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Abstract

Capturing the extremal behaviour of data often requires bespoke marginal and dependence

models which are grounded in rigorous asymptotic theory, and hence provide reliable extrap-

olation into the upper tails of the data-generating distribution. We present a toolbox of four

methodological frameworks, motivated by modern extreme value theory, that can be used to

accurately estimate extreme exceedance probabilities or the corresponding level in either a

univariate or multivariate setting. Our frameworks were used to facilitate the winning con-

tribution of Team Yalla to the EVA (2023) Conference Data Challenge, which was organised

for the 13th International Conference on Extreme Value Analysis. This competition com-

prised seven teams competing across four separate sub-challenges, with each requiring the

modelling of data simulated from known, yet highly complex, statistical distributions, and

extrapolation far beyond the range of the available samples in order to predict probabilities

of extreme events. Data were constructed to be representative of real environmental data,

sampled from the fantasy country of “Utopia”.
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1 Introduction

We are motivated by the EVA (2023) Conference Data Challenge organised for the 13th In-

ternational Conference on Extreme Value Analysis, with full details provided in the editorial

by Rohrbeck et al. (2023). In this paper, we detail the four modelling frameworks used

by “Team Yalla” to win the aforementioned challenge, which comprised four sub-challenges

that each required prediction of exceedance probabilities or quantiles for data simulated

from highly complex statistical models. These frameworks combined classical EVA methods

with modern modelling techniques, including additive models (Chavez-Demoulin and Davi-

son, 2005; Youngman, 2019), deep learning-based inference (Sainsbury-Dale et al., 2024;

Richards et al., 2023b), non-stationary conditional extremal dependence models (Heffernan

and Tawn, 2004; Winter et al., 2016), and non-parametric probability estimators (Krupskii

and Joe, 2019). Whilst the data considered in this work are simulated, the data were con-

structed to be representative of real observations of an environmental process (sampled from

the fantasy country of “Utopia”), and so exhibit realistic characteristics, such as sparsity,

non-stationarity, and missingness. Moreover, as the true values of the challenge predictands

are known, our predictions can be easily validated. Hence, we expect our proposed frame-

works to perform well in practice, with real data. The code used for implementing our models

is available at https://github.com/matheusguerrero/yalla.

The novelty of this work is threefold: i) we propose an amortised neural Bayes estimator

for univariate quantiles; ii) we generalise the non-parametric multivariate exceedance proba-

bility estimator of Krupskii and Joe (2019); and iii) we illustrate the efficacy of the extreme

value regression models proposed by Winter et al. (2016) and Youngman (2019) when applied

to simulated data. The remainder of the paper is organised as follows: Section 2 describes

the methodology we adopt to address the data challenge, with Sections 2.1–2.2 and 2.3–2.5

focusing on univariate and multivariate extremes, respectively. In Section 3, we apply our

proposed methodology to the data. Section 4 provides a concise conclusion and suggests

avenues for further work.
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2 Methodology

In this section, we present the methodological details of our approaches. Throughout,

we adopt the notation Y and Y := (Y1, . . . , Yd)
′ to denote a random response vari-

able and random d-vector of response variables, respectively. Covariates are denoted by

X := (X1, . . . , Xl)
′ ∈ Rl for l ∈ N. Where appropriate, we use the subscript t ∈ {1, . . . , n} to

denote temporal replicates of the response (i.e., Yt orYt := (Y1,t, . . . , Yd,t)
′) or covariates (i.e.,

Xt := (X1,t, . . . , Xl,t)
′) and lowercase notation to denote observations. The values of l, d, and

sample size n differ throughout the paper. Sub-challenges C1/C2 and C3/C4 (see Rohrbeck

et al., 2023) concern univariate and multivariate modelling, respectively. In the univariate

setting with d = 1 and n = 21000, covariate vector X comprises l = 8 variables: wind

direction, wind speed, atmosphere, season, and four unnamed variables (denoted V1, . . . , V4).

For C3 and C4, we have d = 3 and d = 50, respectively, and n = 21000 and n = 10000,

respectively, with the response vector Y known to have standard Gumbel margins. The

three response variables for C3, (Y1, Y2, Y3), are accompanied by the atmosphere and season

covariates described above; hence, l = 2 for C3. No covariates accompany the 50 response

variables that comprise the data for C4 (i.e., l = 0).

