there are two universes, and it is the

vacuum of the p = 0 universe that preserves supersymmetry at m = gYM√
π
. The p = 1

universe has a massless Goldstino at this point. This implies also that the p = 0 universe

has a massless excitation at m = −gYM√
π
. We can see this explicitly with our lattice model for

Nc = 2, as in Figure 5. For a slightly more complicated example, we can take Nc = 3. At

m/gYM =
√

3
2π
, we expect to see a massless Goldstino in the p = 1, 2 vacua (they correspond

to having a confining flux tube wound around the circle in one or the other direction), but
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not in the trivial sector p = 0.

5 Strong coupling expansion for SU(2)

With the lattice formulation (3.3) of adjoint QCD2, we can develop a strong coupling ex-

pansion analogous to the one performed extensively for the Schwinger model, for instance

in [35–37]. The lattice strong coupling expansion is an expansion in x ≡ 1/(gYMa)
2. To

approach the continuum limit, one has to extrapolate this expansion to x → ∞, which we

will do using appropriate Padé approximants.

In this section we set m = 08 and we study the p = 0 universe, which has half-integer

ℓn on even links and integer ℓn on odd links. (Recall that the two universes are exactly

degenerate at m = 0, so it suffices to focus on one of them.) To facilitate the strong coupling

expansion, we rescale the Hamiltonian and then write it as the sum of a diagonal term h0

and a small perturbation V :

H =
gYM√
x
h , h = h0 + xV , (5.1)

where

h0 =
1

2

N−1∑
n=0

LA
nL

A
n , V = − i

2

N−1∑
n=0

χA
nU

AB
n χB

n+1 . (5.2)

We will expand the eigenvalues and eigenstates of h around x = 0.

The unperturbed states are eigenstates of h0. Since h0 is just the gauge kinetic term

and does not act on the qubit factor in H = Hqubits ⊗ H′, the eigenstates will be at least

dimHqubits = 2
N
2 -fold degenerate. The lowest three energy levels ϵm (defined by h0 |ψm⟩ =

ϵm |ψm⟩) are given in the following table.

m ψm ϵm degeneracy

0 |s0 . . . sN
2
−1⟩ ⊗ |1

2
01
2
0 . . . 1

2
0⟩ ϵ0 =

3N
16

2
N
2

1 |s0 . . . sN
2
−1⟩ ⊗ |1

2
0 . . . 1

2
01
2
11
2
0 . . . 1

2
0⟩ ϵ1 =

3N
16

+ 1 N2
N
2
−1

2 |s0 . . . sN
2
−1⟩ ⊗ |1

2
0 . . . 1

2
01
2
11
2
0 . . . 1

2
01
2
11
2
0 . . . 1

2
0⟩ ϵ2 =

3N
16

+ 2 N(N − 2)2
N
2
−3

In particular, the lowest level is obtained by minimizing the SU(2) spins ℓn on the links. The

8In the strong coupling expansion for the Schwinger model [35], it is possible to include a non-zero fermion
mass in the unperturbed Hamiltonian. This cannot be done for this model because, unlike in the Schwinger
model, the fermion mass term does not commute with the gauge kinetic term.
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first few excited levels are obtained by replacing some of the instances of ℓn = 0 with ℓn = 1,

and each such replacement increases ϵ by 1.9

Let us now focus on obtaining corrections to the lowest energy level ϵ0. To deal with the

2
N
2 -fold degeneracy, we will apply Brillouin-Wigner perturbation theory [38] which we will

now review in the context of our perturbation problem.

We define the projection operator onto the degenerate subspace of energy ϵ0 by

P = 1⊗ |1
2
, 0, 1

2
, 0 · · · , 1

2
, 0⟩ ⟨1

2
, 0, 1

2
, 0 · · · , 1

2
, 0| . (5.3)

The Brillouin-Wigner perturbation theory starts with the observation that the eigenvalue

equation (h0+xV ) |ψ⟩ = E |ψ⟩ can be used to reconstruct |ψ⟩ from its projection onto the de-

generate subspace of energy ϵ0, provided that we know the eigenvalue E . The reconstruction
is given by10

|ψ⟩ = (1− xREV )−1P |ψ⟩ , RE = (E − h0)
−1(1− P ) , (5.4)

Using this, we can recast the eigenvalue problem as

P [ϵ0 + xV (1− xREV )−1]P |ψ⟩ = EP |ψ⟩ . (5.5)

In this presentation, we can solve for the projection P |ψ⟩ rather than for the full eigenvector

|ψ⟩. The eigenvalue E appears explicitly on the right and also on the left within RE , so we

must solve perturbatively in x for both E and P |ψ⟩. Once E and P |ψ⟩ are known to the

desired order in x, one can recover the eigenstate in the full Hilbert space by applying (5.4).

Depending on the details of the perturbation V , the initial degeneracy may be partially or

fully resolved at higher orders in x.

To proceed, we consider the power series ansatz

E = E (0) + xE (1) + x2E (2) + · · · , P |ψ⟩ = |ψ(0)⟩+ x |ψ(1)⟩+ x2 |ψ(2)⟩+ · · · . (5.6)

The projected operator in the eigenvalue equation (5.5) makes no reference to the gauge field

9The lowest level where we can replace an ℓn = 1/2 with ℓn = 3/2 is the fifth excited level.
10(5.4) can be derived as follows. We first act with 1−P on the eigenvalue equation and obtain (1−P )(E−

h0) |ψ⟩ = (1 − P )xV |ψ⟩. Making use of the fact that the operators 1 − P and E − h0 commute, we have
(E−h0)(1−P ) |ψ⟩ = (1−P )xV |ψ⟩. Multiplying both sides by (E−h0)−1, this gives (1−P ) |ψ⟩ = xREV |ψ⟩.
Separating out P |ψ⟩ on the LHS, we then have P |ψ⟩ = (1− xREV ) |ψ⟩. Lastly, multiplying both sides by
(1− xREV )−1 we obtain (5.4).
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configuration and can be viewed as an effective Hamiltonian for the factor Hqubits of the full

Hilbert space that describes the N/2 qubits. Indeed, we can write

P [ϵ0 + xV (1− xRV )−1]P = P
[
ϵ0 + xh(1) + x2h(2) + x3h(3) + x4h(4) +O(x5)

]
⊗ 1 , (5.7)

with the effective Hamiltonian given in the square bracket of (5.7), and

P (h(1) ⊗ 1) = PV P , P (h(2) ⊗ 1) = PV
1− P

E − h0
V P , etc. (5.8)

In (5.8), we postpone expanding E as in (5.6).

