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Abstract—The widespread adoption of the fifth generation
(5G) of cellular networks has brought new opportunities for
the development of localization-based services. High-accuracy
positioning use cases and functionalities defined by the standards
are drawing the interest of vertical industries. In the transition
towards the deployment, this paper aims to provide an in-depth
tutorial on 5G positioning, summarizing the evolutionary path
that led to the standardization of cellular-based positioning,
describing the localization elements in current and forthcoming
releases of the Third Generation Partnership Project (3GPP)
standard, and the major research trends. By providing funda-
mental notions on wireless localization, comprehensive definitions
of measurements and architectures, examples of algorithms, and
details on simulation approaches, this paper is intended to
represent an exhaustive guide for researchers and practitioners.
Our approach aims to merge practical aspects of enabled use
cases and related requirements with theoretical methodologies
and fundamental bounds, allowing to understand the trade-off
between system complexity and achievable, i.e., tangible, benefits
of 5G positioning services. We analyze the performance of 3GPP
Rel-16 positioning by standard-compliant simulations in realistic
outdoor and indoor propagation environments, investigating the
impact of the system configuration and the limitations to be
resolved for delivering accurate positioning solutions.

Index Terms—3GPP, 5G mobile communication, cellular local-
ization, location awareness, positioning

I. introduction
The recent enhancement of the fifth generation (5G)

of cellular communications unveiled an era of unprece-
dented connectivity, embracing altogether the enhanced mobile
broadband (eMBB), ultra-reliable low-latency communications
(URLLC) and massive machine-type communication (mMTC)
scenarios [1].

In this new era of connectivity, 5G has not only accelerated
data transmission to unprecedented speeds [2], it has also
catalyzed innovation across various sectors [3], promising
groundbreaking possibilities and redefining the way we in-
teract with technology and the world around us [4]. A main
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application area that is benefiting from the adoption of the
5G technology is the Internet of things (IoT) [5], [6], where
the high density of connected devices calls for the design
of enhanced radio access methodologies for mutual coordi-
nation [7]. In the IoT, 5G connectivity enables real-time data
analytics [8], representing a game changer for industries [9]
and redesigning the business models of vendors [10]. Visions
on the IoT ecosystem expect a growing impact from beyond 5G
(B5G) communication technologies [11], [12]. The empowered
5G connectivity will bring major enhancements in mobility,
including road vehicles [13], trains [14], and drones [15],
with 5G vehicle-to-everything (V2X) communications [16]–
[18] are fostering the rollout of enhanced automotive services
demanding for high-speed data transfer. Major impact is also
expected in healthcare services [19], [20] and large-scale
network automation [21]–[23].

Within such an evolution for the telecommunication market,
5G positioning stands out as a key fundamental enabler
that promises to unlock and revolutionize location-based ser-
vices [24], [25]. Positioning has been a desired feature of cel-
lular communications since the second generation (2G) [26];
however, with the deployment of 5G networks, it has under-
gone a paradigm shift, leveraging the unique capabilities of this
new wireless technology in providing unprecedented location
accuracy [27], [28], navigation augmentation capabilities and
competitiveness against other technologies [29].

The popularity of positioning is remarked by the significant
efforts in technological research frontiers about millimeter
wave (mmWave) [30]–[32], teraHertz (THz) [33]–[36] and
wireless optical networks [37], [38] that allow improving
positioning services by exploring larger signal bandwidths.
Improvements in positioning are also being investigated by
developing new technologies that allow to control of the in-
teraction of the radio signal with the propagation environment
by reconfigurable intelligent surfaces (RISs) [39]–[41].

The ongoing research works encompass the integration of
pervasive artificial intelligence (AI) [42]–[44], the implemen-
tation of all-spectrum reconfigurable front-end technologies
facilitating dynamic spectrum access [45]–[47], the exploration
of quantum communications [48], [49], as well as blockchain
mechanisms [50]–[53], and energy-efficient communication
methodologies [54]–[56], such as ambient back-scattering
communications [57], [58]. These emerging paradigms signify
a notable transformation in the landscape of communication
technologies, offering the potential for enhanced efficiency,
security, and sustainability [59].

Furthermore, this research path is underpinned by a shift-
ing architectural framework, wherein the transition towards
a three-dimensional (3D) network architecture becomes in-
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creasingly prominent [60]–[62], presenting novel possibilities
for extending network coverage, improving connectivity, and
addressing the evolving demands of precise and ubiquitous
positioning [63] for autonomous driving vehicles [64]–[68]
or unmanned aerial vehicless (UAVs) [69]–[73], in contexts
such as augmented and virtual reality (VR) [74]–[78], industry
4.0 [79]–[81] and robotics [82], [83]. In the following, we
delve deeper into this topic, providing an overview of the main
ongoing research on 5G positioning, including standardization
and experimental activities.

A. Related work on 5G positioning

A first investigation of the potentials of 5G positioning is
in [84], where the authors highlight how mmWave and massive
multiple-input multiple-output (MIMO) technologies represent
key enablers for localization. They discuss general concepts
of location-aware communications and use path-loss models
to motivate the need for beamforming to counteract the high
propagation losses at mmWave. The performed simulations,
using angle of departure (AOD), angle of arrival (AOA),
and time of arrival (TOA) measurements extracted from large
bandwidth (600 MHz) signals at mmWave (60 GHz), prove an
achievable cm-level positioning accuracy.

More recent studies addressed the topic of 5G positioning
focusing on cellular positioning architectures, algorithms and
envisioned applications [85]–[106]. The work in [85] provides
a concise and thorough analysis of how cellular systems
have changed from the first generation (1G) to the fourth
generation (4G), also offering a basic introduction to the
architecture and security protocols employed in each gener-
ation. A more detailed review of the architecture evolution
and the positioning technologies is in [86]. Key enablers are
discussed in [87], where the authors give an overview of 5G
massive MIMO localization, with a main focus on mmWave
frequencies. They discuss channel modeling and algorithms
for localization, also outlining possible research directions.
A comprehensive explanation of the 5G positioning signals
and methodologies, with some insights into the architectures,
is provided in [88]. Non-standardized, e.g., machine learning
(ML)-based algorithms, are discussed in [89] and compared
(from a theoretical perspective) with conventional (i.e., non
ML-based) algorithms. Given the lack of a unified platform to
support the research on 5G localization algorithms, authors
in [90] introduce a link-level simulator for channel state
information (CSI)-based localization in 5G networks, which
can realistically depict physical behaviors of the system.

Moving to application-oriented works, the main interest is
in the potential of 5G positioning, especially in terms of
accuracy and latency in vehicular networks. Therein, the 5G
hardware can act as an additional sensor of the vehicular
onboard sensor suite, providing communication, positioning,
and sensing functionalities [91]. In the vehicular context, 5G
mmWave positioning was shown to provide high-accuracy
localization, thanks to the large bandwidth [92], [93], provided
that the communication beams are correctly steered. This
can be achieved with the assistance of onboard navigation
sensors [94], [95]. The 5G technology has also been used to

complement global navigation satellite system (GNSS) [96],
[97] in outdoor positioning and navigation.

Another main context for research is indoor positioning,
whose evolution and applications are studied in [98] and
further investigated in the fields of IoT and device-free local-
ization [99]–[101] where deep shadowing and dense multipath
represent severe impairments for positioning. Authors in [102],
[103] have proposed techniques to efficiently remove outliers
for 5G indoor positioning in smart factories. Multipath is being
exploited as a friend instead of a foe [104] by gaining insightful
information for positioning from wall reflections. Third gener-
ation partnership project (3GPP) standard-compliant simula-
tions are carried out in [105], [106], where the positioning
capabilities of 3GPP Rel-16 have been investigated in the
urban micro (UMi), urban macro (UMa), and indoor open
office (IOO) scenarios, considering multi-cell round-trip time
(RTT), downlink (DL)-time difference of arrival (TDOA), and
uplink (UL)-AOA positioning.

Concerning experimental validation, at present, most of
the experiments have been performed using software-defined
receiver (SDR) with long term evolution (LTE) [107] or
5G [108], [109]. SDRs have been used for positioning pur-
poses by extracting CSI [110], [111] or channel impulse
response (CIR) parameters [112], [113], resulting into time-
domain techniques. SDR hardware such as universal software
radio peripheral (USRP) can also be used for phase tracking,
reaching a sub-meter positioning accuracy in indoor environ-
ments [114].

A main topic of research is positioning augmentation in
harsh environments with low base stations (BSs) visibility and
multipath exploitation. Authors in [115] combine AOD with
multi-RTT to cope with a limiting number of visible BSs, still
neglecting reflections and scattering due to the absence of ray
tracing (RT) simulations. In an urban environment, authors
in [116] exploit the difference of received signal strength
(DRSS) to avoid dealing with synchronization issues. Further
studies on 5G positioning in harsh environments can be found
in [117]–[121]. The work in [117] provides a theoretical
analysis of the position and orientation accuracy achieved by
harnessing non line of sight (NLOS) components. In [118], the
concept of blockage intelligence is introduced, showing that a
probabilistic description of the propagation environment (es-
pecially indoors, such as factories) can be profitably embedded
into positioning algorithms. Authors of [120] demonstrate that
joint synchronization, positioning, and mapping is possible
even when the line of sight (LOS) path is blocked, and the
reflecting surfaces are only characterized by diffuse scattering.
Lastly, in [121], the feasibility to localize a user equipment
(UE) with one BS under NLOS conditions is shown exploiting
the reflections from a RIS in near-field propagation regime.

Most of the other existing surveys and tutorials currently
available in the literature are not fully focused on 5G po-
sitioning; still, they cover a variety of related topics. The
tutorial in [122] focuses on beam management procedures for
mmWave cellular networks. Mobile traffic and its characteri-
zation according to the application are discussed in [123]. The
visions on B5G drivers, use cases, requirements, key perfor-
mance indicators (KPIs), architectures, enabling technologies,
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TABLE I
Comparison of existing surveys and tutorials on cellular positioning.

Ref. Year Cellular Evolution Use Cases Positioning Positioning Simulations
1G → 4G 5G B5G Architecture Method Analytic Ray Tracing Outdoor Indoor

[1] 2017 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
[26] 2017 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗
[84] 2017 ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗
[98] 2017 ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
[86] 2017 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗
[122] 2018 ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗
[29] 2018 ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗
[87] 2019 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
[123] 2020 ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗
[124] 2021 ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
[16] 2021 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
[89] 2022 ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
[100] 2022 ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗
[125] 2022 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
[126] 2022 ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
[127] 2022 ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

This Work 2024 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

Symbol ✓ indicates that the work fully covers the topic, while ✓ indicates a partial coverage of the topic. Symbol ✗ specifies the topic is not addressed.

and algorithms given in [124], [125], [128] attempt to shape
the forthcoming revolution brought by sixth generation (6G)
technology. Specifically, authors in [124] provide a general
view by explaining the motivation for the advent of 6G; the
work in [125] is dedicated to the application of IoT in the
contexts of cellular, wide-area, and non-terrestrial networks
(NTNs); while [128] is focused on deep neural network
(DNN) application for cell-free massive MIMO. Looking
towards 6G, tutorials on mmWave and THz communication
and localization have been proposed [126], [127]; the former
work is focused on mathematical modeling, while the latter is
shaped with an application-oriented perspective and compares
mmWave and THz technologies on the achievable localization
performances.

Previous works highlight the necessity for a comprehensive
guideline on 5G positioning, guiding the reader from the fun-
damentals of positioning to the latest literature enhancements,
complemented by a side vision of the evolution of the stan-
dards and applications. We acknowledge a gap in developing
realistic environment-dependent simulations through RT tools,
which are essential for accurately accounting for the presence
of obstacles impacting the UE-BS visibility. Most of the prior
art is typically focused on a single scenario; thus, the find-
ings have poor generalization. Here, we exhaustively analyze
several combinations of environments, mobility conditions,
visibility, and 5G signal configurations, offering a thorough set
of outcomes and conclusions encompassing a complete vision
of the potential of 5G positioning.

A comparison of this work with respect to existing sur-
veys and tutorials available in the literature is summarized
in Table I, where we highlight the contents of each refer-
ence in terms of the cellular technology addressed, use case
descriptions and requirements, discussion of the positioning
architecture and methods, and types of simulation analyses.

B. Contribution
By proceeding over the survey in [26], which provides

an historical overview of cellular positioning from 1G to
3GPP Rel-15, this tutorial paper aims to provide the reader a
comprehensive and accessible reference guideline to the con-
voluted world of 5G positioning, by offering a short summary
of historical developments, contextualization of the current
state of research, and an outlook over future developments.
It is designed to cater to a diverse audience, ranging from
researchers and engineers seeking an in-depth understanding
of the subject to practitioners looking for practical insights
into harnessing 5G positioning for real-world applications.
With this approach, we characterize the maturity level of
the technology and analyze the enabled use cases. We also
discuss the main industrial and technological trends, as well
as research advances inherited by previous generations of
cellular networks. By providing an overview of standardization
activities and highlighting fundamental research, we define
potential directions of forthcoming B5G systems and their
associated breakthrough applications. We also review ex-
perimental positioning activities by analyzing state-of-the-art
solutions and algorithms. At the same time, this work presents
a thorough assessment of 5G positioning capabilities under
different system configurations that are useful to understand
the achievable performance by varying the settings.

The main contributions are the following:
• We provide an overview of the evolution of cellular

positioning, from the first development until the current 5G
version, with an overlook over the forthcoming releases, an-
alyzing the enhancements introduced over the generations
and the current innovation trends;

• We provide a detailed description of the standardized 5G
positioning signals as foreseen by the 3GPP standard,
specifying their configuration parameters and usability.
This involves an exploration of the specific features of these
signals and their role in enabling accurate and efficient
positioning;
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Fig. 1. Mind map visualizing the contents of this manuscript and the associated sections.

• We conduct a thorough examination of 5G positioning ar-
chitectures and methods by discussing the various solutions
that can be employed to achieve precise positioning;

• We carry out extensive 5G positioning simulations in out-
door and indoor scenarios that are relevant for challenging
use cases such as automotive or industrial automation. We
consider both static and mobile UE positioning, analyzing
different system parameters and configurations such as
numerology, positioning methodology, and antenna array
configuration;

• We discuss the current limitations of 5G positioning
by providing the reader an easy understanding of the
main challenges that research and industry are addressing
for releasing cellular-based location services. Lastly, we
delineate potential avenues for future research in cellular
positioning.

C. Tutorial organization

As highlighted in the mind map in Fig. 1, this tutorial is
organized as follows: Section II starts by motivating why 5G
positioning is useful in exemplary use cases taken from indus-
trial and automotive domains, and then presents the evolution
of cellular positioning from a historical perspective from 1G
to the latest releases, diving into the future of B5G trends.
In Section III, we first review the fundamentals of wireless
localization, describing the different classes of positioning
measurements and positioning/tracking algorithms. Section IV
is devoted to the description of the 5G positioning architecture,
the associated reference signals, as well as the 5G positioning
methods. Section V focuses on simulation analyses, with a
description of performance metrics, the simulation environment,
and parameters, and achieved results for a number of different
system configurations. Section VI delineates current limitations
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impairing cellular positioning. Concluding remarks and future
directions are discussed in Section VII.

D. Notation
Vectors are denoted by boldface lower-case letters (e.g.,

𝒂) and matrices by boldface upper-case letters (e.g., 𝑨). The
number of elements of an array, i.e., the cardinality, is indicated
by |𝒂 |, while ∥𝒂∥ denotes the l2-norm of 𝒂. The transpose
of a matrix 𝑨 is written as 𝑨T, its Hermitian as 𝑨H, while
𝑨−1 denotes the inverse operation. The notation diag(𝒂) is
used to denote a diagonal matrix with vector 𝒂 as its main
diagonal, tr(𝑨) is the trace of matrix 𝑨. [𝑨]𝑖, 𝑗 indicates the
𝑖-th row and 𝑗-th column of the matrix 𝑨, and [𝑨]𝑖1:𝑖2 , 𝑗1: 𝑗2
indicates the selection of the matrix rows between indices 𝑖1
and 𝑖2 and matrix columns between indices 𝑗1 and 𝑗2. Cov(·)
denotes the covariance and E[·] the expected value. When
vector 𝒂 follows a Gaussian distribution, it is referred to as
𝒂 ∼ N (E[𝒂],Cov(𝒂)). R and C indicate the sets of real and
complex numbers, respectively.

II. 5G positioning: history, present, and future
In this section, we provide an overview of cellular positioning,

starting from the targeted use cases to the technological
evolution put in place to satisfy the performance requirements
of such use cases, with a closer look at the latest 5G releases
and future trends. Section II-A investigates the positioning use
case requirements; Section II-B summarizes the evolution of
the technology from the early days of analog cellular networks
to the modern era of 5G positioning; Section II-C discusses
the specific features of 5G positioning, from the first release of
5G (3GPP Rel-15) up to the forthcoming Rel-19. By the end
of this section, the reader should have a better understanding
of the evolution of cellular positioning and the advancements
conceived in the design of 5G positioning.

A. Cellular positioning use cases
5G positioning targets a wide range of use cases with

highly different performance requirements. Main positioning
KPIs includes accuracy, availability, latency, coverage, energy
consumption, and update rate, which contribute to determining
the feasibility (or not) of a specific service. To this extent, the
document [129] specifies seven service levels to be guaranteed
by 5G positioning systems. Regarding the association between
positioning accuracy and the standard releases, we report that
Rel-16 for commercial use cases aims to guarantee 3 m for
horizontal accuracy [130], while in Rel-17 it is set to 20 cm.
Other safety-critical metrics to be taken into account are
reliability and integrity, which are related to the degradation
of the positioning accuracy and the trustworthiness of the
positioning system [91].

Among the verticals that would benefit from 5G positioning, a
critical one is the automotive sector, where the enhancements on
automated (and autonomous) services call for highly accurate
positioning with ultra-low latency and high reliability [131],
[132]. A description of the envisioned automotive use cases as
prescribed by the 5G automotive association (5GAA) [133],

[134] with associated positioning accuracy is reported in
Table II. These requirements were already envisioned in [92],
where 5G is indicated as the most promising technology able to
meet all of them.

Another major class of use cases refers to indoor positioning,
which has been widely studied and discussed due to the
necessity to guarantee safety for clients and workers such as
in hospital [135]–[137] or workspace [138], [139]. In particular,
we can distinguish between consumer applications and industrial
services. The former can tolerate relatively low positioning
accuracy (3 m) and high latency (1 s), while the latter has
stricter requirements. Specifically, most of the industrial needs
are related to asset tracking [140], where positioning accuracy in
the order of centimeters and latency in the order of milliseconds
is requested [129], [141]. Table III reports some indoor use
cases, specifying horizontal accuracy, maximum UE speed, and
latency.

The reported use cases for V2X and indoor services are
recognized as benchmarks and contain valuable information
for the research and industries. Notice that a critical aspect
of the specification of requirements (especially for safety-
related constraints) is also attributable to the speed of involved
terminals, which affects positioning accuracy, latency, and
integrity. Guaranteeing the same level of positioning accuracy
requirement at higher speeds poses a greater challenge compared
to nearly-static mobility conditions.

B. Evolution of cellular positioning technology from 1G to 4G
Localization functionalities were introduced for the first time

in cellular networks in the mid-1990s due to the specific
requirements issued by enhanced emergency call services in the
United States (US) [26]. Even if localization procedures were not
mentioned in the early cellular standards, localization solutions
had been adopted since 1G to target the UE position, particularly
for vehicles. In the beginning, only methods based on signal
strength were used, although the idea of exploiting a coarse
AOA estimation by directive antennas had been raised [142].

The enhanced 911 (e991) requirements approved by the
Federal Communications Commission (FCC) [143] encouraged
the study for more accurate localization methods in 2G cellular
systems, introduced with the global system for mobile commu-
nications (GSM) standard. In 2G systems, while the primary
focus was on UL-TDOA for localization, the framework also
acknowledged the potential of AOA, fingerprinting, and other
methods. Indeed, further studies demonstrated the feasibility of
AOA estimation with GSM network by using DRSS [144].

With the introduction of the third generation (3G) and the
globalization of cellular communications driven by the 3GPP,
cellular localization methods initiated a standardization process.
The goal of 3GPP was to support emergency services and
foster location-based applications. With the advent of 3G,
the following network-based localization solutions have been
introduced: TOA, TDOA, AOA, cell-ID (CID), fingerprinting,
and hybrid methods [145]. Moreover, 3G was used to augment
global positioning system (GPS) with differential corrections,
providing a navigation message to reduce the time to first
fix (TTFF) and facilitate tracking. This method was already
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TABLE II
5G positioning: C-V2X enhanced services and requirements [133], [134].

Use case Positioning accuracy [cm] Latency [ms] Max UE speed [m/s]

Cooperative lateral parking 20 10 1.38

Automated intersection crossing 15 10 33.3

Cooperative maneuvers of autonomous
vehicles for emergency situations 20 10 69.4

Infrastructure assisted environment
perception 10 100 69.4

Vehicles platooning in steady state 50 50 27.8

Vehicle decision assist 150 50 27.8

Cooperative adaptive cruise control 50 10 60

TABLE III
5G positioning: indoor services and requirements [129], [130], [140].

Use case Positioning accuracy [cm] Latency [ms] Max UE speed [m/s]

Augmented reality in smart factories 100 15 2.8

Mobile control panels with safety functions
within factory danger zones 100 1000 -

Inbound logistics for manufacturing
(goods storage) 20 1000 8.3

Trolley location in factories 50 20 13.9

eHealth: patient tracking 100-300 - 5.6

standardized in 2G under the name of assisted-GPS (A-GPS).
The universal mobile telecommunications system (UMTS), as
the successor of GSM, was one of the candidate technologies
to define an international standard for 3G networks. UMTS
was delineated by 3GPP and its main air interface was called
universal terrestrial radio access (UTRA).