Sections 2.1 and 2.2 detail methodology for estimating univariate extreme quantiles,

whilst Sections 2.3-2.5 concern methodology for modelling extremal dependence. Section 2.1

describes peaks-over-threshold modelling using the generalised Pareto distribution and gen-

eralised additive models, which we used to address sub-challenge C1. Section 2.2 describes

a likelihood-free neural Bayes estimator for point estimation of the extreme quantiles for

sub-challenge C2. Section 2.3 describes a non-stationary model for conditional extremal

dependence (sub-challenge C3), whilst Section 2.4 details a bivariate extremal dependence

measure. Section 2.5 concludes with details of a non-parametric estimator for tail probabil-

ities, used in sub-challenge C4.
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2.1 Peaks-over-threshold models

Sub-challenge C1 required the prediction of a 50% confidence interval for the q−quantile

of Y | (X = x∗
j) for 100 test covariate sets {x∗

j : j = 1, . . . , 100}, and for q = 0.9999

corresponding to an extreme conditional quantile. To this end, we adopt a peaks-over-

threshold regression model. The upper tails of the distribution of a random variable can

be modelled in this framework using the generalised Pareto distribution (GPD), see, for

example, Davison and Smith (1990). For a random variable Y , we assume that there exists

some high threshold u such that the distribution of exceedances (Y − u) | (Y > u) can be

characterised by the GPD, denoted GPD(σu, ξ), σu > 0, ξ ∈ R, with distribution function

H(y) =

{
1− (1 + ξy/σu)

−1/ξ, ξ ̸= 0,

1− exp(−y/σu), ξ = 0,
(1)

where y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤ −σu/ξ for ξ < 0.

For regression, we model the conditional distribution (Y − u(x)) | (Y > u(x),X = x) as

GPD(σu(x), ξ(x)), where the exceedance threshold and GPD scale and shape parameters

are functions of covariates. We follow Chavez-Demoulin and Davison (2005) and Youngman

(2019) and use a generalised additive model (GAM) representation for the distribution, with

σu(x) and ξ(x) modelled via a basis of splines. The threshold u(x) is taken to be the

intermediate λ-quantile of Y | (X = x) for λ < 0.9999 and this is modelled using additive

quantile regression (Fasiolo et al., 2021).

2.2 Neural point estimation

Sub-challenge C2 required estimation of the q-quantile of Y for q = 1− (6× 104)−1, i.e.,

estimating θ such that Pr{Y > θ} = 1− q. However, inference for θ should seek to minimise

the conservative asymmetric loss function

L(θ, θ̂) =


0.9(0.99θ − θ̂), if 0.99θ > θ̂,

0, if |θ − θ̂| ≤ 0.01θ,

0.1(θ̂ − 1.01θ), if 1.01θ < θ̂,

(2)
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where θ̂ denotes estimates of θ and | · | denotes the absolute value; this loss function is

illustrated in Figure 2. The loss function in Eq. (2) provides a larger penalty for under-

estimates of θ, relative to over-estimates, to encourage conservative estimates of the quantile.

We construct a conservative estimator for extreme quantiles using neural networks.

Neural point estimators, that is, neural networks that are trained to map input data to

parameter point estimates, have shown recent success as a likelihood-free inference approach

for statistical models. Although they have been typically used for inference with classical

spatial processes (see, e.g., Zammit-Mangion and Wikle, 2020; Gerber and Nychka, 2021)

and spatial extremal processes (see, e.g., Lenzi et al., 2023; Lenzi and Rue, 2023; Sainsbury-

Dale et al., 2023, 2024; Richards et al., 2023b), they can be exploited in a univariate setting.

For example, Rai et al. (2023) use a neural point estimator to make inference with the

univariate generalised extreme value distribution (see Coles, 2001). We construct a neural

point estimator to perform extreme single quantile estimation for a random variable Z. In

particular, we follow Sainsbury-Dale et al. (2024) and construct a neural Bayes estimator

(NBE).

Define a set of univariate probability distributions P on a sample space, taken to be R,

which are parameterised by a parameter θ ∈ R such that P ≡ {Pθ : θ ∈ Θ}, where Θ is

the parameter space; then P defines a parametric statistical model (see McCullagh, 2002).

