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spatio-temporal receptive fields according to the generalized Gaussian
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Abstract The influence of natural image transformations
on receptive field responses is crucial for modelling visual
operations in computer vision and biological vision. In this
regard, covariance properties with respect to geometric im-
age transformations in the earliest layers of the visual hierar-
chy are essential for expressing robust image operations, and
for formulating invariant visual operations at higher levels.

This paper defines and proves a set of joint covariance
properties under compositions of spatial scaling transfor-
mations, spatial affine transformations, Galilean transforma-
tions and temporal scaling transformations, which make it
possible to characterize how different types of image trans-
formations interact with each other and the associated spatio-
temporal receptive field responses. In this regard, we also
extend the notion of scale-normalized derivatives to affine-
normalized derivatives, to be able to obtain true affine-covariant
properties of spatial derivatives, that are computed based on
spatial smoothing with affine Gaussian kernels.

The derived relations show how the parameters of the
receptive fields need to be transformed, in order to match
the output from spatio-temporal receptive fields under com-
posed spatio-temporal image transformations. As a side ef-
fect, the presented proof for the joint covariance property
over the integrated combination of the different geometric
image transformations also provides specific proofs for the
individual transformation properties, which have not previ-
ously been fully reported in the literature.

We conclude with a geometric analysis, showing how
the derived joint covariance properties make it possible to
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relate or match spatio-temporal receptive field responses,
when observing, possibly moving, local surface patches from
different views, under locally linearized perspective or pro-
jective transformations, as well as when observing different
instances of spatio-temporal events that may occur either
faster or slower between different views of similar spatio-
temporal events. We do furthermore describe how the pa-
rameters in the studied composed spatio-temporal image trans-
formation models directly relate to geometric entities in the
image formation process and the 3-D scene structure.

In relation to these geometric interpretations, the derived
explicit transformation properties for receptive field responses,
defined in terms of spatio-temporal derivatives of the under-
lying covariant spatio-temporal smoothing kernels, do specif-
ically show how to both interpret and relate spatio-temporal
receptive field responses, when viewing dynamic scenes un-
der different composed geometric viewing conditions.

Specifically, we propose that this theoretical analysis should
have direct relevance, when interpreting the functional prop-
erties of biological receptive fields, both computationally
and with regard to how the simple cells in the primary vi-
sual cortex, whose functional properties we here model with
an idealized axiomatically derived spatio-temporal recep-
tive field model. From the viewpoint of the here presented
theory, in combination with previous biological modelling
results that demonstrate a very good qualitative agreement
between idealized receptive field models according to this
theory and neurophysiological recordings of actual biolog-
ical receptive fields in the primary visual cortex of higher
mammals, the shapes of these joint spatio-temporal recep-
tive fields can, from this viewpoint, be regarded as very well
adapted to the structural properties of the environment.

Keywords Covariance · Receptive field · Scaling · Affine ·
Galilean · Spatial · Temporal · Spatio-temporal · Image
transformations · Geometry · Vision
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1 Introduction

When images, video sequences or video streams are acquired
from the real world, they are subject to natural image trans-
formations, as caused by variations in the positions, the rel-
ative orientations and the motions between the objects in the
world and the observer:

– Depending on the distance between the objects in the
world and the observer, the perspective projections of
objects onto the image surfaces may become smaller or
larger, which to first-order of approximation can be mod-
elled as local spatial scaling transformations.

– Depending on the orientations of the surface normals of
the objects in relation to the viewing direction, the im-
age patterns may be compressed by different amounts in
different directions (perspective foreshortening), which
to first-order of approximation can be modelled as local
spatial affine transformations.

– Depending on how the objects in the world move relative
to the (possibly time-dependent) viewing direction, the
image patterns of objects may move in the image plane,
which to first-order of approximation can be modelled
as local Galilean transformations.

– Depending on how fast the perspective projections of
objects move in the image plane, or how fast spatio-
temporal actions occur, the time-line along the temporal
dimension may be compressed or expanded, which can
be modelled as temporal scaling transformations.

These types of geometric image transformations will have a
profound effect on the spatio-temporal receptive fields that
register and process the image information at the earliest
stages in the visual hierarchy, in that the output from the
receptive fields to particular image patterns may be strongly
dependent on the imaging conditions. Specifically, if the in-
teraction effects between the geometric image transforma-
tions and the receptive fields are not properly taken into
account, then the robustness of the visual modules can be
strongly affected in a negative manner. If, on the other hand,
the interaction effects between the natural image transfor-
mations are properly taken into account, then the robustness
of the visual measurements may be substantially improved.

A particular way of handling the interaction effects be-
tween the geometric image transformations and the recep-
tive fields is by requiring that the family of receptive fields
to be covariant under the relevant classes of image transfor-
mations (Lindeberg 2013a, 2023b). Covariance in this con-
text means that the geometric image transformations essen-
tially commute with the image operations induced by the
receptive fields, and do in this way provide a way to prop-
agate well-defined relationships between the geometric im-
age transformations and the receptive fields. Specifically, co-
variance properties of the receptive fields at lower levels in

the visual hierarchy make it possible to define invariant im-
age measurements at higher levels in the visual hierarchy
(Lindeberg 2013b, 2021, Poggio and Anselmi 2016).

The subject of this paper is to describe and derive a set of
joint covariance properties of receptive fields according to a
specific model for spatio-temporal receptive fields, accord-
ing to the generalized Gaussian derivative model for visual
receptive fields (to be detailed below), under joint combina-
tions of spatial scaling transformations, spatial affine trans-
formations, Galilean transformations and temporal scaling
transformations (see Figure 1 for a visualized motivation re-
garding the importance of covariance under geometric im-
age transformations for visual receptive fields).

Then, we will show with a geometric analysis how these
derived joint geometric covariance properties make it pos-
sible to, to first order of approximation, perfectly match the
spatio-temporal receptive field responses between different
views of the same, possibly moving, local surface patch, in
relation to a visual observer. In these ways, these joint co-
variance properties make it possible for a vision system,
biological or artificial, to perform more accurate inference
to cues of the 3-D environment, compared to a vision sys-
tem that does not obey such geometric covariance proper-
ties. Such a possibility, for geometrically accurate inference
to the 3-D structure and motion in the environment, may,
in turn, constitute an essential desirable property of a vision
system for biological agent, who relies critically on a very
well-developed vision system for its survival.

For the purpose of the theoretical analysis to be per-
formed, we will build upon the regular Gaussian derivative
model for visual receptive fields, proposed by Koenderink
and van Doorn (1984, 1987, 1992), which has been used
for modelling biological receptive fields by Young (1987) as
well used as a component in more developed models of bio-
logical vision by Lowe (2000), May and Georgeson (2007)
Hesse and Georgeson (2005), Georgeson et al. (2007), Wal-
lis and Georgeson (2009), Hansen and Neumann (2008),
Wang and Spratling (2016) and Pei et al. (2016).

In this work, we will, however, consider a more devel-
oped generalized Gaussian derivative model for visual re-
ceptive fields, extended with a variability over affine image
transformations (Lindeberg and Gårding 1997) as well as
furthermore extended from being applied over purely spatial
image domain to being applied over a joint spatio-temporal
image domain (Lindeberg 2011, 2016, 2021). Compared to
the earlier spatio-temporal modelling work by Young et al.
(2001, 2001), we will here specifically consider a more ge-
ometric way of parameterizing the degrees of freedom over
the joint spatio-temporal domain, as will be further described
in Section 2.

While Gabor filters have also been commonly used for
modelling spatial receptive fields (Marcelja 1980, Jones and
Palmer 1987a, 1987b, Ringach 2002, 2004, Serre et al. 2007,
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(a) Non-covariant receptive fields (b) Covariant receptive fields
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Fig. 1 Illustration of the importance of covariance properties for the family of receptive fields, for a vision system aimed at analyzing the image
data that originate from perspective projections of a 3-D world. (a) Here, the left figure shows the effect of backprojecting non-covariant receptive
fields to the tangent plane of that surface patch, based on rotationally symmetric spatial smoothing operations over the support regions of the
receptive fields in the image domains, from two different image domains that observe local neighbourhoods of the same point in the 3-D world. As
illustrated in the left figure, this will lead to a mismatch between the backprojected receptive fields, implying that if the difference in the receptive
field measurements from the two image domains would be used for deriving cues to the 3-D structure of the scene, then there would be a large
source of error because of this mismatch between the receptive fields. (b) If we, on the other hand, use covariant receptive fields, which within
the family of locally linearized projective transformations between the two image domain will correspond to affine anisotropic spatial smoothing
operations over the support regions of the receptive fields in the two image domains, then by appropriate matched choices of the parameters of
the receptive fields, the backprojected receptive fields can be tuned to be equal, thus eliminating the mismatch error between the backprojected
receptive fields, and, in turn, allowing for much more accurate determination of cues to the 3-D structure of the scene compared to what can
be achieved based on non-covariant receptive fields. Note that while this example illustrates a static configuration with purely spatial receptive
fields, similar effects concerning the backprojected receptive fields arise also for a vision system that observes a dynamic world based on joint
spatio-temporal receptive fields, implying that covariance properties with respect to Galilean transformations as well as with respect to temporal
scaling transformations constitute essential properties for a vision system that aims at analyzing the image data originating from moving objects
and spatio-temporal events in a dynamic world. (Figures adapted from Lindeberg (2023b) with permission (OpenAccess).)

De and Horwitz 2021), the potential applicability of Gabor
filters for modelling joint spatio-temporal receptive fields
has, however, not been as extensively explored. For this rea-
son, we will restrict ourselves to modelling visual receptive
fields over the joint spatio-temporal domain in terms of the
generalized Gaussian derivative theory for visual receptive
fields in the following treatment.

1.1 Structure of this article

This paper is organized as follows: Section 2 begins by de-
scribing the model for spatio-temporal receptive fields that
we will build upon, in terms of an underlying joint spatio-
temporal smoothing operation followed by the computation
of spatio-temporal derivatives for different orders of spatial
and temporal differentiation. We do also give a brief sum-
mary of how these spatio-temporal receptive field models
can be used for modelling linear receptive fields in the retina,
the lateral geniculate nucleus (LGN) and the primary visual
cortex (V1).

Section 3 then describe the notions of scale-normalized
spatial and temporal derivative operators, with their associ-
ated covariance properties under spatial and scaling trans-
formations, which constitute an important concept to use,
when to match receptive field responses that have been com-
puted for different values of the scale parameters of the re-
ceptive fields. Specifically, we formulate a new notion of

affine scale-normalized directional derivatives, to be applied
in connection with anisotropic affine Gaussian smoothing
kernels, and show that this concept leads to provable covari-
ance properties, for two important subgroups of the group
of more general spatial affine transformations. More gener-
ally, we do also formulate new notions of a scale-normalized
affine gradient operator and a scale-normalized affine Hes-
sian operator, and show that these concepts, up to possibly
unknown low-dimensional perturbation operators applied to
these entities, lead to full affine covariance.

Section 4 gives an overview of how the studied model for
joint spatio-temporal receptive fields obeys specific (individ-
ual) covariance properties under either spatial scaling trans-
formations, spatial affine transformations, Galilean transfor-
mations or temporal scaling transformations. Section 5 de-
fines the class of joint compositions of those spatio-temporal
image transformations that we will consider, and does then
develop explicit proofs for how both the underlying spatio-
temporal smoothing operation as well as the spatial and tem-
poral derivative operators, in the spatio-temporal receptive
field model that we study, are transformed under this class
of composed spatio-temporal image transformations.

Section 6 then gives a geometric interpretation of the
studied class of composed spatio-temporal image transfor-
mations that we study the covariance properties for, in terms
of the scaled orthographic projection from the tangent plane
of a local surface patch, complemented by a local transla-
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Fig. 2 Variability over scale of the first-order directional derivative of the Gaussian kernel Tφ(x; s,Σ) = ∂φ(g(x; s,Σ)) in the horizontal
direction φ = 0 for an isotropic spatial covariance matrix withΣ = I, and corresponding to the variability induce by varying the distance between
the observe object, while because of the requirement of spatial scale covariance requiring the sizes of the backprojected receptive fields to be
the same in the tangent plane of the surface under the resulting spatial scaling transformations. The scale parameter σx used here, in units of the
standard deviation of the Gaussian kernel, is equal to the square root of the variance-based scale parameter s = σ2

x used elsewhere in this paper.
(Horizontal axes: spatial coordinate x1 ∈ [−10, 10]. Vertical axes: spatial coordinate x2 ∈ [−10, 10].)

tion motion model to account for relative motions between
the surface patch and the observer, as well as a temporal
scaling transformation to account for spatio-temporal events
that may occur either faster or slower relative to a refer-
ence view. We do also present extensions showing how a
slight modification of the composed spatio-temporal trans-
formation model makes it possible to represent first-order
linearized approximations of the projective transformations
between pairwise views of the same local surface patch.

Section 7 then states explicit covariance properties for
the underlying spatio-temporal smoothing transformation as
well as the underlying spatial and temporal derivative oper-
ators in the composed model for spatio-temporal receptive
fields, for locally linearized transformations between pair-
wise views of the same local surface patch.

In Section 8, we complement the geometric interpreta-
tion of the model, by describing how the degrees of free-
dom in the parameters in the spatio-temporal receptive field
model studied in this treatment span a similar variability, as
the degrees of freedom in the locally linearized scaled or-
thographic projection model complemented with a Galilean
motion component to account for possibly unknown relative
motions between the observed object and the observer, as
well a temporal scaling transformation to account for sim-
ilarly looking spatio-temporal events that may occur either
faster or slower relative to a previous view of a similar spatio-
temporal event. Then, we use this connection for interpret-
ing the functional properties of the receptive fields of sim-
ple cells in the primary visual cortex (V1), to provide com-
plementary theoretical support for a previously formulated
working hypothesis, that the receptive fields in the primary
visual cortex can be regarded as very well adapted to han-
dling the variability of image structures caused by observing
a dynamic 3-D environment.

Section 9 then outlines how the parameters in the studied
spatio-temporal image transformation models can be inter-
preted as constituting direct cues to the 3-D structure of the
environment, provided that the parameters in this image de-

formation models can be computed with sufficient accuracy,
based on combinations of receptive field responses.

Finally, Section 10 gives a summary and conclusions re-
garding some of the main results.

2 The generalized Gaussian derivative model for
spatio-temporal receptive fields

Given spatio-temporal image data of the form f(x, t) for
x = (x1, x2)

T ∈ R2 and t ∈ R, in (Lindeberg 2011, 2016)
a principled model for spatio-temporal receptive fields is de-
rived and applied of the form (here, however, with slightly
modified notation)

T (x, t; s,Σ, τ, v) = g(x− v t; s,Σ)h(t; τ), (1)

where

– s ∈ R+ denotes a spatial scale parameter corresponding
to the spatial variance of a non-negative spatial smooth-
ing kernel,

– Σ denotes a positive definite 2×2 spatial covariance ma-
trix that describes the spatial shape of the spatial smooth-
ing kernel,

– τ ∈ R+ denotes a temporal scale parameter correspond-
ing to the temporal variance of a non-negative temporal
smoothing kernel,

– v = (v1, v2)
T ∈ R2 denotes an image velocity vector,

– g(x; s,Σ) denotes a 2-D affine Gaussian kernel of the
form

g(x; s,Σ) =
1

2π sdetΣ
e−xTΣ−1x/2s, (2)

– h(t; τ) denotes a temporal smoothing kernel, that for
any temporal scaling factor St obeys the temporal scale
covariance property

h(t′; τ ′) =
1

St
h(t; τ) (3)

for t′ = St t and τ ′ = S2
t τ .
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2.1 Temporal smoothing kernels

Based on the treatments in (Lindeberg 2011, 2016), the choice
of the temporal smoothing operation as the convolution with
a 1-D temporal Gaussian kernel

h(t; τ) = g1D(t; τ) =
1√
2πτ

e−t2/2τ (4)

stands out as a canonical choice over a non-causal temporal
domain (where the relative future in relation to any time mo-
ment can be accessed), whereas the choice of the temporal
kernel as the time-causal limit kernel (Lindeberg 2023a)

h(t; τ) = Ψ(t; τ, c), (5)

defined by having a Fourier transform of the form

Ψ̂(ω; τ, c) =

∞∏
k=1

1

1 + i c−k
√
c2 − 1

√
τ ω

, (6)

and corresponding to an infinite number of truncated expo-
nential kernels with specially chosen time constants to ob-
tain temporal scale covariance, stands out as a canonical
choice over a time-causal temporal domain, where the fu-
ture cannot be accessed. The distribution parameter c > 1

of this time-causal limit kernel is for practical purposes of-
ten chosen as c =

√
2 or c = 2.

2.2 Spatio-temporal derivative operators

The above purely spatio-temporal smoothing components of
receptive fields are then to combined with spatial and tem-
poral derivative operations. Over the spatial domain, we can
compute either partial spatial derivatives

∂xα = ∂α1
x1

∂α2
x2

(7)

for different orders α = (α1, α2)
T of spatial differentiation,

or oriented directional derivatives in any direction φ

∂m
φ = (cosφ∂x1

+ sinφ∂x2
)m = (eTφ ∇x)

m (8)

over different orientations φ and different orders m of spa-
tial differentiation, where eφ = (cosφ, sinφ)T denotes the
unit vector in the direction φ and ∇x denotes the spatial gra-
dient operator according to

∇x =

(
∂x1

∂x2

)
. (9)

Over the temporal domain, we can, in turn, compute partial
temporal derivatives

∂n
t (10)

Fig. 3 Variability of first-order directional spatial derivatives of Gaus-
sian kernels Tφ(x; s,Σ) = ∂φ(g(x; s,Σ)) over a purely spatial do-
main, here shown in terms of a uniform distribution on a hemisphere,
for different values of the orientation angle φ, the spatial scale parame-
ter s and the spatial covariance matrices Σ, and in this way simulating
the variability of spatial receptive field shapes that will be the result
by interpreting the purely spatial affine covariance property, such that
the underlying spatial smoothing kernels are required to be rotation-
ally symmetric in the tangent plane of a surface patch, while vary-
ing the slant and the tilt angles of the surface patch over all angles on
the visible hemisphere. Similar variabilities will result from directional
derivatives of higher order. In this figure, the spatial scale parameters
of the receptive fields have been normalized such that the maximum
eigenvalue of the spatial covariance matrix Σ is the same for all the
receptive fields. (Horizontal and vertical axes: the spatial coordinates
x1 and x2, for multiple spatial receptive fields shown within the same
frame.)

for different orders n of temporal differentiation, or velocity-
adapted temporal derivatives

∂n
t̄ = (v1 ∂x1

+ v2 ∂x2
+ ∂t)

n = (vT ∇x + ∂t)
n (11)

for different image velocities v = (v1, v2)
T and orders n of

temporal differentiation.

Specifically, in relation to the parameters Σ and v of the
purely spatio-temporal smoothing component of the spatio-
temporal receptive fields in (1), the image orientations φ in
the directional derivative operators (8) should preferably be
chosen in the directions of the eigendirections of the spa-
tial covariance matrix Σ, whereas the image velocities v in
the velocity-adapted derivative operators ∂n

t̄ should prefer-
ably be chosen equal to the image velocity v in the spatio-
temporal smoothing kernel T (x, t; s,Σ, τ, v).