Transitioning from 3G to 4G, the LTE standard marked the
progression from GSM and UMTS, introducing the evolved
UTRA (eUTRA) air interface. E-UTRA is based on orthogonal
frequency-division multiple access (OFDMA) in DL and single-
carrier frequency-division multiple access (SC-FDMA) in UL.
One of the objectives of LTE localization was to act as a
backup to the A-GPS when satellite visibility is not ensured.
Therefore, a positioning reference signal (PRS) was designed
for DL purposes. With Rel-9 in 2009, LTE positioning had
a major breakthrough. Multiple positioning methods were
defined, such as enhanced cell-ID (eCID) and observed TDOA
(OTDOA), adopting the newly designed PRS. Moreover, the
LTE positioning protocol (LPP) was defined in 3GPP technical
specification (TS) 36.355 [146], and assisted-GNSS (A-GNSS)
was included in 3GPP TS 36.305 [147].

From Rel-10, the standardization of LTE advanced (LTE-A)
starts to include the UL-TDOA method based on sounding
reference signals (SRSs) to complement A-GNSS. Further-
more, an improvement of PRSs was proposed to increase
the hearability. The hearability problem arises when a user
needs to communicate with multiple BSs and differentiate the
communication systems from positioning systems. In Rel-13,
a further enhancement has been made with the LTE-A Pro,
mainly addressed for strict indoor environments. Two of the

main improvements referred to OTDOA enhancement (new
PRS patterns and bandwidth extension) and MIMO introduction
(multi-antenna arrays for beamforming). The introduction of
3GPP Rel-14, as well as continuing the LTE evolution, also sets
the starting point for 5G [148].

C. 5G positioning from Rel-15 to Rel-19
Between 2017 and 2018, Rel-15 established the 5G tech-

nology foundation [149], which includes a range of features
and capabilities designed to improve the performance and
functionality of cellular networks. Rel-15, also known as 5G
Phase 1, supports the use of both sub-6 GHz and millimeter-
wave bands for 5G communications and defines the following
main use cases:

• eMBB: designed to support data rates of up to several
gigabits per second and to enable the use of high-bandwidth
applications;

• mMTC: designed to support a large number of connected
devices and to enable low-power, low-cost communication
for these devices;

• URLLC: designed to support latency of less than 1 ms and
reliability of up to 99.999%.

Rel-15 mainly focuses on the first use case, also thanks to the
introduction of network slicing, which allows different parts
of a 5G network to be configured and optimized for specific
use cases, allowing for higher flexibility and supporting a
wider range of services. Moreover, the adoption of mobile
edge computing is able to improve the performance of 5G
networks and reduce latency [150]. Lastly, it includes enhanced
V2X communications, enabling vehicles to communicate with



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. V, NO. N, MONTH YEAR 7

each other and with infrastructure elements, such as road-side
units (RSUs). Since Rel-15 primarily lays the foundations for
the 5G new radio (NR) technology, no further positioning
enhancements have been developed with respect to LTE.

5G Phase 2 starts with Rel-16 at the end of 2018, which is
built on the characteristics of Rel-15 and includes additional
features and enhancements. In particular, it focuses on URLLC
and mMTC use cases and includes support for the 6 GHz
bands [151]. From a positioning point of view, Rel-16 is one
of the most valuable releases. Using older signals as a basis,
Rel-16 defines DL-PRS and UL-SRS signals, i.e., the enhanced
versions of PRS in LTE and SRS of Rel-15, respectively. For this
reason, throughout this tutorial, they will be referred to as PRS
and SRS. These new reference signals improve the positioning
accuracy and lower the communication overhead. In fact, PRSs
have the capability to report TOAs from multiple gNodeBs
(gNBs) simultaneously, and, together, they can be employed
to compute RTT. Furthermore, Rel-16 supports operations in
the frequency range (FR)1 and FR2, covering the ranges of
410 MHz – 7.125 GHz and 24.25 – 52.6 GHz, respectively,
where larger bandwidths are available, thus enhancing the
ranging accuracy.

At the end of 2020, 3GPP published Rel-17 based on the
features proposed in the previous release. Key contributions for
5G positioning are the introduction of the support for 2.5 GHz
and 4.5 GHz bands, the increased gNBs’ coverage, and the
improvements related to edge computing, network slicing, and
V2X communications. Moreover, FR2 is extended up to 71 GHz.
The main positioning improvements include [152]:

• Timing delay correction at transmitter (Tx) and receiver
(Rx) sides: Tx/Rx timing delay is a problem affecting rang-
ing measurements, and it involves the generation, trans-
mission, and reception of PRS and SRS. This error persists
even after the internal calibration of UE and transmission-
reception point (TRP), and the accuracy of timing-related
positioning methods may be significantly affected, as
reported in 3GPP technical report (TR) 38.857 [153].
Rel-17 introduces timing error groups (TEGs) in order to
mitigate this phenomenon [154]. When multiple signals are
sent from the same TRP, they are expected to have a similar
Tx error; therefore, they are associated with the same group.
Instead, signals from different TRPs should have a different
Tx error and may belong to different groups. Therefore,
associating the TEG identifier to the signal could be helpful
for reducing Tx/Rx timing delay error [153], [154].

• UL-AOA and DL-AOD enhancements: UL-AOA enhance-
ments include additional assistance data, such as expected
AOA and its uncertainty through a search window, and
multi-angle reporting. In particular, this last feature permits
to discern the LOS within a group of multipath components
that exhibit similar delay profiles. Rel-17 also introduces
the UL-SRS reference signal received path power (RSRPP),
which indicates the power of the received SRS for a
given path. On the other hand, DL-AOD is based on DL-
PRS reference signal received power (RSRP), which is
the measurement used to select the best AOD. However,
this measurement also takes into account multipath com-
ponents, which are undesirable. Therefore, as for its UL

counterpart, Rel-17 introduces the DL-PRS RSRPP, which
is a measurement associated with the path and not with the
entire channel, as well as the search window for DL-AOD.

• Multipath mitigation: it consists of reporting not only a
single path but also additional paths (up to 8) as a part of
timing estimation.

• LOS/NLOS identification: it is provided using additional
information, such as LOS/NLOS indicators, which could
be a boolean value (i.e., 0 or 1) or a likelihood (between 0
and 1 with a step of 0.1) [155].

Moreover, the concept of position integrity is improved over Rel-
15, and the positioning integrity monitoring, already supported
by GNSS, is included in Rel-17 [153]. The following KPIs are
defined:

• Alert limit (AL): The maximum positioning error allowed
for the specific use case;

• Time-to-alert (TTA): The maximum elapsed time to pro-
vide an alert when the positioning error exceeds the AL;

• Target integrity risk (TIR): The probability that the posi-
tioning error exceeds the AL without warnings within the
TTA.

In June 2021, at the 3GPP radio access network (RAN) Rel-18
Workshop, the concept of 5G Advanced was proposed with the
aim of paving the way for 6G. Rel-18 is expected to bring further
enhancements over the previous releases and introduce more
intelligence into the wireless cellular network, with pervasive AI
solutions spread over different network layers [156]. The main
focus of Rel-18 is to enhance network energy savings, coverage,
mobility support, MIMO evolution, multicast and broadcast
service, and positioning [157]. Related to positioning, it should
accommodate for carrier phase positioning (CPP), a GNSS-
native technology capable of reaching cm-level accuracy [114],
[158] but limited to outdoor applications, adapting the already
standardized signals. At the same time, Rel-18 will support
low-power high-accuracy positioning (LPHAP) requirements
and positioning functionalities for reduced capacity (RedCap)
UEs. Lastly, Rel-18 reports the requirements for sidelink (SL)
positioning and the implementation of ad-hoc SL signals based
on PRS and SRS, called SL-PRS [159]. The freezing date for
Rel-18 is scheduled for 2024.

Then, the timeline of standardization bodies will periodically
foresee new releases, starting with Rel-19 (work activities
opened since mid-2021 [129]) and proceeding over advanced
standards defining the evolution of cellular networks. The
new studies involving Rel-19 address the industrial needs not
considered in the previous releases. Examples include metaverse
services and energy harvesting for IoT-enabled factories. Both
topics are strongly related to positioning: the estimate of user
position and orientation is essential for the representation and
interaction of the avatars [160], and energy-harvesting tags are
a cost-effective way for asset tracking [161]. To better support
the applications of AI/ML, future cellular releases will aim to
decentralize intelligence across devices rather than confining it
solely to the network infrastructure. Therefore, data and models
will be shared directly between devices without traversing the 5G
core network [162]. Therefore, objectives involve researching
potential service and performance requirements necessary to
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facilitate efficient AI/ML operations via direct device connec-
tions. Fig. 2 shows a tentative of the 5G evolution timeline, with
a recap of the main positioning enhancements.

D. Positioning trends beyond 5G
The advent of B5G will represent a significant transformation

for wireless communications. With the potential to revolutionize
location-based services, the forthcoming cellular technology
will ensure unprecedented positioning accuracy and high-speed
connectivity. In this subsection, we briefly discuss the foreseen
innovations related to technological and methodological aspects,
covering topics such as the use of THz bands, RIS, CPP, near-
field communication (NFC), distributed MIMO (D-MIMO),
NTN, UAV, integrated sensing and communications (ISAC),
six-dimensional (6D) positioning and orientation, SL and
cooperative positioning (CP), and lastly AI. These aspects are
summarized in Fig. 3 and described in the following.

1) THz bands: Even though the challenges of 5G are still to
be resolved, research on B5G systems has already started [163].
In particular, the next-generation of cellular networks taps into
the THz spectrum, a frequency band with the availability of
larger bandwidths, enabling higher data rates, lower latency, and
enhanced positioning accuracy [164]. The unique propagation
characteristics of the THz band allow for an improved ability
to determine the precise location of devices and users. This is
thanks to the two-fold effect of (i) larger available bandwidth
at such frequencies, providing improved delay resolution, and
(ii) miniaturization possibilities, allowing packing of more
antennas in a small area, improving angular resolution [127].
However, the use of THz also comes with major challenges,
such as high path loss (limiting the coverage) and sensitivity to
atmospheric conditions [165] that call for enhanced precoding
strategies [166] to avoid loss of connection.

2) RIS: B5G systems are expected to standardize and
introduce in the market the concept of RIS [167] (also referred to
as reconfigurable intelligent meta-surface (RIM) [168], [169]),
which leverages the deployment of programmable surfaces
with electromagnetic properties that can be controlled by soft-
ware [170]. These surfaces can manipulate the wireless signal
environment [171], facilitating better signal quality and enabling
precise positioning also when LOS path is not guaranteed [172].
The adoption of RIS will improve UE positioning as it will
behave as a multipath controller [41], which may provide both
new location references and new measurements (e.g., angles,
delays). Every single antenna of the surface can be treated as
a local emitter, which makes the BS-UE link more robust even
in poor propagation conditions [173], [174]. Another evolution
of smart surfaces is the transparent intelligent surface (TIS),
which can support both outdoor and indoor positioning by
adopting semi-transparent antennas [175]. The installation of
RIS can also be constrained by the physical properties of the
objects: conformal metasurfaces can aid the installation over
curved surfaces, such as over vehicles [176]. The research
on RIS suggests an ever-increasing interest in controlling
electromagnetic waves, allowing to shape the environment
according to the desired purposes. As a result, full control and
exploitation of the wireless link enables holographic localization

(HL), where RISs or large intelligent surfaces (LISs) [177],
[178] together with NFC provide a great opportunity to move
towards the ultimate capacity limit of the wireless channel [179]
and enhance positioning capabilities [180].

3) CPP: The absolute phase of a signal, which relates to
the distance between a transmitter and receiver, is used in
CPP. In [181], CPP signals have been used for highly accurate
positioning, with the potential for orders-of-magnitude perfor-
mance improvements compared to standard TDOA positioning.
Recent studies have explored CPP in cellular positioning, both
integrated with GNSS and as a stand-alone solution, examining
its application in different frequency ranges, its challenges, and
its potential in various configurations like massive MIMO [182].

4) NTN: An NTN refers to a novel communication infras-
tructure that extends beyond Earth’s surface, encompassing
communication links established through satellites, drones, and
other space-based platforms [183]. These networks have gained
prominence as a potential solution to address connectivity gaps
in remote and underserved regions, offering improved global
coverage and high-speed data transmission [184]. The NTN
technology leverages advancements in satellite technology,
inter-satellite links, and emerging concepts like constellations of
low Earth orbit satellites to create a seamless and interconnected
network that can support various applications, from broadband
internet access to IoT connectivity and emergency communica-
tion services [125]. From the positioning perspective, NTN has
been investigated in [185], and it was shown to have the potential
to improve positioning accuracy by using the Cramér-Rao bound
(CRB) analysis.

5) UAV: UAV 5G positioning leverages the capabilities of
5G networks to enhance the accuracy and reliability of UAV
navigation and location tracking. By utilizing the high data rates,
the low latency, and the extensive coverage of 5G networks, a
joint design of passive beamforming, blocklength, and UAV
positioning has been developed in [186], which has excellent
positioning precision. This technology enables UAVs to perform
tasks that demand cm-level accuracy, such as aerial mapping,
surveying, and critical infrastructure inspection. UAV was
studied in [187] for autonomous positioning based on supervised
DNN and reinforcement learning approaches. The integration of
5G positioning not only improves the UAV’s ability to maintain
its intended flight path but also enhances the safety and efficiency
of operations, making it a crucial advancement in the realm of
UAV-based applications [188].

6) NFC: The effect of near-field communications should be
taken into account in situations where extremely large antenna
arrays, RISs and/or D-MIMO are adopted [189], [190]. NFC
mainly contains three features: spherical wavefront, spatial
non-stationarity, and beam squint effect. Enhanced positioning
capabilities can be achieved by incorporating these features
and using specialized signal processing methods. For example,
the authors in [191] derived the posterior CRB (PCRB) and
discussed how the loss of positioning information outside the
Fresnel region results from an increase of the ranging error rather
than from inaccuracies of angular estimation. This provides
means to position devices using very limited bandwidth, though
often at a high complexity cost.
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Fig. 2. Timeline of cellular communication reporting the phases of 5G evolution, with associated 3GPP releases and main positioning enhancements.

Fig. 3. Overview of the positioning trends beyond 5G.

7) D-MIMO: D-MIMO is another key technology shaping
B5G positioning. Unlike conventional MIMO, where multi-
ple antennas are placed close together on a single device,
in the D-MIMO paradigm, antennas are placed on separate
phase-coherent devices distributed over a geographical area.
A substantial body of literature on D-MIMO in B5G has
been introduced in the community. For example, a compres-
sive survey of DNN applications in D-MIMO systems has
been presented in [128]. [192] demonstrated the potential
of integrating fiber technologies with D-MIMO for precise
localization. [193] explored D-MIMO systems for joint radar
and communication functionalities, proposing a strategy that
optimizes both sensing and communication. The challenge of
deploying D-MIMO in underwater environments was addressed
in [194]. Surveys in [195]–[198] discussed the scalability,
performance improvements, and future outlook of cell-free
massive MIMO systems, emphasizing their role in enhancing
user experience, network efficiency, and meeting the ambitious
goals of future wireless communications. [199] highlighted the
paradigm shift towards cell-free massive MIMO, underlining
its transformative potential for next-generation networks. Note
that in some literature, such as [200] and [201], multi-array
positioning has been considered, where multiple antenna arrays
(placed in different locations) were used as Tx and/or Rx
for radio positioning. This distributed arrangement of arrays

enhances spatial diversity and provides a better channel matrix,
leading to improved signal quality, enhanced network capacity,
and more accurate positioning [202]. Many methods have been
proposed to achieve this advantage, including graph-based meth-
ods, linear minimum mean square error (MMSE), sequential
MMSE, zero-forcing (ZF), among others [197], [198], [202].
D-MIMO is especially useful in high-density environments,
such as urban settings and large public venues, where accurate
positioning is critical [203]. While D-MIMO is often operated in
phase-coherent mode, at higher frequencies, frequency-coherent
D-MIMO is more practical to implement, leading to separate
channels per antenna [204]. Phase-coherent and frequency-
coherent D-MIMO are both attractive for positioning, though
with different benefits.

8) ISAC: ISAC involves merging sensor networks and com-
munication systems to gather real-time data and facilitate seam-
less information exchange. This integration greatly benefits B5G
positioning by enabling multi-sensor fusion for more accurate
positioning, providing redundancy for reliability, and supporting
adaptive algorithms that respond to changing conditions [205].
ISAC will not only provide new sensing functions (both radar-
like and spectroscopy-like), but integrated sensing enhances
existing positioning and localization techniques, contributing
to highly accurate and resilient positioning solutions in various
scenarios and environments [206]–[209]. The authors in [208]
extended the classic probabilistic data association simultaneous
localization and mapping (SLAM) mechanism to achieve UE
localization, using ISAC systems and showing better perfor-
mance without any prior information. Besides, in [209], a case
study for ISAC using experimental data showcased the potential
of the new enablers that are paving the way toward enhanced
road safety in B5G scenarios. Finally, the ISAC paradigm
also provides enhancements for communication itself, as time-
consuming beam training and handover can be avoided.

9) 6D positioning: The significance of joint 3D position
and 3D orientation estimation, commonly referred to as 6D
localization, cannot be overstated [210]. While 5G mmWave pri-
marily focused on UE position estimation, the demands of B5G
necessitate comprehensive 6D information. This encompasses
both 3D positioning and 3D orientation, often termed pose in
robotics. For instance, cooperative intelligent transport systems
(C-ITS) require vehicle position and heading for advanced
features like driving assistance and platooning. In assisted
living environments, a resident’s pose can offer insights into
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their health. Similarly, UAVs in search-and-rescue missions
rely on precise pose data for effective operations. Typical 6G
applications such as VR, augmented reality, robot interactions,
and digital twins will further underscore the need for 6D
localization [211]. While external systems, like the fusion of
GNSS (for positioning) and internal measurement unit (IMU)
(for orientation), offer solutions, they have limitations like
indoor inefficiencies or error accumulation. A more integrated
approach would harness existing cellular infrastructure for 6D
localization, utilizing multiple BSs for accurate UE orientation
and position estimation.

10) SL and CP: In B5G systems, the development of
direct device-to-device communication is fundamental to lower
latency and guarantee the service even in out-of-coverage con-
ditions (i.e., areas without cellular BSs) [212]. This is facilitated
through SL communications (e.g., vehicle-to-vehicle (V2V)
communications [213]), which allow to bypass the traditional
routing through a BSs and core network [214], enhancing the
reliability of positioning service, reducing latency, and enabling
accurate relative positioning in proximity [215]. Sidelink com-
munications can also benefit from a-priori knowledge of digital
maps or channel information for a more efficient link [216]. The
evolution of 3GPP standards looks towards the development of
a unique technology jointly guaranteeing SL communications
and positioning, like for uplink and downlink, complying
with the convergence of communication, localization, and
sensing in forthcoming 6G networks [217]. These features are
inherently suited for the rise of CP solutions [218]–[222]. In
CP, signal processing techniques operate on either centralized
or distributed network architectures, and typical application
domains include IoT [223]–[227], C-ITS [228]–[234], maritime
surveillance [235], [236], collaborative robotics [237], drones
or UAVs [238]–[240]. These systems critically necessitate
sensing agents perceiving the environment in proximity and
taking informed decisions based on the data received from both
individual sensors and communication links. The collaboration
among distributed agents also enhances situational awareness,
allowing for improved localization resolution of both agents and
potential obstacles or targets [241]–[245].

11) AI: The role of AI is already emerging to a certain
extent for Rel-18, but its pervasive realization will rise only
with the advent of 6G [246]. The first expected AI applications
within next 3GPP releases refer to resource block allocation
and mobility management [247], channel estimation [248],
scheduling policies [249], and beam management [250]. Re-
garding positioning, ML algorithms can be divided into AI/ML-
assisted positioning and direct AI/ML positioning [157]. The
former category includes the methods to improve conven-
tional geometric-based algorithms. Examples are the geometric
measurements estimation and corrections [251]–[253], the
improvement of Bayesian tracking filters [14], CSI prediction
and compression [254]. The latter category focuses on the
design of algorithms that learn the relation between the channel
characteristics (i.e., fingerprint) and the UE position [255],
[256]. By directly addressing the positioning problem with AI,
the focus is given to the generalization capabilities [257] and
the type of input features [258].

Regarding the adopted AI algorithms, a variety of methods are

present in the literature, ranging from conventional ML [253],
[259] to DNN [260], [261], graph neural networks (GNN) [262],
and federated learning (FL) [263]. In [253] and [259], support
vector machine (SVM) and relevance vector machine (RVM)
are employed for NLOS identification and correction with CSI
features, such as time of flight (TOF), energy and kurtosis.
To avoid limiting the performances with hand-crafted features,
DNN methods, such as convolutional neural networks (CNN) or
auto-encoder (AE) [264]–[266], can be used to directly estimate
the position from the full CIR. Examples can be found in both
indoor [267]–[269] and outdoor [260], [270] environments.

III. Fundamental of wireless positioning

In this section, we provide the fundamentals of network
positioning, starting from the model of the wireless channel
(Section III-A) and the location-related measurements that can
be extracted from it for localization purposes (Section III-B).
Then, we discuss techniques allowing the estimation of the UE
position from such measurements, with a focus on snapshot
algorithms (Section III-C) and tracking filters (Section III-D).