At first order, we need to determine PV P by projecting onto the ground states, acting

with V , and then projecting again onto the ground states. The projectors P and 1−P both

act on Hqubits as the identity, so the nontrivial action on the qubits comes only from V . Let

us act with PV P on the state |χ⟩ ⊗ |1
2
01
2
0 . . . 1

2
0⟩. Using the rules explained in Section 3.4,

the actions of the terms of the hopping operator are

(
− i

2
χA
2kU

AB
2k χB

2k+1

)
|χ⟩ ⊗ |. . . 0

ℓ2k

1
2
0 . . .⟩ = −3

4
(Zk |χ⟩)⊗ |. . . 01

2
0 . . .⟩ , (5.9a)

(
− i

2
χA
2k+1U

AB
2k+1χ

B
2k+2

)
1⊗ |. . . 1

2

ℓ2k+1

0 1
2
. . .⟩ =

√
3

4
(XkXk+1 |χ⟩)⊗ |. . . 1

2
11
2
. . .⟩ . (5.9b)

For the first order term, PV P , the second factor of P will annihilate the right hand side of

(5.9b), so only (5.9a) contributes, and we find

h(1) = −3

4

N/2−1∑
k=0

Zk . (5.10)

We can now proceed to compute the second order term PV 1−P
E−h0

V P . This time, after

acting with V P , it is only the right hand side of (5.9b) that survives the action of 1 − P .

We then have to get back to the ground state by applying the perturbation V again, which

means we have to act with the same odd hopping operator. From(
− i

2
χA
2k+1U

AB
2k+1χ

B
2k+2

)
1− P

E − h0

(
− i

2
χA
2k+1U

AB
2k+1χ

B
2k+2

)
|χ⟩ ⊗ |. . . 1

2
01
2
. . .⟩

=
3

16

1

E − ϵ1
|χ⟩ ⊗ |. . . 1

2
01
2
. . .⟩ ,

(5.11)
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we find in total

h(2) =
3N

32

1

E − ϵ1
1 . (5.12)

We can continue this program to higher orders. The third and fourth order terms are

h(3) =

−3(3N − 8)

128

N/2−1∑
k=0

Zk −
3

32

N/2−2∑
k=0

(−F)
δ
k,N2 −1XkXk+1

 1

(E − ϵ1)2
, (5.13)

h(4) =

 9

64

N/2−2∑
k=0

XkXk+1

( ∑
k′ ̸=k,k+1

Zk′

)
− 9

64
FXN/2−1X0

 ∑
k ̸=N/2−1,0

Zk

 1

(E − ϵ1)3

+
9N(N − 2)

512

1

(E − ϵ1)2(E − ϵ2)
+

9N

128

1

(E − ϵ1)3
(5.14)

+
9(3N − 16)

512

N/2−1∑
k=0

Zk

2

1

(E − ϵ1)3
+

3

32

N/2−1∑
k=0

ZkZk+1
1

(E − ϵ1)3
.

Note that the first-order term breaks the degeneracy of the ground state, but still leaves the

first excited state N
2
-fold degenerate. The second-order term does not break any degeneracies,

and so it is only at third-order when the first excited state becomes unique. Using (5.5),

(5.6), (5.7), and the expressions for h(i) above we can solve for the two lowest eigenvalues up

to fourth order:

E0 =
3N

16
− 3N

8
x− 3N

32
x2 +

3N

32
x3 − 51N

512
x4 +O(x5) , (5.15a)

E1 =
3N

16
− 3

8
x(N − 4)− 3N

32
x2 +

3(N − 6)

32
x3 − 3(17N − 64)

512
x4 +O(x5) . (5.15b)

The bare eigenvalues are extensive in the system size, but the gap to the lowest excitation

is an intensive quantity

δE ≡ E1 − E0 =
3

2
x− 9

16
x3 +

3

8
x4 +O(x5) . (5.16)

We can now extrapolate this result derived in the strong coupling limit x ≪ 1 to the

continuum limit x ≫ 1 using a Padé approximant. From (5.1), we see that the continuum

limit of the gap E1 − E0 = gYM√
x
δE is finite only when δE scales as ∼

√
x. This constraint

allows for several different approximation schemes. We found the most accurate result by
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applying a (0, 2) Padé approximant to
(
δE
x

)4
, giving

δE = x

((
δE
x

)4
)1/4

=
3x

2

(
1

1 + 3x2

2

)1/4

+O(x4) . (5.17)

This gives a continuum estimate for the energy gap of

E1 − E0 ≈ gYM

(
3

2

)3/4

≈ 1.355 gYM . (5.18)

This result agrees well with the lattice results of Section 6, along with the results of DLCQ

given in (6.6).

We can also estimate the vacuum expectation value of the fermion bilinear operator,

⟨tr ψ̄ψ⟩, using the strong-coupling expansion. In the continuum, we have

⟨tr ψ̄ψ⟩ = 1

L

∂E0

∂m

∣∣∣∣
m=0

(5.19)

On the lattice, this can be computed from the expectation value of the mass operator using

the identification

⟨tr ψ̄ψ⟩ = 1

aN
⟨0|Hmass|0⟩ , Hmass = − i

2

N−1∑
n=0

(−1)nχA
nU

AB
n χB

n+1 . (5.20)

To compute the expectation value ⟨0|Hmass|0⟩, we need the ground state in the full Hilbert

space, which can be computed using (5.4). To third order, we find

N−1 ⟨0|Hmass|0⟩ =
3

8
− 3

16
x+

3

32
x2 − 3

128
x3 +O(x4) . (5.21)

The identification (5.20) requires that N−1 ⟨0|Hmass|0⟩ ∼
√
x at large x if we are to have

a finite continuum limit. Hence, it is appropriate to approximate the sixth power of the

right hand side of (5.21) using a (0, 3) Padé approximant. Such an approximation gives an

estimate of ⟨tr ψ̄ψ⟩ ≈ −0.33gYM.