6 Tony Lindeberg

v = −1 v = −1/2 v = 0 v = 1/2 v = 1

Fig. 4 Variability of mixed spatio-temporal derivatives over a 1+1-D spatio-temporal domain, corresponding to the combination of first-
order Gaussian derivative over the temporal domain and first-order derivatives of the time-causal limit kernel Txt̄(x, t; s, τ, v) =
∂x ∂t̄ (g(x− v t; s)Ψ(t; τ, c)) for s = σ2

x , τ = σ2
t and c = 2 with σx = 1/2 and σt = 1, under variations of the image velocity v of the

kernels. Geometrically such a variability will be the result if we vary the relative motion between the viewing direction and a moving local surface
patch, while requiring the backprojected receptive fields to due to requirements of Galilean covariance having the same effective effect when
backprojected to the tangent plane of the surface. (Horizontal axes: spatial coordinate x ∈ [−3.5, 3.5]. Vertical axes: time t ∈ [0, 3.5].)
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Fig. 5 Variability of the first-order scale-normalized temporal derivatives of the time-causal limit kernel Tt(t; τ) =
√
τ ∂t (Ψ(t; τ, c)) for c = 2

under variations of the temporal scale parameter σt =
√
τ , in this way demonstrating the effect of we because of a requirement of temporal

scale covariance require the backprojected temporal receptive fields to correspond to the same structures in the temporal signal, when observing
temporal structures that occur either faster or slower relative to a previously observed reference signal. (Horizontal axes: time t ∈ [0, 16]. Vertical
axes: magnitude of the scale-normalized derivative ∈ [−0.5, 1].)

2.3 Relations to biological vision

In (Lindeberg 2021), it was demonstrated that the receptive
fields of neurons in the lateral geniculate nucleus (LGN) as
well as the receptive fields of simple cells in the primary
visual cortex (V1), as measured by neurophysiological cell
recordings by DeAngelis et al. (1995, 2004), Conway and
Livingstone (2006) and Johnson et al. (2008), can be well
modelled by idealized receptive fields derived from this gen-
eralized Gaussian derivative model for receptive fields.

According to the treatment in (Lindeberg 2021 Sections 4.1–
4.2), the spatio-temporal receptive fields of “non-lagged neu-
rons” and “lagged neurons”, which have rotationally sym-
metric response properties over the spatial domain, can be
modelled by idealized receptive fields of the form

hLGN (x, t; s, τ) = ±∇2
x g(x; s) ∂tn h(t; τ), (12)

where ∇2
x = ∂x1x1

+ ∂x2x2
represents the spatial Laplacian

operator, and h(t; τ) represents a temporal smoothing ker-
nel, which in the most idealized situation may correspond to
the time-causal limit kernel Ψ(t; τ, c) according to (6).

In this context, “non-lagged neurons” correspond to first-
order temporal derivatives, whereas “lagged neurons” corre-

spond to second-order temporal derivatives, see also (Gho-
drati et al. 2017) for a more extensive treatment of the prop-
erties of visual neurons in the lateral geniculate nucleus (LGN).

The spatio-temporal receptive fields of orientation selec-
tive simple cells in the primary visual cortex (V1) can, in
turn, be modelled by idealized receptive fields of the form

Tφm t̄n(x, t; s,Σ, τ, v) =

= ∂m
φ ∂n

t̄ (g(x− v t; s,Σ)h(t; τ)) , (13)

where

– ∂φ denotes directional a derivative operator in one of
the eigendirection of the spatial covariance matrix Σ ac-
cording to (8),

– ∂t̄ denotes a velocity-adapted temporal derivative oper-
ator in the direction v according to (11), and

– h(t; τ) again represents a set of first-order truncated ex-
ponential kernels coupled in cascade, which in the most
idealized situation may correspond to the time-causal
limit kernel Ψ(t; τ, c) according to (6);

see (Lindeberg 2021 Section 4.3) for explicit biological mod-
elling results.
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Figures 2–5 show variabilities of idealized receptive fields
according to this model under (i) spatial scaling transforma-
tions, (ii) spatial affine transformations, (iii) Galilean trans-
formations and (iv) temporal scaling transformations.

This paper addresses the problem of modelling the ef-
fects that joint compositions of these types of image trans-
formations have upon receptive field responses, as well as
how such joint compositions of these geometric image im-
age transformations can be interpreted geometrically, for multi-
view observations of dynamic scenes.

3 Scale-normalized spatial and temporal derivative
operators

When computing spatial and temporal derivatives from spatio-
temporally smoothed video data, as obtained by convolu-
tion with the spatio-temporal smoothing kernel (1), a basic
observation is that the magnitude of the computed spatio-
temporal derivatives is that they will decrease in magnitude
with increasing values of the spatial and the temporal scale
parameters. To handle this problem, and to enable the def-
inition of spatial and temporal derivative operators that are
truly covariant with regard to variations of the spatial and
the temporal scale parameters, that occur as parameters in
the models of the spatio-temporal receptive fields, we will
make use of scale-normalized derivative operators.

In this section, we will state the definitions of such scale-
normalized derivative operators, regarding both spatial and
temporal derivatives over different types of spatial, tempo-
ral or spatio-temporal domains, and show how this notion
leads to basic covariance properties under different types of
individual spatial and temporal scaling transformations.

In this context, we will specifically also develop a new
generalized formulation of scale-normalized spatial deriva-
tives, which beyond previous formulations of this concept
over the spatially isotropic scale space obtained from convo-
lutions with rotationally symmetric Gaussian kernels, also
applies to non-isotropic affine Gaussian scale spaces, ob-
tained from convolutions with anisotropic affine Gaussian
kernels, and which then allow for provable covariance prop-
erties over either different subgroups of the affine group, or
the full affine group, depending on the different formulations
of affine scale-normalized derivative operators.

The scale-normalized spatial and temporal derivative op-
erators, defined in these ways, will then be essential to ob-
tain true covariance properties under the different classes of
locally linearized joint spatio-temporal image transforma-
tions, that we will consider between the image data obtained
from different views of the same scene, and which will then
constitute specific compositions of the individual types of
image transformations studied in this section.

3.1 Scale-normalized spatial derivative operators for a
regular scale-space representation based on smoothing with
rotationally symmetric Gaussian kernels

For a regular Gaussian scale-space representation, defined
by convolution with rotationally Gaussian kernels, for which
the covariance matrix Σ in (2) is a unit matrix Σ = I

L(·; s) = g(·; s, I) ∗ f(·), (14)

such scale-normalized derivative operators corresponding to
the regular partial derivative operators (7), to be used at the
spatial scale level s in the corresponding spatial scale-space
representation, can be defined according as (Lindeberg 1998)

∂xα,norm = s(α1+α2)/2 ∂α1
x1

∂α2
x2

. (15)

The corresponding scale-normalized analogues of the direc-
tional derivative operators (8) will then be of the form

∂m
φ,norm = sm/2 (cosφ∂x1

+sinφ∂x2
)m = sm/2 (eTφ ∇x)

m,

(16)

and the corresponding scale-normalized spatial gradient op-
erator will be

∇x,norm = s1/2 ∇x. (17)

By multiplying the regular spatial derivative operators by
the scale parameter raised to a suitable power, proportional
to the order of spatial differentiation, the scale-normalized
spatial derivative concept will in this way compensate for the
otherwise general decrease in the magnitude of the spatially
smoothed spatial derivatives with increasing spatial scales,
to enable truly scale-covariant spatial derivative operators,
whose magnitudes can be perfectly matched under spatial
scaling transformations, as will be detailed in the next sec-
tion.

3.2 Covariance property for scale-normalized spatial
derivatives under spatial scaling transformations

Consider a spatial scaling transformation

f ′(x′) = f(x) for x′ = Sx x (18)

with corresponding isotropic Gaussian purely spatial scale-
space representations L and L′ of f and f ′, respectively,
according to

L(·; s) = g(·; s, I) ∗ f(·), (19)

L′(·; s′) = g(·; s′, I) ∗ f ′(·), (20)
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which obey spatial scale covariance for the underlying spa-
tial smoothing transformation, such that (Lindeberg 1998
Equation (16))

L′(x′; s′) = L(x; s) (21)

holds for matching values of the spatial scale parameters ac-
cording to

s′ = S2
x s. (22)

Let us define corresponding scale-normalized spatial deriva-
tives over the transformed spatial domain according to

∂x′α,norm = s′
(α1+α2)/2 ∂α1

x′
1
∂α2

x′
2
, (23)

∂m
φ′,norm = s′

m/2
(eTφ′ ∇x′)m, (24)

where eφ′ = (cosφ′, sinφ′)T denotes the corresponding
unit vector after the image transformation,

∇x′ =

(
∂x′

1

∂x′
2

)
. (25)

denotes the transformed gradient operator, and here the an-
gles for the directional derivatives are not affected by the
uniform spatial scaling transformation, such that

φ′ = φ. (26)

Let us also define the corresponding scale-normalized gra-
dient operator over the transformed domain according to

∇x′,norm = s1/2 ∇x′ . (27)

Then, since the scale-normalized spatial derivative operators
over the two respective domains will be related according to

∂x′
i,norm = ∂xi,norm, (28)

it follows that the scale-normalized spatial derivatives of
the transformed spatial scale-space representation L′ will be
equal to the scale-normalized spatial derivatives of the trans-
formed spatial scale-space representation L, such that

L′
x′α,norm(x

′; s′) = Lxα,norm(x; s), (29)

(∇x′,normL
′)(x′; s′) = (∇x,normL)(x; s), (30)

L′
φ′m,norm(x

′; s′) = Lφm,norm(x; s), (31)

which thus constitute covariance properties for scale-normal-
ized spatial derivatives of an isotropic purely spatial scale-
space representation under spatial scaling transformations.

When interpreted geometrically, these spatial scale co-
variance properties mean that, if we observe the same scene
from different distances, while keeping the viewing direc-
tion constant, then the scale-normalized spatial derivative
responses can to first order of approximation be perfectly
matched when viewing the same local surface patch from
different distances, along the viewing direction.

3.3 Scale-normalized directional derivative operators for an
affine scale-space representation based on smoothing with
anisotropic affine Gaussian kernels

For the later developments in this paper, we do, in addi-
tion to the above isotropic scale-normalized derivative con-
cept, for spatial scale-space representations based on convo-
lutions with rotationally symmetric Gaussian kernels, also
need to define scale-normalized spatial derivative operators
for spatial derivatives that are to be computed based on an
affine Gaussian scale-space representation, obtained by spa-
tial smoothing with anisotropic affine Gaussian kernels ac-
cording to (2)

L(·; s,Σ) = g(·; s,Σ) ∗ f(·), (32)

that is, based on 2×2 spatial covariance matrices Σ that are
not generally equal to a unit matrix. For this reason, we will
in the following extend the above scale-normalized deriva-
tive concept from an isotropic Gaussian scale-space repre-
sentation to an affine Gaussian scale-space representation in
different ways.

In this section, we will first develop such a notion of
scale-normalized derivatives for directional derivatives de-
fined from an affine Gaussian scale-space representation.
Later, we will then develop the other notions of the scale-
normalized affine gradient operator (see Section 3.5) and the
scale-normalized affine Hessian operator (see Section 3.7).

3.3.1 Definition of the affine scale-normalized directional
derivative operator

Given an affine spatial scale-space representation L(x; s,Σ),
that has been computed according to (32), we define the
affine scale-normalized directional derivative operator in the
direction φ, with the unit vector in this direction denoted eφ,
according to

∂m
φ,norm = sm/2 (eTφ Σ eφ)

m/2 ∂m
φ . (33)

A general motivation for this definition, is that the entity
eTφ Σ eφ should, disregarding the effect of the complemen-
tary scalar scale parameter s, reflect the amount of spatial
smoothing that convolution with an affine Gaussian kernel
with spatial covariance matrix Σ corresponds to, when mea-
sured in the spatial direction eφ only.

Specifically, if the coordinate system is rotated in such
a way that the covariance matrix becomes a diagonal ma-
trix Σ = diag(λ1, λ2), then if the unit vector eφ for com-
puting the directional derivative is selected equal to one of
the eigenvectors ei of the spatial covariance matrix Σ, then
the entity eTφ Σ eφ will select the eigenvalue λi of the spa-
tial covariance matrix corresponding to that eigenvector ei.
Since the affine Gaussian convolution operation in such a
configuration will reduce to separable smoothing with 1-D
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Gaussian kernels with spatial scale parameters λ1 and λ2

along the spatial eigendirections e1 and e2, respectively, this
implies that the resulting spatial scale normalization factor
λ
m/2
i , for spatial derivatives of orders m in the eigendirec-

tion ei of the spatial covariance matrix Σ, will for the stated
definition correspond precisely to the regular spatial scale
normalization factor λm/2

i for the separated 1-D scale-space
representations along the respective orthogonal eigendirec-
tions of the spatial covariance matrix.

Furthermore, we can note that in the special case of choos-
ing the spatial covariance matrix Σ equal to the unit matrix
I , the affine scale-normalized directional derivative opera-
tor ∂m

φ,norm according to (33) reduces to the previously de-
fined isotropic scale-normalized directional derivative oper-
ator ∂m

φ,norm according to (16).
For the special case of a regular Gaussian scale-space

representation, defined by convolution with rotationally sym-
metric Gaussian kernels for Σ = I , this new definition of
affine scale-normalized Gaussian directional derivatives is
therefore consistent with the previous formulated notion of
isotropic scale-normalized directional derivatives.

In the following, we will analyze and formulate explicit
covariance properties for this notion of affine scale-normalized
directional derivatives, for the cases of two important sub-
groups of the affine group. By necessity, the mathematical
details may be somewhat technical. The hasty reader should
however, without major loss of continuity, be able to skip
this treatment, to then continue with Section 3.9, while not-
ing the three below main theoretical results, summarized un-
der the below boldface headers “Summary of main result”.

3.4 Covariance properties for affine scale-normalized
directional derivatives under special subgroups of spatial
affine transformations

Consider a spatial affine transformation

f ′(x′) = f(x) for x′ = Ax, (34)

where A is a 2×2 affine transformation matrix, with match-
ing values of the spatial scale parameters s ∈ R+ and s′ ∈
R+ as well as the 2 × 2 spatial covariance matrices Σ and
Σ′ over the two domains, such that

s′Σ′ = sAΣ AT . (35)

Let us define affine scale-normalized directional derivatives
in the transformed domain according to

∂m
φ′,norm = s′

m/2
(eTφ′ Σ′ eφ′)m/2 ∂m

φ′ . (36)

Replacing s′ Σ′ in this expression by s′Σ′ = sAΣ AT

according to (35), and using the following transformation
property of the unit vectors

eφ′ =
Aeφ
∥Aeφ∥

, (37)

while additionally noting that

∥Aeφ∥2 = eTφ ATAeφ, (38)

implies that we can rewrite (36) as

∂m
φ′,norm = sm/2

(
eTφ ATAΣATAeφ

eTφ ATAeφ

)m/2

∂m
φ′ . (39)

From the definitions of the regular directional derivative op-
erators over the respective image domains

∂φ = eTφ ∇x, (40)

∂φ′ = eTφ′ ∇x′ , (41)

and the transformation property of the spatial gradient oper-
ator under the spatial affine transformation (34)

∇x = AT ∇x′ implying that ∇x′ = A−T ∇x,

(42)

we can after some simplification obtain that the scale-normalized
directional derivative operators in the two domains are re-
lated according to

∂φ′,norm =
∂φ,norm

∥Aeφ∥
. (43)

To make a preliminary summary, while again making use
of the relationship (38), this means that the affine scale-
normalized directional derivative operators over the two im-
age domains can be written as

∂m
φ,norm = sm/2 (eTφ Σ eφ)

m/2 ∂m
φ , (44)

∂m
φ′,norm = sm/2

(
eTφ ATAΣATAeφ

(eTφ ATAeφ)2

)m/2

∂m
φ . (45)

3.4.1 Analysis for the special case with spatial similarity
transformations

To analyse the possibility of the expressions (44) and (45)
leading to the same result, for the special case of spatial sim-
ilarity transformations, let us insert

A = Sx R, (46)

where Sx > 0 is a uniform spatial scaling factor and R is
a 2 × 2 rotation matrix with RT R = I , such that ATA =

S2
x I , where I is the unit matrix, into the above expressions.

Then, after simplification, (44) and (45) reduce to the similar
expressions

∂m
φ,norm = sm/2 (eTφ Σ eφ)

m/2 ∂m
φ , (47)

∂m
φ′,norm = sm/2 (eTφ Σ eφ)

m/2 ∂m
φ , (48)
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implying that when applied over their respective image do-
mains, these two underlying affine scale-normalized direc-
tional operators will lead to the same result

∂m
φ′,normL

′(x′; s′, Σ′) = ∂m
φ,normL(x; s,Σ). (49)

Summary of main result: To conclude, this result shows
that, when applied to an affine Gaussian scale-space repre-
sentation (32), defined by convolutions with arbitrary affine
Gaussian kernels, the affine scale-normalized directional deriva-
tive concept, defined according to (36)

∂m
φ,norm = sm/2 (eTφ Σ eφ)

m/2 ∂m
φ , (50)

is for every direction eφ in the image plane covariant under
arbitrary combinations of uniform scaling transformations
and rotations of the form

f ′(x′) = f(x) for x′ = Sx Rx, (51)

such that for the matching image orientation eφ′ = Reφ′ ,
and with the transformed affine scale-normalized directional
derivative operator in this direction defined according to

∂m
φ,′norm = s′

m/2
(eTφ′ Σ′ eφ′)m/2 ∂m

φ′ , (52)

then the relationship

∂m
φ′,normL

′(x′; s′, Σ′) = ∂m
φ,normL(x; s,Σ) (53)

will hold for all values of the spatial scale parameter s ∈ R+

and the 2 × 2 spatial covariance matrix Σ in the original
domain, provided that the spatial scale parameter s′ ∈ R+

and the spatial covariance matrix Σ′ over in the transformed
domain are related according to

s′Σ′ = sAΣ AT = s S2
x RΣRT . (54)

With regard to geometric interpretation, if we interpret the
composed spatial image transformation as a locally linear
approximation of the perspective mapping from the tangent
plane of a local surface patch to the image plane, this covari-
ance property under spatial similarity transformations im-
plies that the affine scale-normalized directional derivative
responses can to first order of linear approximation be per-
fectly match between different views of the same local sur-
face patch, when varying the distance between the viewed
object and the observer, as well as when rotating either the
camera or the object around the optical axis.

Concerning the dimensionality of the manifold spanned
by this covariance property, we have that the spatial scale
parameter s has dimensionality 1 and the spatial covariance
matrix Σ has dimensionality 3. Due to the coupling of these
parameters of the form sΣ, these parameters together do,
however, only correspond to a variability over 3 effective di-
mensions in the effective parameter space. The affine trans-
formation matrices according to the similarity group A =

Sx R span 2 out of the 4 dimensions in the variability of
the 2-D affine group. The degree of freedom in the direc-
tion φ adds 1 dimension to this space. Thus, we have that
this covariance result under spatial similarity transforma-
tions spans 6 out of the totally 8 dimensions in the variabil-
ity of computing affine scale-normalized derivatives from
an affine scale-space representation in different directions in
the image plane, that are possible under the different types
of image transformations that are spanned by the full affine
group, as well as under the different parameter settings that
can be performed for the affine Gaussian spatial smoothing
component in the spatial receptive fields.

