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We investigate the impact of the spin-phonon coupling on the S = 1/2 Heisenberg model on the
kagome lattice. For the pure spin model, there is increasing evidence that the low-energy properties
can be correctly described by a Dirac spin liquid, in which spinons with a conical dispersion are
coupled to emergent gauge fields. Within this scenario, the ground-state wave function is well
approximated by a Gutzwiller-projected fermionic state [Y. Ran, M. Hermele, P.A. Lee, and X.-G.
Wen, Phys. Rev. Lett. 98, 117205 (2007)]. However, the existence of U(1) gauge fields may
naturally lead to instabilities when small perturbations are included. Phonons are ubiquitous in
real materials and may play a relevant role in the determination of the actual physical properties
of the kagome antiferromagnet. Therefore, we perform a step forward in this direction, including
phonon degrees of freedom (at the quantum level) and applying a variational approach based upon
Gutzwiller-projected fermionic Ansätze. Our results suggest that the Dirac spin liquid is stable for
small spin-phonon couplings, while valence-bond solids are obtained at large couplings. Even though
different distortions can be induced by the spin-phonon interaction, the general aspect is that the
energy is lowered by maximizing the density of perfect hexagons in the dimerization pattern.

I. INTRODUCTION

One of the longest-standing debates in the field of frus-
trated magnetism and quantum spin liquids concerns the
ground state of the spin-1/2 antiferromagnetic Heisen-
berg model on the kagome lattice [1]. Drawing from early
numerical evidence of the absence of long-range magnetic
order [2–4], several theoretical predictions have been put
forward, based on approximations and numerical meth-
ods of different kind. The possibility of a (gapped) quan-
tum spin-liquid ground state, derived from a large-N ex-
pansion based upon groups with symplectic Sp(N) sym-
metry was originally proposed in Ref. [5]. On the other
hand, the (fermionic) SU(N) approximation adopted
in Ref.[6] pointed toward the existence of a dimerized
ground state, characterized by the largest possible den-
sity of perfect hexagons, i.e., hexagonal plaquettes with
three singlets. The valence-bond ordered picture was fur-
ther corroborated by the results of other numerical meth-
ods, e.g., series expansion and quantum dimer models,
which identified a dimerized ground state with a super-
cell of 36 sites and a honeycomb-like arrangement of per-
fect hexagons as energetically most favorable [7–9]. This
conclusion was strengthened by the calculations of low-
lying excitations above the valence-bond ordered ground
state [10, 11], which reproduced some of the features
observed in exact diagonalization calculations on small
clusters, most notably the large density of singlet excita-
tions below the triplet gap [12–15]. Interestingly, within a
short-range valence-bond basis, the lowest-energy singlet
excitations were found to be the dimer coverings possess-
ing a large number of perfect hexagons [16].

More recently, the valence-bond ordered scenario was
challenged by various methods, e.g., density-matrix
renormalization group (DMRG) [17–19] and variational

Monte Carlo [20], which found a quantum spin liquid
ground state in large-scale calculations. Within the lat-
ter approach, the best variational Ansatz was found to
be a U(1) Dirac state, namely a spin liquid with con-
ical points in the spinon spectrum and emergent U(1)
gauge fields in the low-energy theory [21, 22]. This state,
described by a Gutzwiller-projected fermionic wave func-
tion, was shown to be stable to gap-opening instabilities,
such as dimerization [23] and the lowering of the U(1)
gauge structure to Z2 [24].

The presence of a Dirac spin liquid ground state is fur-
ther supported by recent state-of-the-art numerical re-
sults. Indeed, although the first DMRG studies indi-
cated the presence of a gapped spectrum [17–19], more
recent calculations on infinitely long cylinders revealed
the existence of Dirac spinons by means of adiabatic flux
insertion [25, 26], which helped identifying fingerprints
of gapless excitations that are gapped by the cylindrical
geometry [27]. Furthermore, recent tensor-network cal-
culations also corroborated the gapless nature of the spin
liquid ground state [28].