Denote Z ≡ (Z1, . . . , Zn)
′ as n mutually independent realisations of the random variable Z

from Pθ ∈ P . A point estimator θ̂(·) for model P is any mapping from Rn to Θ, and the

output of such an estimator, for a given θ and Z, can be assessed using a non-negative loss

function L(θ, θ̂(Z)). The risk of this point estimator, evaluated at θ, R(θ, θ̂(·)), is the loss

L(·, ·) averaged over all possible realisations of Z, that is,

R(θ, θ̂(·)) ≡
∫
Rn

L(θ, θ̂(z))f(z | θ) dz, (3)

where f(z | θ) is the density function of the data. We define the Bayes risk rπ(·) as the
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weighted average of Eq. (3) over all θ ∈ Θ, with respect to some prior measure π(·), as

rπ(θ̂(·)) ≡
∫
Θ

R(θ, θ̂(·)) dπ(θ). (4)

If the estimator θ̂(·) minimises Eq. (4), we term it a Bayes estimator with respect to

the loss L(·, ·) and prior measure π(·). Note that in the context of the prediction task, the

parameter θ is taken to be the q-quantile of the distribution(s) Pθ and the loss function is

L(θ, θ̂) in Eq. (2) (illustrated in Figure 2). Details on the construction of the prior measure

π(·) and the statistical model P will follow.

A neural Bayes estimator (NBE) is a neural network designed to approximately minimise

Eq. (4). Sainsbury-Dale et al. (2024) construct NBEs by leveraging the DeepSets neural

network architecture (Zaheer et al., 2017). Consider functions ψ : R 7→ RQ and ϕ : RQ 7→ R,

and a permutation-invariant set function a : (RQ)n 7→ RQ, where the j-th component of

a, aj(·), returns the element-wise average over its input set for j = 1, . . . , Q. We represent

ϕ(·) and ψ(·) as neural networks, and collect in γ ≡ (γ ′
ϕ,γ

′
ψ)

′ their estimable “weights” and

“biases”. Our NBE is of the form

θ̂(Y;γ) = ϕ(T(Z;γψ);γϕ), with T(Z;γψ) = a({ψ(Zt;γψ) : t = 1, . . . , n}). (5)

We use a densely-connected neural network to model both ϕ(·) and ψ(·). The NBE is built

by obtaining neural network weights γ∗ that minimise the Bayes risk in the estimator space

spanned by θ̂(·,γ). As we cannot directly evaluate Eq. (4), it is approximated using Monte

Carlo methods. For a set of K parameter values {θ(k) : k = 1, . . . , K} drawn from the prior

π(·), we simulate, for each k, a set of n mutually independent realisations z(k) from Pθ. The

Bayes risk in Eq. (4) is then approximated by

r̂π(θ̂(·;γ)) =
1

K

K∑
k=1

L(θ(k), θ̂(z(k);γ)) ≈ rπ(θ̂(·;γ)). (6)

We obtain estimates γ∗ = argminγ r̂π(θ̂(·;γ)) using the package NeuralEstimators

(Sainsbury-Dale et al., 2024) in Julia (Bezanson et al., 2017).

Specifying a prior measure on the q-quantile, θ ∈ Θ, for a random variable Z is nontrivial, as
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the mapping from the model P to the parameter space Θ is not guaranteed to be surjective;

for a fixed level q, multiple probability distributions can have the same value of θ, and so

simulating Z conditional on θ is not necessarily feasible. In this case, Pθ would define a

set of distributions with equal q-quantile, rather than a single probability distribution (as in

Sainsbury-Dale et al. (2024)). Thus, instead of placing a prior directly on θ, we assume that

Pθ is determined by some hyper-parameters (for simplicity, we omit the dependency of Pθ on

hyper-parameters from our notation). We then construct a general prior measure for these

hyper-parameters, which consequently induces a prior measure on θ. As we are interested

in θ when q is close to one, our choice of the class of feasible models P is motivated by

extreme value theory, and we exploit the univariate peaks-over-threshold models described

in Section 2.1.

Rohrbeck et al. (2023) note that our data {Yt : t = 1, . . . , n}, from which we wish to

infer θ, are non-stationary over time. We reflect this property in our construction for the

prior measure on the hyper-parameters of Pθ: for t = 1, . . . , n, let (Yt − ut) | (Yt > ut) ∼

GPD(σt, ξt) and let Yt | (Yt ≤ ut) ∼ F≤
t (·) for threshold ut ∈ R, scale σt > 0, and shape

ξt ∈ R, and where Pr{Yt ≤ ut} = λ for λ ∈ [0, 1]. For simplicity, we hereafter treat λ and

the distribution of non-exceedances F≤
t (·) as fixed. After placing a suitable prior measure

on the hyper-parameters {(ut, σt, ξt) : t = 1, . . . , n} and specifying λ and F≤
t (·) (see, e.g.,

Section 3.1), we can simulate data {y∗t : t = 1, . . . , n∗} from the model above and store this

in a vector z∗ with the index t removed from each entry. In this way, we consider z∗ as n∗

independent draws from the distribution of Z, unconditional on t, as we have marginalised

out the effect of this covariate (see, e.g., Rohrbeck et al., 2018). Note that n∗ need not satisfy

n∗ = n, where n is the sample size.