3.4.2 Analysis for the special case with coupled eigenvalue
decompositions of the spatial covariance matrix Σ and the
affine transformation matrix A

Let us next assume that the eigenvalue decompositions of
the spatial covariance matrix Σ and the affine transforma-
tion matrix A are coupled, in such a way that

Σ = U diag(λ1, λ2)U
T , (55)

A = U diag(S1, S2)U
T , (56)

where

– diag(λ1, λ2) is a diagonal matrix with the eigenvalues
λ1 > 0 and λ2 > 0 of the spatial covariance matrix Σ,

– diag(S1, S2) is a diagonal matrix with the eigenvalues
S1 > 0 and S2 > 0 of the affine transformation matrix
A, and thus representing the two spatial scaling factors
S1 and S2 of a non-uniform spatial scaling transforma-
tion, and

– U is real unitary matrix, such that UTU = I , with its
two columns e1 and e2 constituting the eigenvectors of
both the spatial covariance matrix Σ and the affine trans-
formation matrix A.

Note, however, that we do not here assume the eigenvalues
to be ordered with respect to magnitude. Instead, we assume
that the eigenvalues are ordered in such a way that, the order
of the eigenvectors is the same for both the spatial covari-
ance matrix Σ and the affine transformation matrix A.

Given the expressions for spatial covariance matrix Σ

according to (55) and the affine transformation matrix A ac-
cording to (56), the expression for the transformed transfor-
mation matrix Σ′ according to (35) does after simplification
assume the form

s′ Σ′ = sAΣ AT = sU diag(S2
1 λ1, S

2
2 λ2)U

T , (57)

which does thus also share a coupled eigenvalue decompo-
sition, in relation to the original spatial covariance matrix Σ

and the affine transformation matrix A.
If we next choose the unit vector eφ, for defining the

affine scale-normalized directional derivative operator ∂φ,norm
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in the original domain according to (33), equal to ei, where
ei is one of the unit vectors e1 or e2 in the above unitary
matrix U , which in turn for eφ = ei implies that also the
transformed unit vector becomes

eφ′ =
Aeφ
∥Aeφ∥

=
U diag(S1, S2)U

T ei
∥U diag(S1, S2)UT ei∥

= ei, (58)

and then make use of the result that

ATA = U diag(S2
1 , S

2
2) U

T , (59)

we then obtain that the expression

eTφ Σ eφ = eTi U diag(λ1, λ2) U
T ei (60)

in the expression for the affine scale-normalized derivative
operator ∂φ,norm in (44) for eφ = ei reduces to

eTφ Σ eφ = λi, (61)

as well as that the expression

eTφ′ Σ′ eφ′ =
s

s′
×

eTφ ATAΣATAeφ

(eTφ ATAeφ)2
(62)

in the expression for the affine scale-normalized derivative
operator ∂φ′,norm in (45) for eφ′ = ei reduces to

eTφ′ Σ′ eφ′ =
s

s′
× λi. (63)

Thus, we therefore, for eφ = eφ′ = ei, have that

∂m
φ,norm = sm/2 λ

m/2
i ∂m

φ , (64)

∂m
φ′,norm = sm/2 λ

m/2
1 ∂m

φ , (65)

implying that when applied their respective original domains,
these two underlying affine scale-normalized directional op-
erators will for eφ = eφ′ = ei lead to the same result

∂m
φ′,normL

′(x′; s′, Σ′) = ∂m
φ,normL(x; s,Σ). (66)

Summary of main result: To summarize, this result shows
that provided that we assume that the eigenvalue decompo-
sitions of the 2×2 spatial covariance matrix Σ and the 2×2

affine transformation matrix A are coupled according to (55)
and (56)

Σ = U diag(λ1, λ2)U
T , (67)

A = U diag(S1, S2)U
T , (68)

where U is a some real 2 × 2 unitary matrix, and provided
that we then apply the affine scale-normalized directional
derivative operator according to (36)

∂m
φ,norm = sm/2 (eTφ Σ eφ)

m/2 ∂m
φ (69)

in a direction eφ = ei, chosen as either of the two columns
{e1, e2} in the unitary matrix U in the above eigendecom-
positions, to the affine Gaussian scale-space representation

L(x; s,Σ) in the original domain, then for arbitrary choices
of the non-uniform scaling matrix diag(S1, S2) in spatial
image transformations of the form

f ′(x′) = f(x) for x′ = U diag(S1, S2)U
T x,

(70)

such that for the matched image orientation e′φ = ei cor-
responding to the same unit vector in the unitary matrix
U , with the transformed affine scale-normalized directional
derivative operator in this direction defined according to

∂m
φ,′norm = s′

m/2
(eTφ′ Σ′ eφ′)m/2 ∂m

φ′ , (71)

then the relationship

∂m
φ′,normL

′(x′; s′, Σ′) = ∂m
φ,normL(x; s,Σ) (72)

will hold over the affine Gaussian scale-space representa-
tions L(x; s,Σ) and L(x′; s′, Σ′) of f(x) and f ′(x′), re-
spectively, for all values of the spatial scale parameter s ∈
R+ and the 2× 2 spatial covariance matrix Σ in the original
domain, provided that the spatial scale parameter s′ ∈ R+

and the 2×2 spatial covariance matrix Σ′ in the transformed
domain are related according to

s′ Σ′ = sU diag(S2
1 λ1, S

2
2 λ2)U

T . (73)

Interpreted geometrically, this result has a special meaning,
when the spatial affine spatial transformations constitute lo-
cally linearized projections from the tangent plane of a local
surface patch to the image domain, for different viewing di-
rections in relation to the local surface normal. Then, the
special form x′ = U diag(S1, S2)U

T x of the image trans-
formation corresponds to the unitary matrix UT transform-
ing the original coordinate frame to a new coordinate frame,
where the spatial affine image transformation A reduces to a
pure non-uniform scaling transformation diag(S1, S2). The
preferred choice of image orientation eφ = eφ′ will then
specifically correspond to either the tilt direction1 or its per-
pendicular direction, and with the variability spanned by
varying the spatial scaling factor Si specifically correspond-
ing to the tilt direction, then corresponding to varying the
slant angle between the direction of the local surface normal
at the observation point and the viewing direction.

This derived covariance property does, thus, mean that
the affine scale-normalized directional derivative responses
computed in the tilt direction can, to first order of approxi-
mation, be perfectly matched, when varying the slant angle
of the surface, as well as when varying the distance between
the object and the observer along the viewing direction.

Concerning the dimensionality of the manifold spanned
by this covariance property, with the coupled eigenvalue de-
compositions of the spatial covariance matrix Σ and the

1 The tilt direction in a monocular projection model is the projection
of the surface normal, at the observation point, to the image plane.
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affine transformation matrix A according to (67) and (68),
the diagonal matrix diag(λ1, λ2) and the diagonal matrix
diag(S1, S2) do both each span variabilities of dimension-
ality 2, to which the unitary matrix U adds another vari-
ability of dimensionality 1. The spatial scale parameter s

does not add any effective dimensionality to the parameter
space, because of its coupled occurrence in the product sΣ.
Similarly, the direction φ in the image plane does not add
any dimensionality to the variability of the resulting mani-
fold either, since the unit vector eφ is determined from the
unitary matrix U . Thus, we have that this covariance result
under coupled eigenvalue decompositions of the spatial co-
variance matrix Σ and the affine transformation matrix A

spans 5 out of the totally 8 dimensions in the variability of
computing affine scale-normalized derivatives ∂φ,norm from
an affine scale-space representation L(x; s,Σ) in different
directions φ in image space, that are possible under the dif-
ferent types of image transformations that can are spanned
by the full affine group, as well as the different parameter
settings of the composed spatial covariance matrix sΣ that
can be performed for the affine Gaussian spatial smoothing
component in the spatial receptive fields.

Out of these 5 dimensions, one of these dimensions, cor-
responding to the ratio between the singular values of the
affine transformation matrix A, here manifested in terms of
the ratio S1/S2 between the two spatial scaling factors, is
different, compared to the previously treated covariance re-
sult under spatial similarity transformations. In that respect,
this covariance result provides important added value in re-
lation to the previously formulated covariance result under
spatial similarity transformations in Section 3.4.1.

3.4.3 Analysis regarding general spatial covariance
matrices and general affine transformations

In Appendix A, a detailed analysis for the case of general
spatial covariance matrices Σ and general affine transfor-
mation matrices A is performed, showing that:

Summary of main result: The affine scale-normalized deriva-
tive operators according to (44) and (45) do, however, not
allow for covariance under general affine transformations.

Thus, if we want to aim at full affine covariance, we have to
consider some other definition of a scale-normalized deriva-
tive concept based on the affine scale-space representation,
which we will now develop in the next section.

3.5 Scale-normalized affine gradient operator for an affine
scale-space representation based on smoothing with
anisotropic affine Gaussian kernels

In this section, we will define another new type of scale-
normalized spatial derivatives for an affine Gaussian scale-

space representation, which, in contrast to the previous def-
inition of affine scale-normalized derivatives, will, however,
lead to true covariance covariance properties over the full
group of spatial affine transformations.

Consider again an affine Gaussian scale-space represen-
tation of the form

L(·; s,Σ) = g(·; s,Σ) ∗ f(·), (74)

generated by convolutions with anisotropic affine Gaussian
kernels (2), based on 2 × 2 spatial covariance matrices Σ

that are not generally equal to a unit matrix.

3.5.1 Specialized definition of the square root of the
covariance matrix Σ

Given an eigenvalue decomposition of the symmetric posi-
tive definite spatial covariance matrix Σ of the form

Σ = UΛUT , (75)

where Λ = diag(λ1, λ2) is a diagonal matrix with posi-
tive elements, and U is a real unitary matrix, let us first
define the square root of the diagonal matrix Λ as Λ1/2 =

diag(λ
1/2
1 , λ

1/2
2 ), to rewrite (75) as

Σ = U Λ1/2 Λ1/2 UT = (U Λ1/2) (U Λ1/2)T . (76)

From this expression, let us then define the square root Σ1/2

of Σ as

Σ1/2 = Λ1/2 UT , (77)

such that

Σ = (Σ1/2)T (Σ1/2). (78)

Note, however, that this definition is not unique. For a gen-
eral square root of a matrix, also the matrix

Σ1/2 = ρΛ1/2 UT , (79)

where ρ is an arbitrary unitary matrix, would also satisfy
(78). With our here chosen special definition of the square
root of the spatial covariance matrix Σ, enforced to have a
singular value decomposition of the form (77), the alterna-
tive formulation

Σ1/2 = Π Λ1/2 UT , (80)

where Π is an arbitrary permutation matrix, with its ele-
ments being either 0 or 1, while obeying ΠT Π = 1, will
span the degrees of freedom of the resulting indeterminacy
with regard to our specialized definition of the square root
Σ1/2 of the spatial covariance matrix Σ, since Σ1/2 accord-
ing to (80) does also satisfy (78), since then

(Σ1/2)T (Σ1/2) = U Λ1/2 ΠT Π Λ1/2 UT = UΛUT .

(81)
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3.5.2 Definition of the scale-normalized affine gradient
operator

Given the above specially chosen definition of the square
root Σ1/2 of the spatial covariance matrix Σ, and given that
we have applied the regular spatial gradient operator ∇x to
the affine Gaussian scale-space representation L(x; s,Σ)

for the scalar spatial scale parameter s ∈ R+ and the 2 × 2

spatial covariance matrix Σ, let us define the scale-normalized
affine gradient operator as

∇x,affnorm = s1/2 Σ1/2 ∇x. (82)

The motivation for this definition of the scale-normalized
directional derivative operator is to, as for the previous def-
inition of the affine scale-normalized directional derivative
operator ∂φ,norm according to (33), first of all compensate for
the general decrease in the magnitude of spatial derivatives
with increasing amount of spatial smoothing, and specifi-
cally also take into account the different amounts of spatial
smoothing in the different spatial directions in the image
plane, as resulting from using anisotropic affine Gaussian
kernels g(x; s,Σ), as opposed to rotationally symmetric
Gaussian kernels g(x; s, I) for the spatial smoothing oper-
ation in the spatial receptive fields.

In contrast to the previous definition of the affine scale-
normalized directional derivative operator ∂φ,norm according
to (33), which only considers a single orientation in the im-
age plane, and then takes into account the amount of spa-
tial smoothing in that direction, for which the directional
derivative is computed, the definition of the affine scale-
normalized gradient operator ∇x,affnorm according to (82)
does instead consider the genuine 2-D image gradient as the
conceptual object, and does then also take into account all
the information about the spatial covariance matrix Σ, when
defining the corresponding scale-normalized object. As we
will see in the next section, this new definition will there-
fore allow for full affine covariance, as opposed to covari-
ance properties over smaller specific subgroups of the affine
group, as obtained for the previously defined affine scale-
normalized directional derivative operator ∂φ,norm according
to (33).

Before turning into the details of the derivation of the
general full affine covariance property, let us, however, note
that in the special case when the spatial covariance matrix Σ

is a diagonal matrix Σ = diag(λ1, λ2), we obtain Σ1/2 =

diag(λ
1/2
1 , λ

1/2
2 ), which implies that the definition of the

scale-normalized affine gradient operator (82) then reduces
to the relation(
∂x1,affnorm

∂x2,affnorm

)
=

(
s1/2 λ

1/2
1 ∂x1

s1/2 λ
1/2
2 ∂x2

)
, (83)

which is the same result as we then obtain for the previously
defined affine scale-normalized directional derivative opera-

tor ∂φ,norm according to (33), if we choose the directions φ
for computing the affine scale-normalized directional deriva-
tives as the two coordinate directions e1 for φ1 = 0 and e2
for φ2 = π/2, for the spatial differentation order m = 1,
such that

∂φ1,norm = s1/2 λ
1/2
1 ∂φ1

= s1/2 λ
1/2
1 ∂x1

, (84)

∂φ2,norm = s1/2 λ
1/2
2 ∂φ2

= s1/2 λ
1/2
2 ∂x2

. (85)

Thus, in this very special case of the spatial covariance ma-
trix Σ being a diagonal matrix I , and then choosing the
directions for the directional derivative operators along the
coordinate directions, the definition of the scale-normalized
affine gradient operator ∇x,affnorm according to (82) is con-
sistent with the previous definition of the affine scale-normal-
ized directional derivative operator ∂φ,norm according to (33).

Furthermore, in the case when the spatial covariance ma-
trix Σ is a unit matrix I , the scale-normalized affine gra-
dient operator ∇x,affnorm according to (82) then reduces to
the isotropic scale-normalized gradient operator ∇x,norm ac-
cording to (17).

3.6 Full covariance property of the scale-normalized affine
gradient operator under general spatial affine
transformations

Consider a spatial affine transformation of the form

f ′(x′) = f(x) for x′ = Sx Ax, (86)

where Sx ∈ R+ is a spatial scaling factor, A is a 2×2 affine
transformation matrix, from which we define the respective
affine Gaussian scale-space representations

L(·; s,Σ) = g(·; s,Σ) ∗ f(·), (87)

L′(·; s′, Σ′) = g(·; s′, Σ′) ∗ f(·), (88)

for matching values of the spatial scale parameters s ∈ R+

and s′ ∈ R+ as well as the 2× 2 spatial covariance matrices
Σ and Σ′ over the two domains, such that

s′ Σ′ = s (Sx A)Σ (SxA)T = s S2
x AΣAT , (89)

which then implies that the affine scale-space representa-
tions for these parameter values of the affine Gaussian smooth-
ing kernels are equal

L′(x′; s′, Σ′) = L(x; s,Σ). (90)

Given an eigenvalue decomposition of the spatial covariance
matrix Σ′ in the transformed domain

Σ′ = U ′Λ′ U ′T , (91)
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let us in a similar way as in (80), define the square root of
Σ′ as

Σ′1/2 = Λ′1/2 U ′T , (92)

while noting that any other definition of the square root of
Σ′ according to

Σ′1/2 = Π ′ Λ′1/2 U ′T , (93)

where Π ′ is an arbitrary permutation matrix, would also sat-
isfy

Σ′ = (Σ′1/2)T (Σ′1/2). (94)

Inserting this expression, as well as

Σ = (Σ1/2)T (Σ1/2) (95)

according to (78), into the coupled relationship (89) between
the spatial scale parameters s and s′ as well as the spatial
covariance matrices Σ and Σ′, then, with the added degree
of freedom corresponding to different possible permutation
matrices in (80) and (93), gives

s′ (Σ′1/2)T Π ′T Π ′ (Σ′1/2) =

= s S2
x A (Σ1/2)T ΠT Π (Σ1/2)AT . (96)

This relationship does then imply that square roots Σ1/2 and
Σ′1/2 of the spatial covariance matrices Σ and Σ′ must be
related according to

s′
1/2

Π ′ Σ′1/2 = s1/2 Sx Π Σ1/2 AT , (97)

which in turn implies that the following relationship must
hold for some, possibly other, permutation matrix Π̃ = Π ′TΠ:

s′
1/2

Σ′1/2 = Π̃ s1/2 Sx Σ
1/2 AT . (98)

Under the image transformation (86), the spatial gradient
operators are related according to

∇x = (Sx A)T ∇x, (99)

implying that

∇x′ =
1

Sx
×A−T∇x. (100)

Inserting this expression (100), as well as the relationship
(98) between the square roots of the spatial covariance ma-
trices between the two domains, into the corresponding def-
inition of the scale-normalized affine gradient operator over
the transformed doman

∇x′,affnorm = Π̃ ′ s′
1/2

Σ′1/2 ∇x′ , (101)

then implies that the expression for the scale-normalized
affine gradient operator over the transformed domain reduces
to

∇x′,affnorm = Π̃ s1/2 Σ1/2 ∇x. (102)

After comparison with the scale-normalized affine gradient
operator over the original domain (82), it therefore holds that
the scale-normalized affine gradient operators over the two
different domains must be related according to

∇x′,affnorm = Π̃∇x,affnorm, (103)

for some permutation matrix Π̃ . Thus, by, in turn, apply-
ing these operators to the affine scale-space representations
L(x; s,Σ) and L′(x′; s′, Σ′) over their respective domains,
for matching values of the parameter values of the affine
Gaussian smoothing kernel according to (89), this implies
that the scale-normalized affine gradient vectors ∇x,affnormL

and ∇x′,affnormL
′ over the two domains must be related ac-

cording to

(∇x′,affnormL
′)(x′; s′, Σ′) = Π̃ (∇x,affnormL)(x; s,Σ)

(104)

for some permutation matrix Π̃ .

Summary of main result. To summarize, this result shows
that, if we under an arbitrary non-singular spatial affine trans-
formation of the form

f ′(x′) = f(x) for x′ = Sx Ax, (105)

define the affine Gaussian scale-space representations L(x; s,Σ)

and L′(x′; s′, Σ′) of the images f and f ′, respectively, with
the spatial scale parameters s ∈ R+ and s′ ∈ R+ as well
as the 2 × 2 spatial covariance matrices Σ and Σ′, respec-
tively, and then define the scale-normalized affine gradient
operator over the original domain as

∇x,affnorm = s1/2 Σ1/2 ∇x, (106)

as well as define the corresponding scale-normalized affine
gradient operator over the transformed domain as

∇x′,affnorm = s′
1/2

Σ′1/2 ∇x′ , (107)

then the corresponding scale-normalized affine gradient vec-
tors over the two domains will, up to some permutation ma-
trix Π , be equal, such that

(∇x′,affnormL
′)(x′; s′, Σ′) = Π̃ (∇x,affnormL)(x; s,Σ)

(108)

holds for some permutation matrix Π̃ , provided that the pa-
rameters of the underlying affine Gaussian smoothing ker-
nels are related according to

s′ Σ′ = s (Sx A)Σ (SxA)T = s S2
x AΣAT . (109)
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Interpreted geometrically, this result means that if we in-
terpret the composed affine transformation Sx A as consti-
tuting a local linearization of the perspective mapping from
the tangent plane of a local surface patch, or as a local lin-
earization of the projective mapping between different views
of the same local surface patch, then this result means that
the scale-normalized affine gradient vectors ∇x,affnormL and
∇x′,affnormL

′ can, to first order of approximation, be per-
fectly matched between different views of the same local
surface patch.

