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Abstract
Extracting fine-grained experimental findings
from literature can provide dramatic utility for
scientific applications. Prior work has devel-
oped annotation schemas and datasets for lim-
ited aspects of this problem, failing to capture
the real-world complexity and nuance required.
Focusing on biomedicine, this work presents
CARE—a new IE dataset for the task of ex-
tracting clinical findings. We develop a new
annotation schema capturing fine-grained find-
ings as n-ary relations between entities and at-
tributes, which unifies phenomena challenging
for current IE systems such as discontinuous en-
tity spans, nested relations, variable arity n-ary
relations and numeric results in a single schema.
We collect extensive annotations for 700 ab-
stracts from two sources: clinical trials and
case reports. We also demonstrate the general-
izability of our schema to the computer science
and materials science domains. We benchmark
state-of-the-art IE systems on CARE, showing
that even models such as GPT4 struggle. We
release our resources1 to advance research on
extracting and aggregating literature findings.

1 Introduction

It is surely a great criticism of our pro-
fession that we have not organised a
critical summary, by specialty or sub-
specialty, adapted periodically, of all
relevant randomised controlled trials.
(Archie Cochrane, 1979)

Though this critique focused on clinical trials,
the statement arguably applies to much of sci-
ence today. There is tremendous potential util-
ity in extracting, structuring and aggregating fine-
grained information about experimental findings
and the conditions under which they were achieved,
across scientific studies. Once extracted and aggre-
gated, scientific findings can power many critical

1CARE is available at https://github.com/allenai/
CARE

ABSTRACT

A therapeutic   trial with verapamil… 12 patients admitted to our coronary 
care unit… oral verapamil 480 mg/day and placebo were administered 
alternately during 4 randomised 48-hour periods ... Transient ischaemic 
attacks were documented... number of attacks during 2 placebo periods 

were 123 , and 130 , and 31 and 23 during the 2 treatment periods ( P less 
than 0.006 and less than 0.003 ) . 

RELATIONS

NUMERICFINDING: P less than 0.006

NUMERICFINDING: 123NUMERICFINDING: 31

MEASUREMENT: ...attacksPOPULATION: 12 patients

TEMPORAL: 48-hour periods

DOSAGE: 480 mg/dayROUTE: oral

TREATMENT: placeboTREATMENT: ...verapamil..

AttributeOf
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(4-ary
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(3-ary nested
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Figure 1: A partial example of entity, attribute and rela-
tion annotation using our schema for a clinical trial.

applications such as producing literature reviews
(DeYoung et al., 2021), supporting evidence-based
decision-making (Naik et al., 2022), and generating
new hypotheses (Wang et al., 2023).

While there have been efforts on building re-
sources and tools to capture findings in various do-
mains such as clinical trials (Lehman et al., 2019),
computer science (Jain et al., 2020) and social
and behavioral sciences (Magnusson and Fried-
man, 2021)—a major obstacle has been creating
a representation that is expressive enough to cap-
ture complex and nuanced information about find-
ings. We propose a new representation schema
that makes important progress in capturing the real-
world complexity of scientific findings in papers,
and use it to build a high-quality annotated dataset
focusing on biomedical (clinical) findings. Our
schema represents fine-grained information about
experimental findings and conditions as n-ary rela-
tions between entities and attributes, and includes
several structural complexities such as discontinu-
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ous span annotation, variable arity in relations and
nestedness in relations. These aspects have been
studied individually in previous datasets (Karimi
et al., 2015; Tiktinsky et al., 2022), but our schema
is the first to unify them. Our dataset also captures
numeric findings in addition to their interpretation
(e.g., significance, utility, etc.); prior datasets typi-
cally focus solely on the latter (e.g., Lehman et al.
(2019) captures increases/decreases in outcomes
but not their magnitudes).

Though these factors make our annotation
schema more complex than prior work, the addi-
tional nuance it affords can power several high-
impact downstream use cases. For instance, the pro-
cess of conducting a systematic review2 includes
extracting data about specific outcomes from a
large number of relevant studies. Unlike prior
schemas which only capture interpretation and not
precise numeric outcomes, extractors trained on
our schema can extract relevant data to assist the
review process. Moreover, fine-grained popula-
tion and treatment details captured by our schema
makes it capable of answering highly complex clin-
ical questions (e.g., “Does vaccination significantly
improve mortality outcomes for female patients
over 65 who required ventilation?”). Therefore,
models trained on our schema can assist physicians
in developing more personalized treatment plans,
especially for patients with multiple comorbidities
or health conditions. Our schema can also help with
the development and exploration of richer clinical
hypotheses due to its additional granularity.

To build our dataset, named CARE (Clinical
Aggregation-oriented Result Extraction), we col-
lect extensive annotations for 700 abstracts (clinical
trials and case reports). We also conduct annota-
tion studies demonstrating that our schema gener-
alizes to computer science and materials science,
using minor updates based on analogies between
aspects across experimental domains (e.g., popula-
tions/interventions → tasks/methods in CS). This
reflects the expressive power of our schema to
generalize across domains while capturing gran-
ular and useful information, making it a strong
"backbone schema" for research efforts on result-
oriented scientific IE.

We achieve good agreement scores (0.74-0.78
partial F1) comparable to prior work that used sim-
pler schemas that are easier to annotate (Luan et al.,

2https://training.cochrane.org/handbook/
current

2018; Nye et al., 2018), and at the same time our
resulting dataset is larger in size than previous cor-
pora. Our final dataset annotation is extremely rich;
at 16.23 relations per abstract, our relation den-
sity is nearly 4x that of prior work on annotating
findings from clinical trials (Lehman et al., 2019).

We evaluate a wide range of IE models on our
dataset, including both extractive systems and gen-
erative LLMs. Given the high annotation burden,
we test generative LLMs in both fully supervised
as well as zero-shot and few-shot settings. Our
results demonstrate the difficulty of our dataset,
with even SOTA models such as GPT4 struggling
to accurately extract clinical findings. As a highly
challenging new dataset designed to be reflective
of real-world nuance and informational needs, we
hope CARE3 is an important resource for the sci-
entific NLP and IE research community to pursue.

2 Related Work

2.1 Information Extraction from Scientific
Literature

Much prior work has focused on information ex-
traction from scientific papers (Luan et al., 2018;
Jain et al., 2020), including biomedical literature
(see (Luo et al., 2022a) for a detailed summary).
Most relevant to our goal in this work is prior re-
search on extracting findings or results from sci-
entific literature, which has only explored limited
aspects of this problem.

Gábor et al. (2018) and Luan et al. (2018) an-
notate associative relations between entities be-
ing compared or producing a result, as part of
their broader goal of developing IE resources for
computer science, but do not capture any nuance
(e.g., directionality, causality, etc. of results). Con-
versely, Magnusson and Friedman (2021) develop a
schema focused solely on capturing associations be-
tween experimental variables and evidence. How-
ever, their focus on sentence-level annotation from
scientific claims limits how much additional nu-
ance about experimental setting can be captured.