The prior measure on the hyper-parameter set {(ut, σt, ξt) : t = 1, . . . , n} induces a

prior on θ, which is the q-quantile of Z. As there is no closed-form expression for θ, we

compute it using Monte Carlo methods. That is, we set n∗ large and derive θ empirically

from realisations z∗. A single entry to the training data for our NBE then consists of the
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pair (z, θ), where z is a sub-sample from z∗ of length n; this procedure is repeated for a total

of K entries. Note that, we could instead construct a prior on θ using a stationary GPD

model, i.e., with n = 1, but our approach produces a more diffuse prior on θ by increasing

the prior support for the hyper-parameters of Pθ. It also exploits knowledge about the data

generating distribution, which produces more realistic models for Z.

When choosing larger values of λ, fewer new observations are generated for training of

the NBE; a bigger proportion of the training data comprise resamples from the observations.

Smaller values of λ will produce a more diffuse prior on the distributional models for Z

(particularly with regards to the upper-tail behaviour of Z) and, hence, the q-quantile of Z.

A larger variety in the training data is also likely to increase the reliability of our estimator

when generalising to unseen data. However, when λ is too small, the threshold ut may be

too low to safely assume that (Yt −ut) | (Yt > ut) follows a GPD. In this case, our estimator

would not benefit from being trained on well-specified models for Yt. Hence, we advocate

taking λ as low as possible whilst still obtaining reasonable fits for the non-stationary GPD

model, even if this value is not optimal. In our application, we take λ = 0.6 but note that

this is lower than the optimal λ (in terms of providing the best fit for the model described

in Section 2.1).

2.3 Conditional extremes models

Sub-challenge C3 required estimation of

p1 := Pr(Y1 > 6, Y2 > 6, Y3 > 6), (7)

p2 := Pr(Y1 > 7, Y2 > 7, Y3 < − log (log 2)),

where − log (log 2) is the median of the standard Gumbel distribution. To estimate these

extreme exceedance probabilities, we construct a non-stationary extremal dependence model

for random vectors. Proposed by Heffernan and Tawn (2004) and later generalised by Hef-

fernan and Resnick (2007), the conditional extremes framework models the behaviour of a

random vector, conditional on one of its components being extreme. We adopt this model
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as its inference is typically less computationally demanding than that of other models for

multivariate extremal dependence (Huser and Wadsworth, 2022). Additionally, it is capable

of capturing both asymptotic dependence and asymptotic independence in a parsimonious

manner. To accommodate non-stationarity with respect to covariates in the extremal depen-

dence structure of our data, we utilise the extension of the Heffernan and Tawn (2004) model

proposed by Winter et al. (2016). This extension represents the dependence parameters as

a linear function (subject to some non-linear link transformation) of the covariates.

Let the vector Yt ≡ (Y1,t, Y2,t, Y3,t)
′ for t ∈ {1, . . . , n} have standard Laplace margins

(Keef et al., 2013). It is noteworthy that our original data are known to possess standard

Gumbel marginals; therefore, we transform these to have standard Laplace margins. Then,

denote by Y−i,t as the vector Yt with its i-th component removed. Note that all vector

operations hereafter are taken component-wise. Winter et al. (2016) assume that there exist

vectors of coefficients α−i,t := {αj|i,t : j ∈ (1, 2, 3) \ i} ∈ [−1, 1]2 and β−i,t := {βj|i,t : j ∈

(1, 2, 3) \ i} ∈ [0, 1)2 such that, for z ∈ R2 and y > 0,

Pr

{
Y−i,t −α−i,tYi,t

Y
β−i,t

i,t

≤ z, Yi,t − u > y

∣∣∣∣ Yi,t > u

}
→ G−i,t(z) exp(−y), (8)

as u → ∞ with G−i,t(·) a non-degenerate bivariate distribution function. The values of

the dependence parameters α−i,t and β−i,t determine the strength and class of extremal

dependence exhibited between Yi,t and the corresponding component of Y−i,t; for details,

see Heffernan and Tawn (2004). We allow these parameters to vary with covariates xt by

letting

tanh−1(α−i,t) := α
(0)
−i +α

(1)
−ixt, logit(β−i,t) := β

(0)
−i + β

(1)
−i xt, (9)

with coefficients α
(0)
−i , β

(0)
−i ∈ R2 and α

(1)
−i , β

(1)
−i ∈ R2×l, where l is the number of covariates.