By counting the number of dimensions involved in the
the variabilities spanned by this covariance result, we have
that the spatial scale parameter s and the spatial covariance
matrix Σ together span an effective dimensionality of 3, be-
cause their joint occurrence in the product sΣ. The space of
the full2 2-D affine transformations (with the spatial transla-
tion offset not considered here) spans a variability over 4 di-
mensions. Thus, the stated covariance results holds over in-
dependent variabilities over all the totally 7 dimensions of
the resulting manifold.

3.7 Scale-normalized affine Hessian operator for an affine
scale-space representation based on smoothing with
anisotropic affine Gaussian kernels

From an either isotropic Gaussian or anisotropic Gaussian
spatial scale-space representation L, we can define the reg-
ular Hessian matrix as

HxL = ∇x ∇T
xL =

(
Lx1x1

Lx1x2

Lx1x2
Lx2x2

)
. (110)

Given an affine Gaussian scale-space representation L(x; s,Σ)

computed for spatial scale parameter s ∈ R+ and spatial co-
variance matrix Σ, with the previously defined affine gradi-
ent operator ∇x,affnorm according to (82), it is therefore nat-
ural to define a corresponding scale-normalized affine Hes-
sian operator Hx,affnorm according to

Hx,affnorm = ∇x,affnorm ∇T
x,affnorm, (111)

which, when expanded from the definition, then assumes the
form

Hx,affnorm = s (Σ1/2)∇x ∇T
x (Σ

1/2)T (112)

= s (Σ1/2)Hx (Σ
1/2)T , (113)

with the interpretation that, since the matrix (Σ1/2)T is to
be regarded as a constant with regard to the spatial differ-
entiation operators ∇ and H, these operators can be applied
through this matrix.

2 Because of physical constraints, as arising when viewing a 3-
D surface patch in terms of 2-D images, we do, however, re-
strict the spatial scaling factors σ1 and σ2 in a decomposi-
tion of the 2-D affine transformation matrix according to A =
Rψ/2 Rφ/2 diag(σ1, σ2)Rφ/2 R−ψ/2, where Rψ/2 and Rφ/2 are
rotation matrices (see Equation (15) in Lindeberg 1995), to be positive.

3.8 Full covariance property of the scale-normalized affine
Hessian operator under general spatial affine
transformations

Consider again a spatial affine transformation of the form

f ′(x′) = f(x) for x′ = Ax, (114)

where A is a 2 × 2 affine transformation matrix, with the
affine Gaussian scale-space representations L(x; s,Σ) and
L′(x′; s′, Σ′) for the matching values of the spatial scale
parameters s ∈ R+ and s′ ∈ R+ as well as the 2× 2 spatial
covariance matrices Σ and Σ′ over the two domains accord-
ing to

s′Σ′ = sAΣ AT , (115)

such that the affine scale-space representations for these pa-
rameter values of the affine Gaussian smoothing kernels are
equal

L′(x′; s′, Σ′) = L(x; s,Σ). (116)

Let us then define the scale-normalized affine Hessian oper-
ator over the two domain as

Hx,affnorm = ∇x,affnorm ∇T
x,affnorm, (117)

Hx′,affnorm = ∇x′,affnorm ∇T
x′,affnorm, (118)

with the underlying scale-normalized affine gradient opera-
tors of the forms (106) and (107),

∇x,affnorm = s1/2 Σ1/2 ∇x, (119)

∇x′,affnorm = s′
1/2

Σ′1/2 ∇x′ , (120)

which when combining these expressions over the trans-
formed domain gives

Hx′,affnorm = s′ (Σ′1/2)∇x′ ∇T
x′ (Σ′1/2)T (121)

= s′ (Σ′1/2)Hx′ (Σ′1/2)T . (122)

By additionally taking the indeterminacy with respect to a
possible permutation matrix Π̃ into account, we obtain

Hx′,affnorm = Π̃Hx,affnorm Π̃T . (123)

This result implies that, when these scale-normalized affine
Hessian operators are applied to the affine Gaussian scale-
space representations L(x; s,Σ) and L′(x′; s′, Σ′) over
their respective domains, we obtain that

(Hx′,affnormL
′)(x′; s′, Σ′) = Π̃ (Hx,affnormL)(x; s,Σ) Π̃T

(124)

will hold for some permutation matrix Π̃ , provided that the
parameters of the underlying affine Gaussian smoothing ker-
nels are related according to

s′ Σ′ = s (Sx A)Σ (SxA)T = s S2
x AΣAT . (125)
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Thus, this definition of the scale-normalized affine Hessian
matrix is also covariant under the full group of non-singular
spatial affine transformations.

Interpreted geometrically, this result means that if we in-
terpret the spatial affine transformation as a local lineariza-
tion of either the perspective mapping from the tangent plane
of a local surface patch to the image domain, or as a local
linearization of the projective transformation between two
different views of the same local surface patch, then it holds
that the scale-normalized affine Hessian matrices computed
for matching image points and matching receptive field pa-
rameters of the two domains, can to, first order of approxi-
mation, be perfectly matched.

3.9 Scale-normalized regular temporal derivative operators

Consider any temporal scale level τ in a temporal scale-
space representation,

L(·; τ) = h(·; τ) ∗ f(·), (126)

obtained by convolution with either a non-causal tempo-
ral Gaussian kernel (4), the time-causal limit kernel (5), or,
more generally, some other scale-covariant temporal kernel
that obeys the temporal scaling property (128)

h(t′; τ ′) =
1

St
h(t; τ) (127)

under any temporal scaling transformation of the form

h(t′; τ ′) =
1

St
h(t; τ). (128)

Then, corresponding scale-normalized analogues of the reg-
ular temporal derivative operators (10) can be defined ac-
cording to (Lindeberg 2017)

∂n
t,norm = τn/2 ∂n

t . (129)

In analogy with the above scale-normalized spatial deriva-
tive operators, the multiplication of the regular temporal deriva-
tive operators by the temporal scale parameter raised to a
power proportional to the order of temporal differentiation,
will compensate for the otherwise general decrease in the
magnitude of temporally smoothed temporal derivatives with
increasing temporal scales, to enable truly scale-covariant
temporal derivative operators, whose magnitudes can be per-
fectly matched under temporal scaling transformations, as
will be described in the next section.

3.10 Covariance property for scale-normalized regular
temporal derivatives under temporal scaling
transformations

Consider a temporal scaling transformation

f ′(t′) = f(t) for t′ = St t, (130)

and define purely temporal scale-space representations L

and L′ of f and f ′, respectively, according to

L(·; τ) = h(·; τ) ∗ f(·), (131)

L′(·; τ ′) = h(·; τ ′) ∗ f ′(·), (132)

that obey temporal scale covariance for the underlying tem-
poral smoothing transformation, such that

L′(t′; τ ′) = L(t; τ) (133)

holds for matching values of the temporal scale parameters
according to

τ ′ = S2
t τ. (134)

This property does, for example, both hold for the non-causal
temporal scale-space representation, defined from convolu-
tions with 1-D temporal Gaussian kernels of the form (4),
and for the time-causal temporal scale-space representation,
defined from convolutions with the time-causal limit kernel
of the form (5).

Let us define corresponding scale-normalized temporal
derivatives over the transformed temporal domain according
to

∂n
t′,norm = τ ′

n/2
∂n
t′ , (135)

Then, since the scale-normalized temporal derivatives over
the two different domains will be related according to

∂t′,norm = ∂t,norm, (136)

it follows that the scale-normalized temporal derivatives will
be equal in the two domains, such that

L′
t′,norm(t

′; τ ′) = Lt,norm(t; τ), (137)

which constitute covariance properties for scale-normalized
temporal derivatives of a purely temporal scale-space repre-
sentation, under temporal scaling transformations (see Equa-
tions (10) and (104) in Lindeberg 2017).
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3.11 Scale-normalized velocity-adapted temporal
derivative operators

To describe the properties scale-normalized analogues of the
velocity-adapted derivative operators, which also involve the
computation of spatial derivatives, let us next consider a
space-time separable spatio-temporal representation of the
form

L(·, ·; s, τ) = g(·; s) ∗x h(·; τ) ∗t f(·, ·), (138)

where the convolution with the spatial Gaussian kernel g(·; s)
is performed over the spatial domain, and the convolution
with the temporal kernel h(·; τ) is performed over the tem-
poral domain, here indicated by the corresponding spatial
and temporal convolution operators ∗x and ∗t, respectively.
Then, we can define scale-normalized analogues of the velocity-
adapted temporal derivative operators (11) according to

∂n
t̄,norm = τn/2 (vT ∇x + ∂t)

n. (139)

3.12 Covariance property for scale-normalized
velocity-adapted temporal derivatives under temporal
scaling transformations

Consider next the composition of a spatial scaling transfor-
mation and a temporal scaling transformation in the joint
space-time of the form

f ′(x′, t′) = f(x, t) for x′ = Sx x and t′ = St t,

(140)

with matching values of spatial and the temporal scale pa-
rameters according to

s′ = S2
x s and τ ′ = S2

t τ. (141)

Let us define corresponding scale-normalized velocity-adapted
temporal derivatives over the transformed temporal domain
according to

∂n
t̄′,norm = τ ′

n/2
(v′

T ∇x′ + ∂t′)
n. (142)

Then, provided that we define the transformed velocity vec-
tor v′ according to

v′ =
Sx

St
v, (143)

then the scale-normalized temporal derivatives of the trans-
formed space-time-separable spatio-temporal scale-space rep-
resentation

L′(·, ·; s′, τ ′) = g(·; s′) ∗x h(·; τ ′) ∗t f ′(·, ·), (144)

will be equal to the scale-normalized temporal derivatives of
the transformed temporal scale-space representation L ac-
cording to

L′
t̄′,norm(x

′, t′; s′, τ ′) = Lt̄,norm(x, t; s, τ), (145)

which constitute the covariance property for scale-normalized
velocity-adapted temporal derivatives of a space-time-separable
spatio-temporal scale-space representation, under composi-
tions of spatial scaling transformations and temporal scaling
transformations.

Both this temporal scale covariance property and the pre-
viously treated temporal scale covariance property (137) have
the geometric interpretation that they mean that, to first or-
der of approximation, we can perfectly match the temporal
receptive field responses between different views of a simi-
lar spatio-temporal event, that occurs either faster or slower
in relation to a previous view of an otherwise similar event,
with the other viewing parameters, except the speed of the
event, being the same.

The additional degree of freedom introduced here, by
also including an arbitrary uniform spatial scaling transfor-
mation of the spatial domain, has been introduced here, to
demonstrate that the underlying space-time separable spatio-
temporal scale-space representation L(x, t; s, τ) is closed,
also under arbitrary combinations of such variabilities, how-
ever, then with the important constraint that the image veloc-
ity must be adapted, as determined by the spatial and tem-
poral the temporal scaling factors Sx and St. If we, on the
other hand, would like to achieve closedness under free vari-
abilities of the velocity vector v, independent of the spatial
scaling factor Sx and the temporal scaling factor St, then
a more complex joint spatio-temporal scale-space concept
with additional parameters for the receptive fields is needed,
as will be addressed in the next section.

4 Covariance properties of the generalized Gaussian
derivative model for spatio-temporal receptive fields

For processing spatio-temporal image data f(x, t), convolu-
tion of the input video f(x, t) with the purely spatio-temporal
smoothing kernel T (x, t; s,Σ, τ, v) according to (1) defines
spatio-temporal smoothed image data L(x, t; s,Σ, τ, v) ac-
cording to

L(·, ·; s,Σ, τ, v) = T (·, ·; s,Σ, τ, v) ∗ f(·, ·), (146)

which is referred to as a spatio-temporal scale-space repre-
sentation of f (Lindeberg 2011).
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4.1 Transformation properties of the spatio-temporal
scale-space representation in the spatio-temporal receptive
field model under geometric image transformations

In Lindeberg (2023b), covariance properties of this gener-
alized Gaussian derivative model for receptive fields were
studied in detail. It was specifically shown that:

– Under purely spatial scaling transformations of the form

f ′(x′, t′) = f(x, t) (147)

for t′ = t and

x′ = Sx x, (148)

where Sx > 0 denotes a (scalar) spatial scaling factor,
the spatio-temporal scale-space representations L′ and
L, obtained by convolving the input signals f ′ and f

with spatio-temporal convolution kernels of the form (1),
are related according to

L′(x′, t′; s′, Σ′, τ ′, v′) = L(x, t; s,Σ, τ, v), (149)

provided that the spatial scale parameters and the veloc-
ity vectors are related according to

s′ = S2
x s and v′ = Sx v. (150)

– Under spatial affine transformations of the form

fR(xR, tR) = fL(xL, tL) (151)

for tR = tL and

xR = AxL, (152)

where A denotes a 2×2 affine transformation matrix, the
spatio-temporal scale-space representations LR and LL,
obtained by convolving the input signals fR and fL with
spatio-temporal convolution kernels of the form (1), are
related according to

LR(xR, tR; sR, ΣR, τR, vR) =

= LL(xL, tL; sL, ΣL, τL, vL), (153)

provided that the spatial covariance matrices and the ve-
locity vectors are related according to

ΣR = AΣL AT and vR = AvL, (154)

and provided that the other parameters of the receptive
fields are the same.

– Under purely temporal scaling transformations of the
form

f ′(x′, t′) = f(x, t) (155)

for x′ = x and

t′ = S2
t t, (156)

where St > 0 is a (scalar) temporal scaling factor, the
spatio-temporal scale-space representations L′ and L,
obtained by convolving the input signals f ′ and f with
spatio-temporal convolution kernels of the form (1), are
related according to

L′(x′, t′; s′, Σ′, τ ′, v′) = L(x, t; s,Σ, τ, v), (157)

provided that the temporal scale parameters and the ve-
locity parameters are related according to

τ ′ = S2
t τ and v′ = v/St, (158)

and provided that the other parameters of the receptive
field are the same.

– Under Galilean transformations of the form

f ′(x′, t′) = f(x, t) (159)

for t′ = t′ and

x′ = x+ u t, (160)

where u is a 2-D velocity vector, the spatio-temporal
scale-space representations L′ and L, obtained by con-
volving the input signals f ′ and f with spatio-temporal
convolution kernels of the form (1), are related accord-
ing to

L′(x′, t′; s′, Σ′, τ ′, v′) = L(x, t; s,Σ, τ, v), (161)

provided that the velocity parameters for the two do-
mains are related according to

v′ = v + u (162)

and provided that the other parameters of the receptive
fields are the same.

A notable characteristics of the transformation properties of
the spatio-temporal scale-space representations under these
natural image transformations, is that the four classes of nat-
ural image transformations are not independent. Instead, for
example, both the spatial scaling transformations and the
temporal scaling transformations affect the image velocities,
beyond the spatial and temporal scale parameters, respec-
tively. Furthermore, the spatial affine transformations also
affect the image velocities. For this reason, it is of interest to
additionally model all the four classes of image transforma-
tions jointly, which we will do in Section 5.

Before that, let us, however, first also address the trans-
formation properties of the spatial and the temporal deriva-
tive operators.
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4.2 Transformation properties of the spatio-temporal
derivative operators in the spatio-temporal receptive field
model under geometric image transformations

Beyond the spatio-temporal smoothing kernel T (x, t; s,Σ, τ, v)

that defines the spatio-temporal scale-space representation
L(x, t; s,Σ, τ, v) in (146), the spatio-temporal receptive
field model (13)

Tφm t̄n(x, t; s,Σ, τ, v) =

= ∂m
φ ∂n

t̄ (g(x− v t; s,Σ)h(t; τ)) , (163)

that has been used for modelling the the receptive fields of
simple cells in the primary visual cortex does additionally
comprise spatial derivative operators in terms of directional
derivative operators ∂m

φ of the form (8) as well as temporal
derivative operators ∂n

t̄ of the forms (10) and (11).
In summary, under the four classes of spatio-temporal

image transformations studied in this work, the spatial and
the temporal derivative operators transform as follows:

– Under purely spatial scaling transformations of the form

f ′(x′, t′) = f(x, t) (164)

for t′ = t and

x′ = Sx x, (165)

where Sx > 0 denotes a (scalar) spatial scaling factor,
the spatial gradient operator ∇x = (∂x1 , ∂x2)

T trans-
forms according to

∇x = Sx ∇x′ , (166)

with the transformed spatial gradient operator defined as
∇x′ = (∂x′

1
, ∂x′

2
)T . This means that also the directional

derivative operator, defined according to (8), transforms
according to

∂φ = Sx ∂φ′ . (167)

Under a purely spatial scaling transformation, the regu-
lar temporal derivative operator is, however, unchanged

∂t = ∂t′ . (168)

Due to the transformation property (150) of the veloc-
ity vector v according to v′ = Sx v, the velocity-adapted
temporal derivative operator (11) does also, with the trans-
formed temporal derivative operator of the form

∂t̄′ = v′1 ∂x′
1
+ v′2 ∂x′

2
+ ∂t′ , (169)

under a uniform spatial scaling transformation, trans-
form according to

∂t̄ = ∂t̄′ . (170)

– Under spatial affine transformations of the form

fR(xR, tR) = fL(xL, tL) (171)

for tR = tL and

xR = AxL, (172)

where A denotes a 2 × 2 affine transformation matrix,
the spatial gradient operator ∇x transforms according to

∇x = AT ∇x′ . (173)

This implies that if we define directional derivative op-
erator (8) as

∂φ = eTφ ∇x (174)

with the unit vector eφ in the direction φ transforming
according to

eφ′ =
Aeφ
∥Aeφ∥

(175)

to guarantee that also the transformed unit vector will be
of unit length, then the corresponding transformed direc-
tional derivative operator ∂φ′ = eTφ′∇x′ is

∂φ′ = ∥Aeφ∥ ∂φ. (176)

Both the regular and the velocity-adapted temporal deriva-
tive operators are, however, unchanged under purely spa-
tial affine transformations

∂t = ∂t′ , (177)

∂t̄ = ∂t̄′ , (178)

when taking into account the transformation property
v′ = Av (154) of the velocity vector.

– Under purely temporal scaling transformations of the
form

f ′(x′, t′) = f(x, t) (179)

for x′ = x and

t′ = S2
t t, (180)

where St > 0 is a (scalar) temporal scaling factor, both
the regular spatial gradient operator and the spatial di-
rectional derivative operators are unchanged

∇x = ∇x′ , (181)

∂φ = ∂φ′ . (182)

Both the regular and the velocity-adapted temporal deriva-
tive operators do, however, transform according to

∂t = St ∂t′ , (183)

∂t̄ = St ∂t̄′ (184)

when taking the transformation property v′ = v/St (158)
of the velocity vector into account.
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– Under Galilean transformations of the form

f ′(x′, t′) = f(x, t) (185)

for t′ = t′ and

x′ = x+ u t, (186)

where u is a 2-D velocity vector, both the regular spatial
gradient operator and the spatial directional derivative
operators are unchanged

∇x = ∇x′ , (187)

∂φ = ∂φ′ . (188)

Taking into account the transformation property v′ =

v + u (162) of the velocity vector, the regular temporal
derivative transforms according to

∂t = uT ∇x′ + ∂t′ , (189)

whereas the velocity-adapted derivatives are equal

∂t̄ = ∂t̄′ . (190)

Thus, we can from this summarizing overview see how the
spatial and the temporal derivative operators are transformed
in ways that interact strongly with the parameters of the cor-
responding spatio-temporal image transformations.3 Of par-
ticular interest is therefore to also make explicit how these
transformation properties are composed, when coupling the
different types of primitive image transformations in cas-
cade, which will be done in the next section.