Some prior efforts have also explored result ex-
traction from biomedical literature. The EBM-NLP
(Nye et al., 2018) and Evidence Inference (Lehman
et al., 2019) corpora contain annotations for ex-
perimental findings from clinical trials, following
the well-established PICO (participant, interven-
tion, comparator, outcome) framework (Richard-
son et al., 1995). Sanchez-Graillet et al. (2022) also

3https://github.com/allenai/CARE
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Type EBM CTKG Example

Population ✓ ✓ This study compared rizatriptan 5 mg and placebo in 1268 outpatients treating a
single migraine attack

Subpopulation ✓ ✓ We found low-certainty evidence of little or no difference in delirium (RR 1.06,
95% CI 0.55 to 2.06; 2 studies, 800 participants)

Treatment ✓ ✓ Dialysate magnesium was 0.375 mM/L for the hemodialysis
Measurement ✓ ✓ Headache relief rates after rizatriptan 10 mg were higher
Temporal ✗ ✓ After a 48-hour run-in period , oral verapamil 480 mg/day and placebo were

administered
NumericFinding ✗ ✓ The number of attacks during treatment periods were 31 and 23
Qualifier ✗ ✗ Pindolol and metoprolol lowered blood pressure to the same extent

Table 1: Examples of entity types in our schema. EBM and CTKG columns indicate whether these entity types are
present in the EBM-NLP and CTKG schemas respectively. EBM-NLP uses IE to extract information according to
its schema, while CTKG is a database schema not based on IE.

develop a PICO-inspired schema-based annotation
format for diabetes and glaucoma trials. Chen et al.
(2022) focuses on aggregating findings, which are
already manually organized in structured format in
databases such as AACT (Aggregate Analysis of
ClinicalTrials.gov) (Tasneem et al., 2012). How-
ever, these efforts are tailored to clinical trials and
do not translate easily to other domains. Finally,
Luo et al. (2022a) conducted novelty annotation for
relations, indicating whether they were presented
as new observations; however they did not focus
on experimental findings.

In contrast, we develop a representation schema
expressive enough to capture fine-grained experi-
mental findings, while generalizing across scien-
tific domains. Our schema also contains phenom-
ena challenging for SOTA IE models (§3.2).

2.2 Extracting Numeric Information

Another unique aspect of our schema is our focus
on capturing numeric information from experimen-
tal findings and setup, which is understudied. Some
prior work on open IE has explored extraction and
linking of numeric spans (Madaan et al., 2016;
Saha et al., 2017), including linking to implied en-
tities (Elazar and Goldberg, 2019) (e.g., “it’s worth
two million” can be linked to currency). However,
these models broadly focused on sentence-level
extraction and did not evaluate on scientific text.

Within the scientific domain, some studies have
focused on numeric information extraction from
biomedical/clinical text. Kang and Kayaalp (2013)
and Claveau et al. (2017) extract numeric spans
from FDA-released descision summaries and clini-
cal trial eligibility criteria respectively. EBM-NLP
(Nye et al., 2018) annotates some categories of
numeric information associated with cohorts partic-

Type EBM CTKG Example

Age ✓ ✗ for those age 60-67
years

Sex ✓ ✗ 210 females
Size ✓ ✓ 12 patients
Condition ✓ ✓ patients getting

hemodialysis
Demographic ✗ ✗ A 40’s Japanese

man

Route ✗ ✗ oral verapamil
Dosage ✗ ✗ verapamil 480

mg/day
Strength ✗ ✗ rizatriptan 5 mg
Duration ✗ ✗ for 4 weeks

Table 2: Examples of attribute types in our schema.
EBM and CTKG columns indicate whether these types
are present in the EBM-NLP and CTKG schemas.

ipating in a clinical trial, but ignores trial outcomes
and findings. Among non-medical scientific do-
mains, numeric span extraction work has mainly
focused on extraction from tables (Hou et al., 2019).
None of these studies focus extensively on linking
numeric spans with entities that can help in inter-
preting this information, which is key to our work.

3 Annotation Schema

We develop a new annotation schema to represent
fine-grained clinical findings present in biomedical
abstracts, and later demonstrate its broader applica-
bility to domains beyond biomedicine (§6.2). Our
schema captures this knowledge via three main
elements, commonly used in IE tasks:
1. Entities involved in a study, which are spans of
text, either contiguous or non-contiguous, belong-
ing to one of the seven types listed in Table 1.
2. Attributes associated with entities, which are
also contiguous or non-contiguous spans of text,
belonging to one of the nine types listed in Table 2.
The first five attribute types are associated with



Type Arity EI CTKG Example

AttributeOf N-ary ✗ ✗ (Subpopulation: 144 had the U-type method, Size: 144)
SubpopulationOf N-ary ✗ ✗ (Population: 285 women, Subpopulation: 144 had the U-type method,

Subpopulation: 141 had the H-type method)
TreatmentOf Binary ✗ ✓ (Subpopulation: 144 had the U-type method, Treatment: U-type method)
Result N-ary ✓ ✓ (Subpopulation: 144 had the U-type method, Measurement: objective cure

rates, NumericF inding: 87.5%)

Table 3: Examples of relation types in our schema. EI and CTKG columns indicate whether these relation types are
present in the EI and CTKG schemas respectively. While the EI and CTKG datasets contain 4-ary and binary result
relations respectively, our n-ary schema allows fine-grained information to be captured more flexibly.

population and subpopulation entities, while the
remaining four types are associated with treatment
entities. Other entity types do not have any associ-
ated attributes.
3. N-ary Relations linking together various enti-
ties and attributes, where N (relation arity) is vari-
able and nesting is allowed. A relation is an n-tuple,
where each element can be an entity, attribute or
another n-ary relation. Relations are categorized
into four types listed in Table 3.

3.1 Comparison to Existing Clinical Schemas
Prior work such as EBM-NLP (Nye et al., 2018)
and Evidence Inference (Lehman et al., 2019; DeY-
oung et al., 2020) has focused on developing IE
schemas to represent clinical knowledge appearing
in the literature in a structured format. In addition,
work such as CTKG (Chen et al., 2022) outside the
NLP/IE sphere has built schema for representing
clinical information in databases. However, these
schemas suffer from a few shortcomings: (i) most
are designed for clinical trials; their applicability to
other types of biomedical literature is untested, (ii)
focus on a small set of broad entity types, which
leaves out fine-grained details, (iii) follow strict
relation formats, which makes it hard to capture ad-
ditional nuance that might be useful for interpreting
findings.