6 Numerical results for SU(2)

Here we use the formulation of Section 3.4 to explicitly calculate the low-lying spectrum

of the lattice Hamiltonian for the SU(2) theory. In Section 6.1, we show that we recover
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the expected energies for a pure SU(2) gauge theory on a circle when the adjoint fermion

mass is made large. In Section 6.2, we study the spectrum of the massless theory in detail,

showing good agreement with results obtained from DLCQ [16, 31] and with the strong

coupling expansions given in Section 5. Finally, in Section 6.3 we turn on the adjoint mass

and show further agreement with DLCQ in the trivial universe, along with new results for

the nontrivial universe.

For all the exact diagonalization results shown in this section, we use PETSc and SLEPc

[39–42].

6.1 Large mass limit

In the continuum theory in the m → ∞ limit, we expect the adjoint fermion to decouple,

leaving behind a pure SU(2) gauge theory. The energy levels for this theory on a circle of

length L are given by

Eℓ =
g2YML

2
ℓ(ℓ+ 1). (6.1)

In the p = 0 universe we have ℓ = 0, 1, . . ., and in the p = 1 universe we have ℓ = 1
2
, 3
2
, . . ..

Therefore, the energy gaps above the vacuum will be

∆En = En − E0 =
g2YML

2
n(n+ 1) (p = 0 universe), (6.2a)

∆En = En+ 1
2
− E 1

2
=
g2YML

2
n(n+ 2) (p = 1 universe), (6.2b)

where n = 0, 1, 2, . . ..

As explained in Section 4.3, the two universes of the Nc = 2 theory are connected by

the chiral symmetry transform V which acts on the Hamiltonian by flipping the sign of the

mass. If we restrict to the p = 0 universe and take m → ∞ then one will recover the

trivial spectrum (6.2a). On the other hand the chiral transformation V ensures that the

limit m→ −∞ will result in the non-trivial spectrum (6.2b).

In Figure 1, we show that this behavior is reproduced in our lattice theory. We take the

lattice spacing to be gYMa = 0.04 and use lattice sizes of N = 6, 8, 10, for a large range of

masses. We find that the energy gaps precisely reproduce the sequences in (6.2) up to the

level with spin 7
2
, which is related to the link representation cutoff of ℓmax = 4. For m > 0

we have the sequence for the trivial flux tube sector, and for m < 0 we have the sequence

for the nontrivial flux tube sector.

Note that the spin 7
2
level only has the correct continuum energy atm = −25gYM = −1/a.
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N = 6

N = 8

N = 10

-25 0 25
0
3

8

15

0
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6

12

Figure 1: For the adjoint mass in a range of large values, the lowest energy gaps reproduce those of a
pure SU(2) gauge theory, given in (6.2). The lattice spacing is fixed to gYMa = 0.04, and the energy
gaps are normalized by 1

2g
2
YML so we can compare lattices of sizes N = 6, 8, and 10. The maximum

link representation is ℓmax = 4, which allows us to see continuum energy levels corresponding to
representations up to spin 7

2 . When |m| = a−1, we can understand this behavior analytically as
coming from alternating links of the lattice, with the types of representations appearing on the
links determined by the sign of m (see Appendix D).

In fact, we can understand all of these states at |m| = a−1 via perturbation theory on the

lattice. This is discussed in Appendix D. Numerically, we find that the convergence away

from |m| = a−1 improves rapidly with increasing N and ℓmax.

6.2 Massless theory

We will now set m = 0 and aim to study the spectrum of the SU(2) gauge theory on a

circle of length L = Na. In Figure 2, we give the spectrum for N = 12 sites as a function

of the circle length gYML, for the p = 0 universe. (The spectrum of the p = 1 universe is

identical to that of the p = 0 universe, with bosons and fermions swapped.) We find that the

low-lying spectrum is fairly well-converged in N even on this small lattice, so that Figure 2

is representative of the large N spectrum.

The spectrum in Figure 2 can be understood analytically at small and large gYML. First,

in the limit gYML ≪ 1, the dynamics reduces to that of the gauge holonomy. In the con-

tinuum theory such an analysis was performed in [13] in the case where the fermions obey

anti-periodic boundary conditions and in [14] in the case of periodic boundary conditions.

In the case of periodic boundary conditions, one finds the spectrum of a harmonic oscillator
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Figure 2: The low-lying spectrum of the lattice Hamiltonian for m = 0 as a function of gYML, for
N = 12 sites with periodic boundary conditions. The spectrum on a small circle consists of equally
spaced levels of a harmonic oscillator with frequency ω = g√

π
, and these levels are marked with

black lines. The Padé approximant (5.17) to the strong coupling expansion for the lowest fermion
mass is plotted in green.

with frequency 1√
π
gYM. This equally-spaced harmonic oscillator energy levels are marked

with black lines in Figure 2.

In the limit gYML≫ 1, for fixed N , we can use the strong coupling expansion developed

in Section 5. The Padé approximant (5.17), gives the gap estimate

E1 − E0 ≈ gYM
3

2

(
1

3
2
+ g2YMa

2

)1/4

, (6.3)

which provides a very good approximation for the gap for all gYMa ≳ 0.5. In Figure 2, we

plot the estimate (6.3) using a dashed green line.