A. Wireless channel model
We consider a time-slotted UL wireless MIMO orthogo-

nal frequency division multiplexing (OFDM) communication
system, as the one used in 5G, with 𝑁tx transmit and 𝑁rx
receiving antenna elements. We assume a block-fading time-
invariant channel response, i.e., constant within an OFDM
symbol, with maximum delay contained within the cyclic prefix
𝑇cp. Let the matrix H𝜏 ∈ C𝑁rx×𝑁tx represent the 𝜏-th tap of
the equivalent base-band MIMO channel response, the signal
received at discrete time 𝑡 = 1, 2, . . . , 𝑇 (sampled at symbol
time 𝑇𝑠), denoted as 𝒛𝑡 ∈ C𝑁rx×1, is modeled as:

𝒛𝑡 =

𝑇cp∑︁
𝜏=0

H𝜏 𝒚𝑡−𝜏 + 𝝃𝑡 , (1)

where 𝒚𝑡 ∈ C𝑁tx×1 is the transmitted signal and 𝝃𝑡 ∈ C𝑁rx×1

the background noise. It is common in the literature to assume
the noise as spatially and temporally uncorrelated zero-mean
complex Gaussian. Non-diagonal covariance can be considered
to model the presence of directional interference.

The MIMO channel within the generic OFDM symbol time
can be modeled as a combination of 𝑃 propagation paths as
follows:

H𝜏 =

𝑃∑︁
𝑝=1

𝛼𝑝 𝒂rx (𝜙rx, 𝑝 , 𝜓rx, 𝑝) 𝒂T
tx (𝜙tx, 𝑝 , 𝜓tx, 𝑝) g(𝜏 − 𝜏𝑝), (2)

where each path 𝑝 is characterized by the complex fading ampli-
tude 𝛼𝑝 , the transmitting antenna array response 𝒂tx (·) ∈ C𝑁tx×1

to the azimuth (𝜙tx, 𝑝) and elevation (𝜓tx, 𝑝) AODs, the receiving
antenna array response 𝒂rx (·) ∈ C𝑁rx×1 to the azimuth (𝜙rx, 𝑝)
and the elevation (𝜓rx, 𝑝) AOAs, and the pulse waveform g(·)
delayed by the path delay 𝜏𝑝 , with max𝑝 (𝜏𝑝) ≤ 𝑇cp. We consider
the fading amplitudes 𝛼𝑝 as OFDM-block-fading, while delays
and angles are assumed to be constant over a number of OFDM
symbol transmissions. The characterization of the antenna array
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(a)

(b)

Fig. 4. Beam space representation of a MIMO channel. (a) LOS channel; (b)
NLOS channel. On the left, the spatial representation of normalized received
power versus the azimuth AOAs and AODs. On the right, the power-angle-delay
profile of the received signal. The delay is converted into meters for an easier
interpretation.

responses depends on the antenna configuration geometry and
design method [271].

Fig. 4 shows two examples of MIMO channels, represented
in terms of power-angle (left) and power-angle-delay (right)
profiles for LOS (Fig. 4a) and NLOS (Fig. 4b) propagation
conditions. The communication system considers a 16 × 16
planar antenna array at both the Tx and Rx devices. Fig. 4a
illustrates a scenario where the Tx and the Tx are in LOS,
separated by a distance of 100 m, with azimuth AOA and
AOD of -30 deg and 30 deg, respectively. Fig. 4b) provides
a more complex scenario characterized by the absence of a
direct path between the Tx and the Rx. The figures display
the different multipath components of the channel, facilitating
the identification of the dominant channel paths, their power,
AOA, AOD, and delay. We can observe that the channel carries
relevant information for positioning: in LOS condition, the first
received signal peak corresponds to the direct path, which,
besides carrying power information, allows the estimate of the
angle and distance with respect to the Tx, enabling localization.
In NLOS conditions, instead, gathering position measurements
is more intricate, and the usage of advanced algorithms is
necessary (see Section IV-F1). The following section delves
into the modeling of the positioning measurements extracted
from the received signal (1) exploiting the location-features
embedded in the wireless channel.

B. Location measurements from cellular signals
Let us consider a UE, connected to a number of cellular BSs.

The UE location can be estimated by extracting different types
of measurements from the radio signals (1), either in UL (at
the BS) or in DL (at the UE). Typical measurements include
distance, angle, or power.

The distance can be measured by computing the delay or the
power loss experienced by the signal during the propagation
from the BS and the UE (or viceversa). The delay, referred
to as TOF, is the time difference between the TOA and the
transmission time. The difference between two TOAs, instead,
is the TDOA, while the RTT is a two-way TOA obtained as
detailed later in this section. The power measurement is obtained
by reading the received signal strength (RSS) at the Rx side.

The angle measurement refers to the main direction from
which the signal (1) is received or transmitted, and it is denoted
as AOA or AOD, accordingly. It is obtained by employing
directional or MIMO antenna systems. A typical condition in
cellular networks involves BSs with many antennas and UEs
with only one (or limited, e.g., 2× 2 MIMO) antenna. It follows
that the AOD coincides with the direction of beam pointing, i.e.,
where the BS emits most of its radiation beam pattern.

We denote with 𝒖 = [𝑢𝑥 𝑢𝑦 𝑢𝑧] the unknown 3D UE location,
and with 𝒔𝑖 = [𝑠𝑥,𝑖 𝑠𝑦,𝑖 𝑠𝑧,𝑖] the 3D coordinate of the 𝑖-th BS,
with 𝑖 = 1, ..., 𝑁BS, defined in a convenient spatial reference
system (e.g., a Cartesian, ellipsoidal or geographic coordinate
system). We indicate with 𝜌𝑖 the single measurement generated
or collected by BS 𝑖, defined as:

𝜌𝑖 = ℎ𝑖 (𝒔𝑖 , 𝒖) + 𝑛𝑖 , (3)

where ℎ𝑖 (·) is a known non-linear function that deterministically
relates the measured parameter to the positions of the BS
(𝒔𝑖) and the UE (𝒖); 𝑛𝑖 is an additive term describing the
measurement error. Vector 𝝆𝑖 = 𝒉𝑖 (𝒔𝑖 , 𝒖) + 𝒏𝑖 aggregates all
the measurements (e.g., TOA, AOA, TDOA, RSS) generated by
the (𝒔𝑖 , 𝒖) pair. The overall vector of measurements for all the
𝑁BS BSs is indicated with 𝝆 =

[
𝝆T

1 · · · 𝝆T
𝑁BS

]T
= 𝒉(𝒔, 𝒖) + 𝒏,

where 𝒔 =
[
𝒔T

1 · · · 𝒔T
𝑁BS

]T
and 𝒏 =

[
𝒏T

1 · · · 𝒏T
𝑁BS

]T
collect all the

BS locations and measurement noises, respectively. The overall
number of measurements is 𝑀 = |𝝆 |.

Depending on the available hardware technology, protocol,
or signal, different definitions hold for the model (3) [272].
In the following, we introduce the models used for the cases of
interest in cellular localization systems, whereas the methods for
extracting such measurements are detailed later in Section IV-F,
with specific reference to 5G radio systems. An illustrative
example of UE localization with four BSs is reported in Fig. 5,
where we represent the spatial information carried by the main
types of measurements.

1) TOF measurement: A radio signal can be used to estimate
the distance between a Tx and a Rx, knowing the propagation
speed of the radio wave and measuring the travel time. In order to
obtain the TOA (which identifies a circular set of candidate UE
locations, see Fig. 5a) at the Rx side, a replica of the (known)
transmitted signal is needed to compute the cross-correlation
with the received signal. In ideal LOS additive white Gaussian
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Fig. 5. Multilateration/angulation for 5G positioning measurements. (a) TOF or RTT, (b) DL-TDOA, (c) UL-AOA or DL-AOD.

noise (AWGN) channels, the optimal TOA estimate is obtained
by searching the peak of the cross-correlation output [88].

Assuming a DL measurement (i.e., the signal is sent by the
BS and received by the UE) and indicating with 𝑡rx,𝑖 the TOA at
the UE of a signal transmitted by BS 𝑖 at time 𝑡tx,𝑖 , the measured
TOF is:

𝜏𝑖 = 𝑡rx,𝑖 − 𝑡tx,𝑖 =
𝑑𝑖

𝑐
, (4)

where 𝑑𝑖 is the length of the propagation path traveled by the
signal at speed 𝑐.

The resulting TOF measurement relating the UE and BS 𝑖 is:

𝜌TOF
𝑖 = 𝜏𝑖 + 𝑛TOF

𝑖 . (5)

Note that an analogous disclosure is also applicable in uplink
(i.e., the BS measures the TOA of a signal transmitted by the
UE) and for RTT.

A major problem for TOF-based localization is that a precise
measurement of 𝑡tx,𝑖 must be available at the Rx side, and
the internal clocks of Tx and Rx must be synchronized [273].
Typically, the clock of the UE has a poorer quality compared
to the one of the BS; thus, it can introduce large errors in the
TOF measurement. To bypass the low quality of UE hardware,
TDOA measurements can be used.

2) TDOA measurement: DL-TDOA is the measurement
of the difference between the arrival times of the signals
transmitted simultaneously by two distinct BSs and received
by the UE, i.e., the TDOA is the difference between two TOA
measurements. It results that TDOA measurements draw a
hyperbolic line in space (see Fig. 5b). Unlike TOA measure-
ments, transmitted signals are not requested to carry any time
stamp, and the Rx does not need to be synchronized with the
Txs [88]. On the other hand, the involved BSs need a precise
synchronization. This feature allows overcoming the errors due
to the clock offset at the UE (which typically has lower quality
hardware compared to the BSs). For the computation of TDOA
measurements, a BS has to be selected as a reference (e.g.,
in Fig. 5b the BS on the left is chosen as reference), and
thereby the number of available TDOA measurements reduces
to 𝑁BS − 1. A possible choice for the selection of the reference
BS is to take the BS with the highest signal-to-noise ratio (SNR)

after the cross-correlation, although different selection criteria
exist [274]–[276].

Indicating the reference BS with index 𝑖 = 1, the TDOA for
BS 𝑖 ≠ 1 is computed as:

Δ𝜏𝑖,1 = 𝜏𝑖 − 𝜏1

=
(
𝑡rx,𝑖 − 𝑡rx,1

)
−
(
𝑡tx,𝑖 − 𝑡tx,1

)
=
𝑑𝑖 − 𝑑1
𝑐

, 𝑖 = 2, ..., 𝑁BS, (6)

and the TDOA measurement 𝜌TDOA
𝑖

as:

𝜌TDOA
𝑖 = Δ𝜏𝑖,1 +

(
𝑛TOF
𝑖 − 𝑛TOF

1

)
=
𝑑𝑖 − 𝑑1
𝑐

+ 𝑛TDOA
𝑖 , 𝑖 = 2, ..., 𝑁BS. (7)

For an accurate measurement, the synchronization offset be-
tween the BSs, i.e., 𝑡tx,𝑖 − 𝑡tx,1, has to be negligible or known.

3) RTT measurement: RTT is a ranging technique which
involves both UL and DL measurements. It is also known as
two-way TOA because the TOA measurement is provided by
both the initiating device and the responding device.

The initiating device (either a BS 𝑖 or the UE) transmits a
signal at time 𝑡0, which is received by the responding device (UE
or BS) at time 𝑡1 = 𝑡0 + 𝜏𝑖 . After a time interval 𝜏𝑖,reply due to
internal processing and switch from transmission to reception,
the responding device sends another signal at time 𝑡2, which
arrives at time 𝑡3 = 𝑡2+𝜏𝑖 at the initiating device. The overall RTT
over link 𝑖 is computed at the initiating device as the difference
between its own transmit and receive times as:

RTT𝑖 = 𝑡3 − 𝑡0. (8)

Assuming perfect knowledge of the reply time (computed at
the responding device as 𝜏𝑖,reply = 𝑡2 − 𝑡1 and included in the
payload, or known a priori) the TOF 𝜏𝑖 can be then extracted as:

𝜏𝑖 =
RTT𝑖 − 𝜏𝑖,reply

2
. (9)

The resulting RTT measurement 𝜌RTT
𝑖

can be modeled
similar to (5). Different from TDOA measurements, the RTT
measurement does not require synchronized BSs, as the time
differences involve only the local clock of the devices.
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4) AOA/AOD measurement: The AOA indicates the spatial
direction of the UL signal sent by the UE and received by the BS.
It can be estimated using directional antennas, such as phased ar-
rays, which allow steering the radio signal over confined spatial
directions called beams [277]. Conventional methods estimate
the AOA by performing beamforming over various directions
and selecting the beam with the highest received power. Higher
resolution can be obtained by maximum-likelihood or subspace-
based algorithms (e.g., estimation of signal parameters through
rotational invariance technique (ESPRIT), multiple signal clas-
sification (MUSIC) [277], [278]). The main drawback is the high
hardware-software complexity (and cost) required to get precise
angular information (i.e., small beamwidth or equivalently large
number of antennas), the high sensitivity to multipath, as well
as the increasing location uncertainty with the distance (see
Fig. 5c). On the other hand, synchronization among BSs is not
required, and high-precision localization can be achieved when
large arrays are available.

The AOA is defined as the 3D direction of the LOS link to
the 𝑖-th BS, which includes the azimuth 𝜙𝑖 and the elevation
𝜓𝑖 . This is estimated by the BS in a local reference system
(𝑥′, 𝑦′, 𝑧′) referred to the antenna array (see Fig. 6) and then
converted into the global one for UE positioning. We denote with
(Δ𝜙𝑖 ,Δ𝜒𝑖 ,Δ𝜓𝑖) the orientation of the array, where Δ𝜙𝑖 ,Δ𝜒𝑖 and
Δ𝜓𝑖 are respectively the rotation over the axis 𝑧, 𝑦 and 𝑥 and
known as yaw, pitch and roll. Assuming a null pitch (Δ𝜒𝑖 =

0), the AOA measurement ∠(𝒖′ − 𝒔′
𝑖
) extracted by the antenna

array is rotated through a rotation matrix 𝑹𝑥𝑧 that combines the
rotations around the 𝑥′ and 𝑧′ axes as follows [279]:

𝑹𝑥𝑧 =


cosΔ𝜙𝑖 − sinΔ𝜙𝑖 cosΔ𝜓𝑖 sinΔ𝜙𝑖 cosΔ𝜓𝑖
sinΔ𝜙𝑖 cosΔ𝜙𝑖 cosΔ𝜓𝑖 − cosΔ𝜙𝑖 sinΔ𝜓𝑖

0 sinΔ𝜓𝑖 cosΔ𝜙𝑖

 ,
(10)

and the AOA is obtained as ∠𝑹𝑥𝑧 (𝒖′ − 𝒔′
𝑖
). The resulting

azimuth (𝜙𝑖) and elevation (𝜓𝑖) angles are:

𝜙𝑖 = 𝜙′𝑖 + Δ𝜙𝑖 = tan−1
(
𝑢𝑦 − 𝑠𝑦,𝑖
𝑢𝑥 − 𝑠𝑥,𝑖

)
, (11)

𝜓𝑖 = 𝜓
′
𝑖 + Δ𝜓𝑖 = tan−1

(
𝑠𝑧,𝑖 − 𝑢𝑧
𝑑𝑥𝑦,𝑖

)
, (12)

with 𝑑𝑥𝑦,𝑖 =
√︃(
𝑠𝑥,𝑖 − 𝑢𝑥

)2 +
(
𝑠𝑦,𝑖 − 𝑢𝑦

)2. Note that this is true
only forΔ𝜒𝑖 = 0, otherwise additional algebraic transformations
are requested.

The AOA measurement vector is finally modeled as:

𝝆AOA
𝑖 =

[
𝜙𝑖
𝜓𝑖

]
+ 𝒏AOA

𝑖 , (13)

which includes the measurement error 𝒏AOA
𝑖

.
On the other hand, AOD measurements use DL signals,

which are sent by the BS and received by the UE. Still, the
resulting angle is with respect to the BS array; therefore, the
AOD measurement vector is modeled similarly to the AOA.

5) RSS measurements: Distance information can also be
obtained from power-based measurements, which are easy
to extract, both in DL and UL. According to the path-loss
model [280]–[283], the average power received over link 𝑖

𝑦′′

𝑧′′

𝑥′′

𝑑𝑖

𝑑𝑧,𝑖

𝑑𝑥,𝑖

𝑑𝑦,𝑖

𝑑𝑥𝑦,𝑖

𝜓𝑖

𝜙𝑖

BS𝑖
𝒔𝑖

UE𝒖

𝑢′𝑦

𝑢′𝑥

𝑧′′

𝑦′′

𝑥′′

𝑧′

𝑦′

𝑥′

Δ𝜓𝑖

Δ𝜙𝑖

𝑧

𝑦

𝑥

Fig. 6. UE and BS LOS geometry in a 3D Cartesian coordinate system with a
focus on the BS array orientation.

(expressed in logarithmic scale) can be related to the distance
as:

𝑃rx,𝑖 = 𝑃0 − 10 𝛽 log10

(
𝑑𝑖

𝑑0

)
, (14)

where 𝑃0 is the power received at a reference distance 𝑑0,
while 𝛽 is the path-loss index that depends on the propagation
environment. The RSS measurement is then defined as:

𝜌RSS
𝑖 = 𝑃rx,𝑖 + 𝑛RSS

𝑖 = 𝑃0 − 10 𝛽 log10

(
𝑑𝑖

𝑑0

)
+ 𝑛RSS

𝑖 , (15)

where 𝑛RSS
𝑖

accounts for shadowing fluctuations and measure-
ment errors.

Unfortunately, power-based measurements reveal reasonable
distance indicators only if the BSs is near to the UE, as
shadowing and multipath fading significantly affect the power
values, and the propagation environment needs to be accurately
modeled. The latter aspect can be really complex to achieve,
as calibration procedures have to be performed and repeated
anytime the environment changes. Overall, analytical modeling
tends to be unrealistic in environments with severe multipath
and obstructions. It results that RSS-based positioning method
is more suited, and generally used, for proximity detection and
fingerprinting [284]–[287].

6) Digital maps and AI-based fingerprints: Fingerprinting
localization is employed in complex multipath environments
where analytical models are not able to describe the location-
measurement relation. The analytical function ℎ𝑖 (𝒔𝑖 , 𝒖) is thus
replaced by a digital map built ad-hoc during a training phase. A
database D𝑖 =

{
𝝆 (𝑚)
𝑖

, 𝒖 (𝑚)}𝑀
𝑚=1 is created by collecting channel

fingerprints 𝝆 (𝑚)
𝑖

over 𝑀 locations 𝒖 (𝑚) in the area of interest,
for each BS 𝑖. The channel measurements can be derived from
the CIR (e.g., TOA, AOA, TDOA, RSS) or can be represented
by the whole CIR. Examples in this direction are the channel-
frequency response matrix (CFRM) [288], [289] or angle-delay
channel power matrix (ADCPM) [260], [261], [290], which
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encode all the essential information of the environment, i.e.,
TOF, AOA, and RSS for each path.

Once the position-referenced dataset is available, according
to the type of channel measurement, different algorithms can
be adopted for real-time localization. In the case of RSS
measurements, algorithms like HORUS [291] or RADAR [292],
based on probabilistic methods and k-nearest neighbors (KNN),
respectively, have been proposed in the past. With the advent
of AI, AE-based structures, which are already foreseen in
future 3GPP releases [293], allow to encode the input channel
measurements into compressed versions, called latent features.
This permits the reduction of the input dimensionality and
performs feature extraction for subsequent position estima-
tion through DNN algorithms [260]. In case the database is
incomplete, spectrum cartography techniques for estimating
missing values and reconstructing the whole RSS map can
be used [294], [295]. For incomplete full-CIR measurements,
semi-supervised learning methods [265], [266] or generative
adversarial networks (GAN) [296] can be adopted to limit the
necessary labels information or generate new data, respectively.

C. Positioning algorithms
Estimation of the UE position 𝒖 from the collected measure-

ments 𝝆 (delay, angle, power parameters, or any combination
of them) can be obtained by conventional inference algo-
rithms [297], [298]. The estimation problem amounts to solving
a system of non-linear equations in the unknown location 𝒖 by
minimizing a cost function embedding the difference between
the available measurements and the related analytical models.
Different cost functions are used according to the selected
optimization criteria [299].

A popular approach in positioning systems is the non-linear
least squares (NLS) [300], [301], a non-probabilistic method
minimizing the square difference between the measurements
and the corresponding models as:

�̂� = arg min
𝒖

∥𝝆 − 𝒉(𝒔, 𝒖)∥2. (16)

An extension of NLS is the weighted NLS (WNLS) [302], which
takes into account the different degrees of reliability of the
measurements (i.e., different statistics) by weighting the error
terms as follows:

�̂� = arg min
𝒖

∥𝝆 − 𝒉(𝒔, 𝒖)∥2
𝑹−1 , (17)

where 𝑹 = Cov(𝝆). Under the assumption of uncorrelated
measurements, the measurement covariance matrix 𝑹 reduces
to a diagonal matrix.

In general, there is no closed-form solution to the non-
linear optimization, and thereby, numerical search methods are
used. Iterative NLS estimation is obtained by initializing the
location with a starting guess �̂�0 and refining the estimate
over the iterations by local linearization and linear resolution.
Indicating with 𝑘 the single iteration, the update is in the form
of �̂�𝑘+1 = �̂�𝑘 +Δ�̂�𝑘 , where 𝑘 = 0, 1, ..., 𝐾 , with 𝐾 the maximum
number of iterations, andΔ�̂�𝑘 the correction. Within the iterative
NLS category, different implementations exist, such as the
Gauss-Newton and Levenberg–Marquardt algorithms [303]–
[305].