Note that the tanh(·) and logit(·) link functions are used to ensure that the parameter values

are constrained to their correct ranges.

Modelling follows under the assumption that the limit in Eq. (8) holds in equality for all

Yi,t > u for some sufficiently high threshold u > 0. In this case, rearranging Eq. (8) provides
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the model

Y−i,t = α−i,tYi,t + Y
β−i,t

i,t Zi,t

∣∣ (Yi,t > u), (10)

where the residual random vector Zi,t := {Zj|i,t : j ∈ (1, 2, 3) \ i} ∼ G−i,t is independent of

Yi,t. For inference, we make the working assumption that G−i,t(·) does not depend on time

t and follows a bivariate standard Gaussian copula with correlation ρi ∈ (−1, 1) and delta-

Laplace margins (see, e.g., Shooter et al., 2021). We hereafter drop the subscript t from

the notation. A random variable that follows the delta-Laplace distribution with location,

scale, and shape parameters µ ∈ R, σ > 0, and δ > 0, respectively, has density function

f(z) = δ(2kσΓ(δ−1))−1 exp{−(|z − µ|/(kσ))δ} for k2 = Γ(δ−1)/Γ(3δ−1), where Γ(·) denotes

the standard gamma function. Note that when δ = 1 and δ = 2, we have the Laplace and

Gaussian densities, respectively.

Inference proceeds via maximum likelihood estimation. The model is fitted sepa-

rately for each conditioning variable i = 1, 2, 3. For each i, we have eight parameters in

α
(0)
−i , α

(1)
−i , β

(0)
−i , β

(1)
−i , as well as the seven parameters that characterise G−i, that is, the cor-

relation ρi and the three marginal parameters for each component of Zi,t. After estimation

of the parameters, we no longer require the working Gaussian copula assumption for Zi,t.

We instead use observations y−i,t and yi,t to derive the empirical residual vector

z̃i,t := (y−i,t − α̂−i,tyi,t)/yi,t
β̂−i,t ,

where α̂−i,t and β̂−i,t denote estimates of α−i,t and β−i,t, respectively. Assuming indepen-

dence across time, we use the empirical residuals to provide an empirical estimate G̃−i(·) of

G−i(·).

We estimate the necessary exceedance probabilities, p1 and p2 in Eq. (7), via the following

Monte-Carlo procedure. We first note that, for fixed t ∈ {1, . . . , n}, we require realisations

of Yt, i.e., unconditional on an exceedance. We follow, for example, Richards et al. (2022,

2023c) and obtain these realisations by drawing a realisation from

Yt

∣∣∣∣ (max
i=1,2,3

Yi,t > u

)
, (11)
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with probability

Pr

{
max
i=1,2,3

Yi,t > u

}
, (12)

and, otherwise, drawing a realisation of Yt | (maxi=1,2,3 Yi,t < u). As realisations of the

latter are unlikely to significantly impact estimates of p1 and p2, we draw them empirically

(Richards et al., 2022). In practice, we also replace the probability in Eq. (12) with an

empirical estimate. In addition, as both Yt | (maxi=1,2,3 Yi,t < u) and Eq. (12) depend on t,

we estimate them empirically by assuming stationarity over time.

To simulate from Eq. (11), we must first draw realisations of the conditional exceedance

model, Y−i,t | (Yi,t > u) in Eq. (10), using Algorithm 1. We can then combine realisations

Algorithm 1 Simulating from Eq. (10).