Between the small-circle and strong-coupling regimes, we see that the lowest fermionic

and bosonic excitations start developing approximate plateau regions. We found that these

plateau regions extend to larger and larger values of gYML as we increase N , as shown

in Figure 3a, and we believe that it is these regions that we should extrapolate to large

N in order to extract the infinite-volume continuum spectrum. For the lowest fermionic

excitation, a proxy for where the plateau occurs is the local maximum, while for the lowest

bosonic excitation, the analogous proxy would be a local minimum. The series of these local

maxima and minima for N = 6, 8, 10, 12 are marked with stars in Figure 3a. Extrapolating,
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(a) For a given lattice size N , we estimate the mass of the lowest fermion and boson for the p = 0
universe of the m = 0 theory using local extrema of their energies as functions of the circle length.
These extrema are marked with stars.

Lowest Fermion Lowest Boson

0.00 0.05 0.10 0.15 0.20

1.0

1.2

1.4

1.6

1.8

2.0

(b) The masses of the lowest fermion and boson for the p = 0 universe of the m = 0 theory
extrapolated to N → ∞ are as in (6.4) and (6.5) respectively.

Figure 3

we find

Mf/gYM ≈ 1.35 (6.4)

for the lowest fermion bound state mass in the continuum limit, and

Mb/gYM ≈ 1.83 (6.5)

for the lowest bosonic excitation (see Figure 3b). The lowest fermion and boson masses were
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N = 6

N = 8

N = 10

N = 12

0.0 0.5 1.0 1.5 2.0

0.

-0.1

-0.2

-0.3

-0.37

Figure 4: The vacuum expectation value of the mass operator tr ψ̄ψ in the p = 0 universe as a
function of the lattice spacing for N = 6, 8, 10, and 12. By extrapolating to gYMa → 0 from the
region converged in N , we obtain a continuum estimate of ⟨tr ψ̄ψ⟩/gYM ≈ −0.37.

also calculated using DLCQ in [16], and in these units were

M
(DLCQ)
f /gYM ≈ 1.35 , M

(DLCQ)
b /gYM ≈ 1.85 , (6.6)

so the two methods agree well.

One advantage of the equal-time quantization is that we have access to the vacuum state

and its properties. As an example, in Figure 4 we plot the chiral condensate ⟨tr ψ̄ψ⟩ in the

p = 0 universe as a function of the lattice spacing for several values of N . Extrapolating to

a→ 0 from the region where the results are converged in N , we obtain a continuum estimate

of ⟨tr ψ̄ψ⟩/gYM ≈ −0.37. For the p = 1 universe, we would find the opposite sign. This is

in relatively good agreement with the value of −0.33 obtained from the strong coupling

expansion in Section 5.

6.3 Massive theory

Once we turn on a mass m for the adjoint fermion, we can continue to extract the lowest

excitations above the vacuum by extrapolating plateaus like those of Figure 3a to N → ∞.

In Figure 5, we plot the mass of the lightest particle with fermion parity opposite that of
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Lattice (p = 0 universe)

Lattice (p = 1 universe)
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Figure 5: For adjoint masses −gYM ≤ m ≤ gYM, we compute the energy gap in both universes
using the same method as for the massless theory. For m ≥ 0 in the p = 0 universe, or m ≤ 0 in the
p = 1 universe, we can compare this with the lowest fermion mass computed using DLCQ in [16].
We obtain excellent agreement, except at small (m/gYM)2 where the mass dependence is known to
converge slowly in DLCQ. We also see the gap closing near m = mSUSY in the p = 1 universe, or
m = −mSUSY in the p = 0 universe.

the vacuum,11 extracted from the lattice spectra as a function of the adjoint mass for both

universes. For m ≥ 0 in the p = 0 universe, we see that there is good agreement with DLCQ

at m = 0 and at sufficiently large mass. For m ≤ 0, DLCQ instead agrees with the results

from the p = 1 universe. The discrepancy in either case near m = 0 can be attributed to

the light-cone Hamiltonian only depending on m2. Thus, when DLCQ is not completely

converged to its continuum limit, it will struggle to capture the linear behavior near m = 0

that is related to the non-vanishing expectation values of the mass operator.

We see in Figure 5 that the gap in the p = 1 universe closes at m/gYM = π−1/2 ≈ 0.56,

as expected from the presence of the massless Goldstino of spontaneously broken supersym-

metry [34].12 Likewise, the gap closes in the p = 0 universe at m/gYM = −π−1/2. At these

points, the IR sector should be described by one free massless Majorana fermion on the

worldsheet of the confining flux tube.

11With our relatively small lattices, we do not yet have sufficient precision to extract the lightest particle
with fermion parity equal to that of the vacuum.

12The discontinuity of the derivative is because the ground state becomes fermionic for m/gYM > π−1/2.
Had we plotted the energy difference between the lowest fermionic and bosonic states, there would be no
such discontinuity.
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7 Discussion

In this work, we introduced a new Hamiltonian lattice gauge theory model for adjoint QCD2

with gauge group SU(Nc). As we explained in Section 3, this lattice model uses staggered

Majorana fermions. The resulting lattice Hamiltonian is given by (3.3), and it should be

supplemented by the Gauss law constraint (3.5).

In Section 4, we analyzed the symmetries and the anomalies of this lattice model. We

found lattice analogs of the Z[1]
2 ⋊ (Z2)C × (Z2)F symmetries present for all m, and, for

m = 0, we also found a lattice analog of the (Z2)χ axial symmetry, which is represented

by translation by one lattice site. Interestingly, the lattice model exhibits analogs of the

mixed ’t Hooft anomalies of the continuum theory, and these mixed anomalies have various

implications on the spectrum both for m = 0 and for m ̸= 0. In recent literature, there have

been interesting investigations of lattice non-invertible symmetries [20,32]. We leave further

related studies of our lattice model for future work.

In Sections 5 and 6, we then studied the Nc = 2 theory in more detail, both analytically

in the strong coupling expansion and numerically using exact diagonalization. For m ≥ 0 in

the p = 0 universe, or for m ≤ 0 in the p = 1 universe, our results are in good agreement

with the DLCQ spectrum computed in [16]. The m > 0 spectrum that we find in the p = 1

universe is new, and it would be interesting to reproduce it using DLCQ. Its main feature

is that the gap closes at m = mSUSY as expected from the appearance of a massless particle

due to spontaneous supersymmetry breaking. As explained in Section 4, the spectrum of

the p = 1 universe for given m matches that of the p = 0 universe at −m (with bosons and

fermions swapped).