Our schema makes several enhancements to
tackle these issues. First, it is extensible to other
categories of biomedical literature beyond clinical
trials, and we demonstrate this by applying our
schema to case reports. Second, our schema cap-
tures more fine-grained information about various
entities than prior work via attributes (see Table 2).
Third, allowing for variable arity and nesting in
relation annotation provides the flexibility which
makes our schema capable of representing both
atomic findings (e.g., value of primary outcome
observed for a given treatment) as well as compos-
ite findings (e.g., outcome improvement observed

for treatment vs control groups). Tables 1, 2 and 3
provide a more detailed comparison of our schema
with EBM-NLP, EI and CTKG.

3.2 Annotation Complexity
In addition to using an expanded set of entity, at-
tribute and relation types, our annotation schema
supports the following phenomena (also illustrated
in Figure 1), unifying them all in a single dataset:
Discontinuous spans: Biomedical abstracts often
present multiple entities as conjunctive phrases or
lists of items, so we allow discontinuous span anno-
tation to capture every entity. For example, given
the phrase “maximal diameters and volumes”, our
scheme captures two measurement entities: “maxi-
mal diameters” and “maximal volumes”, with the
latter being a discontinuous span.
Nested/overlapping spans: Attributes, as defined
in our annotation scheme, are often present within
an entity span or overlap with an entity span. This
motivates our decision to allow nested and overlap-
ping spans to be annotated.
Variable arity in relations: Owing to variation
in clinical studies, findings are often described in
a wide range of formats (e.g., outcome for a sin-
gle population, outcome for a pair of populations,
outcome for a single population at different time
periods, etc.). This diversity motivated our choice
of variable arity for relation annotation, similar to
Tiktinsky et al. (2022).
Nested relations: In addition to outcomes for in-
dividual populations/groups, clinical studies often
present comparative findings and analyses, such
as improvement on an outcome given a pair of in-
terventions. Our scheme allows for annotation of
nested relations to link these higher-order observa-
tions with their associated atomic findings.
Our complete annotation guidelines can be found at
https://github.com/allenai/CARE. Figure 1
presents partial entity, attribute and relation annota-
tions for an example clinical trial abstract.

https://github.com/allenai/CARE


Category Exact F1 Partial F1

Entity 0.5764 0.7578
Attribute 0.6174 0.7801
Relation 0.4209 0.7414

Table 4: Final inter-annotator agreement scores on a
sample of 28 abstracts, measured during full-scale data
annotation.

4 Dataset Collection

Annotation Tool: We use TeamTat4 (Islamaj et al.,
2020), a web-based tool for team annotation since
it allows for n-ary and nested relation annotation, a
core component of our schema.

Annotator Background: We recruit two in-house
annotators5 with backgrounds in data analytics and
data science, both having extensive experience in
reading and annotating scientific papers. One of
our annotators has a background in biology. Both
annotators went through several pilot rounds to
gain familiarity with our task and schema. Addi-
tionally, we used their feedback and insights from
pilots to solidify our schema design (see §4.1). We
also solicited feedback from two medical students
and an MD to validate our final schema.

Data Sources: CARE covers two categories of
biomedical literature: (i) clinical trials, and (ii)
case reports. Clinical trials are research studies that
test a medical, surgical, or behavioral intervention
in people to determine whether a new form of treat-
ment or prevention or a new diagnostic device is
effective. Case reports are detailed reports of the
symptoms, signs, diagnosis, treatment, and follow-
up of an individual patient, usually motivated by
unusual or novel occurrences. We sample clini-
cal trials from the EBM-NLP (Nye et al., 2018)
dataset, which consists of 4993 abstracts annotated
with PICO spans, only retaining abstracts contain-
ing at least one number (4685 in total). To sample
case reports, we extract all reports with at least one
number in the abstract from PubMed (907,862 in
total) and randomly sample from this pool. We sam-
ple 350 abstracts from each source, resulting in our
final dataset size of 700 abstracts, which is slightly
larger than other prior corpora that perform fine-
grained annotation (§ 4.3). Further characteristics
of our abstract sample are detailed in Appendix C.

4https://www.teamtat.org
5included as co-authors on this paper

Metric Train Dev Test

#Docs 500 100 100
#Tokens 135,363 27,120 25,219
#Entities 12022 2367 2286
#Attributes 3992 804 762
#Relations 8205 1594 1560

Table 5: Statistics for final collected dataset.

4.1 Annotation Pilots

We conducted three pilot rounds with the follow-
ing goals: (i) training annotators to apply our
schema, (ii) evaluating agreement, and (iii) assess-
ing whether our schema captures clinical knowl-
edge of interest. Annotators worked on a fresh set
of 5-10 abstracts per round, followed by agreement
computation and disagreement discussion. For en-
tity and attribute annotation, agreement is com-
puted as entity-level F1 between annotators, using
both strict (entity boundaries match exactly) and
partial (entity boundaries overlap on at least one
token) matching. For relations, we first align anno-
tations from both annotators by linking pairs of re-
lations which share ≥ 50% of participating entities.
Agreement is computed as F1 score between anno-
tators, using both strict (100% of entities match)
and partial matching. After achieving reasonable
agreement levels by round 3 (partial F1 scores of
0.79, 0.68 and 0.79 for entity, attribute and relation
annotation respectively), we started full-scale data
annotation (further discussion in Appendix C).

4.2 Full-Scale Annotation

The full-scale data annotation process was con-
ducted in six rounds. To continue monitoring agree-
ment, a small agreement set of 5 abstracts (not
identified to the annotators) was included in ev-
ery round. Table 9 in the appendix presents inter-
annotator agreement during each annotation round,
while Table 4 shows overall agreement scores.
Overall and per-round agreement scores continued
to remain in the same range as agreement scores
from later pilot rounds, demonstrating consistency
in annotation quality. Despite the complexity of
our schema, our agreement scores are comparable
to datasets using simpler schemas like EBM-NLP
(entity agreement of 0.62-0.71; Cohen’s kappa) and
SciERC (relation agreement of 67.8; kappa score).
Appendix C provides additional details about our
full-scale annotation setup.
Consensus Annotation: For all abstracts anno-
tated by multiple annotators during pilots or full-

https://www.teamtat.org


Phenomenon Train Dev Test

#Discontinuous Spans 8.9% 10.1% 9.3%
#Nested Spans 3.4% 4.3% 2.5%
#Overlapping Spans 1.6% 2.0% 0.7%
#Nested Relations 11.4% 11.2% 11.9%

Table 6: Prevalence of interesting annotation phenom-
ena in final collected dataset.

scale annotation (55 in total), we construct a “con-
sensus” version post disagreement discussion. The
final dataset releases consensus annotations for
these abstracts. Since this subset has been anno-
tated by multiple annotators and discussed exten-
sively, we expect annotations to be higher-quality
and include all these abstracts in the test set.