Linearization involves the computation of the Jacobian matrix
𝑯𝑘 ≜ 𝑯𝑘 (𝒖𝑘) to be performed at each 𝑘-th iteration as follows:

𝑯𝑘 =
𝜕𝒉(𝒔, 𝒖)
𝜕𝒖

����
𝒖=�̂�𝑘

. (18)

The element of the Jacobian matrix 𝑯𝑘 for each type of
measurement considered in this tutorial are reported in Table IV
(Fig. 6 is taken as a reference for notation).

Depending on the algorithm implementation, the update
function of UE estimate can slightly differ. As an example,
considering the Gauss-Newton algorithm, the update rule for
the iterative NLS is the following:

�̂�𝑘+1 = �̂�𝑘 + 𝜂
(
𝑯T
𝑘𝑯𝑘

)−1
𝑯T
𝑘 Δ𝝆, (19)

where 𝜂 is a step-size scaling parameter and Δ𝝆 = 𝝆 − 𝒉(𝒔, �̂�𝑘)
the residual error. Similarly, the update for the iterative WNLS
with Gauss-Newton implementation becomes:

�̂�𝑘+1 = �̂�𝑘 + 𝜂
(
𝑯T
𝑘𝑹

−1𝑯𝑘

)−1
𝑯T
𝑘𝑹

−1 Δ𝝆. (20)

An alternative implementation of iterative NLS is by the
Levenberg-Marquardt algorithm, which uses the Hessian matrix
instead of the Jacobian one, i.e., considering the second-order
derivative of the measurement model 𝒉(𝒔, 𝒖) [306].

The accuracy of any unbiased positioning algorithm is lower
bounded by the CRB [307]. Denoting the covariance of the
location estimate as 𝑪 = Cov(𝒖) = E[(�̂� − 𝒖) (�̂� − 𝒖)T], the
CRB specifies that 𝑪 ⪰ 𝑪CRB = 𝑱−1 (𝒖), where 𝑱(𝒖) is the
Fisher information matrix (FIM). For Gaussian measurements,
the FIM can be expressed in closed form as 𝑱(𝒖) = 𝑯T𝑹−1𝑯,
with 𝑯 defined as in Table IV [307]. The CRB represents a useful
benchmark for designing localization algorithms and provides a
practical tool for optimizing the BS deployment. Furthermore,
it is the performance reached asymptotically (i.e., for a large
number of measurements or large SNR) when the maximum
likelihood estimation algorithm is adopted. Indeed, in this
specific case, the location estimate is �̂� ∼ N (𝒖, 𝑱(𝒖)−1) [308].

D. Bayesian tracking filters
As an alternative to NLS solutions which do not include

a-priori knowledge of the UE dynamics, Bayesian tracking
methods can be implemented to improve positioning accuracy
over a trajectory, as well as to embed tracking of higher order
kinematic quantities (such as velocity and acceleration). In
addition to the measurement model (see Section III-B), Bayesian
tracking also requires a dynamic system model describing the
evolution of the UE location over the time 𝑡. Overall, the two
following models are considered:

𝒙𝑡 = 𝒇𝑡 (𝒙𝑡−1) + 𝝊𝑡 , (21)
𝝆𝑡 = 𝒉𝑡 (𝒙𝑡 ) + 𝒏𝑡 , (22)

where 𝒙𝑡 and 𝝆𝑡 are the vectors of the state (collecting all the
relevant kinematic parameters) and the observation vectors at
time 𝑡, respectively, 𝝊𝑡 is the driving process accounting for
model uncertainties, 𝒏𝑡 is the measurement error, 𝒇𝑡 (·) and 𝒉𝑡 (·)
are non-linear functions describing the state evolution in time
and mapping the state to the measurement, respectively. The
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TABLE IV
Measurement models and entries of the Jacobian matrix for 3D localization algorithms

Method ℎ𝑖 (𝒔, 𝒖) [𝑯 ]𝑖 ≜ [𝑯 (𝒖) ]𝑖 =
𝜕ℎ𝑖 (𝒔, 𝒖)
𝜕𝒖

TOA 𝑑𝑖 = ∥𝒔𝑖 − 𝒖 ∥
[
𝑢𝑥 − 𝑠𝑥,𝑖

𝑑𝑖

𝑢𝑦 − 𝑠𝑦,𝑖
𝑑𝑖

𝑢𝑧 − 𝑠𝑧,𝑖
𝑑𝑖

]
TDOA 𝑑𝑖 − 𝑑1 = ∥𝒔𝑖 − 𝒖 ∥ − ∥𝒔1 − 𝒖 ∥

[
𝑢𝑥 − 𝑠𝑥,𝑖

𝑑𝑖
−
𝑢𝑥 − 𝑠𝑥,1

𝑑1

𝑢𝑦 − 𝑠𝑦,𝑖
𝑑𝑖

−
𝑢𝑦 − 𝑠𝑦,1

𝑑1

𝑢𝑧 − 𝑠𝑧,𝑖
𝑑𝑖

−
𝑢𝑧 − 𝑠𝑧,1
𝑑1

]
AOA (az.) 𝜙𝑖 = tan−1

(
𝑠𝑦,𝑖 − 𝑢𝑦
𝑠𝑥,𝑖 − 𝑢𝑥

) [
𝑑𝑖,𝑦

𝑑2
𝑖,𝑥𝑦

−
𝑑𝑖,𝑥

𝑑2
𝑖,𝑥𝑦

0

]
AOA (el.) 𝜑𝑖 = tan−1 ©«

𝑠𝑧,𝑖 − 𝑢𝑧√︃(
𝑠𝑥,𝑖 − 𝑢𝑥

)2 +
(
𝑠𝑦,𝑖 − 𝑢𝑦

)2

ª®®¬
[
𝑑𝑖,𝑧 · 𝑑𝑖,𝑥
𝑑2
𝑖
· 𝑑𝑖,𝑥𝑦

𝑑𝑖,𝑧 · 𝑑𝑖,𝑦
𝑑2
𝑖
· 𝑑𝑖,𝑥𝑦

−
𝑑𝑖,𝑥𝑦

𝑑2
𝑖

]
RSS 𝑃rx,𝑖 = 𝑃0 − 10𝛼 log10

(
∥𝒔𝑖 − 𝒖 ∥
𝑑0

) [
− 10𝛼

ln 10
𝑢𝑥 − 𝑠𝑥,𝑖
𝑑2
𝑖

− 10𝛼
ln 10

𝑢𝑦 − 𝑠𝑦,𝑖
𝑑2
𝑖

− 10𝛼
ln 10

𝑢𝑧 − 𝑠𝑧,𝑖
𝑑2
𝑖

]

definition of the function 𝒉𝑡 (·) depends on the type of available
measurement (see Table IV).

One of the most widely-used algorithms in mobile positioning
is the extended Kalman filter (EKF). The basic principle of
EKF is to convert a non-linear system into a system of linear
equations by focusing on the first-order Taylor expansion of the
estimate [309]. Other Bayesian solutions include the Unscented
Kalman filter [310], the cubature Kalman filter [311], the
particle filter [312], [313], and the belief propagation [314].

Starting from an initialization of the estimated state mean �̂�0
and covariance 𝚺0, at the successive time instants 𝑡 > 0 the EKF
performs a prediction and update steps for tracking the UE state
𝒙𝑡 . The prediction step uses the state transition model (21) to
predict the next state mean 𝒙−𝑡 and covariance 𝚺−

𝑡 , as follows:

𝒙−𝑡 = 𝑭𝑡 �̂�𝑡−1, (23)

𝚺−
𝑡 = 𝑭T

𝑡 �̂�𝑡−1𝑭𝑡 + 𝑸𝑡 , (24)

where

𝑭𝑡 =
𝜕 𝒇𝑡 (𝒙)
𝜕𝒙

����
𝒙=�̂�𝑡−1

, (25)

and 𝑸𝑡 = Cov(𝝊𝑡 ). The update step first requires the computa-
tion of the so-called Kalman gain 𝑮𝑡 defined as:

𝑮𝑡 = 𝚺−
𝑡 𝑯

T
𝑡

(
𝑯𝑡𝚺

−
𝑡 𝑯

T
𝑡 + 𝑹𝑡

)−1
, (26)

where

𝑯𝑡 =
𝜕𝒉𝑡 (𝒙)
𝜕𝒙

����
𝒙=𝒙−𝑡

, (27)

followed by the update of estimated state mean �̂�𝑡 and covariance
�̂�𝑡 as:

�̂�𝑡 = 𝒙−𝑡 + 𝑮𝑡
(
𝝆𝑡 − 𝒉𝑡 (𝒙−𝑡 )

)
, (28)

�̂�𝑡 = 𝚺−
𝑡 − 𝑮𝑡𝑯𝑡𝚺

−
𝑡 . (29)

As in the stationary case, fundamental performance bounds
can be computed by the CRB also for mobile positioning involv-
ing Bayesian tracking. This holds true as the CRB considers
asymptotic information and is, therefore, also conservative in
filtering. The CRB for the dynamic case, also known as Bayesian
or PCRB, can be derived as in [299] and varies according to the

type of motion model used in (21). In the case of random walk,
the lower bound at time 𝑡 is 𝑪𝑡 = Cov(�̂�𝑡 ) ⪰ 𝑷𝑡 with 𝑷𝑡 given
by [299]:

𝑷𝑡 =
(
(𝑷𝑡−1 + 𝑻𝑠𝑸𝑡−1)−1 + 𝑱(𝒙𝑡−1)

)−1
. (30)

The selection and calibration of the most suitable model
of dynamics depend on the considered problem, which might
require (or not) the tracking of position, velocity, acceleration,
or other kinematic parameters. Examples of motion models are
given in [299]. Note that it is also possible to merge more than
one model for a quicker reaction to unpredictable motion or
to better adhere to highly predictable conditions, such as by
interactive multiple model (IMM) filtering [315].

IV. 5G positioning technology (Rel-16)

In this section, we discuss various aspects of 5G positioning,
from the network architecture (Section IV-A) to the posi-
tioning techniques (Section IV-E). Moreover, we analyze the
precision of such technology compared to LTE (Section IV-B
and IV-C), and we list all the signals available for positioning
(Section IV-D).

A. 5G positioning architectures
The general architecture of a 5G network is shown in Fig. 7a.

Its main components are the 5G core network (5GCN) and the
RAN [88]. The 5GCN is built on a service-based architecture
(SBA), which guarantees the network functionalities using a set
of network functions (NFs). Functions can interact with each
other using the service-based interface (SBI). The main NFs are
the location management function (LMF) and the access and
mobility management function (AMF). The LMF is in charge
of all the procedures regarding the localization of the UE, such
as the selection of the positioning method, or the scheduling of
the resources, and the overall coordination, and it is responsible
for the broadcasting of the assistance data to UEs. The AMF,
instead, supports location services, including emergency calls
and initiating a localization request for a UE. Generally, it can
be considered an intermediary node between the LMF and the
RAN or the UE.
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Fig. 7. Main architectures of 5G positioning [88]. (a) SBI representation of the NR positioning architecture, (b) NG-RAN architecture, (c) gNB architecture.

The RAN is involved in the handling of the positioning
procedures, and it has the duty of transferring messages between
the UE and the AMF or LMF, such as positioning messages or
broadcast assistance data. The RAN, or next generation RAN
(NG-RAN), is formed by an ng-eNB for LTE access and a BS
for NR access, as shown in Fig. 7b.

Differently from the monolithic building block of the 4G RAN
architecture, i.e., eNodeB (eNB), the architecture of 5G BS can
be split into a gNB central unit (gNB-CU) and one or more gNB
distributed units (gNB-DUs), as shown in Fig. 7c. The gNB can
transmit a signal in DL or measure a signal in UL, enabling
the implementation of the various positioning methods. This
twofold feature is possible thanks to the TRP, which acts as a
transmission point (TP), a reception point (RP), or both.

B. 5G frame structure
The physical layer of 5G is characterized by a frame of

duration of 10 ms, as for LTE. However, the frame structure
differs in the two protocols. In LTE, the frame is divided into
10 sub-frames of 1 ms, each being composed of 2 slots of 7
OFDM symbols in time and occupying 12 subcarriers in the
frequency domain. In 5G, each frame is divided into 10 sub-
frames of 1 ms duration, and each sub-frame is divided into
slots, containing 𝑁slot

symb = 14 OFDM symbols each. The number
of slots is variable and depends on the sub-carrier spacing (SCS),
which is univocally defined by the numerology, indicated with 𝜇.
Table V reports the numerology 𝜇, the number of slots for each
sub-frame 𝑁slot = 2𝜇, the SCS Δ 𝑓 = 15 · 𝑁slot (in kHz), the FR,
the maximum bandwidth (in MHz), the average symbol duration
𝑇symb = 1

Δ 𝑓
𝜇s, and the cyclic prefix length 𝑇cp. Moreover, we

associated each numerology with a theoretical ranging accuracy
computed as ≈ 𝑐/BW.

In LTE, the numerology was limited to 𝜇 = 0. The 3GPP Rel-
15 extended it up to numerology 𝜇 = 4 [319], and the latest 3GPP
Rel-17 has further enhanced the numerology up to 𝜇 = 6 [317].
While the maximum supported channel bandwidth for LTE is
20 MHz, in 5G it is 100 MHz for FR1 [320], 400 MHz for FR2 in
Rel-16 and 2 GHz for FR2 in Rel-17 [317]. Note that numerology
𝜇 = 4 is not intended to support data transmission [318], but
only synchronization. On the contrary, numerology 𝜇 = 2 only
supports data transmission and not synchronization.

Fig. 8 defines the resource grid in the time and frequency
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Fig. 8. Representation of 5G resource grid in time and frequency domains,
with highlights on the RB, RE, and slot.

domain. A resource block (RB) is a set of 𝑁RB
SC = 12 sub-carriers

inside a slot of 14 OFDM symbols. A resource element (RE)
is the smallest unit in the resource grid, constituted by a single
symbol in time and a single sub-carrier in frequency. Gathering
all the parameters, the signal bandwidth is computed as:

𝐵𝑊 = 𝑁RB · Δ 𝑓 · 𝑁RB
SC , (31)

where 𝑁RB is the number of utilized RBs, and the data rate (in
Mbps) is [321]:

𝐷𝑅 = (32)

10−6 ·
𝐽∑︁
𝑗=1

(
𝑣 𝑗 ,layers · 𝑄 𝑗 ,𝑚 · 𝑓 𝑗 · 𝑅max ·

12 · 𝑁RB

𝑇symb
· (1 −𝑂𝐻 𝑗 )

)
,

where 𝐽 is the number of aggregated component carriers in a
band, 𝑅max = 948

1024 , 𝑣 𝑗 ,layers is the maximum number of supported
layers (8 in DL, 4 in UL), 𝑄 𝑗 ,𝑚 is the maximum supported
modulation order, 𝑓 𝑗 ∈ {1, 0.8, 0.75, 0.4} is a scaling factor,
𝑇symb is the average OFDM symbol duration in a subframe for
numerology 𝜇 [316], [317], and𝑂𝐻 𝑗 is the overhead which can
take the following values:
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TABLE V
Supported 5G numerologies and main parameters [316]–[318]

𝜇 Δ 𝑓 [kHz] FR BW [MHz] 𝑁slot 𝑇symb [𝜇s] 𝑇cp [𝜇s] Ranging Accuracy
≈ 𝑐/BW [m] Data Synch.

0 15 1 50 1 66.7 4.69 6.00 ✓ ✓

1 30 1 100 2 33.3 2.34 3.00 ✓ ✓

2 60 1/2 200 4 16.7 1.17 1.50 ✓ ✗

3 120 2 400 8 8.33 0.57 0.75 ✓ ✓

4 240 2 400 16 4.17 0.29 - ✗ ✓

5 480 2 1600 32 2.08 0.15 0.19 ✓ ✓

6 960 2 2000 64 1.04 0.07 0.15 ✓ ✓

• 𝑂𝐻 𝑗 = 0.14, for FR1 in DL,
• 𝑂𝐻 𝑗 = 0.18, for FR2 in DL,
• 𝑂𝐻 𝑗 = 0.08, for FR1 in UL,
• 𝑂𝐻 𝑗 = 0.10, for FR2 in UL.

C. Time-domain accuracy: LTE vs NR
With the addition of FR2 bands, larger signal bandwidths and

higher data rates are available. Larger signal bandwidth is the
key to unlocking high-accuracy positioning, as the resolution in
delay estimation, which is roughly equal to the inverse of the
bandwidth (i.e., the sampling time), improves and enhances the
capability to resolve multipath.

To highlight the improvement brought by 5G NR with respect
to LTE, we analyze the following: the temporal resolution of the
different numerologies and the corresponding ranging accuracy.
The minimum sampling time is:

𝑇𝑠 =
1

Δ 𝑓max · 𝑁 𝑓
, (33)

with 𝑁 𝑓 as the number of Fourier points, which provides
a granularity in the ranging domain Δ𝑟 = 𝑇𝑠 · 𝑐. For LTE
(numerology 𝜇 = 0), we get the following delay and range
resolution:

𝑇LTE
𝑠 =

1
15.000 · 2048

≈ 32.55 ns, (34)

Δ𝑟LTE = 𝑇LTE
𝑠 · 𝑐 ≈ 10 m; (35)

while for 5G Rel-16 (𝜇 = 3) it is:

𝑇5G Rel-16
𝑠 =

1
120.000 · 4096

≈ 2.03 ns, (36)

Δ𝑟5G Rel-16 = 𝑇5G Rel-16
𝑠 · 𝑐 ≈ 60.8 cm. (37)

Instead, taking into consideration the highest numerology
introduced by Rel-17 (𝜇 = 6), we obtain:

𝑇5G Rel-17
𝑠 =

1
960.000 · 4096

≈ 0.25 ns, (38)

Δ𝑟5G Rel-17 = 𝑇5G Rel-17
𝑠 · 𝑐 ≈ 7.6 cm. (39)

The finer granularity of 5G NR compared to LTE highlights the
huge potential in accurate positioning of 5G at mmWaves [322].
On the other hand, the coverage of a BS transmitting in FR2 is
highly reduced, leading to a densification of BS installations.
This is not necessarily a drawback. Indeed, while adding more
BSs will cost more from the cellular operators’ point of view,
it also allows greater frequency reuse. Moreover, smaller cell

TABLE VI
Comparison of positioning signals in 3GPP Rel-16

Signal Max BW [MHz] Number of beams Designed for
Positioning

SSB 60 4, 8, 64 ✗
CSI-RS 400 2-8 ✗
PRS 400 2-12 ✓
SRS 400 1-12 ✓

size might provide satisfactory positioning performance even
using the basic CID method, which can be used for non-critical
applications such as geo-marketing.

D. 5G positioning signals
In Rel-16, the 3GPP standard updates and redefines two ref-

erence signals in order to overcome the positioning problems of
existing ones [323]. Older signals, such as CSI reference signal
(CSI-RS) and synchronization signal (SS) (which composes the
SS blocks (SSBs)), were not designed to be intentionally used for
positioning because of the following limitations. The first major
limitation is their inability to resolve the hearability issue arising
from interference by neighboring cells [324]. This is crucial for
positioning, as the UE must receive signals from multiple BSs.
Signals from nearby cells shadow the weak signals from far-
away cells, causing difficulty for the UE to detect distant BSs.
Lastly, CSI-RSs and SSs have weak correlation properties due
to low density of REs and their pattern. Therefore, they might
not spread well across all of the sub-carriers in the frequency-
domain. For these reasons, the PRS for DL transmission and
the SRS for UL transmission have been introduced in Rel-16
with the aim of allowing precise positioning by the 5G cellular
network.

In the following, we describe the features of SSB, CSI-RS,
PRS, and SRS, whose main differences affecting positioning are
summarized in Table. VI. The number of beams for SRS and
PRS are associated with the number of RE in a slot.

1) SSB: The SSB consist of the SS, downlink physical
broadcast channel (PBCH), and demodulation reference signal
(DMRS). SSBs are periodically transmitted in broadcast by a
TRP within spatially contained bursts (SS burst set) in a beam
sweeping pattern (i.e., each SSB over a specific spatial beam).
The main objectives of the SSB, also known as SS/PBCH
block, are the following. To have an active 5G connection, an
UE has to perform a cell-search procedure to identify, locate,
and synchronize with a TRP. The cell-search during the initial
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TABLE VII
SSB pattern specifications [325], [326]

SCS Starting OFDM symbol 𝑓𝑐 ≤ 3 GHz 3 < 𝑓𝑐 ≤ 6 GHz 𝑓𝑐 > 6 GHz

Case A: 15 kHz {2, 8} + 14 𝑛 𝑛 = 0, 1 (4 SSBs) 𝑛 = 0, 1, 2, 3 (8 SSBs) NA
Case B: 30 kHz {4, 8, 16, 20} + 28 𝑛 𝑛 = 0 (4 SSBs) 𝑛 = 0, 1(8 SSBs) NA
Case C: 30 kHz {2, 8} + 14 𝑛 𝑛 = 0, 1 (4 SSBs) 𝑛 = 0, 1, 2, 3 (8 SSBs) NA
Case D: 120 kHz {4, 8, 16, 20} + 28 𝑛 NA NA 𝑛 = {𝑖}18

𝑖=0 (64 SSBs)
Case E: 240 kHz {8, 12, 16, 20 32, 36, 40, 44} + 56 𝑛 NA NA 𝑛 = {𝑖}8

𝑖=0 (64 SSBs)
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Fig. 9. Structure of SSB. The SSB (or SS/PBCH block) spans over 4 OFDM
symbols and 240 subcarriers (20 RBs). It contains PSS, SSS, PBCH and PBCH
DMRS allocated according to the color pattern in the figure.

access is conducted through the use of primary synchronization
signal (PSS) and secondary synchronization signal (SSS), which
constitute the SS. Additionally, the UE uses DL signals such as
the physical downlink shared channel (PDSCH) and PBCH to
obtain the necessary system parameters for the connection. The
UE also detects the DMRS, which acts as a reference signal
for decoding the PDSCH and PBCH. Each SSB is sent over a
different spatial direction at different timing by the TRP, and
the UE measures the signal strength of each SSB. Based on the
measuring results, the UE can determine and report to the TRP
the index of the strongest (in terms of power) SSB.