Stepping back, there has been renewed interest in the Hamiltonian formulation of lattice

gauge theory. One of the reasons is that, for theories in 1+1 dimensions, it is possible to apply

tensor network methods to achieve high numerical precision. Another reason is the possibility

of quantum simulations using specially designed experimental devices. Such simulators have

been constructed for the lattice one-flavor Schwinger model using, for example, trapped

ions [43]. This model contains one Dirac, or equivalently two Majorana, fermion degrees of

freedom per lattice site. The next-simplest model appears to be adjoint QCD2 with gauge

group SU(2), whose lattice implementation we constructed in this paper. This model is

also gapped and contains only three Majorana degrees of freedom per lattice site. While

in this paper we carried out exact diagonalizations of this model on a periodic chain, it

would be interesting to also study our model using tensor network methods. Such a study

would hopefully lead to significantly better numerical precision. We also hope that the
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relative simplicity of the SU(2) model can eventually allow an experimental construction of

a quantum simulator.

Furthermore, it is highly desirable to carry out a numerical study of our lattice model

with gauge group SU(3). Here, in the continuum treatment of the massless theory, there are

4 topological sectors [9, 14]. Two of them have zero triality; in our lattice model they are

related by a lattice translation by one site. The other two sectors have trialities 1 and 2;

they correspond to a flux tube wound around the circle in the two possible directions. On

a lattice, the ground states in these sectors are not degenerate with the ground state of the

zero triality sector. Therefore, unlike in the SU(2) model, the vanishing of the string tension

in the SU(3) theory with a massless adoint Majorana fermion [7, 9, 10] is not automatic in

our lattice model: it may require a careful numerical extrapolation to the large volume limit

and perhaps a fine tuning of the 4-fermion operators in the lattice Hamiltonian. In view of

having 8 Majorana fermions per lattice site, this model is certainly challenging numerically,

but we hope to carry out its initial studies in the future.
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A Quantum particle moving on a group manifold

A.1 Lagrangian and Hamiltonian

Consider a quantum particle moving on a group manifold G, with Lagrangian

L = − 1

g2
tr
[
U̇U−1U̇U−1

]
, (A.1)

where U is a group element. Suppose we parameterize U using angular coordinates θµ. Then

i(∂µU)U
−1 is a Lie-algebra-valued vector field on the group manifold, so it can be written

as a linear combination of the Lie algebra generators TA, with coefficients eAµ being frame
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vectors on the group manifold:

i(∂µU)U
−1 = eAµT

A , eAµ = 2 tr
[
TAi(∂µU)U

−1
]
. (A.2)

Similarly, iU−1∂µU is also a linear combination of the Lie algebra generators, with different

coefficients fA
µ , which form another set of frame vectors on the group manifold:

iU−1(∂µU) = fA
µ T

A , fA
µ = 2 tr

[
TAiU−1(∂µU)

]
. (A.3)

With the normalization tr(TATB) = δAB/2, one can then show that the two sets of frame

vectors are related to each other via the matrix UAB ≡ 2 tr(TAUTBU−1), in particular

eAµ = UABfB
µ , fA

µ = UBAeBµ . (A.4)

We can rewrite the Lagrangian in terms of the angles θµ as

L =
1

2g2
eAµ θ̇

µeAν θ̇
ν =

1

2g2
fA
µ θ̇

µfA
ν θ̇

ν . (A.5)

As usual, we can define the canonical momentum (the minus sign is for later convenience)

−πµ = ∂L
∂θ̇µ

= 1
g2
eAµ e

A
ν θ̇

ν = 1
g2
fA
µ f

A
ν θ̇

ν . The left-acting/right-acting canonical momentum

operators (which in our lattice setup become the left-acting/right-acting electric fields) are

defined by contracting πµ with the corresponding inverse frame vectors. In particular, we

write πµ = eAµL
A = fA

µ R
A, from which we can solve for LA and RA:

LA = ẽµAπµ , RA = f̃µAπµ , (A.6)

where ẽµA and f̃µA are the inverse frames obeying ẽµAeBµ = δAB and f̃µAfB
µ = δAB, respec-

tively. Because of (A.4), we also have

LA = UABRB , RA = UBALB , (A.7)

The Hamiltonian is then given by the standard formula H = ∂L
∂θ̇µ

θ̇µ − L, which gives

H =
g2

2
LALA =

g2

2
RARA . (A.8)
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Canonical quantization requires [−πµ, θν ] = 1
i
δνµ. Using (A.6), this implies the relations

[LA, U ] = TAU , [RA, U ] = UTA . (A.9)

A.2 Properties of the operators LA, RA, and UAB

From (A.9), the definition UAB = 2 tr(TAUTBU−1), as well as the algebra obeyed by the

generator

[TA, TB] = ifABCTC , (A.10)

we can derive the various commutation relations

[LA, LB] = −ifABCLC , [RA, RB] = ifABCRC ,

[LA, UBC ] = −ifABDUDC , [RA, UBC ] = ifACDUBD .
(A.11)

Note that while RA obey the same algebra as the generators, the LA obey it with an extra

minus sign.

For the operators UAB we also have the relations

UACUBC = δAB = UCAUCB , fCDEUADUBE = fABFUFC . (A.12)

These relations follow directly from the definition UAB = 2 tr(TAUTBU−1) as well as the

completeness relation XA = 2 tr(XTA) for any quantity in the adjoint representation.