5 Joint covariance property under spatial and temporal
scaling transformations, spatial affine transformations
and Galilean transformations

In this section, we will derive a joint covariance property
over the composition of (i) a spatial scaling transformations,
(ii) a spatial affine transformation, (iii) a Galilean transfor-
mation and (iv) a temporal scaling transformation.

3 Notably, several of these transformation properties become sim-
pler, when expressed in terms of scale-normalized derivatives accord-
ing to Section 3, where (i) the scale-normalized spatial derivative op-
erators ∂mφ,norm and ∇x,norm according to (16) and (17) will absorb
the spatial scaling factor Sx in Equations (166) and (167) analogous to
Equations (31) and (30), (ii) the scale-normalized affine gradient oper-
ator ∇x,affnorm according to (82) will absorb the affine transformation
matrix A in Equation (173) analogous to Equation (90), and (iii) the
scale-normalized temporal derivative operators ∂nt,norm and ∂n

t̄,norm ac-
cording to (129) and (139) will absorb temporal scaling factor St in
Equations (177) and (178) analogous to Equations (137) and (145). To
save space, we, however, postpone introducing these scale-normalized
derivatives into the transformation properties of the composed spatio-
temporal receptive fields, until also addressing the joint covariance
properties of the spatio-temporal receptive fields in Section 5.5.

For this purpose, we first define the composed geometric
transformation, and then consider how different components
in the integral formulation of the convolution operation are
transformed under the corresponding change of variables,
which, when combined, leads to the desired transformation
property regarding the spatio-temporal smoothing compo-
nents of the spatio-temporal receptive fields.

Then, we will additionally complement with explicit trans-
formation properties regarding the spatial and the temporal
derivative operators underlying the formulation of the joint
spatio-temporal receptive fields obtained by applying com-
posed spatio-temporal derivatives to the joint spatio-temporal
smoothing kernel.

5.1 Composed geometric image transformation

Consider the composition of:

– spatial scaling transformation with spatial the scaling
factor Sx,

– a spatial affine transformation with the affine transfor-
mation matrix A,

– a Galilean transformation with the velocity vector u, and
– a temporal scaling transformation with the temporal scal-

ing factor St

of the form

x′ = Sx (Ax+ u t), (191)

t′ = St t. (192)

As will be described in more detail in Section 6, this way of
composing the four different types primitive image transfor-
mations, geometrically corresponds to interpreting:

– the 2× 2 affine transformation matrix A as an orthonor-
mal projection of surface patterns from the tangent plane
of a local surface patch to a plane that is parallel with the
image plane of the observer,

– the velocity vector u = (u1, u2)
T ∈ R2 as the projection

of the 3-D motion vector U = (U1, U2, U3)
T of local

surface patterns onto a plane, that is parallel to the image
plane, by orthonormal projection,

– the (scalar) spatial scaling factor Sx > 0 as correspond-
ing to the perspective scaling factor proportional to the
inverse depth Z, which will then affect both the projec-
tion of a spatial surface pattern and the magnitude of the
perceived motion in the image plane, and

– the (scalar) temporal scaling factor St > 0 as capturing
a variability of similar spatio-temporal events that may
occur either faster or slower, when observing different
instances of a similar event at different occasions.

In this way, the composed image transformation model cap-
tures the variabilities of the scaled orthographic projection
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model, complemented with a variability over projections of
3-D motions between an observed object and the observer,
including spatio-temporal events that may occur faster or
slower relative to a reference view.

In the following, we will derive a joint covariance prop-
erty for the spatio-temporal scale-space representation ob-
tained by convolution with the studied class of spatio-temporal
smoothing kernels, under the above class of composed spatio-
temporal image transformations. By necessity, parts of this
treatment may be somewhat technical. For the hasty reader,
who may be more interested in the final result, than the de-
tails of the derivation, it should be possible to, without major
loss of continuity, skip the details, and then proceed to the
below boldface header “Summary of main result”, for a con-
densed summary of the resulting joint covariance property.

5.2 Joint transformation property of purely
spatio-temporally smoothed image data

Prerequisites: Let us assume that we have two video se-
quences f ′(x′, t′) and f(x, t) that are related according to
(191) and (192) such that

f ′(x′, t′) = f(x, t) (193)

for all x = (x1, x2)
T ∈ R2 and t ∈ R at all points p =

(x1, x2, t)
T ∈ R3, with these coordinates interpreted as lo-

cal coordinates in some local region Ω in joint space-time,
around the origin O = (0, 0, 0)T assumed to correspond to
the image point x = (0, 0), and the temporal moment t = 0

corresponding to the time moment when a particular recep-
tive field response is computed.

What we want to derive, is a relationship for how the
scale-space representations L′ and L of f ′ and f , respec-
tively, around this point in joint image space-time are re-
lated, when they are defined according to

L(x, t; s,Σ, τ, v) =

=

∫
ξ∈R2

∫
η∈R

T (ξ, η; s,Σ, τ, v) f(x− ξ, t− η) dξ dη,

(194)

L(x′, t′; s′, Σ′, τ ′, v′) =

=

∫
ξ′∈R2

∫
η′∈R

T (ξ′, η′; s′, Σ′, τ ′, v′)×

f(x′ − ξ′, t′ − η′) dξ′ dη′. (195)

Step I: Let us first consider how the velocity-adapted Gaus-
sian kernel g(x′ − v′t′; s′ Σ′) transforms in the expression
for the spatio-temporal receptive field according to (1)

T (x′, t′; s′, Σ′, τ ′, v′) = g(x′ − v′t′; s′ Σ′)h(t′; τ ′).

(196)

Expanding the expression of the function g(x′−v′t′; s′ Σ′)

according to the definition (2) of the 2-D affine Gaussian
kernel, and making use of the explicit expressions for the
transformation in (191) and (192), then gives

g(x′ − v′t′; s′ Σ′) =

=
1

2πs′
√
detΣ′

e−(x′−v′t′)TΣ′−1(x′−v′t′)/2s′

=
1

2πs′
√
detΣ′

×

e−(Sx(Ax+ut)−v′Stt)
TΣ′−1(Sx(Ax+ut)−v′Stt)/2s

′
. (197)

If we, inspired by the transformation property of the spatial
scale parameters under a spatial scaling transformation in
(150), introduce a similar relationship

s′ = S2
x s, (198)

as well as inspired by the transformation property of the spa-
tial covariance matrices under a spatial affine transformation
in (154), introduce a similar relationship

Σ′ = AΣAT , (199)

which gives

Σ′−1
= (AΣAT )−1 = A−T Σ−1 A−1, (200)

as well as

detΣ′ = |detA|2 detΣ, (201)

we then obtain

g(x′ − v′t′; s′ Σ′) =

=
1

2π S2
x s |detA|

√
detΣ

×

e−(A−1(Sx(Ax+ut)−v′Stt))
TΣ−1(A−1(Sx(Ax+ut)−v′Stt))/(2S

2
xs).

(202)

Notably, this expression can be written as

g(x′ − v′t′; s′ Σ′) =

=
1

2π sS2
x |detA|

√
detΣ

e−(x−vt)TΣ−1(x−vt)/2s, (203)

provided that the velocity parameters v and v′ are related
according to

−v = A−1u−A−1v′St/Sx, (204)

in other words if

St

Sx
A−1 v′ = v +A−1u, (205)
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that is provided that the velocity parameters v′ and v are
related according to

v′ =
Sx

St
(Av + u). (206)

Step II: Consider next the scale-space representation L′ of
f ′ according to (195), and perform the change of variables

ξ′ = Sx (Aξ + u t), (207)

η′ = St η, (208)

which for dξ′ = dξ′1 dξ
′
2 and dξ = dξ1 dξ2 gives

dξ′ = S2
x |detA| dξ, (209)

dη′ = St dη. (210)

Let us additionally, in the convolution integral (195), trans-
form the kernel T (x′, t′; s′, Σ′, τ ′, v′) according to (196),
with its components g(x′ − v′t′; s′ Σ′) transforming ac-
cording to (203), and h(t′; τ ′) transforming according to
(3), with the parameters of the receptive fields transforming
according to

s′ = S2
x s, (211)

Σ′ = AΣAT , (212)

τ ′ = S2
t τ, (213)

v′ =
Sx

St
(Av + u), (214)

which then gives

T (x′, t′; s′, Σ′, τ ′, v′) =
1

S2
x |detA|St

T (x, t; s,Σ, τ, v).

(215)

Step III: Thus, given that the functions f and f ′ transform
according to (193), combined with the previous result that
T transforms according to (215), as well as that dξ, dξ′, dη
and dη′ transform according to (209) and (210), we obtain

L(x′, t′; s′, Σ′, τ ′, v′) =

=

∫
ξ′∈R2

∫
η′∈R

T (ξ′, η′; s′, Σ′, τ ′, v′)×

f(x′ − ξ′, t′ − η′) dξ′ dη′ =

=

∫
ξ∈R2

∫
η∈R

T (ξ, η; s,Σ, τ, v) f(x− ξ, t− η) dξ dη.

= L(x, t; s,Σ, τ, v). (216)

Summary of main result: To conclude, given two video
sequences f ′ and f that are related according to

f ′(x′, t′) = f(x, t) (217)

under a composed image transformation of the form

x′ = Sx (Ax+ u t), (218)

t′ = St t, (219)

we have shown that the corresponding spatio-temporal scale-
space representations L′ and L of f ′ and f , respectively, are
related according to

L(x′, t′; s′, Σ′, τ ′, v′) = L(x, t; s,Σ, τ, v), (220)

provided that the parameters of the receptive fields trans-
form according to

s′ = S2
x s, (221)

Σ′ = AΣAT , (222)

τ ′ = S2
t τ, (223)

v′ =
Sx

St
(Av + u), (224)

which proves the joint spatio-temporal covariance property,
see Figure 6 for a commutative diagram that illustrates this
joint covariance property.

Notably, this result also serves as an explicit proof of
all the individual transformation properties in (Lindeberg
2023b), where the explicit proofs were omitted there, be-
cause of lack of space.

5.3 Joint transformation properties of spatio-temporal
derivatives

Let us denote the spatio-temporal coordinates for the orig-
inal and the transformed domains by p = (x1, x2, t)

T and
p′ = (x′

1, x
′
2, t

′)T , respectively, and let us denote the com-
ponents of the 2 × 2 affine transformation matrix A by aij
for i and j ∈ {1, 2} and again let the velocity vector in the
Galilean transformation be u = (u1, u2)

T . Then, the com-
posed image transformation according to (191) and (192)
can be written

p′ =

x′
1

x′
2

t′

 = Sx

a11 a12 u1

a21 a22 u2

0 0 St/Sx

x1

x2

t


= Qp, (225)

where Q is a 3× 3 joint transformation matrix that operates
on the spatio-temporal coordinates p.

According top the general transformation property of
derivative operators under a linear change of variables be-
tween the domains p = (x1, x2, t)

T and p′ = (x′
1, x

′
2, t

′)T ,
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L(x, t; s,Σ, τ, v)

x′ = Sx(Ax+ u t)
t′ = St t
s′ = S2

x s

Σ′ = AΣAT

τ ′ = S2
t τ

v′ = Sx
St

(Av + u)
−−−−−−−−−−−−−−−→ L′(x′, t′; s′, Σ′, τ ′, v′)x∗T (x,t; s,Σ,τ,v)

x∗T (x′,t′; s′,Σ′,τ ′,v′)

f(x, t)

x′ = Sx(Ax+ u t)
t′ = St t

−−−−−−−−−−−−−−−→ f ′(x′, t′)

Fig. 6 Commutative diagram for the joint spatio-temporal smoothing component (1) in the joint spatio-temporal receptive field model (13) under
the composition of (i) a spatial scaling transformation, (ii) a spatial affine transformation, (iii) a Galilean transformation and (iv) a temporal scaling
transformation according to (191) and (192). This commutative diagram, which should be read from the lower left corner to the upper right corner,
means that irrespective of whether the input video f(x, t) is first subject to the composed transformation x′ = Sx(Ax+ u t) and t′ = St t and
then smoothed with a spatio-temporal kernel T (x′, t′; s′, Σ′, τ ′, v′), or instead directly convolved with the spatio-temporal smoothing kernel
T (x, t; s,Σ, τ, v) and then subject to the same joint spatio-temporal transformation, we do then get the same result, provided that the parameters
of the spatio-temporal smoothing kernels are related according to s′ = S2

x s, Σ′ = AΣAT , τ ′ = S2
t τ and v′ = Sx

St
(Av + u).

∇x∂tL(x, t; s,Σ, τ, v)

x′ = Sx(Ax+ u t)
t′ = St t

s′ = S2
x s

Σ′ = AΣAT

τ ′ = S2
t τ

v′ = Sx
St

(Av + u)

∇x′ = 1
Sx

A−T ∇x
∂t′ = − 1

Sx
uTA−T ∇x + 1

St
∂t

−−−−−−−−−−−−−−−−−−−−−−−−−→ ∇x′∂t′L′(x′, t′; s′, Σ′, τ ′, v′)x∗(∇x∂tT )(x,t; s,Σ,τ,v)

x∗(∇x′∂t′T )(x′,t′; s′,Σ′,τ ′,v′)

f(x, t)

x′ = Sx(Ax+ u t)
t′ = St t

−−−−−−−−−−−−−−−→ f ′(x′, t′)

Fig. 7 Commutative diagram for spatio-temporal derivative operators underlying the joint spatio-temporal receptive field model (13) under the
composition of (i) a spatial scaling transformation, (ii) a spatial affine transformation, (iii) a Galilean transformation and (iv) a temporal scaling
transformation according to (191) and (192). This commutative diagram, which should be read from the lower left corner to the upper right corner,
means that irrespective of whether the input video f(x, t) is first subject to the composed transformation x′ = Sx(Ax+u t) and t′ = St t and then
filtered with a spatio-temporal derivative kernel (∇x′∂t′T )(x′, t′; s′, Σ′, τ ′, v′), or instead directly convolved with the spatio-temporal smoothing
kernel (∇x∂tT )(x, t; s,Σ, τ, v) and then subject to the same joint spatio-temporal transformation, we do then get the same result, provided that
the spatial and the temporal derivative operators are transformed according to ∇x′ = 1

Sx
A−T ∇x and ∂t′ = − 1

Sx
uTA−T ∇x + 1

St
∂t and that

the parameters of the spatio-temporal smoothing kernels are related according to s′ = S2
x s, Σ′ = AΣAT , τ ′ = S2

t τ and v′ = Sx
St

(Av + u).
(In this commutative diagram, we have illustrated the general covariance properties of spatio-temporal derivatives for the particular choice of the
composed spatio-temporal derivative operator ∇x∂tT in the spatio-temporal receptive field model ( 13). Similar covariance properties can, of
course, also be obtained for other combinations of the spatial and the temporal derivative operators ∇x and ∂t, in a structurally similar manner.)

which in terms of explicit partial derivatives can be expressed
on the form

∂x1 =
∂x′

1

∂x1
∂x′

1
+

∂x′
2

∂x1
∂x′

2
+

∂t′

∂x1
∂t′ (226)

∂x2 =
∂x′

1

∂x2
∂x′

1
+

∂x′
2

∂x2
∂x′

2
+

∂t′

∂x2
∂t′ (227)

∂t =
∂x′

1

∂t
∂x′

1
+

∂x′
2

∂t
∂x′

2
+

∂t′

∂t
∂t′ , (228)

it then follows that the spatio-temporal derivative operators
in the original and the transformed domains are related ac-

cording to

∇p =

∂x1

∂x2

∂t

 = Sx

a11 a21 0

a12 a22 0

u1 u2 St/Sx

∂x′
1

∂x′
2

∂t′


= QT ∇p′ , (229)

which, in turn, gives the following explicit transformation
property for the spatio-temporal derivative operator under
the inverse composed spatio-temporal transformation

∇p′ = Q−T ∇p (230)
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∇x,affnorm∂t̄,normL(x, t; s,Σ, τ, v)

x′ = Sx(Ax+ u t)
t′ = St t
s′ = S2

x s

Σ′ = AΣAT

τ ′ = S2
t τ

v′ = Sx
St

(Av + u)

∇x′,affnorm = Π̃∇x,affnorm

∂t̄′,norm = ∂t̄,norm−−−−−−−−−−−−−−−−−−→ ∇x′,affnorm∂t̄′,normL
′(x′, t′; s′, Σ′, τ ′, v′)x∗(∇x,affnorm∂t̄,normT )(x,t; s,Σ,τ,v)

x∗(∇x′,affnorm∂t̄′,normT )(x′,t′; s′,Σ′,τ ′,v′)

f(x, t)

x′ = Sx(Ax+ u t)
t′ = St t

−−−−−−−−−−−−−−−→ f ′(x′, t′)

Fig. 8 Commutative diagram for scale-normalized spatio-temporal derivative operators defined from the joint spatio-temporal receptive field
model (13) under the composition of (i) a spatial scaling transformation, (ii) a spatial affine transformation, (iii) a Galilean transformation and
(iv) a temporal scaling transformation according to (191) and (192). This commutative diagram, which should be read from the lower left corner to
the upper right corner, means that irrespective of whether the input video f(x, t) is first subject to the composed transformation x′ = Sx(Ax+u t)
and t′ = St t and then filtered with a scale-normalized spatio-temporal derivative kernel (∇x′,affnorm∂t′,normT )(x

′, t′; s′, Σ′, τ ′, v′), or instead
directly convolved with the scale-normalized spatio-temporal smoothing kernel (∇x,affnorm∂t,normT )(x, t; s,Σ, τ, v) and then subject to the
same joint spatio-temporal transformation, we do then, up to a possibly unknown permutation transformation, get the same result, provided that
the parameters of the spatio-temporal smoothing kernels are related according to s′ = S2

x s, Σ′ = AΣAT , τ ′ = S2
t τ and v′ = Sx

St
(Av + u).

Note, in particular, the conceptual simplification in relation to the corresponding commutative diagram based on regular partial derivatives that
have not been subject to scale normalization or velocity adaptation regarding the temporal derivatives, in that the scale-normalized spatio-temporal
derivatives in this commutative diagram are essentially equal, up to a possibly unknown permutation transformation. (In this commutative diagram,
we have illustrated the general covariance properties of spatio-temporal derivatives for the particular choice of the composed spatio-temporal
derivative operator ∇x,affnorm∂t,normT in the spatio-temporal receptive field model (13). Similar covariance properties can, of course, also be
obtained for other selections of the spatial and the temporal derivative operators ∇x,affnorm and ∂t,norm for which corresponding covariance
properties hold.)

with

Q−T =
1

Sx detA
× a22 −a21 0

−a12 a11 0

−a22 u1 + a12 u2 a21 u1 − a11 u2 Sx detA/St

 .