From a theoretical perspective, the stability of U(1)
Dirac spin liquids is enhanced on non-bipartite geome-
tries, such as the kagome lattice [29]. Still, the Dirac spin
liquid represents the parent state of certain proximate
orders, namely magnetic and valence-bond solid phases,
which can result from the condensation of monopoles
with specific quantum numbers [29–32]. These insta-
bilities can be triggered by deviations from the ideal
nearest-neighbor kagome antiferromagnet, e.g., by the
inclusion of longer-range exchange interactions [33–37].
In this regard, a theoretically and experimentally rel-
evant question concerns the possible spin-Peierls insta-
bility of the Dirac spin-liquid state in the presence of a
coupling between spins and lattice distortions (phonons).
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Indeed, in one dimension, the gapless spin-liquid ground
state of the Heisenberg chain is known to be unstable to-
wards dimerization when spins are coupled to static lat-
tice distortions[38, 39]; however, when phonon degrees
of freedom are treated dynamically, the spin-liquid phase
remains stable below a finite critical value of the spin-
phonon coupling [40–43]. In two dimensions the situation
is less understood and only a smaller number of works
have focused on the impact of the spin-phonon coupling
on spin liquid phases. For what concerns Z2 spin liq-
uids, there are studies addressing detectable signatures
of spin-lattice coupling in the phonon dynamics of the
Kitaev spin liquid [44–46]. Furthermore, the phonon-
driven transition between the Z2 Dirac spin liquid phase
on the square lattice and a dimerized phase has been
assessed by us in Ref. [47]. On the kagome lattice, the
spin-Peierls transition has been discussed only in the case
of large magnetic fields, for exact eigenstates with local-
ized magnons [48]. However, the question of the stability
of the kagome Dirac spin liquid to lattice distortions has
not been addressed so far. Its proximity to several com-
peting orders within a small energy range [15] may be
interpreted as a sign of potential fragility towards dimer-
ization. In relation to this, a recent field theoretical study
identified a symmetry-allowed coupling between lattice
distortions and monopole operators of the U(1) Dirac
spin liquid on the triangular lattice as a possible mecha-
nism driving a spin-Peierls transition [49].

Motivated by these observations, we employ a varia-
tional Monte Carlo technique to investigate the ground-
state properties of a spin-phonon Hamiltonian on the
kagome lattice, treating the full quantum dynamics of
both spins and phonons. We explore several channels of
instability of the U(1) Dirac spin liquid towards dimeriza-
tion, which encompass also valence-bond ordered phases
associated to its monopole operators [29]. The results
of our study indicate that the U(1) Dirac spin liquid is
stable, i.e., a (first-order) spin-Peierls transition is found
to take place only for finite values of the spin-phonon
coupling. Then, the valence-bond solids favored by the
spin-lattice interactions are those which maximize the
number of rotationally-symmetric hexagonal plaquettes
with strong singlet correlations on their edges.

II. MODEL AND METHOD

We consider a system of localized S = 1/2 spins on the
kagome lattice, which are coupled at nearest neighbors
by the antiferromagnetic Heisenberg interaction J . The
spin-phonon effects due to lattice distortions are modeled
by assuming that the exchange coupling among the spins
depends linearly on sites displacements. The system is
thus described by the following Su-Schrieffer-Heeger [50]

~a1

~a2

~b1

~b2

~c1
~c2

Figure 1: Lattice vectors employed to construct different
supercells for the variational Ansätze. Taking the nearest-
neighbor distance as unit, the red vectors are defined as
a⃗1 = (2, 0) and a⃗2 = (1,

√
3) (primitive vectors). The blue

vectors are b⃗1 = 2a⃗1 − a⃗2 and b⃗2 = 2a⃗2 − a⃗1. The green vec-
tors are c⃗1 = a⃗1 + a⃗2 and c⃗2 = a⃗2 − a⃗1.

Heisenberg Hamiltonian

H = Hsp +Hph (1)

Hsp = J
∑
⟨i,j⟩

[
1− g

r⃗i − r⃗j
∥r⃗i − r⃗j∥

· (U⃗i − U⃗j)

]
Si · Sj (2)

Hph =
ω

4

∑
j

(
P⃗ 2
j + U⃗2

j

)
. (3)

Here Sj = (Sx
j , S

y
j , S

z
j ) denotes the spin operator at

site j. The lattice degrees of freedom are described
by a set of local harmonic oscillators through the

displacement and momentum operators, U⃗j = (Xj , Yj)

and P⃗j = (PX
j , PY

j ) = −2i(∂Xj
, ∂Yj

). Within this nota-
tion [43, 47], the canonical commutation relations be-
tween phonon operators become [Xj , P

X
l ] = [Yj , P

Y
l ] =

2iδj,l (all other commutators vanish). The strength of the
spin-phonon coupling is controlled by the adimensional
constant g. The vector r⃗i = (xi, yi) marks the position
of site i in the undistorted kagome lattice, and ∥ · ∥ de-
notes the Euclidean norm. The form of the spin-phonon
coupling in Hsp arises from the linear term in the Taylor
expansion of the exchange interaction as a function of
the Euclidean distance between sites. The second term
of Eq. (1), Hph, is the free Hamiltonian of Einstein (op-
tical) phonons, i.e., uncoupled harmonic oscillators with
a flat dispersion with frequency ω.