Using (A.12), one can show that LA = UABRB is consistent with the commutation

relations (A.11), and moreover that the left-acting and right-acting generators commute:

[LA, RB] = 0 . (A.13)

A.3 Hilbert space for G = SU(2)

For a general group G, the Hilbert space consists of normalizable functions on the group

manifold, which, by the Peter-Weyl theorem, can be identified with the space of matrix

elements in all irreducible representations of the group. Let us focus on G = SU(2), where
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these are normalizable functions on the three-sphere. The Hilbert space splits as

H =
⊕
ℓ∈ Z+

2

V
(ℓ)
L ⊗ V

(ℓ)
R ,

(A.14)

where V (ℓ) denotes the 2ℓ+1-dimensional vector space corresponding to the spin-ℓ represen-

tation.

To construct the states explicitly, let |ℓ,m⟩ be the standard basis of simultaneous or-

thonormal eigenstates of TATA and T 3:

TATA |ℓ,m⟩ = ℓ(ℓ+ 1) |ℓ,m⟩ , T 3 |ℓ,m⟩ = m |ℓ,m⟩ . (A.15)

Note that for a general generator TA, which in the spin ℓ representation can be written as a

matrix TA
mm′ , we have13

TA |ℓ,m⟩ = TA
m′m |ℓ,m′⟩ . (A.16)

We can then consider the basis of functions on SU(2) to be

Ψℓ,mL,mR
(U) =

√
2ℓ+ 1

2π2
⟨ℓ,mL|U |ℓ,mR⟩ . (A.17)

It can be checked that these functions are orthonormal with respect to the Haar measure

dµ(U) on SU(2): ∫
dµ(U)Ψℓ′,m′

L,m
′
R
(U)∗Ψℓ,mL,mR

(U) = δℓℓ′δmLm
′
L
δmRm′

R
. (A.18)

Starting with πµΨℓ,mL,mR
(U) = Ψℓ,mL,mR

(i∂µU), we can show that the angular momentum

generators act as

LAΨℓ,mL,mR
(U) = Ψℓ,mL,mR

(TAU) , RAΨℓ,mL,mR
(U) = Ψℓ,mL,mR

(UTA) . (A.19)

Given (A.16), we then have

LAΨℓ,mL,mR
= TA

mLm
′
L
Ψℓ,m′

L,mR
, RAΨℓ,mL,mR

= TA
m′

RmR
Ψℓ,mL,m

′
R
. (A.20)

13If we write a general state in the spin-ℓ representation as ψ = am |ℓ,m⟩, then TAψ = TA
mm′am′ |ℓ,m⟩.

Note that the ordering of the indices of TA is swapped compared to (A.16).
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In particular, this relation with A = 3 shows that Ψℓ,mL,mR
are eigenstates of L3 and R3 with

eigenvalues mL and mR, respectively. Note that the relations (A.20) are consistent with the

commutation relations in the first line of (A.11).

B Decomposition of the spinor representation

In our lattice model for the SU(Nc) gauge theory coupled to Majorana adjoint fermions on

N sites, the Hilbert space of the fermions before imposing gauge invariance transforms in the

spinor representation of so(N(N2
c − 1)). This representation is reducible into the sum of two

half-spinor representations, which corresponds to the decomposition of the Hilbert space into

bosonic and fermionic states, as explained in Section 3.3. Here we will ignore the reducibility

of the spinor representation of so(M) when M is even, and denote this representation by

spin(M). We denote the defining vector representation of so(M) by vec(M), and the adjoint

representation of su(M) by adj(M).

To construct gauge-invariant states, we need to understand how spin(N(N2
c−1)) branches

under

su(Nc)
N ↪→ so(N2

c − 1)N ↪→ so(N(N2
c − 1)) . (B.1)

The embedding is fixed by requiring that vec(N2
c − 1) branches into adj(Nc), and that

vec(N(N2
c −1)) 7→ (vec(N2

c −1), 1, . . . , 1)⊕ (1,vec(N2
c −1), . . . , 1)⊕· · ·⊕ (1, 1, . . . ,vec(N2

c −1)) .

(B.2)

We can start by understanding how spin(N(N2
c − 1)) branches under the embedding

so(N2
c − 1)N ↪→ so(N(N2

c − 1)). In an orthogonal basis, the weights of vec(M) are(
0, 0, . . . ,±1, . . . , 0︸ ︷︷ ︸

⌊M/2⌋

)
, (B.3)

and additionally (0, . . . , 0) if M is odd. The condition (B.2) tells us how to map the N(N2
c−1)
2

weights of so(N(N2
c − 1)) into the N⌊N2

c−1
2

⌋ weights of so(N2
c − 1)N . The projection matrix

takes the form

P1 =
(
1N⌊(N2

c−1)/2⌋ 0N⌊(N2
c−1)/2⌋×N/2

)
(Nc even), P1 = 1N(N2

c−1)/2 (Nc odd) , (B.4)

where 1d is the d× d identity matrix and 0m×n is the m× n zero matrix.
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In the same basis, the weights of spin(M) are(
±1

2
,±1

2
, . . . ,±1

2︸ ︷︷ ︸
⌊M/2⌋

)
. (B.5)

Using (B.4), we find

spin(N(N2
c − 1)) 7→

2N/2 Nc even

1 Nc odd

 · spin(N2
c − 1)N . (B.6)

Now we can work out the branching of spin(N2
c − 1) under the embedding su(Nc) ↪→

so(N2
c −1). Since the vector of so(N2

c −1) has to branch into adj(Nc), the projection matrix

can be taken as

P2 =
(
α⃗1 α⃗2 · · · α⃗Nc(Nc−1)/2 0(Nc−1)×⌊(Nc−1)/2⌋

)
, (B.7)

where the α⃗i are positive roots of su(Nc) in the orthogonal basis. Using this projection, we

find that the weights of spin(N2
c − 1) map to{

ρ⃗, ρ⃗− α⃗1, ρ⃗− α⃗2, . . . , ρ⃗−
∑
i

α⃗i

}
, (B.8)

where ρ⃗ = 1
2

∑
i α⃗i is the Weyl vector of su(Nc), each with multiplicity 2⌊(Nc−1)/2⌋ coming

from the zero columns in (B.7). Not counting this multiplicity, the set of weights in (B.8) are

precisely those of the representation R defined in (3.14) whose highest weight is ρ⃗. (One can

check that this representation has dimension 2Nc(Nc−1)/2 and there are precisely this many

weights in (B.8). Thus, under the embedding su(Nc) ↪→ so(N2
c − 1), we have

spin(N2
c − 1) 7→ 2⌊(Nc−1)/2⌋R . (B.9)