The structure of the SSB is reported in Fig. 9. It is constituted
by 20 RBs and 4 OFDM symbols in the frequency and
time domains, respectively. Depending on the adopted carrier
frequency 𝑓𝑐, different numbers of consecutive SSBs (𝑁SSB)
compose an SS burst set. Intuitively, the higher the carrier
frequency, the narrower and more directive the beam will be. For
frequency below 3 GHz, 𝑁SSB = 4; for frequency between 3 and
6 GHz 𝑁SSB = 8; and for frequency between 6 and 52.6 GHz
𝑁SSB = 64. Depending on the SCS and carrier frequency, the
starting OFDM symbol of the SSB varies according to a specific
pattern, as described by 3GPP specification in [325], [326].
Patterns are categorized as Case A, B, C, D, and E, and they
mainly differ according to the SCS and carrier frequency 𝑓𝑐 as
indicated in Table VII. Fig. 10 depicts every SSB pattern and
demonstrates how TRPs operating at higher frequencies (such as
millimeter waves) employ more beams overall. A TRP’s ability
to comprehensively scan the spatial domain using more directed
beams is indicated by a higher 𝑁SSB.

2) CSI-RS: CSI-RS were introduced in Rel-10 with the aim
of acquiring the channel state information. In order to support
up to eight layers of spatial multiplexing, the configuration of
CSI-RSs can be defined accordingly with the same number of
signals for a TRP. In time-domain, the CSI-RS periodicity can
be configured such that there can be from 2 to 8 CSI-RSs in every
frame. For a given periodicity, it is also possible to configure
the subframe offset. The CSI-RS is transmitted in every RB in
the frequency-domain. In this way, CSI-RS can cover the entire
cell bandwidth. The REs actually used depend on the defined
CSI-RS configuration. In addition to conventional CSI-RS, also
known as non-zero-power CSI-RS (NZP-CSI-RS), it is possible
to configure zero-power CSI-RS (ZP-CSI-RS) with the same
structure [327].

3) PRS: PRS, also known as DL-PRS, is similar to the
homonym LTE DL signal and it is specifically designed to
allow the UE receiving signals from multiple BSs. A key
feature of PRSs is the improved hearability thanks to the muting
concept: multiple BSs can transmit the PRS in a coordinated
way by literally muting less relevant PRS transmissions to avoid
interferences. Furthermore, the staggered pattern of the PRS REs
results into better correlation properties that facilitate the peak
detection. The so-called comb pattern structures are shown in
Fig. 11. With a comb-𝑁 pattern (𝑁 ∈ {2, 4, 6, 12}), 𝑁 different
TRPs can be frequency multiplexed within the same time slot,
assigning different frequency offsets. Different combinations
are possible, assigning a comb size and the number of OFDM
symbols. Table VIII reports the RE offsets in the frequency
domain given all the combination pairs formed by the comb
size (𝐾size) and the number of symbols (𝑁slot

symb ∈ {2, 4, 6, 12}).
Each PRS can be further customized by assigning different
periodicity (𝑇PRS

per ), slot offset (𝑇PRS
offset), RB offset (𝑇PRS

offset, RB),
and RE offset (𝑇PRS

offset, RE) values to fulfill different service
requirements (e.g., latency-sensitive applications should opt
for frequent PRS transmissions, while energy-saving devices
would require a low periodicity) and deal with multiple PRSs.
According to 3GPP TS 28.211 [323, Section 7.4.1.7.4], 𝑇PRS

per ∈
2𝜇 · {4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320, 640, 1280, 2560,
5120, 10240} slots and 𝑇PRS

off ∈ {0, 1, . . . , 𝑇PRS
per − 1} slots.

4) SRS: SRS, often referred to as UL-SRS to differentiate
it with respect to the Rel-15 version, is the UL equivalent
of PRS and it is updated in Rel-16 for positioning purposes.
Similar to its DL counterpart, the REs are arranged in a
comb pattern. The comb size set 𝐾size = {2, 4} of Rel-15 is
extended in Rel-16 to {2, 4, 8}, while the number of symbols
consecutively available are 𝑁slot

symb = {1, 2, 4, 8, 12}, in contrast
to the precedent version which disposed only of {1, 2, 4} within



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. V, NO. N, MONTH YEAR 19

Case A: 𝑓𝑐 ≤ 3 GHz Case A: 3 < 𝑓𝑐 ≤ 6 GHz

Case B: 𝑓𝑐 ≤ 3 GHz Case B: 3 < 𝑓𝑐 ≤ 6 GHz

Case C: 𝑓𝑐 ≤ 3 GHz Case C: 3 < 𝑓𝑐 ≤ 6 GHz

Case D: 𝑓𝑐 > 6 GHz Case E: 𝑓𝑐 > 6 GHz
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Fig. 10. SSB pattern cases according to the different carrier frequency, as described by 3GPP Rel-15 [325], [326].

TABLE VIII
Resource element offsets of PRS for all the comb patterns [88], [323]

𝐾size

𝑁 slot
symb 2 4 6 12

2 {0, 1} {0, 1, 0, 1} {0, 1, 0, 1, 0, 1} {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}
4 - {0, 2, 1, 3} - {0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3}
6 - - {0, 3, 1, 4, 2, 5} {0, 3, 1, 4, 2, 5, 0, 3, 1, 4, 2, 5}

12 - - - {0, 6, 3, 9, 1, 7, 4, 10, 2, 8, 5, 11}

TABLE IX
Resource element offsets of SRS for all the possible combinations. [88], [323]

𝐾size

𝑁 slot
symb 1 2 4 8 12

2 {0} {0, 1} {0, 1, 0, 1} - -
4 - {0, 2} {0, 2, 1, 3} {0, 2, 1, 3, 0, 2, 1, 3} {0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3}
8 - - {0, 4, 2, 6} {0, 4, 2, 6, 1, 5, 3, 7} {0, 4, 2, 6, 1, 5, 3, 7, 0, 4, 2, 6}

the last six symbols of a slot. All the available combinations
with the number of symbols are listed in Table IX. Since SRS
derives from the same-named signal of Rel-15, it inherits
some parameters, such as resource type and periodicity. The
SRS resource type can be periodic, semi-persistent, and
aperiodic. The periodicity 𝑇SRS

per is available for semi-persistent
and periodic SRS. In addition to the periodicities 𝑇SRS

per ∈
{1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320, 640, 1280, 2560}
slots available in Rel-15, Rel-16 SRS can also handle
𝑇SRS

per ∈ {5120, 10240, 20480, 40960, 81920} slots.
𝑇SRS

per = 20480 slots is applicable for Δ 𝑓 = {30, 60, 120} kHz
only; 𝑇SRS

per = 40960 slots is applicable for Δ 𝑓 = {60, 120} kHz
only; and 𝑇SRS

per = 81920 slots is exclusive for Δ 𝑓 = 120 kHz.

Rel-16 SRS also inherits the bandwidth configuration param-
eters 𝐵SRS, and 𝐶SRS, where 𝐵SRS ∈ {0, 1, 2, 3} is the column
index of the higher-layer parameter of the frequency hopping

(3GPP TS 38.211 [323, Table 6.4.1.4.3-1]) if configured,
otherwise 𝐵SRS = 0. The row of the table is selected according
to the index 𝐶SRS ∈ {0, . . . , 63}. These values control the
bandwidth allocated to the SRS. The number of RBs is given by
the specific value denoted as𝑚SRS in the table mentioned above.
The frequency hopping of SRS is configured by the parameter
𝑏hop ∈ {0, 1, 2, 3}. With 𝑏hop ≥ 𝐵SRS = 0, the frequency hop-
ping is disabled. In Rel-16, frequency hopping is not supported;
however, part of its parameters are bandwidth indications, which
are still applicable. At last, 𝑛RRC ∈ {0, . . . , 67} is an additional
circular frequency-domain offset of SRS, as a multiple of 4
RBs. These properties determine the actual frequency-domain
location of the SRS.
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Fig. 11. Representation of four different PRS time/frequency comb patterns, as described by 3GPP Rel-16 [88], [328].

E. 5G positioning methods
In this section, we detail the main 5G positioning methods

relying on the delay and angular measurements described in
Section III. In particular, the outlined methods are: DL-TDOA,
DL-AOD, UL-AOA and multi-RTT.

1) DL-TDOA: DL-TDOA is similar to OTDOA in LTE,
as they are both based on TOA measurements of DL signals
from multiple TRPs. The TDOA is computed as the difference
between two TOA measurements. Considering two BSs 𝑖 and 𝑖′,
with 𝑖 being the reference BS, the following three quantities are
associated to the DL-TDOA:

• reference signal time difference (RSTD): 𝑡rx,𝑖′ − 𝑡rx,𝑖 , where
𝑡rx,𝑖 and 𝑡rx,𝑖′ are the reception time instants of signals
from BSs 𝑖 and 𝑖′, respectively. The RSTD defines the time
interval observed by the UE between the reception of DL
reference signals from two different BSs;

• real-time difference (RTD): 𝑡tx,𝑖′ − 𝑡tx,𝑖 , where 𝑡tx,𝑖 and 𝑡tx,𝑖′
are the transmit time instants of signal from BS 𝑖 and 𝑖′, re-
spectively. The RTD denotes the synchronization between
two BSs, i.e., if two RTDs are perfectly synchronized, the
RTD is 0;

• geometric time difference (GTD): (𝑑𝑖′ − 𝑑𝑖) · 𝑐−1, where
𝑑𝑖 and 𝑑𝑖′ are respectively the lengths of the propagation
paths between the UE and the BSs 𝑖 and 𝑖′, respectively. It
represents the ideal hyperbolic line of position.

In a noiseless scenario, the following relationship holds [88]:

GTD = RSTD − RTD. (40)

In simulation analyses, perfect synchronization between BSs is
typically assumed, i.e., all BSs transmit at time slots known
without error, and the clock offset does not contribute to
the measurement error. In real operating conditions with the
currently deployed 5G network, synchronization errors are
expected to cause a major bias in the ranging measurements
up to hundreds of meters [109], [329]. This is a primary
limitation of 5G precise positioning at present (more details are
provided in Section VI). As a matter of fact, current 5G networks
implement a master-and-slave-based precision time protocol
(PTP) [330] protocol which only achieves a synchronization that
is accurate up to ±1.5 µs, as recommended by the International
Telecommunication Union (ITU) [331]. This converts to a
distance error of about ±450 m, hugely limiting the positioning
performance.

2) DL-AOD: DL-AOD positioning can be obtained thanks
to the computation of DL RSRP measurements of beams by
the UE. The BSs may transmit signals in a beam-sweeping
manner that can be measured by the UE. The more the beam is
directed to the UE and not impaired by obstacles, the higher
the RSRP. The resulting vector of all RSRP measurements
(one for each beam) could be considered as a radio frequency
(RF) fingerprint and used to perform positioning by a pattern-
matching approach [332].

Another solution, which is also the one adopted in this work, is
the beam management procedure [122]. The beam management
is a procedure used to acquire and maintain a link pair between
the UE and a BS. 3GPP TR 38.802 [333, section 6.1.6.1], defines
the beam management as the combination of the following three
procedures:

P1) This procedure focuses on the initial acquisition based on
SSB and it employs analog beamforming. During the initial
acquisition, beam sweeping takes place at both transmit and
receive ends to select the best beam pair based on the RSRP
measurement. In general, the selected beams are wide and
may not be an optimal beam pair for data transmission and
reception.

P2) This procedure, which is referred to as beam refinement,
focuses on transmit-end beam refinement, where the beam
sweeping happens at the transmit side by keeping the
receive beam fixed. The procedure is based on NZP-CSI-RS
for DL transmit-end beam refinement and SRS for UL
transmit-end beam refinement. P2 makes use of digital
beamforming.

P3) This procedure focuses on receive-end beam adjustment,
where the beam sweeping happens at the receiving end
given the current transmit beam. This process aims to find
the best receive beam. For this procedure, a set of reference
signal resources are transmitted with the same transmit
beam, and the UE or BS receives the signal using different
beams from different directions covering an angular range.
Finally, the best receive beam is selected based on the RSRP
measurements on all receive beams.

Since the technical report where the beam management is
defined refers to the Rel-14, the NZP-CSI-RS is mentioned and
used for the P2 procedure in DL, but in Rel-16 it is no longer
addressed for positioning purposes. In the analyses and results
presented in this tutorial, we consider the P2 procedure in DL
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Tx Site

Rx Site

Fig. 12. Beam refinement phase within the beam management procedure for
DL-AOD estimation with 𝑁PRS = 12. In this example, 12 different Tx spatial
PRS beams are beamformed over different angles in a confined angular domain.
The beam with the highest RSRP is chosen by the UE. The blue line indicates
the direct path; thus, the best beam is the light green one.

based on PRS. Moreover, we are interested only in the first two
phases of the procedure to obtain the AOD. The P3 procedure
could be used for AOA estimation only in the case of a large
antenna array available to the UE side. However, most likely
scenarios include a UE device with one or very few antennas
due to size, battery, and weight constraints (e.g., a smartphone).
For this reason, estimating the AOA at the UE side is very
challenging at present.

After the initial beam establishment, obtaining a unicast data
transmission with high directivity requires a beam much finer
than the SSB beam. Therefore, a set of PRS resources are
configured and transmitted over different directions by using
finer beams within the angular range of the beam from the
initial acquisition process. Then, the UE measures all these
beams by capturing the signals with a fixed receive beam. The
best transmit beam is selected using PRS-RSRP measurements
(defined in 3GPP TS 38.215 [334, Section 5.1.28]) on all the
transmit beams, which allow to determine the best AOD. Lastly,
the AOA measurements needed for positioning with NLS are
derived from the AODs.

Fig. 12 illustrates the beam refinement with an example. The
orange beam is selected during P1 at the UE end, while all the
colored beams refer to the PRS resources sent in DL by the BS.
The straight blue line identifies the direct path that links UE and
BSs, and it shows clearly that the PRS with the highest RSRP
will be the one with index 1 (light green) because is the one with
more directivity to the UE.

The number of finer beams depends on the number of
PRS resources employed. Since in our work, all the PRSs are
delivered in a single slot, the maximum number of beams is
12. In Fig. 13, we show an RB with the set of PRS in use,
which is an example of comb 12 with 12 OFDM symbols and
12 resources. A critical aspect of beam selection is related to
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Fig. 13. PRS resource set employed for beam generation in the beam refinement
procedure. Each color represents a different PRS RE.

the duration of the beam searching procedure, which reduces the
data rate of the link, especially if exhaustive searches are carried
out. For this reason, literature works have proposed to speed up
the searching procedure by exploring in-band signalling [335],
[336] or the repeatability of the wireless environment to learn
the geo-referenced optimal beams [337], [338].

3) UL-AOA: UL-AOA is a network-based positioning
method where the BS exploits the signals transmitted by the UE,
i.e., the SRS, to determine the AOA both in zenith and azimuth
directions. As for the DL-AOD, a directional antenna is required
to calculate the AOA. This is somehow a usual assumption
given that 5G NR supports multi-antenna transmission and
reception. According to the standard, there are several methods
for determining the AOA.

Classical AOA estimation is performed with conventional
beamforming, as described by procedure P3 in Section IV-E2.
These methods do not make any assumptions about how the
incoming signal and noise should be modeled. They require elec-
trically pointing beams in every direction (or a predetermined
selection of directions) and looking for power output peaks. The
beamforming is achieved by applying a Fourier-based spectrum
analysis to the spatio-temporal received samples. However, with
these methods, the beamwidth of the array limits the angular
resolution, necessitating a large number of antenna components
to attain high precision.

Other more advanced techniques are high-resolution
subspace-based methods like MUSIC [339] and ESPRIT [340].
This family of methods is better suited for lower frequencies, i.e.,
FR1, where digital beamformers are more widely accessible.
They process the eigenstructure of the incident signal by
computing spatial covariance matrices using digital samples
from each antenna element output. Due to the array aperture’s
modest size at lower frequencies, the spatial resolution is only
moderate, i.e., beams are relatively broad. As a result, contrary
to conventional beamforming, high-resolution approaches are
particularly useful at lower frequencies because they may
reduce the angular resolution to values smaller than the array’s
beamwidth without requiring the array aperture to be expanded.
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Fig. 14. TOF estimation via multi-RTT procedure in 5G using UL and DL
measurements. The procedure starts with the UE sending an SRS to the BS,
which responds with a PRS. The overall RTT is computed at UE side, knowing
the reply time of BS.

With the former technique, we are able to extract the AOA
measurement, i.e., the angle between the UE and a BS, while
with the latter type of technique, we analyze the received signal.

4) Multi-RTT: DL-TDOA requires precise synchronization
among the BSs, which is not obvious in a real scenario.
RTT does not require any synchronizations, even if a coarse
time synchronization is desirable to increase hearability from
multiple BSs. The synchronization accuracy needed for TDOA
is in nanoseconds, while for RTT, it is enough to be in
microseconds [88]. For this reason, an RTT measurement would
be a more suitable choice for the currently deployed networks.
Similar to TDOA, the basic measurement is TOA, one in UL
based on SRS and one in DL based on PRS, as shown in Fig. 14.
The two-time differences used to compute the RTT value are
referred to as the same clock: 𝑡3 − 𝑡0 is referred to as the
UE clock, while 𝑡2 − 𝑡1 is referred to as the BS one. Thanks
to this, synchronization is not needed anymore. However, in
multi-RTT, several BSs are involved simultaneously, and, with
a microsecond level synchronization, it is possible to send back
the signals in different time slots or in the same time slot with
different frequency offsets. With a static UE, it is possible
to send the signal of each BS in different time slots. In the
case of mobile positioning, this choice would lead to higher
measurement errors. Generally, all the measurements need to be
concurrently made to mitigate the errors.

F. Extraction of 5G positioning measurements

In this section, we provide examples of how it is possible to
address NLOS detection (Section IV-F1), and we describe the
selected procedure used to extract the positioning measurements
from the 5G signals, considering both DL (Section IV-F2) and
UL (Section IV-F3).

1) NLOS detection: The identification of NLOS propagation
condition refers to the category of algorithms able to character-
ize the propagation path of a signal. Specifically, such techniques
allow to understand (or at least hypothesize) whether the signal
is received from reflected paths. Acknowledging if a signal has
traveled over a reflected path allows to accurately account for

its excess ranging information in a tracking algorithm, thus
improving the final localization performance [341]–[343].

In the literature, several NLOS detection and mitigation
techniques have been developed in the past. We here report
some of them, which include statistical methods as well as ML
solutions [344]. The oldest prior art is well-summarized in [345],
which includes constrained localization, identify and discard,
and least square (LS)-based techniques. Regarding more recent
works, instead, the authors in [346] designed non-parametric
techniques utilizing LS-SVM to discriminate LOS from NLOS
conditions and mitigate the biases of NLOS range estimates.
In [347], DNN methods were employed, combining CNN and
long short-term memory (LSTM) networks. In [348], a Bayesian
filter that jointly tracks the time-varying visibility conditions and
the UE motion has been proposed, and it is demonstrated to effi-
ciently handle NLOS in harsh industrial environments. In [349],
the environmental conditions are predicted by exploiting the
information of vehicle onboard sensors; the so-called dynamic
LOS-map is used to improve the V2X performance by selecting
optimal relays. In [266], a semi-supervised anomaly detection
technique was used to identify LOS conditions by means of
an AE structure applied to the full CIR. A neural-enhanced
sum-product algorithm using an ad-hoc factor graph has been
designed in [350], demonstrating highly robust positioning and
tracking capability. Transfer learning has been recently proposed
for NLOS error detection and correction as well [351].

2) Downlink: For DL positioning, we proceed according
to the block diagram illustrated in Fig. 15, where the blocks
pertaining to the BS are colored in blue, while the UE is in
orange. Two types of signals are used: SSBs and PRSs. SSBs are
generated to perform the procedure P1, while PRSs are used for
the procedure P2 (see Section IV-E2) and the timing estimation.
After the SSB and DMRS generation, both the Tx BS and Rx UE
perform a beam sweeping phase over all the configured angular
domain. Typical conditions include an omnidirectional UE and
a tri-sector BS, although many other configurations are possible.
Signals are generated according to an OFDM modulation, and
after the channel propagation, they are demodulated, and the
channel is estimated. The beam determination is then performed
at Rx UE by selecting the beam pair with the highest received
power.

Recalling the channel matrix H𝜏 from (2), by summing over
all the sampled delays to getH =

∑
𝜏H𝜏 , and defining the beam

codebooks comprising 𝐿 and 𝑉 candidate beamforming vectors
at Rx and Tx sides respectively as Wrx = {𝝎rx,1, . . . ,𝝎rx,𝐿} ∈
C𝑁rx×𝐿 andWtx = {𝝎tx,1, . . . ,𝝎tx,𝑉 } ∈ C𝑁tx×𝑉 , the selection of
the optimal beam pair follows an optimization problem defined
as:

arg max
ℓ,𝜈

��𝝎H
rx,ℓ H𝝎tx,𝜈

��2 (41)

s.t. 𝝎rx,ℓ ∈ Wrx, with ℓ = 1, . . . , 𝐿,
s.t. 𝝎tx,𝜈 ∈ Wtx, with 𝜈 = 1, . . . , 𝑉 .

Since each vector in the codebooks corresponds to a specific pair
of azimuth and elevation angles, the solution to (41) determines
optimal pair of AOA and AOD.