(231)

In terms of vector notation, after introducing the purely spa-
tial gradient operators ∇x = (∂x1

, ∂x2
) and ∇x′ = (∂x′

1
, ∂x′

2
),

the transformation property (229) of the spatio-temporal gra-
dient operators can then be written as

∇x = Sx A
T ∇x′ , (232)

∂t = Sx u
T ∇x′ + St ∂t′ , (233)

whereas the corresponding inverse relationship (230) can be
expressed as

∇x′ =
1

Sx
A−T ∇x, (234)

∂t′ = − 1

Sx
uTA−T ∇x +

1

St
∂t. (235)

Based on these relations, expressions for spatio-temporal
derivatives can be transformed between the two domains
under the composed image transformation, thus extending

the transformation property (220) of the spatio-temporal re-
ceptive fields to beyond the effect of purely spatio-temporal
smoothing operation in the spatio-temporal receptive fields
also cover the spatio-temporal derivative operators in the
composed spatio-temporal receptive field model of the form
(13), see Figure 7 for a commutative diagram that illustrates
this joint covariance property.

5.4 Transformation properties of geometrically defined
spatio-temporal derivative operators

Beyond the above, essentially partial-derivative-based spa-
tial and temporal derivative operators, it can often be con-
venient to also introduce more geometrically defined spatio-
temporal derivative operators.

For example, given the vector notation for the derivative
operators, the velocity-adapted derivative operators corre-
sponding to (11) are with v = (v1, v2)

T and v′ = (v′1, v
′
2)

T

given by

∂t̄ = vT ∇x + ∂t and ∂t̄′ = v′
T ∇x′ + ∂t′ , (236)

where the velocity vectors v and v′ are related according to
(224). Such velocity-adapted spatio-temporal derivative op-
erators are natural to use, when computing spatio-temporal
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receptive responses from moving image structures. Specifi-
cally, there are velocity-sensitive receptive fields in the pri-
mary cortex that can be rather well modelled by such spatio-
temporal derivatives; see Figure 18 in (Lindeberg 2021).

By combining the transformation properties of the spa-
tial and temporal derivative operators according to (234) and
(235 ) with the transformation property (224) of the velocity
parameters v and v′ in the receptive fields, we can thus ob-
tain explicit expressions for how such velocity-adapted re-
ceptive fields are transformed in a Galilean covariant way,
under relative motions between the objects in the world and
the observer. Specifically, inserting the expressions (232)
and (233) for the spatial gradient operator ∇x and the reg-
ular temporal derivative operator ∂t as well as the velocity
vector v obtained by solving for this velocity vector as func-
tion of the transformed velocity vector v′ in the transforma-
tion property (224) of the velocity vector under the com-
posed spatio-temporal transformation defined by (218) and
(219) does after simplification of this expression lead to the
following simple relationship

∂t̄ = St ∂t̄′ . (237)

In this way, the velocity-adapted derivatives constitute a ge-
ometrically very meaningful way to define spatio-temporal
derivative responses on image observations of a dynamic
world.

Similarly, the directional derivative operators ∂φ and ∂φ′

corresponding to (8) are, with the unit vectors

eφ = (cosφ, sinφ)T and eφ′ = (cosφ′, sinφ′)T ,

(238)

given by

∂φ = eTφ ∇x and ∂φ′ = eTφ′ ∇x′ . (239)

With regard to the composed spatio-temporal image trans-
formation (218), inserting the expression (232) for the spa-
tial gradient operator ∇x into the definition (239), and defin-
ing the transformed unit vector eφ′ as

eφ′ =
Sx Aeφ
∥Sx Aeφ∥

=
Aeφ
∥Aeφ∥

(240)

implies that the directional derivative operator transforms
according to

∂φ = ∥Sx Aeφ∥ ∂φ′ . (241)

In the special case when the composed affine transforma-
tion matrix Sx A is a pure rotation matrix Sx A = Rθ, the
eigenvectors of the spatial covariance matrix Σ in the spatio-
temporal smoothing kernel do also transform according to a
rotation, according to (222), implying that the rotational an-
gles φ and φ′ will be related according to

φ′ = φ+ θ, (242)

which with regard to the unit vectors used for defining the
directional derivatives, can in terms of matrix operations be
accomplished according to

eφ′ = Rθ eφ. (243)

In these ways, we can in a rotationally covariant way trans-
form the responses of the spatial components of the spatio-
temporal receptive field model (13) transform under the sim-
ilarity group over the image domain. For more general affine
transformations over the image domain, the corresponding
relations are, however, more complex.

By using these transformation properties of spatio-temporal
gradient operators, we can thus in a geometric way trans-
form all the spatio-temporal derivative operators in the spatio-
temporal receptive field models described in Sections 2.2
and 2.3.

5.5 Transformation properties of scale-normalized
spatio-temporal derivative operators

With the introduction of scale-normalized derivatives accord-
ing to Section 3, the transformation properties of the spatio-
temporal receptive fields can be further simplified:

– If we require the family of affine transformation matri-
ces A to be reduced to the group of rotation matrices
A = Rθ, such that the composed effect of the spatial
scaling factor Sx and the rotation matrix A = Rθ spans
the variability of the similarity group, then, based on
the theoretical results in Section 3.4, the affine scale-
normalized directional derivative operators according to
(33) and (36) are covariant under the resulting similarity
group extended with the group of Galilean transforma-
tions and the group of temporal scaling transformations,
such that

∂φ′,normL(x
′, t′; s′, Σ′, τ ′, v′) =

= ∂φ,normL(x, t; s,Σ, τ, v), (244)

provided that the scale parameters s and s′ are matched
with the effect of the scaling transformation, the orien-
tation angles φ and φ′ are matched with the effect of
the rotation matrix Rθ, and provided that the other pa-
rameters of the receptive fields are matched according to
(221)–(224) such that

s′ = S2
x s, (245)

φ′ = φ+ θ, (246)

Σ′ = Rθ ΣRT
θ , (247)

τ ′ = S2
t τ, (248)

v′ =
Sx

St
(Av + u). (249)
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– If we consider the group of general affine transforma-
tion matrices A, and define the scale-normalized affine
gradient vector and the scale-normalized affine Hessian
matrix according to (82) and (113), then, based on the re-
sults in Section 3.6 and Section 3.8, these scale-normalized
affine derivative-based entities will be equal up to (pos-
sibly different) permutation matrices Π̃ according to

(∇x′,affnormL
′)(x′, t′; s′, Σ′, τ ′, v′) =

= Π̃ (∇x,affnormL)(x, t; s,Σ, τ, v) (250)

and

(Hx′,affnormL
′)(x′, t′; s′, Σ′, τ ′, v′) =

= Π̃ (Hx,affnormL)(x, t; s,Σ, τ, v) Π̃T , (251)

provided that the scale parameters s and s′ as well as
the spatial covariance matrices Σ and Σ′ are matched
according to (109)

s′ Σ′ = s (Sx A)Σ (SxA)T = s S2
x AΣAT , (252)

and provided that the other parameters of the receptive
fields are matched according to (223)–(224)

τ ′ = S2
t τ, (253)

v′ =
Sx

St
(Av + u). (254)

– Irrespective of any restrictions on the family of affine
transformation matrices A, the velocity-adapted spatio-
temporal derivative operators according to (236), and ex-
tended to scale-normalized derivatives, will, based on
the result underlying Equation (237), be equal

∂t̄′,normL
′(x′, t′; s′, Σ′, τ ′, v′) =

= ∂t̄,normL(x, t; s,Σ, τ, v), (255)

provided that the parameters s, s′, Σ, Σ′, τ , τ ′, v and v′

of the receptive fields are matched according to (221)–
(224).

In these ways4, the derived joint covariance properties for
the spatial-temporal derivatives assume much simpler forms,
when expressed in terms of scale-normalized derivatives, by
being essentially equal, up to a possibly unknown permuta-
tion transformation, see Figure 8 for an illustration in terms
of a commutative diagram.

4 In addition to the above three main cases treated here, it is also pos-
sible to extend the covariance property of the affine scale-normalized
directional operator in (244) to the spatio-temporal extension of the
case with coupled eigendecompositions of the affine covariance matrix
A and the spatial covariance matrixΣ studied in Section 3.4.2. To save
space, we do, however, leave out those details to the reader.

.
.

..

ξ

F

P (k )

.
x (k )

O(k )

x ( x (k ) = S(k )x (A (k )ξ + u(k ) t)

Fig. 9 Illustration of the underlying geometric situtation for the lo-
cally linearized transformations from a local, possibly moving, surface
patch to an arbitrary view indexed by k, with the fixation point F on
the surface mapped to the origin O(k) = 0 in the image plane for the
observer with the optic center P (k). Then, any point in the tangent
plane to the surface at the fixation point, as parameterized by the local
coordinates ξ in a coordinate frame attached to the tangent plane of the
surface with ξ = 0 at the fixation point F , is by the local linearization
mapped to the image point x(k). (Note, however, that this 3-D illus-
tration is only intended to be schematic and not a fully quantitatively
accurate representation, since the projection relations from the tangent
plane to the surface have here been drawn according to a perspective
projection model, whereas the algebraic model that we then will use
for relating receptive field responses between the respective image do-
mains are based on local linearizations of the underlying non-linear
geometric transformations. This could in principle be accomplished by
having different notation for the locally linearized projections vs. the
true geometric projections. Here, we do, however, defer from making
that distinction in the figure, in order to not overload the presentation
with additional notation.)

6 Geometric interpretation of the composed image
transformation model

With regard to a visual observer that observes 3-D objects
in a dynamic world, a geometric interpretation of the com-
posed spatio-temporal image transformation according to Equa-
tions (191) and (192) can be obtained as follows:

6.1 Transformations from the tangent plane of a local
surface patch to the image domains of multiple views of the
same scene or in similar scenes

Consider a camera, alternatively an eye, that views a local
surface patch from different positions (optic centers) P (k) =

(P
(k)
1 , P

(k)
2 , P

(k)
3 )T ∈ R3 in the 3-D world, relative to a

global 3-D coordinate system. For simplicity, with regard
to the following analysis that is to be performed, we will
assume that the fixation point is on the same point physi-
cal point F (k) = (F

(k)
1 , F

(k)
2 , F

(k)
3 )T ∈ R3 on the surface

patch for each one of the observers, however, with the 3-
D coordinates for the fixation point now expressed relative
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to an individual coordinate system for each observer (with
index k), with the origin of the individual 3-D coordinate
system being at the optic center P (k) of that observer.

For simplicity, we also assume that the image coordi-
nates for each observer are chosen such that the spatial im-
age coordinate for the fixation point being x = (x1, x2)

T =

(0, 0)T at the time moment t = 0, when the spatio-temporal
receptive field response to the studied is computed.

6.1.1 Locally linearized static multi-view projection model

Given the above multi-view viewing model, to first-order of
approximation, by approximating the non-linear perspective
transformation for each observer by its first-order deriva-
tive, the transformation from a coordinate frame with lo-
cal coordinates ξ = (ξ1, ξ2)

T in the tangent plane of the
surface patch, with the fixation point corresponding to ξ =

(ξ1, ξ2)
T = (0, 0)T , to the image coordinates x(k) = (x

(k)
1 , x

(k)
2 )T

in the image plane can be written on the form

x(k) = A(k) ξ, (256)

where A(k) represents a 2 × 2 affine transformation con-
nected to the viewing position P (k), and we can specifically
choose a preferred reference view P (0) perpendicular to the
tangent plane of the surface. We can also decide to chose
that preferred reference observation point, such that it cor-
responds to orthonormal projection, with A(0) = I , where I
is the unit matrix.

By introducing an additional explicit parameterization
for the observation points P (k), that are at different distances
from the fixation point on the local surface patch, and thus
lead to different spatial scaling factors in the underlying per-
spective transformation that is locally approximated by a lo-
cal affine transformation, we can extend the model (256) to
a model of the form

x(k) = S(k)
x A(k) ξ, (257)

where S(k)
x represents the additional scaling factor that arises

by changing the viewing distance relative to the observation
point P (0) used as the main reference. For the scaled or-
thographic projection model, the spatial scaling factor S(k)

x

will thus correspond to the inverse depth, such that S(k)
x =

1/Z(k), with the depth Z(k) for each observer measured rel-
ative to its observation point P (k).

6.1.2 Locally linearized dynamic multi-view projection
model

If in addition, the local surface patch moves over time, with
a 3-D motion vector U (k) = (U

(k)
1 , U

(k)
2 , U

(k)
3 )T relative

to the observation point P (k), that is then mapped to the

2-D motion vector u(k) = (u
(k)
1 , u

(k)
2 )T under the same or-

thonormal projection model, as underlying the definition of
the affine transformation matrix A(k) above, then the mo-
tions of the spatio-temporal surface patterns projected to the
image plane can, with these scaled orthographic projection
models, to first-order of approximation, in the view labelled
by the index k, be modelled as a motion over over time of
the form (see Figure 9 for an illustration)

x(k) = S(k)
x (A(k)ξ + u(k) t), (258)

where

– x(k) is the locally linearized projection of the physical
point on the surface pattern, in the view from the ob-
server with index k, at time t,

– ξ constitute time-independent local coordinates in the
tangent plane of the local surface patch,

– S
(k)
x is a scalar scaling factor for the observer with index

k,
– A(k) is a 2 × 2 affine projection matrix, that represents

an orthographic projection from the tangent plane of the
surface to a plane parallel with the image plane, for the
observer with index k,

– u(k) is a 2-D motion vector, that represents an ortho-
graphic projection of the 3-D motion vector U (k) of the
physical fixation point on the surface, to a plane parallel
with the image plane, for the observer with index k.

The role of the temporal scaling transformation according to
Equation (192) in this context

t′ = St t, (259)

is to additionally account for making it possible to relate
spatio-temporal events that occur either faster or slower in
relation to the spatio-temporal variations relative to the ref-
erence view, for multiple observations at different time mo-
ments of otherwise qualitatively similar types of motion pat-
terns or spatio-temporal events.

6.2 Transformations between different image domains of
multiple views of the same local surface patch

While we above, for simplicity, decided to chose a normal
view to the tangent plane as the reference view, such an as-
sumption is, however, not in any way necessary, to be able
to apply this joint spatio-temporal covariance model for re-
lating spatio-temporal receptive field responses under com-
posed spatio-temporal image transformations.

If we instead decide to choose some other particular ob-
servation point P (k̃), with its associated spatial scaling fac-
tor S(k̃)

x , affine transformation matrix A(k̃) and image veloc-
ity u(k̃) as the reference view, then within the algebra of lo-
cally linearized approximations of the underlying projective
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x (k ) = B̃ (k )x ( k̃ ) + ũ(k ) t

Fig. 10 Illustration of the underlying geometric situtation for the lo-
cally linearized transformations between pairwise views of the same,
possibly moving, local surface patch, with the view indexed by k̃ con-
stituting the reference view and the view indexed by k constituting an
arbitrary view. Here, the fixation point F on the surface is mapped to
the origin O(k̃) = 0 in the reference view by the observer with the
optic center P (k̃), while the fixation point F is mapped to the origin
O(k) = 0 in the other view by the observer with the optic center P (k).
Then, in turn any other point in the tangent plane to the surface at the
fixation point, as parameterized by the local coordinates ξ in a coordi-
nate frame attached to the tangent plane of the surface with ξ = 0 at
F , is by the local linearization mapped to the image point x(k̃) in the
reference view indexed by k̃ and and by a corresponding other local
linearization mapped mapped to the point x(k) in the other view in-
dexed by k. (Note, however, that this 3-D illustration is only intended
to be schematic and not a fully quantitatively accurate representation,
since the projection relations from the tangent plane to the surface have
here been drawn according to a perspective projection model, whereas
the algebraic model that we then will use for relating receptive field
responses between the respective image domains are based on local
linearizations of the underlying non-linear geometric transformations.
This could in principle be accomplished by having different notation
for the locally linearized projections vs. the true geometric projections.
Here, we do, however, defer from making that distinction in the figure,
in order to not overload the presentation with additional notation.)

image transformation model between the pairwise views, we
obtain that Equation (258) will instead assume the form (see
Figure 10 for an illustration)

x(k) = B̃(k) x(k̃) + ũ(k) t, (260)

where

– x(k) is the locally linearized projection of the physical
point on the surface pattern in the view from the observer
with index k at time t,

– x(k̃) is the locally linearized projection of the physical
point on the surface pattern in the view from the observer
with index k̃ at time t,

– B̃(k) is a 2× 2 affine projection matrix for the observer
with index k in relation to an observation from a refer-
ence view with index k̃, and

– ũ(k) is a corresponding 2-D relative motion vector for
the observer with index k in relation to an observation
from a reference view with index k̃.

Here, we have thus first of all replaced the previous local co-
ordinates ξ in the tangent plane of the surface patch by the
image coordinates x(k) for a particular observation frame, to
be used as the new reference. Additionally, since the trans-
formations from the new reference frame will no longer cor-
respond to interpretations according a scaled orthographic
model complemented by motion, we have removed the de-
gree of freedom for the separation of the linear approxima-
tion of the perspective transformation in terms of a separate
scaling factor and a separate orthonormal projection, such
that in the new frame, it should instead hold that such that

B̃(k̃) = I, (261)

ũ(k̃) = 0. (262)

Then, for k = k̃ the model (260) reduces to the mere identity

x(k̃) = x(k̃). (263)

By furthermore inserting Equation (258) for k = k̃

x(k̃)S(k̃)
x A(k̃)(ξ + u(k̃) t). (264)

into Equation (260), we obtain

x(k) = B̃(k)(S(k̃)
x A(k̃)ξ + u(k̃) t) + ũ(k) t, (265)

which can be expanded to

x(k) = B̃(k) S(k̃)
x A(k̃)ξ + (B̃(k) S(k̃)

x A(k̃) u(k̃) + ũ(k)) t.

(266)

By identifying this expression with Equation (260), we get

S(k)
x A(k) = B̃(k) S(k̃)

x A(k̃), (267)

S(k)
x A(k) u(k) = B̃(k) S(k̃)

x A(k̃) u(k̃) + ũ(k). (268)

Thus, we have that the parameters B̃(k) and ũ(k) of the spatio-
temporal transformation model (260) relative to the partic-
ular reference view for k = k̃ are related to the parameters
S
(k)
x , A(k)and u(k) for the spatio-temporal transformation

model (258) relative to the canonical frame in the tangent
plane of the surface patch according to

B̃(k) =
S
(k)
x

S
(k̃)
x

A(k)(A(k̃))−1 (269)

and

ũ(k) = S(k)
x A(k)

(
u(k) − u(k̃)

)
. (270)

In this way, we can derive the transformation parameters for
the transformation (260) between multiple pairwise views,
from the transformation parameters for the monocular trans-
formation (258) from the tangent plane of the surface patch
to any one of the multiple single views.
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6.3 Transformation property of pairwise viewing
parameters between different reference views

Let us next choose some other view for k = k̄ as the refer-
ence view, such the spatio-temporal image transformations
between the multiple pairwise views are instead of the form

x(k) = B̄(k) x(k̄) + ū(k) t, (271)

where

– x(k) is the locally linearized projection of the physical
point on the surface pattern in the view from the observer
with index k at time t,

– x(k̄) is the locally linearized projection of the physical
point on the surface pattern in the view from the observer
with index k̄ at time t,

– B̄(k) is a 2× 2 affine projection matrix for the observer
with index k in relation to an observation from a refer-
ence view with index k̄ and

– ū(k) is a corresponding 2-D relative motion vector for
the observer with index k in relation to an observation
from a reference view with index k̄.