Combining (B.6) with (B.9), we find

spin(N(N2
c − 1)) 7→ 2N(Nc−1)/2 (R,R, . . . ,R) , (B.10)

as in (3.13).
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C The action of On on gauge-invariant states

In this Appendix we explain the derivation of (3.28), namely how the operator On ≡
SA
n U

AB
n SB

n+1 defined in (3.27a) acts on the gauge-invariant states (3.24). Since On only

involves the states on sites n and n+ 1, let us strip out the factors from (3.24) that do not

involve mn or mn+1, and define

ψ
ℓ(n−1)R,ℓn,ℓ(n+1)L
m(n−1)R,m(n+1)L

≡
∑

mn,mn+1,
mnL,mnR

| 1
2
,mn⟩ | 12 ,mn+1⟩C

ℓn−1
1
2
ℓn

m(n−1)RmnmnLC
ℓn

1
2
ℓn+1

mnRmn+1m(n+1)L

|ℓn,mnL,mnR⟩√
2ℓn + 1

.

(C.1)

In other words, we only impose the Gauss law on sites n and n+1 and consider the quantum

numbers m(n+1)R and m(n−1)L as fixed. The action of On on (3.24) can be straightforwardly

inferred from its action on this state.

In order to declutter (C.1), let us use the simplified notation

mn → m1 , mn+1 → m2

(ℓn−1,m(n−1)R) → (ℓl,ml) ,

(ℓn,mnL,mnR) → (ℓ,mL,mR) ,

(ℓn+1,m(n+1)L) → (ℓr,mr) ,

Un → U , On → O = SA
1 U

ABSB
2 .

(C.2)

Thus, we consider the state

ψℓl,ℓ,ℓr
ml,mr

≡
∑

m1,m2,
mL,mR

| 1
2
,m1⟩ | 12 ,m2⟩C

ℓl
1
2
ℓ

mlm1mLC
ℓ 1
2
ℓr

mRm2mr

|ℓ,mL,mR⟩√
2ℓ+ 1

. (C.3)

Writing the Clebsch-Gordan coefficients in (C.3) as matrix elements, passing to the po-

sition representation for the bosonic state, and defining ψℓl,ℓ,ℓr
mr

≡
∑

ml
ψℓl,ℓ,ℓr
ml,mr

|ℓl,ml⟩, we have

ψℓl,ℓ,ℓr
mr

(U) ≡ 1√
2π2

∑
m1,m2,

ml,mL,mR

|ℓl,ml⟩ | 12 ,m1⟩ ⟨ℓl,ml, 1
2
,m1|ℓ,mL⟩

× ⟨ℓ,mL|U |ℓ,mR⟩ | 12 ,m2⟩ ⟨ℓ,mR, 1
2
,m2|ℓr,mr⟩ .

(C.4)

To simplify the following analysis, we can pass to a new basis |ℓ,mR⟩ → U−1 |ℓ,mR⟩,
| 1
2
,m2⟩ → U−1 | 1

2
,m2⟩, |ℓr,mr⟩ → U−1 |ℓr,mr⟩, where U−1 acts in the appropriate SU(2)
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representation. After this change of basis, we have ⟨ℓ,mL|1|ℓ,mR⟩ = δmLmR
, so (denoting

mL = mR = m)

ψℓl,ℓ,ℓr
mr

≡ 1√
2π2

∑
m1,m2,
ml,m

|ℓl,ml⟩ | 12 ,m1⟩ ⟨ℓl,ml, 1
2
,m1|ℓ,m⟩ | 1

2
,m2⟩ ⟨ℓ,m, 1

2
,m2|ℓr,mr⟩ . (C.5)

The operator O in (C.2) whose action we want to determine simplifies to O = SA
1 S

A
2 .

The equation (C.5) has the manifest structure of addition of three angular momenta, for

which (ℓl ⊗ 1
2
) ⊗ 1

2
→ ℓ ⊗ 1

2
→ ℓr. In other words, denoting by J⃗l, J⃗1, J⃗2, J⃗ , J⃗r the angular

momentum operators acting on the states with magnetic quantum numbers ml, m1, m2, m,

and mr, respectively, we have

J⃗ = J⃗l + J⃗1 , J⃗r = J⃗ + J⃗2 . (C.6)

In standard notation, (C.5) can also be written as

ψℓl,ℓ,ℓr
mr

≡ 1√
2π2

|((ℓl 12)ℓ 1
2
) ℓrmr⟩ (C.7)

and we would like to determine the action of the operator O = J⃗1 · J⃗2. Since O = 1
2
(J2

12 −
J2
1 − J2

2 ) where J⃗12 = J⃗1 + J⃗2, there is another way of writing the state ψmr in which the

action of O is trivial, and where we first multiply together the spin-1/2 states into states of

angular momentum s: ℓl ⊗ ( 1
2
⊗ 1

2
) → ℓl ⊗ s→ ℓr:

ψℓl,ℓ,ℓr
mr

=
1√
2π2

∑
s=0,1

√
(2s+ 1)(2ℓ+ 1)W (ℓl 12ℓr

1
2
; ℓs) |(ℓl, ( 1

2
1
2
)s) ℓrmr⟩ (C.8)

where W are Racah coefficients. Acting with O on each term then gives a factor of
1
2

(
s(s+ 1)− 3

2

)
, so in total we have

Oψℓl,ℓ,ℓr
mr

=
∑
ℓ′

f(ℓl, ℓf ; ℓ
′, ℓ)ψℓl,ℓ

′,ℓr
mr

, (C.9)

with

f(ℓl, ℓr; ℓ
′, ℓ) =

∑
s=0,1

(2s+ 1)
√
(2ℓ+ 1)(2ℓ′ + 1)

1

2

[
s(s+ 1)− 3

2

]
W (ℓl 12ℓr

1
2
; ℓs)W (ℓl 12ℓr

1
2
; ℓ′s) .