4.3 Dataset Statistics

Table 5 gives an overview of statistics for our fi-
nal collected dataset. Our dataset size is compa-
rable to other prior biomedical corpora which per-
forms exhaustive fine-grained annotation (though
not always with a clinical knowledge focus) such
as BioRED (Luo et al. (2022a); 600 abstracts) and
Sanchez-Graillet et al. (2022) (211 abstracts). Ta-
ble 6 presents the proportion of various interest-
ing phenomena allowed by our schema in the final
dataset. Interestingly, CARE contains 9% discon-
tinuous spans, making it one of the rare datasets
containing a large proportion of discontinuous men-
tions.6 At 11%, the final data also contains a high
proportion of nested relations.

5 Benchmarking IE Models

We benchmark the performance of two categories
of models on CARE: (i) extractive models, and (ii)
generative LLMs. We also test generative LLMs in
two settings: (i) finetuning on the full training set,
and (ii) zero-shot and in-context learning.
Experimental Setup: We test each model on the
three sub-tasks—entity extraction, attribute extrac-
tion and relation extraction—in isolation. Model
performance on entity and attribute extraction is
evaluated using entity-level F1. Relation extrac-
tion performance is evaluated using a relaxed over-
lap F1 score metric inspired by Tiktinsky et al.
(2022), which assigns partial credit to correctly
identified subsets of entities in a relation, even

6Dai et al. (2020) considers 10% discontinuous spans
to be a high proportion, identifying only three biomedical
datasets that satisfy this criterion: CADEC (Karimi et al.,
2015), ShARe 13 (Pradhan et al., 2013) and ShARe 14 (Mow-
ery et al., 2014).

if all identified entities do not match. As with
agreement score calculation, predicted relations
are first aligned with gold relations by choosing
the gold relation with highest overlap per predicted
relation. Then a partial match score is computed
as #shared_entities/total_entities and used in
the F1 computation instead of binary 0/1 score.

5.1 Extractive IE Baselines:
We evaluate the following systems:
• OneIE (Lin et al., 2020): A sentence-level

joint entity, relation and event extraction sys-
tem, which extracts an “information network”
representation of entities and events (nodes), con-
nected by relations (edges). Beam search is used
to find the highest-scoring network.

• PURE (Zhong and Chen, 2021): A sentence-
level pipelined extraction system, which learns
separate contextual representations for entity and
relation extraction, using entity representations
to further refine relation extraction.

• LocLabel (Shen et al., 2021): A sentence-level
two-stage named entity recognition (NER) sys-
tem capable of extracting nested spans. Inspired
by object detection work, it produces boundary
proposals for candidate entities, then labels them
with correct entity types.

• W2NER (Li et al., 2022): A sentence-level uni-
fied NER model, capable of extracting nested
and discontinuous spans. It recasts NER as word-
word relation classification on a 2-D grid of word
pairs, then decodes word pair relations into final
span extractions.
For comparability and better adaptation to our

dataset, we replace BERT-based encoders in all
systems with PubmedBERT (Gu et al., 2021), and
follow best-reported hyperparameters per system
(see Appendix E). Table 7 presents their perfor-
mance on entity and attribute extraction. Unfor-
tunately, applying these systems to our relation
extraction task is infeasible, since none of them
are designed for document-level relation extraction
or n-ary relations. Tiktinsky et al. (2022) modify
PURE for n-ary relation extraction with variable ar-
ity. However, given a set of candidate entities, they
consider all possible n-ary combinations and pre-
dict relationships per cluster. This is tractable for
their work on sentence-level extraction of single-
type (drug interaction) relations, but not tractable
for document-level multi-type n-ary relation extrac-
tion.7 Therefore, we do not test extractive models

7On limiting combination size to 10, every abstract pro-



Model Ent F1 Attr F1 Rel F1

Extractive Baselines

OneIE 55.07 48.84 –
PURE 55.94 61.04 –
LocLabel 53.69 55.25 –
W2NER 51.84 57.98 –

Generative Baselines

FLAN-T5 45.08 23.27 33.24
BioGPT 14.43 29.84 33.15
BioMedLM 1.50 10.62 32.76

GPT-3.5 0-shot 11.14 5.06 14.35
GPT-3.5 1-shot 21.40 8.61 31.58
GPT-3.5 3-shot 23.40 8.85 31.58
GPT-3.5 5-shot 8.92 9.92 32.20

GPT-4 0-shot 26.89 9.02 32.04
GPT-4 1-shot 31.07 11.82 42.81
GPT-4 3-shot 16.68 13.16 53.69
GPT-4 5-shot 5.04 13.90 55.04

Table 7: Performance of all extractive and generative
baselines on entity, attribute and relation extraction.

on relation extraction.
Another caveat with extractive models is that

they do not identify discontinuous spans (except
W2NER). To assess how this impacts model perfor-
mance, we compute an additional entity-level F1
score which merges span predictions linked in gold
annotation (i.e., we assume oracle span merging),
and observe that this does not significantly improve
performance (avg. increase of ∼1.5 F1). Therefore,
Table 7 reports F1 scores without merging.

5.2 Generative IE Baselines:

Motivated by recent work demonstrating LLM ca-
pabilities on information extraction (Wadhwa et al.,
2023), we assess the ability of LLMs on our tasks,
in both finetuning and zero-shot/in-context learning
settings.

We evaluate the following finetuned LLMs:
• FLAN-T5 (Chung et al., 2022): Enhanced ver-

sion of T5 (Raffel et al., 2020) finetuned on a
large mixture of tasks, but not specifically pre-
trained for biomedicine. We use FLAN-T5-XL,
which has 3B parameters.

• BioGPT (Luo et al., 2022b): A 1.6B autoregres-
sive model, pretrained from scratch on 15M ab-
stracts and titles from PubMed with a custom
Pubmed-trained tokenizer.

• BioMedLM8: A 2.7B autoregressive model, pre-
trained from scratch on all PubMed abstracts and

duces 500,000 candidate combinations
8https://crfm.stanford.edu/2022/12/15/

biomedlm.html

full-texts from the Pile (Gao et al., 2020) with a
custom PubMed-trained tokenizer.
When training and testing on attribute and re-

lation extraction, these models are provided gold
entities and attributes by surrounding them with
entity markers (< ent >< /ent >) in the input.

We evaluate GPT3.5 and GPT4 in zero-shot and
in-context learning settings. We provide our IE
schema and example outputs and prompt the model
to produce extractions in a clean JSON format that
adheres to the schema. Additionally, for our in-
context learning experiments, we follow (Liu et al.,
2021) and select the k most similar examples from
the training set for every test instance according to
similarity computed by the SPECTER v2.0 (Singh
et al., 2022) PRX model trained on scientific titles
and abstracts. Selected examples are appended to
the prompt in decreasing order of similarity, with
later examples dropped if they don’t fit. We run
experiments for the k = 1, 3, 5 most similar exam-
ples. Further hyperparameter details for all models
are provided in Appendix E and full prompts are
provided in Appendix G.