For time t and conditioning index i ∈ {1, 2, 3}:

1. Simulate E ∼ Exp(1) and set yi,t = u+ E.

2. Draw a residual vector z̃ ∼ G̃−i(·).

3. Set y−i,t = α̂−i,tyi,t + y
β̂−i,t

i,t z̃.

from the three separate conditional exceedance models, i.e., Y−i,t | (Yi,t > u) for each

i = 1, 2, 3, into a single realisation of Eq. (11) using importance sampling (Wadsworth and

Tawn, 2022). Whilst this can be achieved for a single fixed value of t, we note that p1 and

p2 in Eq. (7) do not depend on the time t. Hence, we treat t as random during simulation

and average over all times t ∈ {1, . . . , n} to produce approximate realisations of Y with t

marginalised out. The full simulation algorithm is detailed in Algorithm 2. Note that we

back-transform from standard Laplace to standard Gumbel margins after simulation, as the

original data has the latter.

2.4 Extremal dependence measure

A number of pairwise measures have been proposed to quantify the strength of extremal

dependence between random variables (Y1, Y2), see, for example, Heffernan (2000). We
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Algorithm 2 Simulating {(Y1,t, Y2,t, Y3,t) : t ∈ {1, . . . , n}}

1. For j = 1, . . . , N ′ with N ′ > N :

(a) Draw a conditioning index ij ∈ {1, 2, 3} with equal probability.

(b) Draw a time tj ∈ {1, . . . , n} with equal probability.

(c) Simulate y(j) using Algorithm 1 with time tj and conditioning index ij.

2. Assign each simulated vector y(j) := (y
(j)
1 , y

(j)
2 , y

(j)
3 )′ an importance weight of{

3∑
i=1

1{y(j)i > u}

}−1

,

for j = 1, . . . , N ′, and sub-sample N realisations from the collection with probabilities
proportional to these weights.

3. With probability n−1
∑n

t=1 1{maxi=1,2,3 yi,t < u}, re-sample (with equal probability)
from {

yt : t ∈ {1, . . . , n}, max
i=1,2,3

yi,t < u

}
.

4. Back-transform sample onto standard Gumbel margins.

adopt the extremal dependence measure (EDM) proposed by Resnick (2004) and Larsson and

Resnick (2012), which has been extended to a multivariate setting by Cooley and Thibaud

(2019). Let (Y1, Y2) ∈ [0,∞)2 be a regularly-varying random vector with index α > 0; for full

details on regular variation, see Resnick (2007). For some symmetric norm ∥ · ∥ on [0,∞)2,

define the transformation (R,Ω) := (∥(Y1, Y2)∥, (Y1, Y2)/∥(Y1, Y2)∥). Then, there exists a

sequence bn → ∞ and constant c > 0 such that

nPr{(b−1
n R,Ω) ∈ ·) v−→ cνα ×H,

where
v−→ denotes vague convergence, να is a measure on (0,∞] such that να((y,∞]) = y−α

and the angular measure H is defined on the unit circle S+ = {y ∈ [0,∞)2 \ {0} : ∥y∥ = 1}.

The extremal dependence measure (Larsson and Resnick, 2012) between Y1 and Y2 is

EDM(Y1, Y2) =

∫
S+

ω1ω2 dH(ω) = lim
y→∞

E (Ω1Ω2 | R > y) .
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Note that EDM(Y1, Y2) ∈ [0, 1] quantifies the strength of extreme dependence between Y1

and Y2. If EDM(Y1, Y2) = 0, then H concentrates all mass along the axes and hence Y1 and

Y2 are asymptotically independent (Resnick, 2007). Conversely, EDM(Y1, Y2) is maximal if

and only if (Y1, Y2) has full asymptotic dependence, or H places all mass on the diagonal.

Larsson and Resnick (2012) propose the empirical estimator

ÊDM (Y1, Y2) =
1

Nn

n∑
t=1

y1,t
rt

y2,t
rt
1{rt > u}, (13)

where yt := (y1,t, y2,t), t = 1, . . . , n, is an i.i.d sample from (Y1, Y2), rt = ∥yt∥, and Nn =∑n
t=1 1{rt > u} is the number of exceedances of {rt : t = 1, . . . , n} above some high threshold

u > 0. In Section 3.2, we use pairwise EDM estimates to investigate the extremal dependence

structure of a high-dimensional random vector and then decompose it into subvectors of

strongly tail-dependent variables.