Up to 8 SSBs can be transmitted in a frame at FR1, a value that
raises to 64 for FR2, and they can be steered across the entire BS
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Fig. 15. DL block diagram for the extraction of location measurements. Top row represents the beam pair selection in DL-AOD estimation; whereas the bottom
one reports the angle refinement and TOF extraction. The BS, propagation channel and UE are indicated with blue, white, and orange colors, respectively. The
OFDM Demodulation block includes the channel estimation.
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Fig. 16. UL block diagram for the extraction of location measurements. The BS, propagation channel, and UE are indicated with blue, white, and orange colors,
respectively.

sector in azimuth (𝐴𝜙) and elevation (𝐴𝜓). Given the number
of steering vectors in azimuth 𝑁SSB

𝜙
and the number of steering

vectors in elevation 𝑁SSB
𝜓

, we can define the SSB resolution
for azimuth and elevation, respectively, as 𝜙SSB

RES = 𝐴𝜙/𝑁SSB
𝜙

and 𝜓SSB
RES = 𝐴𝜓/𝑁SSB

𝜓
. Then, PRS and PDSCH are generated.

For the AOD estimation, 𝑁PRS narrow beams are shot within the
spatial domain selected in the SSB reporting (see Fig. 12). Since
𝑁PRS = 𝑁slot

symb and they can be steered in azimuth and elevation,
we define the number of steering vectors in azimuth as 𝑁PRS

𝜙
and

the number of steering vectors in elevation as 𝑁PRS
𝜓

. Therefore,
we can depict the PRS resolution for azimuth and elevation
respectively as 𝜙PRS

RES = 𝜙SSB
RES/𝑁

PRS
𝜙

and 𝜓PRS
RES = 𝜓SSB

RES/𝑁
PRS
𝜓

.

Since OFDM signals are employed, it is worth delving into
a more comprehensive exploration of the techniques for effec-
tively managing them [278], [352], [353]. Before transmitting
the signal across the wireless channel, the discrete signal can be
oversampled during the inverse fast Fourier transform (IFFT)
process, followed by the addition of a cyclic prefix. After the
propagation, a first coarse synchronization is performed, usually
detecting the PSS of the SSB in the time-domain [354]. Then,
before the FFT, the cyclic prefix is removed. Moreover, in the
context of multi-link communications, it becomes essential to
differentiate between various BSs based on their respective Cell-
IDs and the corresponding 𝑇PRS

offset, RE. For timing estimation, one
PRS is modulated, and the TOA is estimated at the UE side by
computing a cross-correlation between the received waveform
and the replica of the transmitted waveform at the Rx. Recalling
the Tx and Rx signal 𝒚𝑡 ∈ C𝑁tx×1 and 𝒛𝑡 ∈ C𝑁rx×1 from (1),
which are sampled with sample time 𝑇𝑠 = 1/(Δ 𝑓 · 𝑁 𝑓 ), we

define the cross-correlation 𝑟𝑡 as:

𝑟𝑡 =

𝑁rx∑︁
𝑛rx=1

𝑁tx∑︁
𝑛tx=1

𝑁𝑠−1∑︁
𝑛𝑠=0

𝑧𝑛rx ,𝑛𝑠 · 𝑦𝑛tx ,𝑡−𝑛𝑠 , (42)

where 𝑁𝑠 is the number of samples. Then, the highest peak of
the cross-correlation can be used to detect the TOA, even if the
use of advanced techniques for first peak detection is advisable
to ensure more accurate results [355]–[358]. This is particularly
pertinent in scenarios with significant multipath effects, as the
primary peak associated with the first path may be weaker,
with the strongest peak potentially originating from a signal
reflection. The TOA can be later employed for TDOA or RTT
estimate.

3) Uplink: For UL positioning, we proceed according to the
block diagram illustrated in Fig. 16 In UL positioning, only SRS
signals are employed. For both time and angle estimation, the
first three steps are the same as for DL, i.e., SRS and physical
uplink shared channel (PUSCH) generation, OFDM modulation,
and channel propagation. Afterward, TOA estimation follows
the same rules described in Section IV-F2. Instead, for angles,
we demodulate the signal, and then a high-resolution MUSIC
algorithm is used (see Section IV-E3). MUSIC algorithm
enables an accurate estimate of AOA of signals in cases when the
Rx is equipped with MIMO technology. The process of applying
the MUSIC algorithm in the UL scenario can be described as
follows.

After OFDM demodulation and noise-filtering, the sample
covariance matrix of the data is computed. By taking into
account the time correlation between different antenna-element
readings, the covariance matrix allows for an effective separation
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between signal and noise. Indeed, subsequently, the covariance
matrix is decomposed into its eigenvectors and eigenvalues,
where eigenvectors corresponding to the largest eigenvalues
form the signal subspace, while those corresponding to smaller
eigenvalues form the noise subspace. Lastly, the algorithm
searches over a specified grid of AOAs, identifying the arrival
vectors whose projection into the noise subspace is minimal.
This information is used to estimate the AOA.

V. Simulation experiments
In this section, we provide a thorough analysis of the

performance of 5G positioning assessed over multiple scenarios
and with different system configurations. We start by defining the
adopted performance metrics in Section V-A, then we present
the simulation environments in Section V-B, and the system
settings in Section V-C. The simulations consider the use of
PRS, SRS, and SSB as defined in Section IV-D. Numerical
results are reported in Section V-D, while concluding remarks
on the achieved performance are in Section V-E.

A. Performance metrics
We analyze the positioning performance in terms of the

accuracy of the location estimate, i.e., in terms of the 2D location
estimate errorΔ𝒖 = �̂�−𝒖, whose l2 normΔ𝑢 = ∥Δ𝒖∥ represents
the distance between the true and the estimated UE locations.

We consider several accuracy metrics (averaged over the UE
positions and Monte Carlo iterations), including the bias vector
𝒃 = E[Δ𝒖], with 𝑏 = ∥𝒃∥ representing the distance between the
mean location fix and the true location, the root mean square
error (RMSE) (also known as root mean square distance) defined
as RMSE =

√︁
E[Δ𝑢2], and the mean absolute error (MAE)

defined as MAE = E[Δ𝑢] (mean distance between the location
fix and the true location). In addition to the mentioned average
metrics, we also consider the cumulative density function
(CDF) and the probability density function (PDF) of Δ𝑢. We
also report the position error bound (PEB) value computed
from the CRB, recalling that RMSE ≥

√︁
tr(𝑱(𝒖)−1) and

PEB =
√︁

tr( [𝑱(𝒖)−1]1:2,1:2) [359].
The location accuracy is known to depend on two main

factors: the statistics of the measurement errors 𝑛𝑖 in (3) and
the geometric arrangement of the BSs with respect to the
UE, referred to as geometric factor [360]. In our analyses, we
investigate both of them by analyzing the measurement statistics
and the variation of the location error ellipse over the space.

B. Simulation environment
The RT tool provided by Matlab® [361] is here used to

perform the 5G positioning simulations. This tool allows to
faithfully model the PRS and SRS signals according to 3GPP
Rel-16 and propagate them over a 3D environment accounting
for the presence of buildings and associated multipath effects.
The propagation model can be designed with an arbitrary
number of reflections, depending on the context. The 3D
environment is modeled with the Site Viewer feature, which,
combined with RT, allows to recreate realistic scenarios for
performance analyses. An example of a simulation environment

UE
BS

Fig. 17. Snapshot of Matlab® RT tool for a scenario with three BSs (blue
markers) and one UE (green marker) in the surroundings of Politecnico di
Milano Leonardo campus.

in Matlab® is shown in Fig. 17, where three BSs (blue markers)
are deployed around the Leonardo campus of Politecnico di
Milano, Piazza Leonardo da Vinci, Milan, Italy, and one UE
(green marker) is placed in the middle of the courtyard. The
drawn rays represent the signal propagation paths computed by
the RT for each BS, colored according to the path loss value and
showing Both LOS and NLOS conditions.

We perform 5G positioning simulations in both outdoor and
indoor environments, with either static or dynamic UE condi-
tions. We consider, in particular, an outdoor urban area around
the Politecnico di Milano Leonardo campus, representative of an
urban mobility use case, and an indoor environment within the
Politecnico di Milano Bovisa Durando campus, representative of
an industrial use case, inside the MADE Competence Center, a
laboratory facility on Industry 4.0 that simulates a digital factory
and hosts a wide range of industrial machinery. For the former,
OpenStreetMap files containing the geographical information
about buildings have been imported in Matlab®; for the latter,
we imported a 3D lidar scanning of the MADE Competence
Center. The considered outdoor and indoor environments are
illustrated in Figs. 18 and 19, respectively.

The outdoor scenario consists of a 1 km2 outdoor urban area,
in which we deployed 15 5G sites, each composed of 3 antenna
panels oriented at 0°, 120°, and -120° with respect to East,
at a height of 4 m from the support point. Despite the fact
that this deployment does not match the current installation
of mobile operators in the area, as they do not guarantee
enough density and multi-BS visibility for cellular positioning,
it is selected as a trade-off between the needs of guaranteeing
enough BSs visibility and limiting the overall number of BSs.
More efficient deployments can be designed using optimization
algorithms [362], while higher performances can be achieved
by further increasing the BS density. The visibility map for
the considered deployment over the simulated UE trajectory is
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BS
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Fig. 18. Outdoor urban scenario in Politecnico di Milano, Leonardo campus
- BSs deployment, coverage, and UE locations. Blue markers indicate the
positions of 5G BSs, the green marker identifies the UE position used for
outdoor static experiments, while the red circles outline the UE trajectory used
for mobile outdoor simulations.

shown in Fig. 20. Note that for mmWave urban scenarios, the
3GPP standard recommends a dense deployment similar to the
proposed one with a distance of 200 m between each BS [363],
as confirmed by further coverage studies in the literature [364].

The 3D rendering resulting from the lidar acquisition of the
indoor scenario is reported in Fig. 19a, where the two considered
sub-areas representative of an office area and a factory area are
highlighted. A more detailed visualization of such areas is shown
in Fig. 19b and Fig. 19c, respectively. For the office room, we
placed a single tri-sectorial cell, while in the industrial area,
we deployed 4 BSs in the four edges near the column, pointing
towards the center.

C. Simulation parameters
For the simulation settings, we refer to two scenarios

described in 3GPP TR 38.857 [153, Table 6-1]. The scenario for
FR1 specification considers 𝜇 = 1 (Δ 𝑓 = 30 kHz and 𝐵𝑊 = 100
MHz) with a carrier frequency 𝑓𝑐 = 3.5 GHz. Instead, for FR2,
the scenario has a numerology 𝜇 = 3 (Δ 𝑓 = 120 kHz and
𝐵𝑊 = 400 MHz) with a carrier frequency 𝑓𝑐 = 28 GHz.

The simulated radio devices employ a uniform rectangular
array (URA), defined by the tuple (𝑀𝑔, 𝑁𝑔, 𝑀𝑎, 𝑁𝑎, 𝑃),
where 𝑀𝑔 is the number of panels in the vertical plane, 𝑁𝑔
the number of panels in the horizontal plane, 𝑀𝑎 the number
of antenna elements in the vertical plane, 𝑁𝑎 the number of
antenna elements in the horizontal plane, and 𝑃 the polarization
of the antenna panel (𝑃 ∈ {0, 1}) [281]. In the considered
experiments, the UE has an antenna array defined by the tuple
(1, 1, 2, 2, 1), while BSs default configuration is (1, 1, 4, 4,
1) for ranging measurements and (1, 1, 8, 8, 1) for angles.
Each BS is 3GPP standard compliant [281] and is configured
with 33 dBm of transmission power for the outdoor scenario and

Office

Industrial
(a) 3D rendering of the indoor scenario

UE

BS

(b) Office area

UE
BS

(c) Industrial area

Fig. 19. Indoor scenario in Politecnico di Milano, Bovisa Durando campus,
MADE Competence Center: (a) 3D rendering from lidar acquisition, (b) indoor
office area rendering, (c) indoor industrial area.

23 dBm in indoor [333], [365]. The use of MIMO systems allows
the implementation of the MUSIC for an accurate estimate of
AOAs, which is more effective at the BS side rather than at the
UE as the number of antennas is higher.

The channel is modeled according to the standard using
a clustered delay line (CDL) impulse response for NLOS
profiles, which can be defined up to a maximum bandwidth
of 2 GHz [281]. The CDL model adopted for the simulations is
the customized one, where channel parameters can be adapted
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Fig. 20. Outdoor urban scenario - Visibility map along the trajectory. For each of 15 BSs, red area refer to NLOS condition, while green ones are for LOS
condition. The first subplot refers to the aggregated number of LOS BSs.

to the RT [366] multipath configuration. The number of path
reflections is set to two with the shooting and bouncing rays
(SBR) method.

The noise power spectral density (𝑁0) is modeled as follows:

𝑁0 = 𝑘B · 𝐵𝑊 · 𝑇𝑒, (43)

with 𝑘B as the Boltzmann constant [JK−1], 𝐵𝑊 the bandwidth
[Hz], and 𝑇𝑒 = 𝑇ant + 290(𝑁𝐹 − 1) the noise temperature [K],
where 𝑇ant is the temperature [K], and 𝑁𝐹 is the linearized
noise figure, both referring to the receive antenna. For DL
measurements, 𝑁𝐹 = 9 dB in FR1 and 𝑁𝐹 = 10 dB in FR2,
while for UL measurements, 𝑁𝐹 = 5 dB in FR1 and 𝑁𝐹 = 7 dB
in FR2. Instead, 𝑇ant = 298 K (25° C) [153].

The PRSs are defined for ranging measurements with
𝑇PRS

offset, RE = 0, and starting symbol index 𝑙0 = 0; 𝐾size = 12 and
𝑁slot

symb = 12 without muting; 𝑇PRS
rep = 1 slot and 𝑇PRS

per = 10240
slots. Each BS sends a PRS with 𝑇PRS

offset = 2 slots with respect
to the other BSs in order to avoid overlaps [323]. For the beam
refinement procedure, we need to use more REs since each
RE corresponds to a beam. Therefore, with a comb-12 pattern,
we are able to create a maximum of 12 beams all at once
beamformed in frequency. Alternatively, it might be feasible
to increase the number of beams while reducing the number of
REs through the implementation of time-based beamforming.
To accomplish this task, our settings consider 𝑇PRS

per = 10240
slots, while 𝑇PRS

offset and the RE offset 𝑇PRS
offset, RE are 1 × 12 arrays,

the former has the same value repeated (as before each BS has
an offset of 2 slots with respect to the others), and the latter has

incremental values between 0 and 11. All the other values are
unchanged.

The SRSs, instead, need to be configured for 3GPP Rel-16
positioning, with 𝑁slot

symb = 8 and 𝐾size = 8, starting frequency
index 𝑓0 = 0, starting symbol index 𝑙0 = 0, and 𝑛RRC = 0,
which is an additional offset from 𝑙0 specified in blocks of
4 RBs. For the bandwidth configuration, we set the values
𝐵SRS = 0 and 𝐶SRS = 63 to unlock the maximum bandwidth
(i.e., 𝑚SRS = 272), and 𝑏hop = 0 to disable the frequency
hopping. We also enable the periodic resource type with period
and repetition as𝑇SRS

per = 10240 and𝑇SRS
rep = 2 slots [328]. For the

data transmission, we define the PDSCH and PUSCH, assuming
to have a single transmission layer.

Regarding the algorithm implementations, the NLS is im-
plemented by setting the step-size scaling parameter 𝜂 = 0.01,
a maximum of 1000 iterations, and a stopping condition of
∥�̂�𝑘 − �̂�𝑘−1∥ < 10−4 m. While the NLS is generally used for
static UE positioning, the EKF is preferable to estimate mobile
UE. The mobility model is a random walk, and the driving
process covariance matrix is defined as 𝑸𝑡 = diag

(
𝜎2
𝑥 , 𝜎

2
𝑦 , 𝜎

2
𝑧

)
,

where the diagonal entries denote the uncorrelated standard
deviations along the three axes, respectively.

D. Numerical results

In the following, we evaluate the accuracy performance of
5G positioning in the selected outdoor and indoor environments,
with various configurations of system parameters. The code used
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for the simulation in the outdoor scenario is publicly available1.
1) Outdoor environment: For the outdoor case, we first

present a statistical analysis of the location-related measure-
ments extracted from the 5G radio signals. We then consider
a static positioning use case (green pin in Fig. 18) where we
assess the effect of the numerology, the type of measurements,
and the BS antenna array configuration using as positioning
algorithm the NLS with Gauss-Newton implementation (see
Section III-C). Finally, we discuss a dynamic use-case with the
UE moving along the red trajectory in Fig. 18, where we assess
the tracking performance of EKF localization (see Section III-D)
using different types and numbers of measurements.

a) 5G measurement accuracy: Before assessing the per-
formance of 5G positioning, it is worth analyzing the statistics of
the location measurements extracted from the received 5G radio
signals. They will then be used for multi-lateration/angulation.
We recall that signal propagation from the Tx to the Rx is
simulated using the Matlab® RT tool.

We report in Fig. 21 the PDF of the measurement error
in (3), i.e., 𝑝(𝑛𝑖), that is observed by collecting the location
parameters along the red trajectory of the dynamic scenario in
Fig. 18. We analyze the measurement errors obtained with the
numerology 𝜇 = 1 on the azimuth AOA (Fig. 21a), elevation
AOA (Fig. 21b), and TOA (Fig. 21c), distinguishing between
LOS and NLOS conditions. Regarding the azimuth AOA, we
observe a symmetric distribution of the errors centered around
0 deg, with larger support for the NLOS case. The symmetry,
on the other hand, is not observed on the elevation angle in
NLOS conditions, as most of the errors are negatively biased
in elevation due to the terrain reflections, whereas ranging
inaccuracies are mostly positive since the TOF is usually the
first peak in the cross-correlation. Therefore, in the case of
peaks generated by multipath or NLOS measurements, the range
estimate is higher than the real distance.

b) Impact of the numerology: As first assessment of
5G positioning, we evaluate the impact of the numerology
𝜇 ∈ {0, 3} (i.e., both FR1 and FR2) in static conditions,
using DL-TDOA measurements. The static positioning outdoor
scenario is characterized by an open area (i.e., a running
track) surrounded by four BSs. This emulates a condition
where no obstacles are present, resulting in a nearly ideal LOS
environment for positioning.

As a first example, Fig. 22a shows the scatter plot of the
location fixes obtained by the NLS algorithm and the associated
error ellipses for all the considered numerology, i.e., 𝜇 = 0 in
blue, 𝜇 = 1 in orange, 𝜇 = 2 in yellow and 𝜇 = 3 in purple.
A first takeaway is related to the non-recommended use of the
lowest numerology for positioning tasks, as such configuration
leads to large positioning errors, even in ideal LOS conditions.
A more detailed comparison of the positioning performances
given in terms of CDF of the UE position error in Fig. 22b.

A quantitative summary of performance metrics is reported
in Table X, in terms of measurement accuracy 𝜎TDOA, two-
dimensional (2D) RMSE, MAE and bias. Analyzing the values
in the table for 𝜇 = 3 and 𝜇 = 0, we quantify an improvement
of 97.3% on the 2D RMSE.

1Link to the public code repository: https://github.com/Ita97/5G-Tutorial-
Code
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Fig. 21. Outdoor urban scenario - analysis of the measurement accuracy:
measurement errors in LOS (orange) and NLOS (blue) conditions for 𝜇 = 1. (a)
azimuth AOA; (b) elevation AOA; (c) TOA.
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Fig. 22. Static outdoor UE positioning in Politecnico di Milano, Leonardo
campus area - effect of numerology using DL-TDOA measurements. (a)
scatterplot of the position estimates and associated error ellipses for 𝜇 ∈ {0, 3}.
(b) CDF of UE position error with DL-TDOA measurements.

TABLE X
Summary of results for static UE outdoor positioning with DL-TDOA

measurements using different numerologies

𝜇 0 1 2 3

𝜎TDOA [m] 5.99 0.98 0.58 0.30
2D RMSE [m] 14.7 0.98 0.76 0.40
2D MAE [m] 3.72 0.96 0.47 0.25
2D bias [m] 1.86 0.81 0.09 0.09

PEB [m] 4.13 0.68 0.4 0.21

c) Impact of measurement type: We extend the analysis
on static UE positioning by focusing on numerology 𝜇 = 1 and
evaluating the effect of the measurement type on the positioning
performance. This comparison includes DL-TDOA, multi-RTT,
UL-AOA and DL-AOD methodologies.
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Fig. 23. Static outdoor positioning - multipath detection on the residual error.
PDF of the mean absolute residual error of NLS estimation using UL-AOA
measurements. The red dashed line represents the threshold to discriminate
multipath-affected positioning outputs.

Dealing with angle estimation, note that the MUSIC algo-
rithm used in UL estimation is more prone to the multipath
effect than the beam management procedure employed for DL-
AOD estimate due to the finer beam resolution. The critical
determination of whether the signal is received via indirect
propagation paths holds significant importance in identifying
unreliable measurements that should be discarded. To this aim,
a strategy could be to inspect the residual error Δ𝝆 of the NLS
algorithm. For the considered static outdoor positioning test,
the PDF of the mean absolute residual error is reported in
Fig. 23, which exhibits a clear bi-modal shape. The second
peak (at around 15-20 deg) comes from the contributions of
indirect paths; thus, it is possible to identify a threshold (red
dashed line) discriminating between UL-AOA from LOS and
NLOS paths. The implication of using such a threshold is
highlighted in Fig. 24, in which we show the position estimated
and associated error ellipse with and without discarding UL-
AOA NLOS measurements. In case we do not detect NLOS
measurements, i.e., we equally consider all the UL-AOAs, the
error ellipse is quite high (red ellipse). On the other hand, by
detecting the NLOS measurements and discarding them (shown
in purple), the final error ellipse (in blue) is smaller and centered
around the true UE position.