Table 7 shows the performance of all generative
models. One caveat with GPT3.5/4 is that model
outputs sometimes contain correct entity/attribute
spans assigned to the wrong type (e.g., a subpop-
ulation misclassified as a population entity in a
result relation). Since we are evaluating the perfor-
mance of relation extraction in isolation, we do not
consider such mistyping as errors.

5.3 End-to-End Evaluation:

In addition to evaluating SOTA systems on each
sub-task in isolation, we assess the feasibility of
end-to-end extraction. Table 7 shows that PURE
is the best-performing system on entity and at-
tribute extraction. On the other hand, GPT4 5-shot
and FLAN-T5 perform best on relation extraction
(GPT3.5 5-shot and BioGPT are close). We test
out a hybrid end-to-end extraction system in which
entities and attributes are detected using PURE,
then input text marked up with these extractions is
provided to FLAN-T5 for relation extraction. This
hybrid system achieves an F1 score of 33.58, very
similar to RE performance with gold markup. Hy-
pothesizing that this might be an indication that
finetuned LLMs ignore entity/attribute markup dur-
ing RE, we run an additional experiment in which
we train FLAN-T5 to extract relations from raw
text (no markup). This setup achieves an F1 score

https://crfm.stanford.edu/2022/12/15/biomedlm.html
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Original Type Generalized Type Description

Population Research Problem Con-
text

Setting/scenario in which the authors are testing their hypothesis (e.g., task
or dataset being studied in ML/NLP).

Subpopulation Problem Stages/Sub-
parts

Subgroups or subsamples of overall setting (e.g., dataset splits in ML/NLP).

Treatment Technique/Method Key technique being proposed or investigated and other techniques being
compared (e.g., model or metric in ML/NLP).

SubpopulationOf Sub-PartOf Links together problem context entities to stage/sub-part entities (e.g., for
ML/NLP, this relation would link the overall task to low-data and fully
supervised settings).

TreatmentOf AppliedTo Links together a technique to all the problem contexts/sub-parts it is being
tested in.

Table 8: Changes required to construct a generalized version of our original schema developed for clinical finding
extraction, which we use to test whether it applies to other domains such as computer science and materials science

of 33.07, showing that entity/attribute markup does
not provide significant benefit.

6 Discussion

6.1 How much does strict evaluation
underestimate LLM performance?

Table 7 shows that even fully-supervised generative
models severely lag behind much smaller extractive
models on entity and attribute extraction. However,
prior work (Wadhwa et al., 2023) has observed
that strict IE evaluation metrics underestimate the
performance of LLMs since their outputs often
contain minor variations from gold annotations,
which could still be correct. Therefore, we conduct
human evaluation of a subset of FLAN-T5 and
GPT4 5-shot predictions on entity and attribute
extraction for a more accurate assessment.

For every setting, we collect all abstracts with
one or more wrong predictions and randomly sam-
ple ten to evaluate. We go over all false positives
per abstract marking ones that could be considered
correct. Our evaluation shows that for FLAN-T5,
35 out of 73 entity and 12 out of 32 attribute er-
rors are marked correct. For GPT4, these numbers
are worse; 38 out of 126 entity and 20 out of 79
attribute errors are marked correct. This indicates
that LLMs indeed struggle with our span extraction
tasks, and their poor performance is not simply a
consequence of strict evaluation.

6.2 How easily can we extend our schema to
other domains?

Though we focus on extracting clinical findings
from biomedical literature during schema design,
we try to incorporate enough flexibility to allow
our schema to be easily adapted to other scientific
domains. To demonstrate this flexibilty, we conduct

MAT SCI ABSTRACT

Solid oxide fuel cells … ; BECs which are 0.5 and 4 
times thicker than the size of AAO pores are 
tested… thicker BEC ensures far more active mass 
transport than the thinner BEC cell …

RELATIONS

PROBLEM CONTEXT: 
Solid oxide fuel cells

PROBLEM SUBPART: 
thicker BEC

PROBLEM SUBPART: 
thinner BEC cell

TECHNIQUE: 0.5 times 
thicker… than AAO pores

TECHNIQUE: 4 times 
thicker… than AAO pores

MEASUREMENT: active 
mass transportQUALIFIER: far more

SubpartOfSubpartOf

AppliedTo AppliedTo

Result

Figure 2: A partial example of entity, attribute and re-
lation annotation using our generalized schema for a
materials science abstract.

small-scale pilots in two additional domains: (i)
Computer Science, and (ii) Materials Science.

We first develop a generalized version of our
proposed schema for these studies. Of the three
elements in our schema, entities and relations are
largely transferable and only require minor renam-
ing. Table 8 provides an overview of changes made
to entity/relation nomenclature. Attributes on the
other hand, were tailored more closely to our goal
of extracting clinical findings. Therefore, we drop
all attributes and ask our annotators to propose can-
didate attributes as they go through the annotation
process. We use the same annotators who partici-
pated in dataset creation, to leverage their existing
familiarity with our schema, assigning one anno-
tator to each domain. Their task is to annotate ten
abstracts each while documenting: (i) potential at-
tributes that can be added to the schema, and (ii)
important experimental information missed by the
generalized schema.

After completing the task, annotators reported



that it was feasible to apply our proposed schemas
to these scientific domains. Figure 2 shows an ex-
ample materials science abstract with partial anno-
tations according to the generalized schema. Com-
puter science posed some difficulty due to the pres-
ence of lots of relative results and references in
the abstract, which made entity annotation ambigu-
ous. However, there were no important aspects
of experimental information, aside from potential
attribute proposals, that our current schema could
not account for.

7 Conclusion

In this work, we presented CARE, a new IE dataset
for the task of extracting clinical findings from
biomedical literature. To collect this dataset, we
first developed a new annotation schema capable
of capturing fine-grained information about experi-
mental findings, which unified several challenging
IE phenomena such as discontinuous spans, nested
relations and variable arity n-ary relations. Using
this annotation scheme, we collected an extensively
annotated dataset of 700 abstracts from clinical tri-
als and case reports. Our benchmarking experi-
ments showed that state-of-the-art extractive and
generative LLMs including GPT4 still struggle on
this task, particularly on relation extraction. We
release both our annotation schema and CARE as
a challenging new resource for the IE community
and to encourage further research on extraction and
representation of findings from scientific literature.