We notice that the model of Eq. (1) is invariant un-

der the transformation g 7→ −g and U⃗j 7→ −U⃗j for
all the sites j; thus, the sign of g does not affect the
ground-state energy and the phase diagram. Here, we
take g > 0, which corresponds to the more physical situa-
tion in which negative spin-spin correlations (e.g., singlet
states) tend to shrink bonds, or, in other words, in which
the exchange coupling decreases when spins are pulled
far apart.
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Variational wave function

We make use of a variational Monte Carlo method
to approximate the ground-state wave function of the
spin-phonon problem (1) on finite-size clusters with N
sites and periodic boundary conditions. Our variational
Ansatz is the product of a spin state |Ψs⟩, a phonon state
|Ψp⟩, and a Jastrow factor Jsp which correlates spins with
lattice distortions [43, 47, 51]:

|Ψvar⟩ = Jsp|Ψp⟩ ⊗ |Ψs⟩. (4)

The variational energy Evar is estimated by performing
a Markov process in the total Hilbert space that includes
spin and phonon configurations |u⃗; sz⟩ =

⊗
j(|u⃗j⟩⊗|szj ⟩),

i.e., in the local eigenbasis of the U⃗j (phonon) and Sz
j

(spin) operators for each lattice site j [43]. Then, we
have:

Evar =
⟨Ψvar|H|Ψvar⟩
⟨Ψvar|Ψvar⟩

=
∑
sz

∫
du⃗

|⟨u⃗; sz|Ψvar⟩|2

⟨Ψvar|Ψvar⟩︸ ︷︷ ︸
P(u⃗;sz)

⟨u⃗; sz|H|Ψvar⟩
⟨u⃗; sz|Ψvar⟩︸ ︷︷ ︸

eL(u⃗;sz)

(5)

where the sum is over all spin configurations and the
integral is over all phonon displacements. Then, along
the Markov chain, a set of configurations (u⃗; sz)m (with
m = 1, . . . ,M) are drawn according to the probability
P(u⃗; sz) and the Metropolis algorithm, which allows us
to estimate the variational energy as:

Evar ≈
1

M

M∑
m=1

eL(u⃗; s
z)m. (6)

The stochastic process is performed in the subspace of
zero total spin along z and the Metropolis moves for the
spins involve nearest-neighbor double spin-flips; for the
phonon degrees of freedom, the Metropolis moves consist
of local updates of the displacements, Xj 7→ Xj + ∆ or
Yj 7→ Yj + ∆, with ∆ uniformly distributed within a
certain interval [−∆max,∆max].
The form of the variational state is partially dictated

by the efficiency in the calculation of its amplitudes
⟨u⃗; sz|Ψvar⟩. In this respect, the spin-phonon Jastrow
factor must be diagonal in the chosen computational ba-
sis (otherwise it would require the calculations of matrix
elements with all states of the basis). Therefore, we are
limited to consider terms involving the z-component of
the spin operators, thus breaking the SU(2) symmetry,
and take [43]:

Jsp = exp

1

2

∑
i,j

v⃗sp(i, j) · (U⃗i − U⃗j)S
z
i S

z
j

 , (7)

where the pseudopotential parameters (antisymmetric
under the exchange of i and j indices) are defined as

v⃗sp(i, j) =

vXsp(∥r⃗i − r⃗j∥) xi−xj

∥r⃗i−r⃗j∥

vYsp(∥r⃗i − r⃗j∥) yi−yj

∥r⃗i−r⃗j∥

 . (8)

Then, given the Ansatz of Eq. (4), we have that

⟨u⃗; sz|Ψvar⟩ = Jsp(u⃗; s
z) ⟨u⃗|Ψp⟩ ⟨sz|Ψs⟩, (9)

where Jsp(u⃗; s
z) is the value that the operator Jsp ac-

quires on the configuration |u⃗; sz⟩. The phonon part of
the variational Ansatz is a coherent state:

⟨u⃗|Ψp⟩ =
∏
i

exp

(
−∥u⃗i − z⃗i∥2

4

)
, (10)

which is written as a product of Gaussians that are cen-
tered in the displaced positions of the lattice sites, rep-
resented by the variational parameters z⃗i = (zXi , zYi ). In
general, non-zero values of z⃗i induce the presence of finite
lattice distortion. Finally, the spin part of the variational
state is defined within the Abrikosov fermion representa-
tion of S = 1/2 spin operators [52, 53]