Table XI reports the results of the comparison between
the different methods in terms of the standard deviation of
measurement error (𝜎TDOA, 𝜎RTT, and 𝜎AOA), and the following
positioning metrics: 2D RMSE, MAE and bias. Focusing
only on angle-based positioning, our observations reveal that
the DL-AOD positioning approach, executed via the beam
management procedure, yields to high positioning errors despite
its reduced susceptibility to multipath interference. Instead,
the UL-AOA positioning methodology exhibits a heightened
susceptibility to the multipath phenomenon. The removal of
NLOS measurements results into a notable enhancement in
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Fig. 24. Static outdoor positioning with UL-AOA measurements: position
estimates and associated error ellipses.

TABLE XI
Static outdoor positioning - summary results for different positioning

methodologies in FR1 (𝜇 = 1)

DL-TDOA multi-RTT UL-AOA DL-AOD

𝜎n [m] 0.98 0.59 - -
𝜎AOA, az [deg] - - 2.64 4.01
𝜎AOA, el [deg] - - 1.55 0.57
2D RMSE [m] 0.98 0.89 8.60 10.57
2D MAE [m] 0.96 0.84 3.55 10.55
2D bias [m] 0.81 0.81 0.39 10.55

PEB [m] 0.68 0.53 5.30 8.05

positioning accuracy. Specifically, the mean of the positioning
estimates closely approximates the true UE position. Lastly,
we point out that ranging-based methodologies, i.e., DL-TDOA
and multi-RTT, yield superior accuracy in terms of RMSE and
MAE compared to their angle-based counterparts, as they are
less impacted by the incorrect geometrical information coming
from multipath. Moreover, the degree of error induced by the
angles is highly dependent on the distance and the BS array
configuration. Among the ranging-based approaches, multi-
RTT measurements demonstrate a higher level of accuracy
compared to DL-TDOA. This advantage is justified by the fact
that, at first, we do not account for synchronization errors at
the UE side and assume perfect knowledge regarding the reply
time. Then, it is also explained by the additive property of the
variance of measurement noise on the two communication links
involved in a TDOA computation.

A comparison of all the four considered positioning method-
ologies is given in Fig. 25 in terms of PDFs of UE position-
ing error. The colored histograms reveal that ranging-based
methodologies have a support of less than 3 m, while angle-
based methods exhibit errors exceeding 10 m. However, it is
noteworthy that the UL-AOA approach achieves an error peak
close to one meter, similar to the performance of TDOAs and
RTTs. By contrast, the DL-AOD method exhibits a conspicuous
bias, evidenced by a peak error of approximately 10 m.

[m]

[m]

[m]

[m]

PDF

Fig. 25. Static outdoor positioning - PDFs of the positioning error for each type
of measurement methodology.

TABLE XII
Static outdoor positioning - Impact of BSs array size in UE positioning

with UL-AOA measurements at FR1 (𝜇 = 1)

4 × 4 8 × 8 16 × 16

𝜎AOA, az [deg] 2.81 2.64 0.95
𝜎AOA, el [deg] 1.83 1.55 0.75
2D RMSE [m] 9.03 8.60 2.36
2D MAE [m] 4.85 3.55 1.73
2D bias [m] 1.0 0.39 0.34

PEB [m] 5.64 5.3 1.9

d) Impact of BS antenna configuration: As a last analysis
on static UE positioning, we analyze the impact of different
configurations of BS antennas in UL-AOA measurements in
FR1 (𝜇 = 1). Specifically, the communication hardware at BSs
is compared for the following tuples: (1, 1, 4, 4, 1), (1, 1, 8, 8, 1),
and (1, 1, 16, 16, 1). This analysis aims to evaluate the impact
of the number of MIMO antennas in accurately estimating
the AOA. Table XII reports the results of the comparison in
terms of azimuth and elevation accuracy (𝜎AOA, az and 𝜎AOA, el,
respectively) and resulting UE positioning in terms of 2D
RMSE, MAE and bias of the estimate. These results are reported
after the application of the residual error method (explained in
Section V-D1c) to get rid of positioning estimations biased by
the multipath effect. The use of common array sizes, such as
with a panel of 16 × 16 elements, allows the collection of angle
measurements that are accurate up to 1 deg in LOS condition.
With these settings (4 BSs in LOS surrounding the UE), the 5G
network is capable of localizing the UE with an error of about
2 m using only UL-AOA information.

e) Outdoor mobile scenario: This analysis aims to assess
the tracking performance of a 5G mobile positioning system
based on EKF in mixed LOS/NLOS conditions with a variable
number of visible BSs. The UE mobility model is a random
walk [299] with a sampling time of 0.7134 s, according to the
PRS periodicity 𝑇PRS

rep . We consider 5G signals in FR1 with
numerology 𝜇 = 1, and the use of DL-TDOA, UL-AOA and the
combination of the two types of measurement.

The 5G positioning results are first analyzed with the heatmap
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Fig. 26. Outdoor mobile positioning by EKF in Politecnico di Milano, Leonardo
campus area - heatmap of the UE positioning error [m]. (a) DL-TDOA only, (b)
UL-AOA only, and (c) DL-TDOA & UL-AOA.

of the positioning error in Fig. 26, complemented with the
associated CDFs in Fig. 27 and the summary in Table XIII.
Looking at the heatmaps in Fig. 26, higher errors are visible
in the bottom left part and in the upper right part of the
trajectory, where the visibility is poor, i.e., no LOS BSs or
at most one are present (see Fig. 20). The areas well covered
by many BSs, such as the top-left and bottom-right portions
of the trajectory, guarantee better positioning. We recall that at
least two BSs are required to have one TDOA measurement;
thus, having poor visibility conditions is detrimental to DL-
TDOA methodology. On the other hand, AOA-based methods
are highly susceptible to multipath, and the method of residuals
described in Section V-D1c cannot be employed within the EKF.
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Fig. 27. Outdoor mobile positioning - CDF of the UE positioning error using
an EKF with different types of measurements.

TABLE XIII
Outdoor mobile positioning - Summary results according to the type

of employed measurements

DL-TDOA UL-AOA DL-TDOA & UL-AOA

2D RMSE [m] 49.11 17.48 14.57
2D MAE [m] 20.06 11.16 7.42

Overall, the joint use of DL-TDOA and UL-AOA leads to better
positioning, as the tracking algorithm is frequently updating
the estimate with measurements, minimizing outage conditions
and avoiding to rely on motion model prediction over long time
periods. Table XIII depicts the overall accuracy of the trajectory,
showing the need for higher BS density to attain satisfactory
results when solely relying on 5G measurements.

A breakdown of the achieved UE position error according
to the number of available DL-TDOA measurements 𝑀 is
reported in Fig. 28. Notice that with only one or two TDOA
measurements, the results are very poor as the information gain
provided by the measurements in the EKF is limited by the
unfavorable geometrical condition. Increasing the number of
contemporary available measurements, the positioning results
tend to become more and more accurate. Having a number
of measurements higher than 3 guarantees good accuracy
(≈ 1 m). This is a demonstration of the importance of having
good visibility and coverage for unlocking precise positioning
services.

2) Indoor environment: For the indoor environment
(Fig. 19), we focus on two scenarios: an office with a single BS
and an industrial area full of metallic objects (e.g., machinery
and robots). This selection allows us to assess the 5G capabil-
ities for a perspective consumer application (e.g., smartphone
location-based services with FR2 support), as well as to analyze
the introduction of 5G positioning into industrial production
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Fig. 28. Outdoor mobile positioning - breakdown of the UE position accuracy
according to the number of DL-TDOA measurements 𝑀.

and manufacturing environments (e.g., by a 5G private network
providing positioning services inside a factory).

a) Office area: In the office scenario illustrated in
Fig. 19b, we focus on static UE positioning with a single BS
using the NLS algorithm. We consider RTT and UL-AOA mea-
surements extracted from PRS and SRS. The communication
link is at FR2, with numerology 𝜇 = 3 (𝐵𝑊 = 400 MHz). For the
ranging measurements, we adopt a parabolic interpolation [367]
to improve the detection of the peak of the cross-correlation at
the Rx side. The antenna array is configured with the tuple (1,
1, 8, 8, 1).

In this small environment, we observed a measurement accu-
racy equal to 𝜎AOA, az = 𝜎AOA, el = 3.44 deg, 𝜎RTT = 0.32 m,
while the results for UE positioning indicate a 2D RMSE of
0.66 m and an MAE of 0.52 m, with bias of 0.38 m.

The location fixes provided by the different positioning
methods are shown in Fig. 29. The presence of multiple
clusters manifests the ambiguities generated by multipath on
angle estimation. The multipath detection method on residual
error (presented in Section V-D1c) remains constrained when
restricted to two measurements. As a matter of fact, the NLS
will always converge with low Δ𝜌. Nevertheless, opportunities
for mitigating this error still exist, especially through the in-
corporation of supplementary information such as architectural
floor plans. Practically, embedding physical constraints on
the position estimates will enforce the positioning algorithm
to provide outcomes falling within the office area, rejecting
estimates falling outside. An example of such a process is shown
in Fig. 29, where the estimated positions that fall outside the
office room are highlighted in pink, while those inside are in
blue. The goal of the figure is to point out the improvements
that can be obtained by discarding outside estimates in terms of
error ellipse: the ellipse is larger in case the room information is
not embedded. By incorporating side information on the room

Error ellipse w/o room information
UE estimates outside the room
Error ellipse with room information
UE estimates inside the room

6
m

4 m

Fig. 29. Indoor single-BS positioning - scatterplot of position estimates and
error ellipse. Comparison of embedding (blue) or not (pink) information about
the room physical dimension.

map, the achieved positioning has a 2D RMSE of 0.49 m and
an MAE of 0.41 m, with a bias of 0.31 m.

b) Industrial area: In the industrial area (Fig. 19c), we
placed 4 tri-sectorial cells in the corners near the columns. The
simulations refer to a worker walking around the area over a U-
shaped trajectory. A peculiarity of the scene is the high density
of metallic surfaces, which produce strong multipath effects. As
for the tracking in Section V-D1, we employed the EKF with
a sampling time of 0.7134 s, according to the PRS periodicity
𝑇PRS

rep , and the antenna array is defined by the tuple (1, 1, 4, 4,
1). Also in this case, we adopted numerology 𝜇 = 3 and the
parabolic interpolation for TOA peak detection.

The analysis is focused on assessing the tracking ability when
using DL-TDOA measurements, comparing the cases of being
able to accurately discard NLOS measurements (green curve)
with a solution that uses all TDOAs regardless of the visibility
condition (red curve).

The estimated trajectories are reported in Fig. 30, which
shows remarkable improvements brought by an NLOS identifi-
cation algorithm in discarding unreliable measurements, even in
the presence of strong multipath caused by metallic objects and
surfaces. Fig. 31 reports the heatmap of the positioning error,
observing that the large positioning errors for the EKF that
uses all DL-TDOA measurements are mainly present near the
obstacles that prevent direct BSs visibility. Overall, we achieve a
mean accuracy of 1.97 m for the EKF without NLOS mitigation
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Fig. 30. Indoor mobile positioning with DL-TDOA measurements. Comparison
between an EKF that is able to identify and discard NLOS measurements (green)
and an EKF that uses all the available measurements regardless of the visibility
condition (red).
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Fig. 31. Indoor mobile positioning - heatmap of the positioning error using DL-
TDOA measurements. (a) EKF with NLOS detection; (b) EKF without NLOS
detection.

and of 0.28 m for the EKF discarding NLOS measurements.

E. Open discussion and lessons learned
In Section V-D, we conducted extensive simulation experi-

ments to explore the capability of the 5G technology in providing
accurate positioning services. We examined static and mobile
positioning in both outdoor (Section V-D1) and indoor (Section
V-D2) scenarios. The objective of our analyses was to provide
quantitative results on the achievable performance for varying

5G numerology type of measurements (DL-TDOA, multi-RTT,
UL-AOA, or DL-AOD), BS antenna configuration, and BS
visibility.

The findings confirm that augmenting the bandwidth and
the antenna array aperture enhances the positioning accuracy,
as expected. Additionally, the quantity of BSs in visibility is
shown to play a pivotal role in achieving high positioning
accuracy. Overall, the fusion of multiple and heterogeneous 5G
measurements and the strategic application of tracking filters
represent a viable strategy for overcoming the issue of poor BS
visibility.

The numerical results suggest that in dynamic outdoor
scenarios, a mobile device is not yet capable of using 5G DL-
TDOA to localize itself with a sub-meter accuracy and meet
the requirements of the precise positioning services in Table II.
For enhancing the positioning performance, it is recommended
to use more sophisticated algorithms (e.g., tracking filters),
integrate multiple types of measurements, increase the number
of BSs in visibility, or even combine 5G with additional
localization technologies (e.g., GNSS or inertial units). On the
other hand, in indoor scenarios, 5G mmWave positioning is
shown to successfully achieve the cm-level accuracy, meeting
the stringent requirements of the industrial use cases outlined in
Table III.

Main lessons learned from the above performance analysis
are as follows:

• CDL channel modeling requires high computational com-
plexity that grows with the number of antennas, rays,
reflections, and diffractions. In this tutorial, we used
MIMO antenna arrays in all the simulations to ensure high
fidelity and realism in the simulated scenario. However,
in the case of ranging only, it is possible to reduce the
computational complexity by using an equivalent single-
input single-output (SISO) channel with a higher Tx power
that compensates for the MIMO beamforming gain.

• The geometric factor of the network deployment highly
affects the positioning results, particularly when a mobile
UE is involved, and the visibility conditions change over
time. In these cases, a BS selection algorithm that auto-
matically identifies the optimal set of BSs for positioning
is recommended. In TDOA-based positioning, the selection
algorithm should also account for the geometry of TDOA
hyperbola, guaranteeing a choice of the reference measure-
ment that avoids ill-conditioned geometrical problems.

• Positioning algorithms using only wireless measurements
can lead to poor performance (especially in NLOS environ-
ments). Assistance data such as environmental maps (both
indoor and outdoor) or a-priori information about forbidden
areas can be included in an advanced tracking methodology.
As an example, the availability of a floorplan of a building
can be valuable to discern whether a location estimate is
feasible (or not) or mitigate the error by constraining the
position estimates.

• The cellular network design currently relies on satisfy-
ing the communication requirements, which differ from
a positioning-optimal BSs placement. The delivery of
cellular-based positioning services should account for a
trade-off among the coverage, throughput, and geometrical
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factors for positioning during network planning.
• UE positioning in the presence of NLOS BSs is hard

even with tracking filters, resulting in high accuracy errors.
Ranging measurements from NLOS BSs overestimate the
UE, while NLOS angle measurements misrepresent the
spatial direction of the UE. A single NLOS TOF can bring
severe degradation if it is used as reference measurement
in TDOA-based methods. Intuitively, if the direct path is
obstructed by a building, the ideal direct path of about
100 m can be confused with a path in NLOS of 150 m,
resulting in an overall positioning error of about 50 m.
NLOS detection and mitigation techniques are almost a
requirement for precise positioning services, especially in
urban areas where the density of BS deployment cannot
guarantee a continuous LOS condition in any location.

• While 5G is designed to guarantee high positioning accu-
racy compared to previous generations of cellular networks,
achieving sub-meter and cm-level accuracy consistently
across diverse environments is still a challenge. Major
impacts are given by the hardware (for accurate AOA/AOD
information), bandwidth (which impacts the ranging ac-
curacy), and propagation conditions (because of multipath
and NLOS conditions, which are hard to mitigate). More
research efforts and industrial commitments are needed
to implement an accurate cellular positioning service,
ensuring that KPIs and requirements are respected.

As final remarks on the enabled positioning services de-
scribed in Table II and Table III, we point out that when relying
solely on 5G positioning without advanced filtering techniques,
only the vehicle decision assist V2X service is supported owing
to its required accuracy of 150 cm in a dynamic scenario when
𝜇 = 1. On the other hand, considering the context of indoor
industrial use cases, all the services except goods storage are
feasible.

VI. Current limitations of 5G positioning
In this paper, we highlighted the importance of cellular

positioning, starting with a historical overview, outlining the
major trends of the research (Section II), providing examples
of measurements and algorithms (Section III and detailing
the latest standard for cellular positioning (Section IV) with
associated simulations and performance analyses (Section V).
However, if technical concepts and architectures are well defined
from a theoretical point of view, the practical implementation
into commercial systems is still restrained. The discussion in
the following sections is thus focused on current impairments
that still limit a pervasive adoption of cellular positioning
technologies.

A. Antenna position and orientation
Accurate cellular positioning strictly needs a precise knowl-

edge of the true location of each antenna panel of a BS in terms
of latitude, longitude, and altitude. At present, the information
about the BS location is approximately known, e.g., with GNSS
surveys, and typically, there are no indications on the exact
positions of distributed panels: there is one location information
for each BS. Considering that there are sites with non-co-located

panels (possible distances of tens of meters between different
panels), a lack of this information unavoidably introduces errors
in time-based positioning measurements. It follows that precise
surveys for each BS are needed to construct a reliable database
of exact antenna positions, and this operation can be tedious,
time-consuming, and complex due to (not so rare) impervious
sites.

Similar to the antenna positions, it is also required to have
precise information about its tilting to guarantee reliable angular
information. Manual tilting measurements are subject to errors,
and also, in this case, the operations can be risky and complex,
even more than measuring the position. Of course, the antenna
supports should not allow for rotations over the years, i.e., they
should be resistant with respect to severe weather conditions.
Furthermore, accurate calibration procedures are requested to
guarantee optimal performance of the antenna arrays at BSs.

Lastly, an exact knowledge of the length of cabling from the
antenna to the signal source generator (typically at the baseband
unit) and the cabling material is required to precisely measure
the signal TOF.

B. Synchronization error
While the recommendation for communication of ITU indi-

cates a tolerable synchronization error of ±1.5 𝜇s [331], the
requirements for positioning are more stringent. As a matter of
fact, a synchronization error of ±3 ns results into a positioning
error of ≈1 m, and the upper bound for synchronization of
±1.5 𝜇s results into ≈450 m of undesired ranging error, which
is clearly incompatible with most of positioning requirements
(see Section II-A) and would prevent precise cellular positioning
services. At present, 5G networks use GNSS-based synchro-
nization or packet-based synchronization with IEEE 1588v2
PTP [368], but these standards cannot provide an accuracy close
to 1 ns. Reaching a near-zero nanosecond error is challenging,
but research demonstrates that fiber-based solutions such as
the White Rabbit protocol [369] can reach synchronization
error values of 1 ns or even less [370]. Having a precisely
synchronized 5G network will ensure a common scanning of
the time domain for all BSs, which would exactly transmit in
the allocated time slot, limiting the interference and avoiding
introducing degrading effects on time-domain measurements
due to clock drifts.

C. BS density
The foreseen density of 5G BSs in urban scenarios is one

BS every 200 m [363]. If having such a high number of BSs
increases the investment costs of operators, on the other side, it
brings a significant improvement on the cellular positioning
use case, boosting the roll-out of commercial services. We
demonstrated that it is possible to localize a UE with a single BS
in LOS; thus, a high density of BSs would minimize blind areas
and NLOS conditions, allowing for a precise cellular positioning
service to the users. Clearly, the coverage of a single BS would
be limited to a few tens of meters, thus demanding the network to
perform handover procedures quickly. The advantage of having
close BSs is that it facilitates the indoor/outdoor transition,
guaranteeing a seamless positioning service.
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D. Hardware availability
As of today, experimental activities on 5G positioning are

slowed down by a lack of commercial-ready hardware allowing
the extraction of physical level parameters. As a matter of
fact, current practical works mainly adopt modified commercial
devices [371], [372] or ad-hoc hardware [373], [374] which
rarely permit the exploitation of raw measurements. So far,
the only research paper that measures raw 5G TOF is [109].
However, the expensive cost of the hardware and non-compact
size, together with the not-so-easy accessibility and usability,
produce an inevitable slowdown of the research and testing
procedures. The above limitations are valid for both FR1 and
FR2 bands and are further exacerbated for the latter. This lack,
which is going to be resolved soon due to the high push from
industries, prevents a pervasive assessment of 5G positioning
potentialities at mmWave and large bandwidths, which would
unleash the rollout of advanced and precise cellular-based
location services. The last desired feature is also limited by
a restricted deployment of public mmWave BSs.

E. Deployment of private networks
An additional notable issue pertains to the indoor 5G

positioning domain and it revolves around the current state of
private networks. As of today, it is observed that private networks
have not been widely integrated into industrial settings despite
the positioning opportunities they hold (see Section V-D2). This
deficiency in the deployment has prompted industries to seek
alternative technologies to fulfill their specific connectivity and
positioning requirements. One such alternative that has gained
considerable attention is ultra-wideband (UWB) technology,
particularly in industrial facilities where precise positioning is
requested for the automation of workflows [375].

VII. Conclusion and future research

This tutorial paper on 5G positioning aims to serve as a trusted
reference for understanding the potentialities and limitations
of the latest cellular localization technology. We covered a
journey to explore the fundamental concepts, techniques, and
challenges associated with 5G positioning, delving into the
technical underpinnings of 5G networks and how they can
enable accurate positioning. After summarizing the transition
from 1G to 4G, we detailed the 5G evolution across the releases
of the 3GPP standard, and we explored the major research trends
towards 6G. We delved into an explanation of the 5G positioning
system and its associated capabilities, as defined by current
industry standards, and highlighted how the latest technological
enhancements could bring new possibilities for the roll-out of
commercial cellular positioning services.