8 Limitations

Despite being a cornerstone of our work, the rich-
ness and complexity of our newly proposed anno-
tation schema also poses some limitations. An-
notators needed some prior experience with read-
ing and understanding complex scientific text, and
had to undergo multiple rounds of additional train-
ing before they were able to accurately apply our
schema and start full-scale annotation. Though
these stringent expertise and training requirements
and heavy reliance on human annotators helped us
collect a high-quality resource in CARE, they si-
multaneously limit the scalability of our collection
protocol and make it difficult to construct large-
scale benchmarks for this task, spanning multiple
domains/fields of science.

Our annotated corpus, CARE, is based on RCTs
and case reports. While our schema is broad and ex-
pressive enough to generalize to other experimental

domains with minor adaptations, our generaliza-
tion annotation studies were comparatively small
and preliminary, limited to testing the schema on
computer science and material science papers. In
addition, while our schema covers many types of
experimental findings, the richness and huge va-
riety of scientific experiments neccessarily means
that more types of findings could be added. In the
future, more studies should be performed on using
our schema in other domains, and on extending
our schema with more types of information (enti-
ties, attributes, relations). CARE also focuses on
English-language papers only, and in the future it
would be interesting and important to extend our
schema and dataset to cover biomedical/clinical
studies in other languages, to capture important
scientific findings that are potentially missed when
only looking at papers in English.

Finally, a limitation of our current benchmarking
effort is the lack of more flexible evaluation metrics,
particularly when assessing the performance of gen-
erative LLMs. We try to provide supplementary
human evaluation for some models to overcome
this issue, but this is not scalable and would require
ongoing/continuous evaluation efforts. This is not
a major focus for our current work, but developing
more flexible automated evaluation is an important
future direction for IE research.
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A Schema Definitions

A.1 Entity Types
Entities can belong to one of the following seven
types:
1. Population: Patient groups/cohorts studied in

an article.
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2. Subpopulation: Slices/sub-groups of a popula-
tion entity sharing some underlying characteris-
tic.

3. Treatment: Treatment regimens, procedures,
therapies etc. prescribed and/or tested to allevi-
ate a population’s conditions/symptoms.

4. Measurement: Tests used to assess population
status and outcomes of the tested intervention.

5. Temporal: Temporal information such as time
points at which outcomes are measured.

6. NumericFinding: All numeric information as-
sociated with study findings (e.g., p-values, haz-
ard ratios, etc.).

7. Qualifier: Non-numeric information associated
with study findings that provides important per-
spective for interpreting them (e.g., phrases in-
dicating evidence directionality).

A.2 Attribute Types

Attributes can belong to one of the following nine
types:
1. Age: Numeric or non-numeric information

about the age of the population under study.
2. Sex: Reported sex of the population under

study.
3. Size: Size of the population sample under study.
4. Condition: Medical conditions prevalent in the

study population, including diseases, symptoms,
prior medical history and procedures, etc.

5. Demographic: Additional demographic infor-
mation reported about the population such as
location, race, etc.

6. Route: Description of the way an intervention
is administered (e.g., a chemical may be admin-
istered orally, topically, intravenously, etc.).

7. Dosage: Quantity of administration for the in-
tervention being studied. This is not necessarily
limited to chemical/drug interventions (e.g., for
an intervention like educational sessions, num-
ber of sessions is considered “dosage”).

8. Strength: Strength of chemical/drug interven-
tions administered.

9. Duration: Interval of time over which an inter-
vention was administered.

A.3 Relation Types

Our schema allows for both binary and n-ary re-
lations (with variable n), to capture four types of
structure:
1. AttributeOf: N-ary relations linking population

and intervention entities with their associated
attributes.

2. Subpopulation: N-ary relations capturing
parent-child relationships between population
and subpopulation entities.

3. InterventionOf: Binary relations linking popu-
lation and subpopulations entities with the inter-
vention(s) tested on them.

4. Result: N-ary relations capturing all numeric or
non-numeric outcome results and comparisons
reported by linking together the population, sub-
population, intervention, measurement, numer-
icfinding and/or qualifier and temporal entities
involved in each result/comparison.

All n-ary relations can contain multiple entities
of a single type. For example, a result relation
can involve multiple interventions or populations.
The only cardinality constraints imposed are that
every result relation should focus on a single mea-
surement entity and always contain at least one
population/intervention entity.

B Additional Annotation Rules

While using this annotation schema to annotate
clinical knowledge, we also keep in mind the fol-
lowing rules:
• For every entity/attribute span, only annotate its

first occurrence in the text, unless there is a more
descriptive span later. We follow this rule to
avoid conducting an additional coreference anno-
tation step to link all spans referring to the same
entity.

• Ignore misspellings and include all associated
modifiers and abbreviations while annotating
spans

• Do not annotate generic or high-level spans (e.g.,
genetic disorder), or generic terms (e.g., com-
plications, deficiency, disease, syndrome, gene,
drug, protein, nucleotide, etc.).

• Do not annotate background occurrences of enti-
ties. For example, if a treatment Y is mentioned
as “X is usually treated using Y,...”, do not anno-
tate Y unless Y was one of the treatments actually
given to a population in the current study.

C Dataset Construction Details

Characteristics of sampled abstracts: Since the
EBM-NLP corpus sampled randomized clinical
trials from PubMed with an emphasis on cardio-
vascular diseases, cancer, and autism, the clinical
trials portion of our dataset also heavily features
these topics. On the other hand, for case reports,
comparing MeSH term distributions across all re-
ports (2M abstracts) with case reports containing



Round Entity F1 Attribute F1 Relation F1

Exact Partial Exact Partial Exact Partial

Pilot 1 0.6240 0.7579 0.7215 0.8163 0.2193 0.6379
Pilot 2 0.7206 0.8818 0.6923 0.7385 0.4997 0.7878
Pilot 3 0.6449 0.7900 0.5370 0.6852 0.4449 0.7960

Batch 1 0.5130 0.7318 0.7611 0.8496 0.3899 0.6979
Batch 2 0.6094 0.7900 0.6216 0.8508 0.6397 0.9137
Batch 3 0.5312 0.7797 0.6364 0.8182 0.3121 0.7595
Batch 4 0.5714 0.7817 0.7347 0.7755 0.5399 0.7343
Batch 5 0.5643 0.6929 0.4717 0.6762 0.3382 0.6766
Batch 6 0.6358 0.7930 0.5417 0.7582 0.3122 0.6890

Overall 0.5764 0.7578 0.6174 0.7801 0.4209 0.7414

Table 9: Evolution of inter-annotator agreement during pilots and full-scale annotation rounds

Type Exact F1 Partial F1

Population 0.4333 0.8665
Subpopulation 0.4299 0.6168
Intervention 0.4333 0.5781

Measurement 0.5230 0.7554
Temporal 0.6230 0.6885

NumericFinding 0.7063 0.8812
Qualifier 0.6911 0.7749

Table 10: Inter-annotator agreement per entity type

Type Exact F1 Partial F1

Age 0.8500 0.9756
Sex 0.9231 0.9231
Size 0.6462 0.7385

Condition 0.5091 0.7429
Demographic 0.6667 0.8000

Route 0.8000 0.8000
Dosage 0.6923 0.9630
Strength - -
Duration 0.0800 0.4800

Table 11: Inter-annotator agreement per attribute type.
Note that the agreement sample did not include any
strength entities.