Si =
1

2

∑
σ,σ′

c†i,σσσ,σ′ci,σ′ , (11)

where ci,σ (c†i,σ) is the annihilation (creation) operator of

a fermion at site i with spin σ =↑, ↓, and σ = (σx, σy, σz)
is a vector of Pauli matrices. The state |Ψs⟩ con-
sists of a fermionic Slater determinant, |Φ0⟩, which is
projected onto spin space by the Gutzwiller operator

PG =
∏

i(2− ni)ni, where ni =
∑

σ c
†
i,σci,σ, and supple-

mented by a spin Jastrow factor Jss (diagonal in the
computational basis):

|Ψs⟩ = JssPG|Φ0⟩. (12)

We define |Φ0⟩ as the ground state of an auxiliary tight-
binding Hamiltonian on the kagome lattice, with nearest-
neighbor hopping terms

H0 =
∑
⟨i,j⟩

∑
σ

ti,jc
†
i,σcj,σ + h.c., (13)

and the Jastrow factor as

Jss = exp

1

2

∑
i,j

vss(∥r⃗i − r⃗j∥)Sz
i S

z
j

 . (14)

The Gutzwiller projection is implemented by the Markov
chain, in which spin configurations are sampled, i.e.,
fermionic configurations with singly occupied sites.
Then, we have that

⟨sz|Ψs⟩ = Jss(s
z) det(ϕr↑,α) det(ϕr↓,α) (15)
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where ϕrσ,α are the N/2 (spin-independent) lowest-
energy orbitals of the auxiliary Hamiltonian (13), labelled
by the index α and evaluated on the positions of up (r↑)
and down spins (r↓) in the configuration |sz⟩; Jss(sz) is
the value of the operator Jss on the configuration |sz⟩.

The parameters, which are optimized in order to min-
imize the variational energy (5), are given by the hop-
pings (ti,j) of the auxiliary Hamiltonian, the centers of
the Gaussians (z⃗i), and the Jastrow pseudopotentials
[vss(∥r⃗i − r⃗j∥), vXsp(∥r⃗i − r⃗j∥), and vYsp(∥r⃗i − r⃗j∥)] at all
inequivalent lattice distances. The optimization proce-
dure is performed by using the stochastic reconfiguration
method [54].

Lattice distortions and supercells

A challenging aspect of this study is determining the
most favorable lattice distortions that are induced by the
spin-phonon interaction and could represent potential in-
stabilities of the Dirac spin liquid state. Instead of con-
sidering a variational phonon Ansatz |Ψp⟩ with a fixed
phonon momentum and a certain polarization (as done
in Ref. [47]), we apply a more general approach in which
we scan through several supercells that can accommodate
different patterns of distortions. Within this method, the
variational parameters ti,j [Eq. (13)] and z⃗i [Eq. (10)] are
taken to be translationally invariant with respect to the
chosen supercell. Thus, for a supercell of Ns sites, 2Ns

independent nearest-neighbor hoppings andNs z⃗i param-
eters are optimized. This strategy allows us to describe
combinations of phonon modes with different momenta
and polarizations.

We consider supercells of various sizes and shapes.
They are defined by means of three distinct sets of vec-

tors, a⃗i, b⃗i and c⃗i (i = 1, 2), shown in Fig. 1. The super-
cells constructed by the a-vectors are denoted as (m,n)a
(m,n ∈ N) and defined by the vectors ma⃗1 and na⃗2. An
analogous notation is used for the supercells constructed

by the b⃗i and c⃗i vectors. We note that the (m,n)a,b,c
supercells contain 3m× n, 9m× n and 6m× n sites, re-
spectively. We scan several supercells described by these
vectors, up to a size of 48 sites. The full cluster, on
which numerical calculations are performed, will be also
denoted by a similar notation. The three families of su-
percells are chosen because they represent simple geome-
tries that can be fitted inside the finite-size clusters which
are accessible to numerical simulations. In addition, the

supercells defined by a⃗i or b⃗i vectors fulfill all the point-
group symmetries of the original kagome lattice if m = n,
while the one defined by c⃗i vectors has been discussed in
Ref. [7].

For what concerns the fermionic variational state, we
initialize the hoppings of the auxiliary Hamiltonian H0 in
the vicinity of one of the four U(1) symmetric spin liquids
of the kagome lattice [55]. Specifically, the initial signs of
the hopping parameters reproduce the 0 and/or π fluxes
through the triangular and hexagonal plaquettes which

characterize the different U(1) spin liquids [55]. The idea
behind this approach is motivated by the fact that a sym-
metric spin liquid can serve as a parent state of certain
valence-bond solid instabilities [23, 29–31, 37, 47]. How-
ever, since all hopping parameters within the supercell
are independently optimized, they can take any value
upon energy minimization and thus change the fluxes
from their initial values.