To relate the parameters B̄(k) and ū(k) in this latter transfor-
mation model to the parameters B̃(k) and ũ(k) in the previ-
ous transformation model (260), let us insert the expression
for x(k̄) obtained by setting k = k̄ in (260)

x(k̄) = B̃(k̄) x(k̃) + ũ(k̄) t, (272)

into (271), which gives

x(k) = B̄(k)(B̃(k̄) x(k̃) + ũ(k̄) t) + ū(k) t, (273)

and

x(k) = B̄(k) B̃(k̄) x(k̃) + (B̄(k)ũ(k̄) + ū(k)) t. (274)

Identifying the coefficients for x(k̃) and t with the general
expression (260) for the transformation between the views
k̃ and k, then gives that the transformation parameters B̄(k)

and ū(k) for the corresponding transformation model based
on the view k̄ have to be related to the parameters B̃(k) and
ũ(k) for the reference view based on k = k̃ according to

B̃(k) = B̄(k) B̃(k̄), (275)

ũ(k) = B̄(k) ũ(k̄) + ū(k). (276)

Let us also insert the the expression for x(k̃) obtained by
setting k = k̃ in (271)

x(k̃) = B̄(k̃) x(k̄) + ū(k̃) t, (277)

into (260), which gives

x(k) = B̃(k)(B̄(k̃) x(k̄) + ū(k̃) t) + ũ(k) t (278)

and

x(k) = B̃(k) B̄(k̃) x(k̄) + (B̃(k) ū(k̃) + ũ(k)) t. (279)

Identifying the coefficients for x(k̄) and t with the general
expression (271) for the transformation between the views
k̄ and k, then gives that the transformation parameters B̃(k)

and ũ(k) for the corresponding transformation model based
on the view k̃ have to be related to the parameters B̄(k) and
ū(k) for the reference view based on k = k̄ according to

B̄(k) = B̃(k) B̄(k̃), (280)

ū(k) = B̃(k) ū(k̃) + ũ(k). (281)

Furthermore, by setting the transformation (272) between
x(k̃) and x(k̄) into the transformation (277) between x(k̄) and
x(k̃), we obtain

x(k̃) = B̄(k̃)(B̃(k̄) x(k̄) + ũ(k̄) t) + ū(k̃) t (282)

and

x(k̃) = B̄(k̃) B̃(k̄) x(k̄) + (B̄(k̃) ũ(k̄) + ū(k̃)) t. (283)

Identifying the coefficients for x(k̄) and t, then gives

B̄(k̃) B̃(k̄) = I, (284)

B̄(k̃) ũ(k̄) + ū(k̃) = 0, (285)

which can be rewritten into the following specific consis-
tency relations between the parameters in the mutually pair-
wise views based on either of the reference views k̃ or k̄

B̄(k̃) = (B̃(k̄))−1, (286)

ū(k̃) = −B̄(k̃) ũ(k̄). (287)

Due to the linearity of all the components of the first-order
approximations of these composed spatio-temporal image
transformations, the algebra for modelling the receptive field
responses is therefore closed under the considered family of
spatio-temporal image transformations.

With regard to receptive field responses, this closedness
property between any set of locally linearized pairwise views
of the same, possibly moving, surface patch will, in turn, im-
ply that we can model the spatio-temporal responses com-
puted at matching points in space-time between different
pairwise views of the same local surface patch, using a joint
covariance property under a corresponding class of com-
posed spatio-temporal image transformations, as will be de-
veloped more explicitly in the next section.
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L(x, t; Σ̃, τ̃ , ṽ)

x′ = B̃ x+ ũ t
t′ = St t

Σ̃′ = B̃ Σ̃ B̃T

τ̃ ′ = S2
t τ̃

ṽ′ = 1
St

(B̃ ṽ + ũ)
−−−−−−−−−−−−−−→ L′(x′, t′; Σ̃′, τ̃ ′, ṽ′)x∗T (x,t; Σ̃,τ̃ ,ṽ)

x∗T (x′,t′; Σ̃′,τ̃ ′,ṽ′)

f(x, t)

x′ = B̃ x+ ũ t

t′ = St t
−−−−−−−−−−−−→ f ′(x′, t′)

Fig. 11 Commutative diagram for the joint spatio-temporal smoothing component (293) in the joint spatio-temporal receptive field model under
the composition of a spatial affine transformation, a Galilean transformation and a temporal scaling transformation according to (288) and (259),
for relating the spatio-temporal receptive field responses between pairwise views of a local surface patch. This commutative diagram, which
should be read from the lower left corner to the upper right corner, means that irrespective of whether the input video f(x, t) is first subject to the
composed transformation x′ = B̃ x+ ũ t and t′ = St t and then smoothed with a spatio-temporal kernel T (x′, t′; Σ̃′, τ̃ ′, ṽ′), or instead directly
convolved with the spatio-temporal smoothing kernel T (x, t; Σ̃, τ̃ , ṽ) and then subject to the same joint spatio-temporal transformation, we do
then get the same result, provided that the parameters of the spatio-temporal smoothing kernels are related according to Σ̃′ = B̃ Σ̃ B̃T , τ̃ ′ = S2

t τ̃

and ṽ′ = 1
St

(B̃ ṽ + ũ).

7 Explicit joint spatio-temporal covariance properties
between pairwise views of the same local surface patch

By comparing the joint transformation between pairwise views
according to (260), rewritten to the form

x′ = B̃ x′ + ũ t, (288)

with the joint transformation property from the tangent plane
of the surface according to (258), rewritten to the form (191)

x′ = Sx (Ax+ u t), (289)

we can see that these transformations merely correspond to
different parameterizations of the same underlying algebraic
structure, with the parameters in the two different domains
related according to

B̃ = Sx A, (290)

ũ = Sx u. (291)

Therefore, corresponding joint covariance properties for spatio-
temporal receptive fields can be stated for the locally lin-
earized transformations between pairwise views according
to (288) as for the locally linearized transformation from the
tangent plane of the surface to the image plane according to
(289).

For clarity of presentation, we will in the following de-
scribe these joint covariance properties for the spatio-temporal
smoothing operation and the spatio-temporal derivatives ex-
plicitly. Since this involves removing the degree of freedom
corresponding to the parameter Sx in the treatment in Sec-
tion 5.2, we will start by also removing the degree of free-
dom corresponding to the spatial scale parameter s in the
model (1) for the purely spatio-temporal smoothing opera-
tion of the spatio-temporal receptive fields.

7.1 Joint covariance property for the purely spatio-temporal
smoothing component of the spatio-temporal receptive
fields

If we merge the degrees of freedom in the spatial scale pa-
rameter s and the spatial covariance matrix Σ in the purely
spatio-temporal smoothing component of the receptive fields
according to (1) into the joint parameter

Σ̃ = s2Σ, (292)

then we can express the purely spatio-temporal smoothing
component of the receptive fields according to

T (x, t; Σ̃, τ̃ , ṽ) = g̃(x− ṽ t; Σ̃)h(t; τ̃), (293)

where we also redefine the 2-D affine Gaussian kernel (2)
according to

g̃(x; Σ̃) =
1

2π det Σ̃
e−xT Σ̃−1x/2. (294)

If we correspondingly to (193) consider two video sequences
f ′(x′, t′) and f(x, t) that are related according to (288) and
(259) such that

f ′(x′, t′) = f(x, t), (295)

and correspondingly to (194) and (195) define spatio-temporal
scale-space representations of these video sequences accord-
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∇x∂tL(x, t; Σ̃, τ̃ , ṽ)

x′ = B̃ x+ ũ t
t′ = St t

Σ̃′ = B̃ Σ̃ B̃T

τ̃ ′ = S2
t τ̃

ṽ′ = 1
St

(B̃ ṽ + ũ)

∇x′ = B̃−T ∇x
∂t′ = −uT B̃−T ∇x + 1

St
∂t

−−−−−−−−−−−−−−−−−−−−−−→ ∇x′∂t′L′(x′, t′; Σ̃′, τ̃ ′, ṽ′)x∗(∇x∂tT )(x,t; Σ̃,τ̃ ,ṽ)

x∗(∇x′∂t′T )(x′,t′; Σ̃′,τ̃ ′,ṽ′)

f(x, t)

x′ = B̃ x+ u t

t′ = St t
−−−−−−−−−−−−→ f ′(x′, t′)

Fig. 12 Commutative diagram for spatio-temporal derivative operators underlying the joint spatio-temporal receptive field model under the com-
position of a spatial affine transformation, a Galilean transformation and a temporal scaling transformation according to (288) and (259), between
different pairwise views of the same local surface patch. This commutative diagram, which should be read from the lower left corner to the upper
right corner, means that irrespective of whether the input video f(x, t) is first subject to the composed transformation x′ = B̃ x+ ũ t and t′ = St t

and then filtered with a spatio-temporal derivative kernel (∇x′∂t′T )(x′, t′; Σ̃′, τ̃ ′, ṽ′), or instead directly convolved with the spatio-temporal
smoothing kernel (∇x∂tT )(x, t; Σ̃, τ̃ , ṽ) and then subject to the same joint spatio-temporal transformation, we do then get the same result, pro-
vided that the spatial and the temporal derivative operators are transformed according to ∇x′ = B̃−T ∇x and ∂t′ = −uT B̃−T ∇x + 1

St
∂t and

that the parameters of the spatio-temporal smoothing kernels are related according to Σ̃′ = B̃ Σ̃ B̃T , τ ′ = S2
t τ and ṽ′ = 1

St
(B̃ ṽ + ũ). (In

this commutative diagram, we have illustrated the general covariance properties of spatio-temporal derivatives in terms of the composed spatio-
temporal derivative ∇x∂tT . Similar covariance properties can, of course, also be obtained for other combinations of the spatial and the temporal
derivative operators ∇x and ∂t.)

∇x,affnorm∂t̄,normL(x, t; Σ̃, τ̃ , ṽ)

x′ = B̃ x+ ũ t

t′ = St t

Σ̃′ = B̃ Σ B̃T

τ̃ ′ = S2
t τ̃

v′ = 1
St

(B̃ ṽ + ũ)

∇x′,affnorm = Π̃∇x,affnorm

∂t̄′,norm = ∂t̄,norm−−−−−−−−−−−−−−−−−−→ ∇x′,affnorm∂t̄′,normL
′(x′, t′; Σ̃′, τ̃ ′, ṽ′)x∗(∇x,affnorm∂t̄,normT )(x,t; Σ̃,τ̃ ,ṽ)

x∗(∇x′,affnorm∂t̄′,normT )(x′,t′; Σ̃′,τ̃ ′,ṽ′)

f(x, t)

x′ = B̃ x+ ũ t

t′ = St t
−−−−−−−−−−−−→ f ′(x′, t′)

Fig. 13 Commutative diagram for scale-normalized spatio-temporal derivative operators defined from the joint spatio-temporal receptive field
model (13) under the composition of a spatial affine transformation, a Galilean transformation and a temporal scaling transformation according
to (288) and (259), between different pairwise views of the same local surface patch. This commutative diagram, which should be read from the
lower left corner to the upper right corner, means that irrespective of whether the input video f(x, t) is first subject to the composed transformation
x′ = B̃ x+ ũ t and t′ = St t and then filtered with a scale-normalized spatio-temporal derivative kernel (∇x′,affnorm∂t′,normT )(x

′, t′; Σ̃′, τ̃ ′, ṽ′),
or instead directly convolved with the scale-normalized spatio-temporal smoothing kernel (∇x,affnorm∂t,normT )(x, t; Σ̃, τ̃ , ṽ) and then subject to
the same joint spatio-temporal transformation, we do then, up to a possibly unknown permutation transformation, get the same result, provided
that the parameters of the spatio-temporal smoothing kernels are related according to Σ̃′ = B̃ Σ̃ B̃T , τ ′ = S2

t τ and ṽ′ = 1
St

(B̃ ṽ + ũ). Note, in
particular, the conceptual simplification in relation to the corresponding commutative diagram based on regular partial derivatives that have not been
subject to scale normalization or velocity adaptation regarding the temporal derivatives, in that the scale-normalized spatio-temporal derivatives
in this commutative diagram are essentially equal, up to a possibly unknown permutation transformation. (In this commutative diagram, we have
illustrated the general covariance properties of spatio-temporal derivatives for the particular choice of the composed spatio-temporal derivative
operator ∇x,affnorm∂t,normT in the spatio-temporal receptive field model (293). Similar covariance properties can, of course, also be obtained
for other combinations of the spatial and the temporal derivative operators ∇x,affnorm and ∂t,norm for which corresponding covariance properties
hold.)
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ing to

L(x, t; Σ̃, τ̃ , ṽ) =

=

∫
ξ∈R2

∫
η∈R

T (ξ, η; Σ̃, τ̃ , ṽ) f(x− ξ, t− η) dξ dη,

(296)

L(x′, t′; Σ̃′, τ̃ ′, ṽ′) =

=

∫
ξ′∈R2

∫
η′∈R

T (ξ′, η′; Σ̃′, τ̃ ′, ṽ′)×

f(x′ − ξ′, t′ − η′) dξ′ dη′, (297)

then it follows from similar calculations as lead to the trans-
formation properties (220)–(224) that the spatio-temporal
scale-space representations L(x, t; Σ̃, τ̃ , ṽ) and L(x′, t′; Σ̃′, τ̃ ′, ṽ′)

of the video sequences f(x, t) and f ′(x′, t′) are related ac-
cording to

L(x′, t′; Σ̃′, τ̃ ′, ṽ′) = L(x, t; Σ̃, τ̃ , ṽ), (298)

provided that the parameters of the receptive fields trans-
form according to

Σ̃′ = B̃ Σ̃ B̃T , (299)

τ̃ ′ = S2
t τ̃ , (300)

ṽ′ =
1

St
(B̃ ṽ + ũ), (301)

This follows from similar calculations as done in Section 5.2,
by replacing the previous affine transformation matrix A by
the new affine transformation matrix B, while simultane-
ously replacing the spatial scaling factor Sx by 1, see Fig-
ure 11 for an illustration in terms of a commutative diagram.

7.2 Joint covariance properties for the spatial and the
temporal derivative operator components of the
spatio-temporal receptive fields

By similarly replacing the affine transformation matrix A

by the affine transformation matrix B̃, while simultaneously
replacing the spatial scaling factor Sx by 1 in the transfor-
mation properties (232)–(233) and (234)–(235) of the spa-
tial and temporal derivative operators under the composed
spatio-temporal transformation defined by (191) and (192),
we obtain that the spatial and the temporal derivative opera-
tors in the two domains under the composed spatio-temporal
transformation defined by (288) and (259) are related ac-
cording to

∇x = B̃T ∇x′ , (302)

∂t = uT ∇x′ + St ∂t′ , (303)

and

∇x′ = B̃−T ∇x, (304)

∂t′ = −uT B̃−T ∇x +
1

St
∂t, (305)

see Figure 12 for a commutative diagram that illustrates these
joint covariance properties.

In analogy with the previous treatment of the transfor-
mation properties of scale-normalized derivatives in Sec-
tion 5.5, also these transformation properties will be simpli-
fied, if instead expressing them in terms of scale-normalized
derivatives, and also if replacing the partial temporal deriva-
tive operators by velocity-adapted temporal derivatives:

– If we consider the group of general5 affine transforma-
tion matrices B̃, and define the scale-normalized affine
gradient vector and the scale-normalized affine Hessian
matrix according to (82) and (113), with the spatial scale
parameter set to s = 1 and the spatial covariance ma-
trix Σ replaced by Σ̃, then, based on the results in Sec-
tion 3.6 and Section 3.8, these scale-normalized affine
derivative-based entities will be equal up to (possibly
different) permutation matrices Π̃ according to

(∇x′,affnormL
′)(x′, t′; Σ̃′, τ̃ ′, ṽ′) =

= Π̃ (∇x,affnormL)(x, t; Σ̃, τ̃ , ṽ) (306)

and

(Hx′,affnormL
′)(x′, t′; Σ̃′, τ̃ ′, ṽ′) =

= Π̃ (Hx,affnormL)(x, t; s, Σ̃, τ̃ , ṽ) Π̃T , (307)

provided that the parameters Σ̃, Σ̃′, τ̃ , τ̃ ′, ṽ and ṽ′ of the
receptive fields are matched according to Equations (299)–
(301).

– The velocity-adapted spatio-temporal derivative opera-
tors according to (236), with v replaced by ṽ, and ex-
tended to scale-normalized derivatives with τ replaced
by τ̃ , will, based on the result underlying Equation (237),
be equal

∂t̄′,normL
′(x′, t′; Σ̃′, τ̃ ′, ṽ′) =

= ∂t̄,normL(x, t; Σ̃, τ̃ , ṽ), (308)

provided that the parameters Σ̃, Σ̃′, τ̃ , τ̃ ′, ṽ and ṽ′ of the
receptive fields are matched according to Equations (299)–
(301).

Figure 13 illustrates the combined effects of these covari-
ance properties in a joint commutative diagram.

5 For the purpose of modelling the transformations between pair-
wise views, we do here not explicitly consider the special case of the
similarity group, since we the geometric viewing configurations that
lead to such a restricted form of variability is very degenerate, in re-
lation to the case of multiple views of the same object from different
viewing directions.
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7.3 Transformations of receptive field responses under
varying geometric viewing conditions

In this way, if we consider a vision system, either biological
or based on computer vision operations, that records spatial
and spatio-temporal image structures observed by viewing
local surface patches, in either a static or dynamic world, in
terms of receptive field responses, then the above geometric
analysis in combination with the the previously derived joint
transformation properties according to Equations (220)–(224)
of the underlying spatial or spatio-temporal smoothing oper-
ations in the either spatial or spatio-temporal receptive fields,
together with the corresponding explicit transformation prop-
erties of the spatial and temporal derivative operators ac-
cording to Equations (232)–(235) do therefore, beyond a
trivial usually unknown spatial translation between the ori-
gins of the coordinate systems between the different image
domains, fully describe how the spatial and spatio-temporal
receptive field responses can be related or matched, when
viewing either the same physical scene from multiple views.

When complemented by temporal scaling transforma-
tions, this matching property does furthermore extend to re-
lating or matching the receptive field responses between dif-
ferent views of similarly looking motion patterns or spatio-
temporal events that may occur either faster or slower be-
tween different instances of the same event.

In this context it should be remarked, however, that due
to the modelling of the spatial or spatio-temporal image trans-
formations in terms of local linearizations only, the matches
between the receptive field responses obtained according to
the joint covariance property will not be fully perfect, in sit-
uations when the spatial or spatio-temporal support regions
of the receptive field cover larger regions in image space
or space-time than cannot be compactly modelled by local
linearizations. Compared to not attempting to compensate
for the effect of the spatial or spatio-temporal image trans-
formations on the receptive field responses, the positive ef-
fects of incorporating covariance properties of the receptive
field responses with respect to local linearizations of the un-
derlying non-linear perspective or projective image transfor-
mations should, however, be expected to lead to substantial
improvements. Handling the locally linear approximations
of the underlying non-linear perspetive or projective image
transformations can in this context also be expected to be
be conceptually much simpler, than aiming at compensating
for more complex non-linear image deformation models.