Type Exact F1 Partial F1

AttributeOf 0.7654 0.7654
InterventionOf 0.3797 0.3797

SubpopulationOf 0.1633 0.5185
Result 0.2561 0.7994

Table 12: Inter-annotator agreement per relation type

numeric information (the 900k we sample from),
we see a massive reduction (> 30%) in terms as-
sociated with the following topics: surgery and
post-surgery care, dentistry, ophthalmology, pros-
theses and rehab, patient care and nursing, some
mental disorders and circulatory diseases/issues.
Hence, we expect these topics to be relatively un-
dersampled in our pool of case reports.

Annotation Pilots: During pilots, we also con-
ducted one or more disagreement discussion ses-
sions per pilot round. These discussions were help-
ful in providing annotators the opportunity to high-
light important spans/relations being missed by the
schema, which led to the addition of the subpop-
ulation entity, demographic attribute, and subpop-
ulationof and treatmentof relations. Despite the
introduction of some new elements, inter-annotator
agreement continued to increase steadily over the
pilot rounds, as shown in Table 9 before plateauing
at the end of round 3.

Full-Scale Annotation: During rounds 1-3 of full-
scale annotation, annotators were provided batches
of 25 abstracts each. As their familiarity with the
annotation schema and ability to handle ambigu-
ous cases improved, we provided larger batches of
100 abstracts each during rounds 4-6. After each
round, agreement was assessed and disagreement
dicussions were conducted to discuss ambiguous
cases, if needed, which ensured that agreement
was maintained across rounds as seen from Ta-
ble 9. Tables 10, 11 and 12 present final agreement
scores per entity type, attribute type and relation
type respectively. From these tables, we can see
that Subpopulation and Intervention entities are the



trickiest to annotate, leading to lower agreement on
SubpopulationOf and InterventionOf relation types
due to error cascading (i.e., if entity annotations
don’t match, relation annotations are unlikely to
match either).

D Inter-Annotator Agreement

Table 9 shows the evolution in inter-annotator
agreement over our initial pilot rounds, as well as
the level of inter-annotator agreement maintained
during each round of the full-scale annotation pro-
cess. We see a large increase in relation agreement
from pilot 1 to pilot 2, and consistent agreement
scores across all tasks in all rounds thereafter. Ta-
bles 10, 11 and 12 present inter-annotator agree-
ment breakdown according to entity, attribute and
relation types in our schema.

E Hyperparameter Details

Extractive Models:
• OneIE: We use an overall learning rate and

weight decay of 1e− 3, and a learning rate and
weight decay of 1e− 5 for the BERT component,
a batch size of 10, and gradient clipping value of
5.0. The model is trained for 60 epochs with a
5-epoch warmup phase.

• PURE: We use a context window size of 300
words, overall learning rate of 1e− 5, task learn-
ing rate of 5e− 4, batch size of 16, and train for
100 epochs.

• LocLabel: We use a learning rate of 5e − 6,
warmup rate of 0.1, weight decay of 0.01, gra-
dient clipping value of 1.0, batch size of 6
and train for 35 epochs. LocLabel also re-
quires word vectors, for which we use the 200-
dimensional Pubmed-trained word2vec embed-
dings (BioWordVec) released by Zhang et al.
(2019), which are available at https://github.
com/ncbi-nlp/BioWordVec.

• W2NER: We use an overall learning rate of 1e−
3 and a learning rate of 5e − 6 for the BERT
component, no weight decay, warmup factor fo
0.1, gradient clipping value of 5.0, batch size of
8, and train for 10 epochs.

Generative Models: All models are trained for 10
epochs with a learning rate of 1e− 5, input context
length of 1024, output length of 128, and a batch
size of 2.
GPT3.5/GPT4: We test the 16k and 8k context
length versions of GPT3.5 and GPT4 respectively

since our extraction tasks are abstract-level and re-
quire longer input contexts. We use the June 2023
versions of both models due to their function call-
ing capabilities, which leverage a structured JSON
output format to improve information extraction
capabilities. All experiments are run with a temper-
ature of 0 and max output length of 512 tokens.

F Computing Infrastructure

All LLM experiments are carried out on NVIDIA
RTX A6000 GPUs with 48 GB RAM. Each finetun-
ing run (FLAN-T5, BioGPT, BioMedLM) requires
two GPUs with runtimes ranging from 9-17 hours
depending on task size and model size. We use
the DeepSpeed integration from Huggingface, with
ZeRO-3 optimization, for multi-GPU training.

G Prompt Details

Figures 3, 4 and 5 present the prompts used to eval-
uate the performance of finetuned LLMs (FLAN-
T5, BioGPT and BioMedLM) on entity, attribute
and relation extraction respectively. Similarly, Fig-
ures 6, 7 and 8 present the prompts used to evaluate
the performance of GPT-3.5 and GPT-4 models (in
a zero-shot setting) on entity, attribute and relation
extraction respectively. For the in-context learning
setting, additional few-shot examples are appended
to the prompt before providing the abstract.

https://github.com/ncbi-nlp/BioWordVec
https://github.com/ncbi-nlp/BioWordVec


Output 🤖:  “an 8 year old boy with congenital adrenal hyperplasia”

Entity Extraction Prompt

Given an abstract from a biomedical paper, extract all population entities present in the 
abstract. 
Population entities are defined as patient groups/cohorts studied in an article.
Generate the output in this format: entity1 <sep> entity2. If no entities of the specified 
type are present, output None.

Abstract: A primary intracranial HCG-producing tumour was studied in an 8 year old boy with 
congenital adrenal hyperplasia. The case provided a unique opportunity to study the 
sequential changes in serum and urinary androgens and HCG as measured by radioreceptor assay 
for HCG and by radioimmunoassay for HCG using antisera raised against the hormone specific 
for the beta subunit of HCG. Plasma concentrations of HCG, measured by the radioreceptor 
assay, closely correlated with the biologic activity of his tumour as measured by serum 
testosterone concentration. This case demonstrates that precocious puberty in any child, 
including with a known androgen disorder such as congenital adrenal hyperplasia warrants 
thorough investigation.

Extracted entities:

Figure 3: Example prompt used to evaluate the performance of finetuned LLMs on entity extraction. Such prompts
are generated for all seven entity types in our dataset.

Output 🤖: “8 year old”

Attribute Extraction Prompt

Given an abstract from a biomedical paper with all population entities highlighted with **, 
extract all age attributes associated with these entities. 
Age attributes are defined as numeric or non-numeric information about the age of the 
population under study.
Generate the output in this format: attribute1 <sep> attribute2. If no attributes of the 
specified type are present, output None.