III. RESULTS

We study the model of Eq. (1) for ω/J = 1 and dif-
ferent values of the spin-phonon coupling g. Throughout
the paper, we set J = 1 to fix the energy scale of the
problem. At g = 0 the lattice is undistorted and the
optimal variational state is given by the U(1) Dirac spin
liquid state [20, 21]. Turning on the spin-phonon inter-
action, we observe the appearance of several competing
valence-bond ordered states, whose energies eventually
beat the one of the Dirac spin liquid for large values of
g. The main findings of this paper can be summarized
in three points: i) the Dirac spin liquid state is stable
for small values of the spin-phonon interaction; ii) the
valence-bond ordered states which provide the lowest en-
ergy for large g are characterized by the appearance of
hexagonal plaquettes with strong spin-spin correlations;
iii) the transition between the Dirac spin liquid and the
best distorted states is of the first order.
We begin the discussion by looking at the results ob-

tained on the (6, 6)a cluster (with N = 108 sites), which
exemplify the main observations outlined above. For the
sake of clarity, we restrict our analysis to (m,n)a su-
percells. As shown in Fig. 2(a), for g ≲ 0.1, the Dirac
spin liquid gives the best variational energy, but several
metastable valence-bond solids with finite distortions can
be stabilizied within different supercells. When the spin-
phonon coupling is sufficiently strong, all these dimerized
states become lower in energy than the Dirac spin liq-
uid. The different distortions are shown in Fig. 2(b-d),
where the color of the bonds between neighboring sites
represents the value of the spin-spin correlations. The
higher-energy distorted state [(2, 1)a in Fig. 2(b)] is es-
sentially made of dimers which form stripes along a2. The
lowest-energy state, instead, is obtained by the (2, 3)a su-
percell [Fig. 2(d)] and, in addition to stripes of alternat-
ing dimers, shows the appearance of hexagonal plaque-
ttes with strong antiferromagnetic sides. We dub these
rotationally-symmetric plaquettes perfect hexagons. This
terminology is borrowed from studies concerning (hard-
core) dimer coverings on the kagome lattice, where per-
fect hexagons are hexagonal plaquettes, which host three
dimers and are surrounded by empty triangular plaque-
ttes [6–8, 11, 16]. In the case of hard-core dimers, due to
geometrical constraints, the maximum density of perfect
hexagons among hexagonal plaquettes is found to be 1/6,
i.e., one every 18 sites. The (2, 3)a valence-bond solid in
Fig. 2 is analogous to the 18-sites dimer covering found
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Figure 2: Results of the calculations on the (6, 6)a cluster (N = 108 sites). In panel (a) the energies (per site) of the
Dirac spin liquid (SL) and different valence-bond ordered states are shown as a function of the spin-phonon coupling g. The

zero-point energy of the phonon Hamiltonian, Eph
0 = Nω, has been subtracted. The patterns of distortions associated to the

various valence-bond ordered states are shown in panels (b),(c),(d), as obtained within the (2, 1)a, (3, 3)a, (2, 3)a supercells,
respectively. The color of the bonds between sites i and j represents the value of the spin-spin correlations ⟨Sz

i S
z
j ⟩ (at g = 0.3).

The dashed lines delimit the supercells.

by Marston and Zeng within a large-N expansion of the
kagome antiferromagnet, which shows the maximum den-
sity of perfect hexagons [6]. The difference lies in the fact
that in the present case, in absence of the hard-core dimer
constraint, perfect hexagons possess six edges with equal
spin-spin correlations, instead of having three strong and
three weak bonds. It is worth mentioning that an inter-
mediate energy state is found by considering the (3, 3)a
supercell. As shown in Fig. 2(c), this valence-bond solid
is characterized by parallel stripes of dimers which are
connected by relatively strong antiferromagnetic correla-
tions, forming lines of hexagons. We note, however, that
these hexagons are not perfect, as their edges do not pos-
sess equally strong spin-spin correlations.