2.5 Non-parametric tail probability estimation

Sub-challenge C4 requires estimation of two exceedance probabilities of the form

p3 := Pr(Y1 > s1, . . . , Y50 > s1),

p4 := Pr(Y1 > s1, . . . , Y25 > s1, Y26 > s2, . . . , Y50 > s2), (14)

where sj, j = 1, 2, is the (1 − ϕj)-quantile of the standard Gumbel distribution with

ϕ1 = 1/300 and ϕ2 = 12ϕ1. Hence, p3 corresponds to an exceedance probability with

all components of Y being equally extreme, i.e., concurrently exceeding the same marginal

quantile, whilst, for p4, the first 25 components of Y exceed a higher quantile, i.e., are more

extreme, than the latter 25 components. Thus, we seek an estimator for exceedance proba-

bilities of high-dimensional multivariate random vectors Y ∈ Rd. While scalable parametric

models for high-dimensional multivariate extremes do exist, as exemplified by Engelke and

Ivanovs (2021) and Lederer and Oesting (2023), they often impose restrictive assumptions

about extremal dependence in Y, particularly as the dimension d grows large. Examples
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include regular or hidden regular variation (Resnick, 2002). As our goal is point estima-

tion of exceedance probabilities, rather than a full characterisation of the joint upper tail

of Y, we choose instead to use a non-parametric estimator for exceedance probabilities that

makes few assumptions on the joint upper tails. In particular, we adopt the non-parametric

multivariate tail probability estimator proposed by Krupskii and Joe (2019).

Denote by Fi(·) the distribution function1 of Yi and let Ui = Fi(Yi) for i = 1, . . . , d. Then,

for ϕ ∈ (0, 1), let

p(ϕ) := Pr{U1 > 1− ϕ, . . . , Ud > 1− ϕ} = Pr{Umax < ϕ}, (15)

where Umax = max(U1, . . . , Ud). Denote by C : [0, 1]d 7→ R the copula associated with Y

and by C̄ the corresponding survival copula, such that p(ϕ) = C̄(1− ϕ, . . . , 1− ϕ). Krupskii

and Joe (2019) construct estimators of p(ϕ) for small ϕ > 0 by making assumptions about

the joint tail decay of C. In particular, they assume that C (and C̄) has continuous partial

derivatives and, as ϕ ↓ 0, that

p(ϕ) = Pr{Umax < ϕ} = λ1ϕ+ λ2ϕ
1/ηℓ(ϕ) + o{ϕ1/ηℓ(ϕ)},

dp(ϕ)

dϕ
= λ1 + λ2ϕ

1/η−1ℓ(ϕ)/η + o{ϕ1/η−1ℓ(ϕ)}, (16)

for λ1, λ2 ≥ 0, and η < 1, and where ℓ(·) is a slowly-varying function at zero such that, for all

s > 0, ℓ(sϕ)/ℓ(ϕ) → 0 as ϕ ↓ 0; these regularity assumptions hold for a number of popular

parametric copulas (see Krupskii and Joe, 2019). We note that, when d = 2, η corresponds

to the coefficient of tail dependence proposed by Ledford and Tawn (1996); the extension to

d-dimensions is described by Eastoe and Tawn (2012).

Under the model in Eq. (16), the parameters λ1, λ2, and η can be estimated by defining

a small threshold ϕ∗ > ϕ, and considering Umax | Umax < ϕ∗. Then, as ϕ ↓ 0,

Pr{Umax < ϕ | Umax < ϕ∗} = p(ϕ)/p(ϕ∗) ∼ k1ϕ+ k2ϕ
1/η, (17)

1In our application to the prediction challenge data, Fi(·) is known to be the standard Gumbel distribution
function for all i = 1, . . . , d; see Rohrbeck et al. (2023).
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where k1 = λ1/(λ1ϕ∗ + λϕ
1/η
∗ ) and k2 = (1− k1ϕ∗)/ϕ

1/η
∗ . By fixing ϕ∗ and assuming equality

between the left and right-hand sides of Eq. (17), parameter estimates k̂1 and η̂1 can be

computed using maximum likelihood methods. Then, our estimate of p(ϕ) is

p̂(ϕ) := {k̂1ϕ+ (1− k̂1ϕ∗)ϕ
1/η̂}p̂(ϕ∗), (18)

where p̂(ϕ∗) is the empirical estimate of p(ϕ∗).