(C.10)
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Note that for s = 0, 1, we have 1
2
(2s+1)

[
s(s+ 1)− 3

2

]
= (−1)s+1 3

4
. In terms of 6j-symbols,

the equation above can also be written as

f(ℓl, ℓr; ℓ
′, ℓ) =

∑
s=0,1

3

4
(−1)2ℓl+2ℓr+s+1

√
(2ℓ+ 1)(2ℓ′ + 1)

{
ℓl 1

2
ℓ

1
2

ℓr s

}{
ℓl 1

2
ℓ′

1
2

ℓr s

}
. (C.11)

Note that 2ℓl must have the same parity as 2ℓr, so (−1)2ℓl+2ℓr = 1. Moreover, we can

insert inside the sum in (C.11) the identity

1 = 2(2s+ 1)

{
1
2

1
2

s
1
2

1
2

1

}
. (C.12)

Then, using an identity that relates a sum over products of three 6j-symbols to a single

product of two 6j-symbols, we can show that

f(ℓl, ℓr; ℓ
′, ℓ) = (−1)ℓl+ℓ+ℓ′+ℓr

3

2

√
(2ℓ+ 1)(2ℓ′ + 1)

{
1
2

1
2

1

ℓ′ ℓ ℓl

}{
1
2

1
2

1

ℓ′ ℓ ℓr

}
. (C.13)

This is the expression for f that should be substituted in (3.28) in the main text.

D Large mass limit on the lattice

We will now explain how the large mass limit m≫ gYM considered in section 6.1 can also be

understood analytically in the lattice model, if we simultaneously approach the continuum

and heavy fermion limit as a−1 = |m| ≫ gYM with L = aN fixed. Even for finite a, setting

a−1 = |m| offers a significant simplification in the lattice Hamiltonian (3.3), because either

the odd or even hopping terms cancel depending on the sign of m.

We can begin with a positive mass m = a−1. The Hamiltonian reduces to

H = a−1

−iN/2−1∑
k=0

χA
2kU

AB
2k χB

2n+1 +
(gYMa)

2

2

N∑
n=0

LA
nL

A
n

 ≡ a−1[Weven + (gYMa)
2Wgauge] .

(D.1)

In the limit a→ 0, we can treat the dimensionless gauge kinetic termWgauge as a perturbation

of the sum of the fermion kinetic and mass terms, denoted Weven.

Due to the cancellation between the fermion kinetic and mass terms for m = a−1, the
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degenerate ground states of Weven can be determined exactly. Writing out Weven using the

basis (3.21), we find N
2
terms

Weven = 2

N/2−1∑
k=0

Zk ⊗ SA
2kU

AB
2k SB

2k+1 . (D.2)

As detailed in Appendix C, we can effectively set UAB
2k = δAB which leaves a simple Hamil-

tonian of decoupled terms 2Zk ⊗ SA
2kS

A
2k+1 on every even link. The factor SA

2kS
A
2k+1 has

eigenvalues −3
4
or 1

4
depending on whether the spin-1

2
s are put in a singlet or triplet configu-

ration. Thus, the ground states will have the SU(2) spins arranged pairwise in singlets, and

all qubits in the sk = +1 state.

This ground state space is infinitely degenerate because we also have to include the

representations on the links. If we fix the representation on one of the odd links to ℓ ∈
Z/2, then the representations on all odd links are ℓ due to the Gauss law, and hence the

representations on even links are ℓ ± 1
2
. To find the explicit form of the state, we take the

2× 2 Hamiltonian corresponding to the action of SA
2kU

AB
2k SB

2k+1 on an even link in the basis

{|. . . , ℓ, ℓ+ 1
2
, ℓ, . . .⟩ , |. . . , ℓ, ℓ− 1

2
, ℓ, . . .⟩}:

SA
2kU

AB
2k SB

2k+1 =

− 2ℓ+3
4(2ℓ+1)

√
ℓ(ℓ+1)

2ℓ+1√
ℓ(ℓ+1)

2ℓ+1
− 2ℓ−1

4(2ℓ+1)

 , (D.3)

which follows from the matrix elements derived in Appendix C. The eigenvector with eigen-

value −3
4
is

SA
2kS

A
2k+1

(
cℓ,+

cℓ,−

)
= −3

4

(
cℓ,+

cℓ,−

)
, cℓ,+ = −

√
1 + ℓ

1 + 2ℓ
, cℓ,− =

√
ℓ

1 + ℓ
. (D.4)

Using these coefficients, we can write down the full set of degenerate ground states parame-

terized by the representation ℓ on the odd link as

|ℓ⟩ =
∑

mn=± 1
2

c
N
4
+
∑

n mn

ℓ,+ c
N
4
−
∑

n mn

ℓ,− |ℓ+m0, ℓ, . . . , ℓ, ℓ+mN/2−1⟩ ⊗ |1, . . . , 1⟩ . (D.5)

These states all have unperturbed energies of

Weven |ℓ⟩ = −3N

4
|ℓ⟩ . (D.6)
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The matrix elements of the perturbing term are simply

⟨ℓ|Wgauge|ℓ′⟩ = δℓ,ℓ′
N

2

[
ℓ(ℓ+ 1) +

3

8

]
. (D.7)

from which we can read off the perturbed spectrum. After restoring the factor of g2YMa, this

gives the spectrum (6.1) of the pure SU(2) theory. Since the ground states are parametrized

by odd link representations ℓ ∈ Z, this gives the gaps (6.2a).

If we instead take m = −a−1, then we have a very similar problem, except the singlet

pairs are on sites (2n − 1, 2n) and the degenerate ground state space is parametrized by a

representation ℓ ∈ Z+ 1
2
on an even link. We clearly recover the same splitting (D.7), except

with ℓ ∈ Z+ 1
2
, which leads to (6.2b).
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