The preliminary results on the (6, 6)a cluster already
suggest that a large density of perfect hexagons turns
out to be the distinguishing hallmark of the best dimer-
ized states of the spin-phonon model (1). For the com-
plete search of possible patterns of distortions, we car-
ried out several calculations on finite-size clusters of var-
ious shapes that can accommodate different supercells.
The lowest-energy distortions found by this analysis dis-
play perfect hexagons in their spin-spin correlation pat-
terns. The energies of these states can be compared
by performing calculations on the (12, 12)a cluster (with
N = 432 sites), which can accommodate all the opti-
mal supercells we identified. The results are summa-
rized in Fig. 3, where different patterns with perfect
hexagons are compared. Similarly to what has been pre-
viously discussed, we find the Dirac spin liquid to be
stable to dimerization until a certain critical value of the
spin-phonon coupling is reached (gc ≈ 0.1). For larger
values of g, the lowest-energy states are given by the
(2, 2)b and (3, 2)c supercells, both containing 36 sites.
The lattice distortions and the relative spin-spin corre-
lations of these states are shown in Fig. 3(b,c) and dis-
play the maximal density of perfect hexagons (two per
supercell, i.e., one every 18 sites). Both these patterns
have been discussed in several works as possible ground

states of spin (or quantum dimer) models on the kagome
lattice [6–9, 11, 16, 23, 56, 57]. The valence-bond or-
der of Fig. 3(b) shows a honeycomb structure of perfect
hexagons, which are arranged around weak hexagonal
plaquettes surrounded by a pinwheel pattern of dimers.
Previous studies on kagome Heisenberg models showed
that this valence-bond solid can be favored by a ferro-
magnetic second-neighbor coupling [23]. The distortion
in Fig. 3(c), instead, is characterized by parallel stripes
of perfect hexagons [7]. On the (12, 12)a cluster, the en-
ergy obtained by the two 36-sites supercells, (2, 2)b and
(3, 2)c, are slightly lower than the one of the 18-sites su-
percell (2, 3)a of Fig. 2(d), at least for small values of
the spin-phonon coupling. It is not possible, instead,
to draw definitive conclusions about which of the two
36-sites valence-bond orders is better than the other, as
the relative energy difference is very small and difficult
to resolve within stochastic and optimization uncertain-
ties. Still, it can be clearly stated that a large density of
perfect hexagons is crucial to obtain the lowest energies.
Indeed, similarly to the correlation pattern in Fig. 2(d),
the valence-bond state obtained with the (2, 4)a super-
cell is also characterized by perfect hexagons separated
by stripes of alternating dimers (not shown). However,
it possesses a lower density of perfect hexagons, i.e., one
every 24 sites, and its energy is found to be consistently
higher than the states with maximal density, as shown in
Fig. 3(a).

The transition between the Dirac spin liquid and the
valence-bond-solid states appears to be of the first order.
This conclusion is motivated by two different observa-
tions. On the one hand, the dimerized states can be sta-
bilized as metastable states in the region where the Dirac
spin liquid gives the lowest-energy variational Ansatz.
On the other hand, the analysis of the fluxes thread-
ing the elementary plaquettes of the lattice suggests that
the valence-bond solids with perfect hexagons cannot be
smoothly connected to the Dirac spin-liquid state. In-
deed, we find that the product of hoppings around a per-
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Figure 3: The same as in Fig. 2 for calculations on the (12, 12)a cluster (N = 432 sites). Panel (a) shows the energies (per site)
of the Dirac spin liquid (SL) and different valence-bond solids with perfect hexagons. Panels (b) and (c) show the distortions
and spin-spin correlations (at g = 0.3) of the (2, 2)b and (3, 2)c supercells, respectively.

Figure 4: Fermionic hoppings in the minimal variational
Ansatz for the (2, 2)b valence-bond solid. Bonds of different
colors correspond to (four) independent absolute values of the
hopping parameters. Solid and dashed lines denote positive
and negative signs of the hopping, respectively. The fluxes
threading the hexagonal plaquettes are reported and compat-
ible with those observed in Ref. [23]. Perfect hexagons can be
recognized as the ones with 0 flux.

fect hexagon always produces 0-flux, which is incompat-
ible with the π-flux threading the hexagonal plaquettes
in the Dirac spin liquid Ansatz. We also observe that the
hexagons which lie right between two perfect hexagons
(and possess two dimers at opposite edges) are always
threaded by flux π. No general conclusions can be drawn
for the fluxes of the other hexagonal plaquettes of the
lattice.