With regard to observations of more complex scenes,
containing multiple local image structures based on differ-
ent characteristics in terms of e.g. local surface geometry,
it should be noted that linearized transformations of recep-
tive field responses could also be computed regionally, over
larger regions of image space than could be well modelled
by a single locally linearized image transformation. Then,

if regional statistics of receptive field responses are to be
computed, for e.g. purposes with regard to spatial or spatio-
temporal recognition, then an overall compensation of the
receptive field responses with respect to gross geometric and
motion effects of the entire region could also be performed,
thus with the parameters of the spatio-temporal image trans-
formation not determined by the local spatio-temporal ge-
ometry and motion, but by instead determined by a coarser-
scale regional geometry and motion.

8 Interpretation in terms of the variability of image
structures under natural image transformations in
relation to the degrees of freedom spanned by the
parameters in the spatio-temporal receptive field model

With regard to the axiomatically6 derived model for spatio-
temporal receptive fields (1), that we build the analysis in
this treatment on, the geometric analysis that we have pre-
sented in Section 6 shows that the degrees of freedom in this
spatio-temporal receptive field model (the parameters s, Σ,
τ and v in (1)) span the degrees of freedom in the locally
linearized scaled orthographic model, complemented with a
Galilean motion to account for relative motions between ob-
jects in the world and the observer, as well as a temporal
scaling transformation to account for spatio-temporal events
that may occur either faster or slower relative to a reference
view (the parameters Sx, A, St and u in (258) and (259)).

The degrees of freedom in the slightly modified spatio-
temporal receptive field model (293) (the parameters Σ̃, τ̃
and ṽ) do also span the degrees of freedom in the locally lin-
earized projective projection model between pairwise views
according to (288) and (259) (the parameters B̃, St and ũ).

In this respect, these spatio-temporal receptive field mod-
els make it possible to perfectly capture the first-order lin-
earized approximations of the variabilities generated by ob-
serving the surfaces of smooth objects in the world that move
in relation to the observer in a dynamic 3-D environment.
This does specifically imply that with regard to modelling
the first-order linearizations of receptive field responses un-
der the perspective or projective transformations in either
single-view or multi-view observations of 3-D scenes, we
can isomorphically perform these operations as joint spatio-
temporal image transformations in image space only. Thus,
the algebra of the interaction between the receptive fields
and the first-order linearized geometric transformations con-
stitute a sufficient7 algebra to handle either single-view or

6 For the axiomatically formulated theory of visual receptive fields
that leads to the principled model for spatio-temporal receptive fields
that underlies this treatment, see (Lindeberg 2011) concerning the
foundations and (Lindeberg 2021 Appendix B) for a complement.

7 Note, however, that complementary mechanisms may be needed
to handle discontinuities in depth or surface orientation, as well as for
handling the effects of illumination variations. With regard to a sub-
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multi-view observations of smooth surface patches in a dy-
namic world.

In this way, it is not really necessary to make use of
explicit models of 3-D scene geometry or 3-D object mo-
tion when to operate on the spatio-temporal image data that
originate from different views. Instead, it is sufficient to just
make use of the composed spatio-temporal image transfor-
mations between the multiple views of the same scene, which
in that way constitute a minimal type of model of the world
with respect to the image-based observer’s view.

As we previously described in Section 2.3, comparisons
with biological receptive fields obtained by neurophysio-
logical recordings of neurons in the primary visual cortex
(V1), have shown that the receptive fields of simple cells can
be qualitatively rather well modelled by idealized receptive
fields of the form (see Lindeberg 2021 Section 4 for explicit
comparisons between biological receptive fields these ideal-
ized receptive fields),

Tφm t̄n(x, t; s,Σ, τ, v) =

= ∂m
φ ∂n

t̄ (g(x− v t; s,Σ)h(t; τ)) , (309)

By extending this definition with the affine scale-normalized
directional derivative operator ∂m

φ,norm according to (16), again
in one of the eigendirections φ of the spatial covariance
matrix Σ, as well as complementing with scale-normalized
velocity-adapted temporal derivatives ∂n

t̄,norm in the direction
v according to (129), we can thus also express a correspond-
ing scale-normalized model of the spatio-temporal receptive
fields according to (163) as

Tφm t̄n,norm(x, t; s,Σ, τ, v) =

= ∂m
φ,norm ∂n

t̄,norm (g(x− v t; s,Σ)h(t; τ)) , (310)

which then extends the applicability of the previous model
(163) to provable covariance properties under compositions
of spatial similarity transformations

If we additionally, would extend the interpretation of
those modelling results, corresponding to spatial derivatives
of orders 1 and 2, to replacing the interpretation of the spatial
derivative operators as components of the scale-normalized
affine gradient vector according to (82) or as components
of the scale-normalized affine Hessian matrix according to
(113)

T∇x t̄n,norm(x, t; s,Σ, τ, v) =

= ∇x,affnorm ∂n
t̄,norm (g(x− v t; s,Σ)h(t; τ)) ,

(311)

THx t̄n,norm(x, t; s,Σ, τ, v) =

= Hx,affnorm ∂n
t̄,norm (g(x− v t; s,Σ)h(t; τ)) ,

(312)

set of the space of variability spanned by illumination variations, it
should, however, be noted that if the studied idealized receptive field
model is applied over a logarithmic brightness scale, then the receptive
field responses will be automatically invariant under local multiplica-
tive illumination variations and exposure mechanisms (see Lindeberg
2021 Section 3.4).

then such a model would additionally allow for provable co-
variance properties under arbitrary combinations of spatial
affine transformations and Galilean transformations, with clear
biological relevance for a biological visual agent, to be able
to handle the variability of image structures under natural
image transformations.

Furthermore, considering that the receptive fields of sim-
ple cells in the primary visual cortex can be qualitatively
very well modelled by such spatio-temporal receptive fields,
these results can be taken as further support for the work-
ing hypothesis that the receptive fields in the primary visual
cortex may be regarded as being very well adapted to the
structure of our environment, as also previously proposed
in connection with the formulation of the normative theory
of visual receptive fields that underlies the definition of the
idealized spatio-temporal receptive field model that we have
used as a basis for this theoretical treatment (see Lindeberg
2021 Section 6, for a condensed summary of such concep-
tual theoretical arguments) and (Lindeberg 2023b, 2024) for
formulations of more explicit hypotheses regarding possible
affine covariance and Galilean covariance for the receptive
fields in biological vision.

9 Using 2-D image deformation parameters from the
matching of receptive field responses for obtaining
direct cues to the 3-D structure of the environment

With respect to the inference of cues to the 3-D structure of
the world, it should furthermore be noted that:

– knowledge about the affine transformation A(k), in the
locally linearized perspective projection model (258), pro-
vides direct cues to the local surface orientation of the
surface patch, according to the theoretical analysis in
(Gårding and Lindeberg 1996 Section 5.2),

– provided that the affine transformation A(k) in the lo-
cally linearized perspective projection model (258) is
normalized such that it constitutes a pure orthographic
projection, then knowledge about the spatial scaling fac-
tor S(k)

x provides direct cues to the depth Z(k) = 1/S
(k)
x ,

– knowledge about the affine transformation matrix B̃(k),
in the locally linearized projective transformation (260)
between pairwise views, provides direct cues to the local
surface orientation, according to the theoretical analysis
in (Gårding and Lindeberg 1996 Section 6.1).

In these ways, the parameters of the joint spatio-temporal
transformation models are therefore directly related to the
3-D structure of the scene, provided that appropriate match-
ing of the positions in image space for the receptive field
responses can be obtained, to compute the image deforma-
tion parameters.

Of particular importance in this context is to really adapt
the shapes of the receptive fields according to the covari-
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ance property of the actual image deformation. In (Linde-
berg and Gårding 1997) it was specifically shown that such
shape-adaptation of the receptive fields can improve the ac-
curacy of surface orientation estimates by typically an order
of magnitude, compared to not adapting the shapes of the re-
ceptive fields to the actual image deformation (see Tables 1–
4 in Lindeberg and Gårding 1997).

For more extensive treatments of the topic of deriving
cues to 3-D scene structure by combination of information
from multiple views, see the monographs by Hartley and
Zisserman (2004) and Faugeras (1993) and the references
therein.

10 Summary and conclusions

We have presented an in-depth depth theoretical analysis of
covariance properties of the spatio-temporal receptive fields
according to the generalized Gaussian model for spatio-temporal
receptive fields, which extends the previous work on this
topic to both joint compositions of multiple types of geo-
metric image transformation, as well as to the basic types
of spatio-temporal differentiation operators that occur in the
models of the spatio-temporal receptive fields.

After first in Section 2 giving an overview of the spatial-
temporal receptive model, that we base this work on, as well
as its biological relevance, we have in Section 3 described
a general theoretical foundation for obtaining provable co-
variance properties for spatial and temporal scale deriva-
tives at multiple spatial and temporal scales, by formulat-
ing scale-normalized spatial or temporal derivative operators
over lower-dimensional spatial or temporal domains.

Specifically, we have in Sections 3.3–3.7 formulated a
set of new notions of affine scale-normalized directional deriva-
tive operators as well as scale-normalized affine gradient op-
erators, to be applied to affine Gaussian scale-space repre-
sentations, obtained by convolution with anisotropic affine
Gaussian kernels, and shown that these concepts leads to
provable covariance properties, for the notion affine scale-
normalized directional derivatives with respect to two im-
portant subgroups of the group of general spatial affine trans-
formations, while for the notions of scale-normalized affine
gradients and for the notion of the scale-normalized affine
Hessian matrix, the covariance properties hold over the full
group of non-singular spatial affine transformations.

Then, we have in Section 4 described extensions of such
transformation properties and covariance properties to higher-
dimensional joint spatio-temporal receptive field models, for
the four classes of single image transformations, in terms of
either (i) a pure spatial scaling transformation, (ii) a pure
spatial affine transformation, (iii) a pure temporal scaling
transformation, or (iv) a pure Galilean transformation.

To handle more general geometric configurations, where
variabilities due to different types of image transformations

may occur together, we have then in Section 5 derived a joint
covariance property for the composition of a spatial scaling
transformation, a spatial affine transformation, a Galilean
transformation and a temporal scaling transformation, with
explicit expressions for how the receptive field parameters
should be transformed under the composed image transfor-
mation, to make it possible to perfectly match the receptive
field responses under convolutions with spatio-temporal re-
ceptive fields according to the generalized Gaussian deriva-
tive model. This analysis has been performed with regard to
both the underlying joint spatio-temporal smoothing trans-
formation and with regard to the spatial and the temporal
derivative operators that are applied to the output of the pure
smoothing transformation, to produce the receptive field re-
sponses for different combinations of spatio-temporal deriva-
tive operators.

To interpret the class of studied joint covariance prop-
erties geometrically, we have then in Section 6 performed
a geometric analysis of locally linearized projections from
the 3+1-D spatio-temporal world to 2+1-D spatio-temporal
image domains, to interpret the studied class of composed
spatio-temporal image transformations as locally linearized
scaled orthographic projections of a local surface patch, from
the tangent plane of the surface at the fixation point to the
image planes for different viewers, and also complemented
with Galilean motions to represent the possibly a priori un-
known relative motions between the observed object and the
observers, as well as complemented with temporal scaling
transformations, to represent spatio-temporal motion patterns
and events that may occur either faster or slower relative to
previous observations of similarly looking motion patterns
or spatio-temporal events.

In this context, we have also shown how a slight re-
formulation of that model can be used for modelling the
locally linearized projective transformations between pair-
wise views of the same surface patch, including an explicit
derivation of how the corresponding algebra of locally lin-
earized spatio-temporal transformations will then be closed
between different reference views, with accompanying ex-
plicit transformation properties for the parameters of those
locally linearlized projection models, when the reference view
is changed between different visual observations.

For the modified composed spatio-temporal transforma-
tion model between pairwise views of the same local surface
patch, we have also in Section 7 presented explicit expres-
sions for the corresponding joint spatio-temporal covariance
properties, regarding both the underlying spatio-temporal smooth-
ing transformation as well as its associated spatio-temporal
derivative operators that form the receptive fields.

With regard to biological interpretations of these results,
we have then in Section 8 described how the degrees of free-
dom spanned by the free parameters in the spatio-temporal
receptive field model span the same degrees of freedom as
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spanned by the free parameters in the locally linearized scaled
orthographic projection model complemented by a local Gali-
lean motion and a temporal scaling transformation to ac-
count motion patterns spatio-temporal events that may occur
either faster or slower relative to a previous observation of a
similarly looking motion pattern or event. In view of previ-
ously obtained biological modelling results, that the recep-
tive fields of simple cells in the primary visual cortex can
be qualitatively rather well modelled by idealized receptive
fields according to the theoretical model of visual receptive
fields used in this treatment, we have in this way obtained
complementary support for a previously formulated work-
ing hypothesis that the shapes of the receptive fields found
in the primary visual cortex may be regarded as very well
adapted to the structure of the environment.

Finally, we have in Section 9 described how direct cues
to the structure of 3-D scenes can be obtained from the pa-
rameters in the locally linearized perspective or projective
image formation models according to (258) and (260).

While previous work with the generalized Gaussian deriva-
tive model for spatio-temporal receptive fields have primar-
ily focused on using either the non-causal 1-D Gaussian ker-
nel or the time-causal limit kernel for temporal smoothing
in the spatio-temporal smoothing process, the derivations in
this paper have been made under a weaker assumption of
only requiring temporal scale covariance (according to (3))
for the temporal smoothing kernels. Thus, the results pre-
sented in this article do immediately generalize to the use
of other temporal smoothing kernels, provided that they are
covariant under temporal scaling transformations.

The theoretical results derived in this treatment are in-
tended as a theoretical foundation for computer vision mod-
ules that make use of populations of spatio-temporal recep-
tive field responses as the first processing layers in the visual
hierarchy, as well as for formulating models of biological vi-
sion and interpreting the functional properties of biological
vision from a computational viewpoint as well as with re-
gard to constraint from the environment that may strongly
influence the formation of the receptive fields from a com-
bination of learning and evolution mechanisms over time.
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A Lack of full affine-covariant properties for the affine
scale-normalized directional derivative operators

In Section 3.4, we reduced the expressions for the affine scale-normalized
directional derivative operators over the original domain and the trans-

formed domain to

∂mφ,norm = sm/2 (eTφ Σ eφ)
m/2 ∂mφ , (313)

∂mφ′,norm = sm/2

(
eTφ A

TAΣATAeφ

(eTφ A
TAeφ)2

)m/2
∂mφ . (314)

From these expressions, we can therefore see that a both necessary and
sufficient condition, for these affine scale-normalized derivatives to be
fully affine covariant, such that

∂mφ′,normL
′(x′; s′, Σ′) = ∂mφ,normL(x; s,Σ). (315)

would hold for all matching image points x′ = Ax according to (34),
for all matching parameters of the receptive fields s′Σ′ = sAΣ AT

according to (35), for all matching unit vectors eφ′ = eφ/∥Aeφ∥ as
well as for all orders m of spatial differentiation, would be that the
relationship

eTφ A
TAΣATAeφ

(eTφ A
TAeφ)2

= eTφ Σ eφ (316)

would hold for all 2× 2 affine transformation matrices A, for all 2× 2
symmetric positive definite matrices Σ, as well as for all 2-D unit vec-
tors eφ. In the following, we will explicitly show that such a relation-
ship does not, however, hold generally, although that we have in Sec-
tion 3.4 previously shown that such a relationship holds for two, for
our purposes very important, subgroups of the full affine group.

Since both the matrices Σ and ATA are symmetric and positive
definite, let us start by replacing these matrices with their eigenvalue
decompositions

Σ = UΛUT , (317)

ATA = V D V T , (318)

where U and V are real unitary matrices, and Λ and D are diagonal
matrices with positive elements. Then, the question of whether the re-
lation (316) holds for all affine transformation matrices A, all affine
covariance matricesΣ and all unit vectors eφ, or not, can reformulated
as investigating whether

eTφ V D V TUΛUTV D V T eφ

(eTφ V D V T eφ)2
= eTφ UΛU

T eφ (319)

would hold for all unitary matrices U and V , all diagonal matrices Λ
and D and all unit vectors eφ, or not. By, in turn, setting

V T eφ = eψ , (320)

UTV =W, (321)

which gives

eφ = V −T eψ , (322)

U = V −TWT , (323)

this expression can after a few simplifications be reformulated into in-
vestigating whether the expression

eTψ DWTΛW D eψ

(eTψ D eψ)2
= eψT W

TΛW eψ (324)

would hold for all unitary vectors W , all diagonal matrices Λ and D
and all unit vectors eψ , or not. By further setting

C =WTΛW, (325)

whereC then will become an arbitrary symmetric positive semi-definite
matrix, we thus have that the necessary and sufficient relationship for
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affine covariance (316) can then be reformulated as whether the rela-
tionship

eTψ DCD eψ = (eTψ C eψ) (e
T
ψ D eψ)

2 (326)

would hold for all symmetric and positive semi-definite matrices C, all
diagonal matrices D and all unit vectors eψ .

By further parameterizing these entities as

C =

(
c11 c12
c12 c22

)
, (327)

D =

(
d1 0
0 d2

)
, (328)

eψ =

(
cosψ
sinψ

)
, (329)

and then expanding (326) with respect to this parameterization, we can
thus reduce the problem of investigating whether the necessary and
sufficient condition for affine covariance (316) would hold, to investi-
gating whether the following equation would hold for all combinations
of cij , dk and ψ:

c11 cos2 ψ
(
d21
(
1− cos4 ψ

)
−2 d1 d2 sin2 ψ cos2 ψ

−d22 sin4 ψ
)

+c12 cosψ sinψ
(
−2 d21 cos4 ψ

+d1d2
(
2− 4 sin2 ψ cos2 ψ

)
−2 d22 sin4 ψ

)
+c22 sin2 ψ

(
−d21 cos4 ψ

−2 d1 d2 sin2 ψ cos2 ψ

+d22
(
1− sin4 ψ

))
= 0 (330)

Disregarding the singular cases when either cosψ = 0 or sinψ = 0, if
this expression is to hold for all combinations of the parameters cij , dk
and ψ, then this specifically implies that the coefficients for each one
of the matrix elements cij must be zero, implying that the following
relations must hold for all combinations of dk and ψ:

d21
(
1− cos4 ψ

)
− 2 d1 d2 sin2 ψ cos2 ψ − d22 sin4 ψ = 0, (331)

−2 d21 cos4 ψ + d1d2
(
2− 4 sin2 ψ cos2 ψ

)
− 2 d22 sin4 ψ = 0,

(332)

−d21 cos4 ψ − 2 d1 d2 sin2 ψ cos2 ψ + d22
(
1− sin4 ψ

)
= 0. (333)

Subtracting Equation (333) from Equation (331), then leads to the fol-
lowing necessary condition for the affine scale-normalized directional
derivatives (313) and (314) to be equal:

d21 − d22 = 0. (334)

Combined with previous restriction that the elements dk of the diag-
onal matrix D = diag(d1, d2) are to be non-negative, we thus have
that the requirement, for the affine scale-normalized directional deriva-
tive operators according to (313) and (314) to be equal, implies that
the affine covariance matrix Σ = UΛUT according to (317) must be
an isotropic matrix, and that the matrix ATA = V D V T formed from
the affine transformation matrix A according to (318) must also be an
isotropic matrix, thus, in turn, implying that the affine transformation
matrix A must be in the similarity group, corresponding to A = S R,
where S is a uniform spatial scaling factor and R is a rotation matrix.

In this way, we have formally shown that the affine scale-normalized
directional derivative operators according to (313) and (314) do not al-
low for covariance properties under general affine transformations.
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