Abstract: **A primary intracranial HCG-producing tumour was studied in an 8 year old boy with 
congenital adrenal hyperplasia**. The case provided a unique opportunity to study the 
sequential changes in serum and urinary androgens and HCG as measured by radioreceptor assay 
for HCG and by radioimmunoassay for HCG using antisera raised against the hormone specific 
for the beta subunit of HCG. Plasma concentrations of HCG, measured by the radioreceptor 
assay, closely correlated with the biologic activity of his tumour as measured by serum 
testosterone concentration. This case demonstrates that precocious puberty in any child, 
including with a known androgen disorder such as congenital adrenal hyperplasia warrants 
thorough investigation.

Extracted attributes:

Figure 4: Example prompt used to evaluate the performance of finetuned LLMs on attribute extraction with gold
entities provided. Such prompts are generated for all nine attribute types in our dataset.



Output 🤖: “a primary .. hyperplasia <ent> 8 year old <ent> boy <ent> a <ent> 
congenital adrenal hyperplasia”

Relation Extraction Prompt

Given an abstract from a biomedical paper with all important entities and attributes 
highlighted with **, extract all attributeof relations between them. 
Attributeof relations are defined as n-ary relations linking population and treatment 
entities with their corresponding attributes.
Generate the output in this format: entity1 <ent> attribute1 <sep> entity2 <ent> attribute2 
<ent> attribute3. If no relations of the specified type are present, output None.

Abstract: **A primary intracranial HCG-producing tumour was studied in an 8 year old boy with 
congenital adrenal hyperplasia**. The case provided a unique opportunity to study the 
sequential changes in serum and urinary androgens and HCG as measured by radioreceptor assay 
for HCG and by radioimmunoassay for HCG using antisera raised against the hormone specific 
for the beta subunit of HCG. Plasma concentrations of HCG, measured by the radioreceptor 
assay, closely correlated with the biologic activity of his tumour as measured by serum 
testosterone concentration. This case demonstrates that precocious puberty in any child, 
including with a known androgen disorder such as congenital adrenal hyperplasia warrants 
thorough investigation.

Extracted relations:

Figure 5: Example prompt used to evaluate the performance of finetuned LLMs on relation extraction with gold
entities and attributes provided. Such prompts are generated for all four relation types in our dataset.

Output 🤖: {"population": ["an 8 year old boy with congenital adrenal hyperplasia"], 
“subpopulation”: [], "treatment": [], “measurement”: [“Plasma concentrations of HCG”, 
“biologic activity of his tumour”], “temporal”: [], “numericfinding”: [], “qualifier”: 
[“closely correlated with”]}

Entity Extraction Prompt

System Prompt: Assistant is a system built to extract key information from biomedical papers.

User: Given an abstract from a biomedical paper, extract all entities present in the 
abstract.

Abstract: A primary intracranial HCG-producing tumour was studied in an 8 year old boy with 
congenital adrenal hyperplasia. The case provided a unique opportunity to study the 
sequential changes in serum and urinary androgens and HCG as measured by radioreceptor assay 
for HCG and by radioimmunoassay for HCG using antisera raised against the hormone specific 
for the beta subunit of HCG. Plasma concentrations of HCG, measured by the radioreceptor 
assay, closely correlated with the biologic activity of his tumour as measured by serum 
testosterone concentration. This case demonstrates that precocious puberty in any child, 
including with a known androgen disorder such as congenital adrenal hyperplasia warrants 
thorough investigation.

Figure 6: Prompt used to evaluate the performance of GPT-3.5 and GPT-4 on the entity extraction task. Additionally,
entity type definitions from Table 1 are provided as function parameters to leverage OpenAI’s function calling
capabilities.



Output 🤖: {"age": ["8 year old"], “sex”: [“boy”], "size": [“A”], “condition”: 
[“congenital adrenal hyperplasia”], “demographic”: [], “route”: [], “dosage”: [], 
“strength”: [], “duration”: []}

Attribute Extraction Prompt

System Prompt: Assistant is a system built to extract key information from biomedical papers.

User: Given an abstract from a biomedical paper with all the important entities highlighted 
with **, extract all attributes associated with these entities.

Abstract: **A primary intracranial HCG-producing tumour was studied in an 8 year old boy with 
congenital adrenal hyperplasia**. The case provided a unique opportunity to study the 
sequential **changes in** **serum** and **urinary** **androgens** and **HCG** as measured by 
radioreceptor assay for HCG and by radioimmunoassay for HCG using antisera raised against the 
hormone specific for the beta subunit of HCG. **Plasma concentrations of HCG**, measured by 
the radioreceptor assay, **closely correlated with** the **biologic activity of his tumour** 
as measured by serum testosterone concentration. This case demonstrates that precocious 
puberty in any child, including with a known androgen disorder such as congenital adrenal 
hyperplasia warrants thorough investigation.

Figure 7: Prompt used to evaluate performance of GPT-3.5 and GPT-4 on the attribute extraction task with gold
entities provided. Additionally, attribute type definitions from Table 2 are provided as function parameters to
leverage OpenAI’s function calling capabilities.

Output 🤖: {"subpopulationof": [], “treatmentof”: [], "attributeof": [{“population”: 
“A primary .. adrenal hyperplasia”, “age”: “8 year old”, “sex”: “boy”, “size”: “A”}], 
“result”: [{“measurement”: “plasma concentrations of HCG”, “qualifier”: “closely 
correlated with”, “population”: “A primary .. adrenal hyperplasia”}]}

Relation Extraction Prompt

System Prompt: Assistant is a system built to extract key information from biomedical papers.

User: Given an abstract from a biomedical paper with all the important entities and 
attributes highlighted with **, extract all relations between these entities and attributes.

Abstract: ** **A** primary intracranial HCG-producing tumour was studied in an **8 year old** 
**boy** with **congenital adrenal hyperplasia** **. The case provided a unique opportunity to 
study the sequential **changes in** **serum** and **urinary** **androgens** and **HCG** as 
measured by radioreceptor assay for HCG and by radioimmunoassay for HCG using antisera raised 
against the hormone specific for the beta subunit of HCG. **Plasma concentrations of HCG**, 
measured by the radioreceptor assay, **closely correlated with** the **biologic activity of 
his tumour** as measured by serum testosterone concentration. This case demonstrates that 
precocious puberty in any child, including with a known androgen disorder such as congenital 
adrenal hyperplasia warrants thorough investigation.

Figure 8: Prompt used to evaluate performance of GPT-3.5 and GPT-4 on the relation extraction task with gold
entities and attributes provided. Additionally, relation type definitions from Table 3 are provided as function
parameters to leverage OpenAI’s function calling capabilities.