Starting from the results of the unbiased optimiza-
tion of all the hopping parameters, we found a simpler
parametrization for the Ansatz of the 36-sites valence-
bond solid defined by the (2, 2)b supercell [Fig. 3 (b)].
Indeed, the number of independent hoppings can be nar-
rowed down from 72 to 4, without worsening the vari-
ational energy. However, as previously mentioned, the
choice of the signs of the hoppings on the different bonds

is crucial and induces a specific flux pattern, shown
in Fig. 4. We make use of this simplified variational
Ansatz to perform a numerical experiment to understand
why the system prefers to form distortions with perfect
hexagons with rotationally symmetric pattern of correla-
tions, instead of creating strong dimers on three edges.
For this purpose, we start from the variational Ansatz in
Fig. 4, and we force the hoppings on the even/odd edges
of the perfect hexagons to take values 1 + δt and 1− δt,
respectively. The remaining hoppings are optimized, to-
gether with the other variational parameters. As a result,
we are able to draw an energy landscape as we smoothly
tune the symmetric hexagons (δt = 0) into plaquettes
with three dimers (δ = 1). Two inequivalent dimeriza-
tions can be considered, since the supercell contains two
perfect hexagons. The resulting energy loss is reported
in Fig. 5, where both the total energy and the contribu-
tion from the free phonon Hamiltonian Hph are shown.
The latter is found to be a small fraction of the total
energy loss. Therefore, we conclude that the tendency
to form symmetric perfect hexagons (instead of discon-
nected dimers) is driven by the spin-phonon part of the
Hamiltonian.

Finally, we mention that finding valence-bond solid in-
stabilities that are continuously connected to the Dirac
spin liquid is possible, although they yield higher vari-
ational energies than those of the optimal distortions
presented above. For example, we constructed a varia-
tional Ansatz within the (2, 2)a supercell that reproduces
the pinwheel valence-bond-solid pattern, which can arise
from monopole condensation and lead to a finite gap in
the Dirac spectrum [29]. The fermionic Hamiltonian of
the variational state contains three hoppings, whose signs
yield the characteristic fluxes of the Dirac state, as shown
in the upper inset of Fig. 6. The absolute values of the
hoppings in red and black are fixed to 1 + δt and 1− δt,
respectively, while the remaining hopping is optimized,
together with all the other variational parameters. In
this way, we can draw an energy landscape as a function
of the δt parameter, which induces a pinwheel dimeriza-
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Figure 5: Energy loss due to forcing a dimerization of the per-
fect hexagons in the variational Ansatz of the (2, 2)b valence-
bond solid (Fig. 4). The total energy loss (red squares) is
plotted alongside the contribution due to the free phonon
Hamiltonian (blue cirlces), for two inequivalent dimerization
patterns (illustrated in the insets). The results are obtained
on the (4, 4)b cluster (N = 144 sites), for g = 0.3.

Figure 6: Energy landscape of the pinwheel valence-bond
solid Ansatz [29] as a function of the tuning parameter δt. The
three independent hoppings defining the variational state are
shown in the upper inset. Different colors refer to different
absolute values, with red/black bonds indicating |ti,j | = 1 ±
δt. Solid and dashed lines denote, respectively, positive and
negative hoppings, which reproduce the characteristic fluxes
of the Dirac spin liquid. The lower inset shows the lattice
distortions and spin-spin correlations (analogously to Fig. 2
and 3) in the minimum of the variational energy, for g = 0.3.
The results are obtained on the (6, 6)a cluster (N = 108 sites).

tion around the hexagon in the middle of the supercell.
As shown in Fig. 6, for small values of the spin-phonon
couplings (i.e., g = 0.1 and 0.2) the minimum of the en-
ergy is found at δt = 0. Here, the absolute value of the
third hopping converges to 1, yielding the Dirac spin liq-
uid, which is then stable with respect to the pinwheel
dimerization. On the other hand, when g = 0.3, an en-
ergy minimum appears for δt ≈ 0.3, indicating that the

pinwheel valence-bond-solid state is energetically more
convenient than the Dirac spin liquid. The behavior of
the energy landscape indicates a second order transition
between the spin liquid and the pinwheel valence-bond
solid. Nevertheless, the lowest-energy variational state
found by an unbiased optimization in the (2, 2)a super-
cell yields the same dimerization pattern of the (2, 1)a
supercell shown in Fig. 2(b). This fact indicates that the
pinwheel and diamond patterns with (2, 2)a periodicity,
proposed in other works as emerging from the monopole
condensation of the Dirac spin liquid on the kagome lat-
tice [29, 49], do not actually describe the optimal distor-
tions observed in the present spin-phonon model.