This tutorial is designed to be a valuable resource not only for
academic audiences but also for professionals and businesses
operating in or considering entry into the market of positioning
services. To this extent, we presented results from extensive
simulations designed to assess the positioning performance in
diverse settings, including outdoor and indoor environments.
Several analyses have been conducted to motivate the adoption
of 5G technology for industrial positioning, revealing its appeal

for indoor applications while simultaneously highlighting the
inherent current limitations in outdoor contexts.

The findings revealed the superior accuracy of ranging
measurements compared to angle-based methods. Specifically,
UL-AOA positioning can be susceptible to the multipath effect,
although it is worth noting that the angle accuracy is significantly
linked to the dimensions of the antenna array. Moreover,
integrating multipath detection techniques offers the potential
to mitigate this influence by eliminating anomalous positioning
estimations, yielding refined results. The simultaneous utiliza-
tion of angle and ranging measurements proves advantages for
achieving precise positioning, particularly in areas characterized
by a low density of BSs. Additionally, we illustrated the
methodology for conducting position estimation using a single
BS, obtaining promising results. Furthermore, tracking filters
demonstrate their efficacy in environments characterized by
multipath interference and limited measurement data, such as
indoor and urban scenarios. Compared to urban settings, more
reliable outcomes are observed in restricted environments, such
as industrial areas. This discrepancy may be attributed to several
factors, including the proximity of BSs to the user, the consistent
presence of at least three BSs in LOS, as well as the availability
of larger bandwidth (100 vs 400 MHz).

Future research in cellular positioning should focus on
enhancing the accuracy and reliability of the positioning service,
pushing the boundaries of current capabilities, and providing
a cm-level accuracy even in challenging environments. To
this extent, the integration with other localization technologies
is highly recommended, as well as the use of AI-powered
techniques. A transversal aspect covering all the positioning
processes is related to data privacy and security, which call
for safe measures preserving UE location data. The design and
implementation of secure positioning protocols are mandatory.
Their adoption can also be functional for the implementation of
dedicated privacy-preserving algorithms, e.g., FL. This implies
the involvement of standardization bodies and dedicated efforts
contributing to the enhancement of cellular positioning. The
innovation also includes industrial collaboration in offering
open-source development platforms facilitating testing and
implementation with hardware.

5G positioning is still in its early stages of development
and, most importantly, deployment. Despite its challenges,
positioning in 5G (and the forthcoming 6G) networks holds high
potential to revolutionize various industries and applications,
especially in autonomous mobility, UAVs, NTNs, asset tracking
and logistics, VR, and metaverse. The use cases in these areas
define stringent requirements for positioning, but at the same
time, they unlock new possibilities for location-based services.
Undoubtedly, most of the existing works dealing with 5G
positioning consider simulation environments or ad-hoc limited
hardware (e.g., SDR). The verification of 5G potentialities with
real networks should be a high-priority objective of incoming
research, validating the impact of BSs density, propagation
conditions, interference, and hardware impairments.

Advancing 5G positioning requires integrated cooperation
of different partners (e.g., universities, industry players, pol-
icymakers, and standardization bodies), whose collaboration
should drive technological innovation and economic growth.
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The definition of clear value propositions and cost-effective
deployments, tailored to the specific use cases and industrial
needs, is a non-trivial task for enterprises that require a guarantee
of the economic feasibility of the implementation. From this
perspective, agreeing on standardization and regulations that
address privacy concerns and guarantee interoperability across
several technologies is central for a large-scale adoption in
the industry. Still, companies can deploy private networks
and offer communication and positioning services internally,
with optimized deployment according to the defined KPIs and
services.

Given the increasing demand for precise and reliable posi-
tioning in various applications, we can envision a promising
future for 5G positioning technologies. The progress made in
this field, as outlined in this tutorial, underscores the potential
for transformative changes in various sectors. We hope that this
tutorial serves as a valuable resource for researchers, engineers,
and innovators, contributing to the continued evolution and
widespread adoption of 5G positioning solutions, ultimately en-
hancing our daily lives and driving innovation across industries.

List of acronyms

1G first generation
2D two-dimensional
2G second generation
3D three-dimensional
3G third generation
3GPP third generation partnership project
4G fourth generation
5G fifth generation
5GAA 5G automotive association
5GCN 5G core network
6D six-dimensional
6G sixth generation
A-GNSS assisted-GNSS
A-GPS assisted-GPS
ADCPM angle-delay channel power matrix
AE auto-encoder
AI artificial intelligence
AL Alert limit
AMF access and mobility management function
AOA angle of arrival
AOD angle of departure
AWGN additive white Gaussian noise
B5G beyond 5G
BS base station
C-ITS cooperative intelligent transport systems
CDF cumulative density function
CDL clustered delay line
CFRM channel-frequency response matrix
CID cell-ID
CIR channel impulse response
CNN convolutional neural networks
CP cooperative positioning
CPP carrier phase positioning
CRB Cramér-Rao bound
CSI channel state information

CSI-RS CSI reference signal
D-MIMO distributed MIMO
DL downlink
DMRS demodulation reference signal
DNN deep neural network
DRSS difference of received signal strength
e991 enhanced 911
eCID enhanced cell-ID
EKF extended Kalman filter
eMBB enhanced mobile broadband
eNB eNodeB
ESPRIT estimation of signal parameters through rotational

invariance technique
eUTRA evolved UTRA
FCC Federal Communications Commission
FIM Fisher information matrix
FL federated learning
FR frequency range
GAN generative adversarial networks
gNB gNodeB
gNB-CU gNB central unit
gNB-DU gNB distributed unit
GNN graph neural networks
GNSS global navigation satellite system
GPS global positioning system
GSM global system for mobile communications
GTD geometric time difference
HL holographic localization
IFFT inverse fast Fourier transform
IMM interactive multiple model
IMU internal measurement unit
IOO indoor open office
IoT Internet of things
ISAC integrated sensing and communications
ITU International Telecommunication Union
KNN k-nearest neighbors
KPI key performance indicator
LIS large intelligent surface
LMF location management function
LOS line of sight
LPHAP low-power high-accuracy positioning
LPP LTE positioning protocol
LS least square
LSTM long short-term memory
LTE long term evolution
LTE-A LTE advanced
MAE mean absolute error
MIMO multiple-input multiple-output
ML machine learning
MMSE minimum mean square error
mMTC massive machine-type communication
mmWave millimeter wave
MUSIC multiple signal classification
NF network function
NFC near-field communication
NG-RAN next generation RAN
NLOS non line of sight
NLS non-linear least squares
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NR new radio
NTN non-terrestrial network
NZP-CSI-RS non-zero-power CSI-RS
OFDM orthogonal frequency division multiplexing
OFDMA orthogonal frequency-division multiple access
OTDOA observed TDOA
PBCH downlink physical broadcast channel
PCRB posterior CRB
PDF probability density function
PDSCH physical downlink shared channel
PEB position error bound
PRS positioning reference signal
PSS primary synchronization signal
PTP precision time protocol
PUSCH physical uplink shared channel
RAN radio access network
RB resource block
RE resource element
RedCap reduced capacity
RF radio frequency
RIM reconfigurable intelligent meta-surface
RIS reconfigurable intelligent surface
RMSE root mean square error
RP reception point
RSRP reference signal received power
RSRPP reference signal received path power
RSS received signal strength
RSTD reference signal time difference
RSU road-side unit
RT ray tracing
RTD real-time difference
RTT round-trip time
RVM relevance vector machine
Rx receiver
SBA service-based architecture
SBI service-based interface
SBR shooting and bouncing rays
SC-FDMA single-carrier frequency-division multiple access
SCS sub-carrier spacing
SDR software-defined receiver
SISO single-input single-output
SL sidelink
SLAM simultaneous localization and mapping
SNR signal-to-noise ratio
SRS sounding reference signal
SS synchronization signal
SSB SS block
SSS secondary synchronization signal
SVM support vector machine
TDOA time difference of arrival
TEG timing error group
THz teraHertz
TIR Target integrity risk
TIS transparent intelligent surface
TOA time of arrival
TOF time of flight
TP transmission point
TR technical report

TRP transmission-reception point
TS technical specification
TTA Time-to-alert
TTFF time to first fix
Tx transmitter
UAV unmanned aerial vehicles
UE user equipment
UL uplink
UMa urban macro
UMi urban micro
UMTS universal mobile telecommunications system
URA uniform rectangular array
URLLC ultra-reliable low-latency communications
US United States
USRP universal software radio peripheral
UTRA universal terrestrial radio access
UWB ultra-wideband
V2V vehicle-to-vehicle
V2X vehicle-to-everything
WNLS weighted NLS
VR virtual reality
ZP-CSI-RS zero-power CSI-RS
ZF zero-forcing
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et al., “Zero touch management: A survey of network automation
solutions for 5G and 6G networks,” IEEE Communications Surveys &
Tutorials, vol. 24, no. 4, pp. 2535–2578, Oct. 2022.

[23] S. T. Arzo, C. Naiga, F. Granelli, R. Bassoli, et al., “A theoretical
discussion and survey of network automation for IoT: Challenges and
opportunity,” IEEE Internet of Things Journal, vol. 8, no. 15, pp.
12 021–12 045, Aug. 2021.

[24] S. Bartoletti and N. Blefari Melazzi, Positioning and Location-based
Analytics in 5G and Beyond. John Wiley & Sons, 2023.

[25] S. Bartoletti, L. Chiaraviglio, S. Fortes, T. E. Kennouche, et al.,
“Location-based analytics in 5G and beyond,” IEEE Communications
Magazine, vol. 59, no. 7, pp. 38–43, Jul. 2021.

[26] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and
G. Seco-Granados, “Survey of cellular mobile radio localization
methods: From 1G to 5G,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 2, pp. 1124–1148, Dec. 2018.

[27] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, et al.,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, Feb. 2014.

[28] M. Cantero, S. Inca, A. Ramos, M. Fuentes, et al., “System-level
performance evaluation of 5G use cases for industrial scenarios,” IEEE
Access, vol. 11, pp. 37 778–37 789, Apr. 2023.

[29] C. Laoudias, A. Moreira, S. Kim, S. Lee, et al., “A survey of enabling
technologies for network localization, tracking, and navigation,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3607–3644,
Jul. 2018.

[30] A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, et al.,
“Position and orientation estimation through millimeter-wave MIMO in
5G systems,” IEEE Transactions on Wireless Communications, vol. 17,
no. 3, pp. 1822–1835, Dec. 2018.

[31] W. Roh, J.-Y. Seol, J. Park, B. Lee, et al., “Millimeter-wave beamforming
as an enabling technology for 5G cellular communications: theoretical
feasibility and prototype results,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 106–113, Feb. 2014.

[32] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, et al., “Millimeter wave
mobile communications for 5G cellular: It will work!” IEEE Access,
vol. 1, pp. 335–349, May 2013.

[33] C.-X. Wang, J. Wang, S. Hu, Z. H. Jiang, et al., “Key technologies in 6G
terahertz wireless communication systems: A survey,” IEEE Vehicular
Technology Magazine, vol. 16, no. 4, pp. 27–37, Dec. 2021.

[34] H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “An overview
of signal processing techniques for terahertz communications,”
Proceedings of the IEEE, vol. 109, no. 10, pp. 1628–1665, Aug. 2021.

[35] K. Rikkinen, P. Kyosti, M. E. Leinonen, M. Berg, et al., “THz
radio communication: Link budget analysis toward 6G,” IEEE
Communications Magazine, vol. 58, no. 11, pp. 22–27, Nov. 2020.

[36] M. Polese, J. M. Jornet, T. Melodia, and M. Zorzi, “Toward end-to-end,
full-stack 6G terahertz networks,” IEEE Communications Magazine,
vol. 58, no. 11, pp. 48–54, Nov. 2020.

[37] X. Sun, C. H. Kang, M. Kong, O. Alkhazragi, et al., “A review on
practical considerations and solutions in underwater wireless optical
communication,” Journal of Lightwave Technology, vol. 38, no. 2, pp.
421–431, Dec. 2020.

[38] M. F. Keskin, A. D. Sezer, and S. Gezici, “Localization via visible light
systems,” Proceedings of the IEEE, vol. 106, no. 6, pp. 1063–1088, May
2018.

[39] Y. Liu, X. Liu, X. Mu, T. Hou, et al., “Reconfigurable intelligent
surfaces: Principles and opportunities,” IEEE Communications Surveys
& Tutorials, vol. 23, no. 3, pp. 1546–1577, May 2021.

[40] M. A. ElMossallamy, H. Zhang, L. Song, K. G. Seddik, et al.,
“Reconfigurable intelligent surfaces for wireless communications:
Principles, challenges, and opportunities,” IEEE Transactions on
Cognitive Communications and Networking, vol. 6, no. 3, pp. 990–1002,
Sep. 2020.

[41] H. Wymeersch, J. He, B. Denis, A. Clemente, et al., “Radio localization
and mapping with reconfigurable intelligent surfaces: Challenges,
opportunities, and research directions,” IEEE Vehicular Technology
Magazine, vol. 15, no. 4, pp. 52–61, Dec. 2020.

[42] X. Shen, J. Gao, W. Wu, M. Li, et al., “Holistic network virtualization
and pervasive network intelligence for 6G,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 1, pp. 1–30, Dec. 2022.

[43] E. Baccour, N. Mhaisen, A. A. Abdellatif, A. Erbad, et al., “Pervasive AI
for IoT applications: A survey on resource-efficient distributed artificial
intelligence,” IEEE Communications Surveys & Tutorials, vol. 24, no. 4,
pp. 2366–2418, Aug. 2022.

[44] A. Narayanan, A. S. D. Sena, D. Gutierrez-Rojas, D. C. Melgarejo,
et al., “Key advances in pervasive edge computing for industrial internet
of things in 5G and beyond,” IEEE Access, vol. 8, pp. 206 734–206 754,
Nov. 2020.

[45] B. Jabbari, R. Pickholtz, and M. Norton, “Dynamic spectrum access
and management [dynamic spectrum management],” IEEE Wireless
Communications, vol. 17, no. 4, pp. 6–15, Aug. 2010.

[46] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next
generation/dynamic spectrum access/cognitive radio wireless networks:
a survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, Sep.
2006.

[47] P. Leaves, K. Moessner, R. Tafazolli, D. Grandblaise, et al., “Dynamic
spectrum allocation in composite reconfigurable wireless networks,”
IEEE Communications Magazine, vol. 42, no. 5, pp. 72–81, May 2004.

[48] M. Z. Ali, A. Abohmra, M. Usman, A. Zahid, et al., “Quantum for 6G
communication: A perspective,” IET Quantum Communication, vol. 4,
no. 3, pp. 112–124, May 2023.

[49] C. Wang and A. Rahman, “Quantum-enabled 6G wireless networks:
Opportunities and challenges,” IEEE Wireless Communications, vol. 29,
no. 1, pp. 58–69, Apr. 2022.

[50] A. Kalla, C. De Alwis, P. Porambage, G. Gür, et al., “A survey on the
use of blockchain for future 6G: Technical aspects, use cases, challenges
and research directions,” Journal of Industrial Information Integration,
vol. 30, p. 100404, Oct. 2022.

[51] Q. Pan, J. Wu, J. Li, W. Yang, et al., “Blockchain and AI empowered
trust-information-centric network for beyond 5G,” IEEE Network,
vol. 34, no. 6, pp. 38–45, Nov. 2020.

[52] A. H. Khan, N. Ul Hassan, C. Yuen, J. Zhao, et al., “Blockchain and 6G:
The future of secure and ubiquitous communication,” IEEE Wireless
Communications, vol. 29, no. 1, pp. 194–201, Feb. 2022.

[53] X. Li, P. Russell, C. Mladin, and C. Wang, “Blockchain-enabled
applications in next-generation wireless systems: Challenges and
opportunities,” IEEE Wireless Communications, vol. 28, no. 2, pp.
86–95, Apr. 2021.

[54] Y. Zhuang, X. Li, H. Ji, and H. Zhang, “Exploiting intelligent
reflecting surface for energy efficiency in ambient backscatter
communication-enabled NOMA networks,” IEEE Transactions on
Green Communications and Networking, vol. 6, no. 1, pp. 163–174,
Mar. 2022.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. V, NO. N, MONTH YEAR 38

[55] C. Yao, Y. Liu, X. Wei, G. Wang, et al., “Backscatter technologies
and the future of internet of things: Challenges and opportunities,”
Intelligent and Converged Networks, vol. 1, no. 2, pp. 170–180, Sep.
2020.

[56] T. Huang, W. Yang, J. Wu, J. Ma, et al., “A survey on green 6G
network: Architecture and technologies,” IEEE Access, vol. 7, pp.
175 758–175 768, Dec. 2019.

[57] R. Kishore, S. Gurugopinath, P. C. Sofotasios, S. Muhaidat,
et al., “Opportunistic ambient backscatter communication in RF-
powered cognitive radio networks,” IEEE Transactions on Cognitive
Communications and Networking, vol. 5, no. 2, pp. 413–426, Jun. 2019.

[58] N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, et al.,
“Ambient backscatter communications: A contemporary survey,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2889–2922,
May 2018.

[59] R. Di Taranto, S. Muppirisetty, R. Raulefs, D. Slock, et al.,
“Location-aware communications for 5G networks: How location
information can improve scalability, latency, and robustness of 5G,”
IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 102–112, Oct.
2014.

[60] M. Giordani and M. Zorzi, “Non-terrestrial networks in the 6G era:
Challenges and opportunities,” IEEE Network, vol. 35, no. 2, pp.
244–251, Mar. 2021.

[61] Z. Abu-Shaban, X. Zhou, T. Abhayapala, G. Seco-Granados, et al.,
“Error bounds for uplink and downlink 3D localization in 5G millimeter
wave systems,” IEEE Transactions on Wireless Communications,
vol. 17, no. 8, pp. 4939–4954, Aug. 2018.

[62] N. Cheng, W. Xu, W. Shi, Y. Zhou, et al., “Air-ground integrated
mobile edge networks: Architecture, challenges, and opportunities,”
IEEE Communications Magazine, vol. 56, no. 8, pp. 26–32, Aug. 2018.

[63] R. C. Shit, S. Sharma, D. Puthal, P. James, et al., “Ubiquitous localization
(UbiLoc): A survey and taxonomy on device free localization for smart
world,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp.
3532–3564, May 2019.

[64] P. Ghorai, A. Eskandarian, Y.-K. Kim, and G. Mehr, “State estimation
and motion prediction of vehicles and vulnerable road users for
cooperative autonomous driving: A survey,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 10, pp. 16 983–17 002,
Oct. 2022.

[65] T. Turay and T. Vladimirova, “Toward performing image classification
and object detection with convolutional neural networks in autonomous
driving systems: A survey,” IEEE Access, vol. 10, pp. 14 076–14 119,
Jan. 2022.
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[203] D. G. Morı́n, P. Pérez, and A. G. Armada, “Toward the distributed
implementation of immersive augmented reality architectures on 5G
networks,” IEEE Communications Magazine, vol. 60, no. 2, pp. 46–52,
Feb. 2022.

[204] O. Haliloglu, H. Yu, C. Madapatha, H. Guo, et al., “Distributed MIMO
systems for 6G,” in 2023 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit), Jun. 2023, pp.
156–161.

[205] F. Liu, Y. Cui, C. Masouros, J. Xu, et al., “Integrated sensing and
communications: toward dual-functional wireless networks for 6G and
beyond,” IEEE Journal on Selected Areas in Communications, vol. 40,
no. 6, pp. 1728–1767, Mar. 2022.

[206] T. Luettel, M. Himmelsbach, and H.-J. Wuensche, “Autonomous ground
vehicles — concepts and a path to the future,” Proceedings of the IEEE,
vol. 100, no. Special Centennial Issue, pp. 1831–1839, Apr. 2012.

[207] K. Chen, D. Zhang, L. Yao, B. Guo, et al., “Deep learning for
sensor-based human activity recognition: Overview, challenges, and
opportunities,” ACM Computing Surveys, vol. 54, no. 4, pp. 1–40, May
2021.

[208] J. Yang, C.-K. Wen, and S. Jin, “Hybrid active and passive sensing for
SLAM in wireless communication systems,” IEEE Journal on Selected
Areas in Communications, vol. 40, no. 7, pp. 2146–2163, Mar. 2022.

[209] S. Bartoletti, H. Wymeersch, T. Mach, O. Brunnegård, et al.,
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of low complexity for time-critical localization,” IEEE Aerospace and
Electronic Systems Magazine, vol. 37, no. 10, pp. 22–38, Sep. 2022.

[241] M. Brambilla, D. Gaglione, G. Soldi, R. Mendrzik, et al., “Cooperative
localization and multitarget tracking in agent networks with the
sum-product algorithm,” IEEE Open Journal of Signal Processing,
vol. 3, pp. 169–195, Mar. 2022.

[242] B. Teague, Z. Liu, F. Meyer, A. Conti, et al., “Network localization
and navigation with scalable inference and efficient operation,” IEEE
Transactions on Mobile Computing, vol. 21, no. 6, pp. 2072–2087, Nov.
2022.

[243] F. Meyer and M. Z. Win, “Scalable data association for extended object
tracking,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 6, pp. 491–507, May 2020.

[244] L. Barbieri, B. C. Tedeschini, M. Brambilla, and M. Nicoli, “Deep
learning-based cooperative LiDAR sensing for improved vehicle posi-
tioning,” IEEE Transactions on Signal Processing, pp. 1–16, 2024.

[245] L. Barbieri, B. Camajori Tedeschini, M. Brambilla, and M. Nicoli,
“Implicit vehicle positioning with cooperative lidar sensing,” in ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), May 2023, pp. 1–5.

[246] I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future
of wireless communications systems,” IEEE Access, vol. 8, pp.
133 995–134 030, Jul. 2020.
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