IV. CONCLUSION

In this work, we investigated the potential spin-Peierls
instability of the U(1) Dirac spin liquid on the kagome
lattice in presence of a coupling between spins and lat-
tice distortions. Our analysis is based on a spin-phonon
Su-Schrieffer-Heeger Heisenberg Hamiltonian in which
the antiferromagnetic exchange interaction between the
S = 1/2 spins depends linearly on relative site displace-
ments, the latter being described by a set of uncoupled
harmonic oscillators (Einstein phonons). The full quan-
tum dynamics of the system is taken into account by
means of a variational Monte Carlo approach in which
both spins and phonons are treated as quantum mechan-
ical degrees of freedom. Even though we have focused
our attention on optical phonons, we do not expect a
drastically different scenario when considering an acous-
tic dispersion. In fact, since all the distortions found
in the numerical simulations possess finite momenta, the
difference between optical and acoustic dispersions is not
expected to play a relevant role. Furthermore, given the
substantial energy gain provided by distorted states that
cannot be continuously connected to the Dirac spin liq-
uid, it appears rather unplausible to obtain a continuous
transition between the spin liquid and the valence-bond-
solid phases.
Scanning through several supercells and patterns of

distortions, we identified the lowest-energy valence-bond
ordered states induced by the spin-phonon coupling,
which display a large density of perfect hexagons [6],
i.e., (rotationally symmetric) hexagonal plaquettes with
strong antiferromagnetic correlations at the edges. Other
valence-bond ordered states, including those associated
to the condensation of monopoles [29, 49], are found to be
energetically less convenient. The most important out-
come of the present study is the observation that the
transition towards valence-bond order takes place at fi-
nite values of the spin-phonon interaction, which implies
that the U(1) Dirac spin liquid is a stable phase. Fur-
thermore, the analysis of the variational energies, sup-
ported by considerations about the gauge-invariant fluxes
characterizing the variational Ansätze, indicate that the
transition betweeen the Dirac spin liquid and the optimal
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valence-bond ordered states is of the first order.
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Phys. Rev. Lett. 109, 067201 (2012), URL https://

link.aps.org/doi/10.1103/PhysRevLett.109.067201.
[20] Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys.

Rev. B 87, 060405 (2013), URL https://link.aps.org/

doi/10.1103/PhysRevB.87.060405.
[21] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys.

Rev. Lett. 98, 117205 (2007), URL https://link.aps.

org/doi/10.1103/PhysRevLett.98.117205.
[22] X.-G. Wen, Phys. Rev. B 65, 165113 (2002), URL https:

//link.aps.org/doi/10.1103/PhysRevB.65.165113.
[23] Y. Iqbal, F. Becca, and D. Poilblanc, New Journal of

Physics 14, 115031 (2012), URL https://dx.doi.org/

10.1088/1367-2630/14/11/115031.
[24] Y. Iqbal, F. Becca, and D. Poilblanc, Phys. Rev. B

84, 020407 (2011), URL https://link.aps.org/doi/

10.1103/PhysRevB.84.020407.
[25] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann,

Phys. Rev. X 7, 031020 (2017), URL https://link.aps.

org/doi/10.1103/PhysRevX.7.031020.
[26] W. Zhu, X. Chen, Y.-C. He, and W. Witczak-Krempa,

Science Advances 4, eaat5535 (2018), URL https://

www.science.org/doi/abs/10.1126/sciadv.aat5535.
[27] F. Ferrari, A. Parola, and F. Becca, Phys. Rev. B

103, 195140 (2021), URL https://link.aps.org/doi/

10.1103/PhysRevB.103.195140.
[28] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie,

R. Z. Huang, B. Normand, and T. Xiang, Phys. Rev.
Lett. 118, 137202 (2017), URL https://link.aps.org/

doi/10.1103/PhysRevLett.118.137202.
[29] X.-Y. Song, C. Wang, A. Vishwanath, and Y.-C. He,

Nature Communications 10, 4254 (2019), URL https:

//doi.org/10.1038/s41467-019-11727-3.
[30] M. B. Hastings, Phys. Rev. B 63, 014413 (2000),

URL https://link.aps.org/doi/10.1103/PhysRevB.

63.014413.
[31] M. Hermele, Y. Ran, P. A. Lee, and X.-G. Wen, Phys.

Rev. B 77, 224413 (2008), URL https://link.aps.org/

doi/10.1103/PhysRevB.77.224413.
[32] X.-Y. Song, Y.-C. He, A. Vishwanath, and C. Wang,

Phys. Rev. X 10, 011033 (2020), URL https://link.

aps.org/doi/10.1103/PhysRevX.10.011033.
[33] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys.

Rev. B 91, 075112 (2015), URL https://link.aps.org/

doi/10.1103/PhysRevB.91.075112.
[34] F. Kolley, S. Depenbrock, I. P. McCulloch,
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