The estimator in Eq. (18) can be directly used to estimate p3 in Eq. (14) by setting

ϕ = ϕ1 = 1/300. However, it cannot be used to estimate p4, as the formulation of the joint

survival probability in Eq. (15) does not account for different levels of marginal tail decay for

each component of Y. In fact, we require an adaptation of p(ϕ) such that each component

Ui, i = 1, . . . , d, exceeds a scaled value of the form 1−ciϕ for 0 < ci < 1/ϕ. Setting ci = 1 for

i = 1, . . . , 25 and ci = 12, otherwise, yields p3 in Eq. (14). We construct such an estimator

by considering, for c := (c1, . . . , cd)
′, the probability

p(ϕ, c) := Pr{U1 > 1− c1ϕ, . . . , Ud > 1− cdϕ} = Pr{Umax(c) < ϕ}, (19)

for weighted maxima Umax(c) := max{(1 − U1)/c1, . . . , (1 − Ud)/cd}; note that when c =

(1, . . . , 1)′, we have equivalence between Eq. (15) and Eq. (19). An estimator of the form in

Eq. (19) was alluded to by Krupskii and Joe (2019); however, they did not provide theoretical

results for its asymptotic behaviour. We choose to estimate p(ϕ, c) by assuming that, as ϕ ↓ 0,

Pr{Umax(c) < ϕ} has the same parametric form as p(ϕ) in Eq. (16). Inference for p(ϕ, c)

then follows in a similar manner as for p(ϕ), only with samples of Umax(c) | (Umax(c) > ϕ∗)

(rather than Umax | (Umax > ϕ∗)) used for inference.

3 Results

3.1 Univariate quantile estimation

We now describe estimation of the univariate conditional quantiles required for the data

prediction challenge (Rohrbeck et al., 2023). To estimate the conditional q−quantile of

15



Y | (X = x) for q = 0.9999, we fit the GPD-GAM model described in Section 2.1. The

structure of u(x), σu(x), and ξ(x) are optimised, for a fixed value of λ, by minimising

the model’s BIC for different additive combinations of linear and smooth functions of the

covariates. All smooth terms are centered at zero and represented as univariate thin-plate

splines, with their degrees of freedom optimised automatically using the default penalisation

options available in the R package evgam (Youngman, 2022). Missing covariate values are

imputed to the marginal mean of the observed values and missingness is treated as a factor

variable. That is, smooth terms in a model output one of two values, depending on whether

or not the input covariate is missing.

We optimise λ by using the threshold selection scheme proposed by Varty et al. (2021)

and extended by Murphy et al. (2024). We first follow Heffernan and Tawn (2001) and use

the quantile and GPD-GAMmodel estimates to transform all data onto standard exponential

margins. Then, we define a grid of n equally spaced probabilities, {0 < λ1 < ... < λn < 1},

with λn = 1 − (λ2 − λ1). Let FE(·) be the standard exponential distribution function and

λ∗ ∈ (0, 1) be a pre-specified cut-off threshold. For all i = 1, . . . , n, we define a vector

of weights w = (w1, . . . , wn)
′ with components wi = F−1

E (λi)/
∑n

j=1 F
−1
E (λj) for λi > λ∗

and zero, otherwise. We then define the tail-weighted standardised mean absolute deviance

(twsMAD) by (1/n)
∑n

i=1wi|θ̃(λi)− F−1
E (λi)|, where θ̃(λi) denotes the empirical λi-quantile

of the standardised data. We set λ∗ = 0.99 and evaluate the twsMAD for a range of candidate

λ values that subceed λ∗. We then choose the optimal value which minimises this metric.

Using the BIC and twsMAD, our final model uses λ = 0.972 and, for the covariates, we

include: season and wind speed as linear terms in u(x), σu(x), and ξ(x); V2, V3, V4, and

wind direction as smooth terms in u(x) and σu(x). The median and the 50% confidence in-

tervals for the test conditional q-quantiles (see Section 2.1) are estimated using the empirical

quantiles over 2500 non-parametric bootstrap samples, and presented in Figure 1. The true

values of the quantiles are provided by Rohrbeck et al. (2023). We observe good predictions

of the conditional quantiles, with our estimates close to the true values. Our framework
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attains a 38% coverage rate, which is a slight underestimation of the normal 50%.
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Figure 1: Predicted conditional quantiles against true values for the 100 test covariate sets
for sub-challenge C1. Vertical error bars denote the 50% confidence interval, with the black
points denoting the median over bootstrap samples.

To estimate the required extreme q-quantile θ of Y , we use the NBE framework detailed

in Section 2.2 with n = 21000 independent replicates. Neural networks are trained using the

Adaptive Moment Estimation (Adam) algorithm (Kingma and Ba, 2014) with a mini-batch

size of 32 and, in order to improve numerical stability, input data are standardised prior to

training by subtracting and dividing by the mean and standard deviation (evaluated over

the entire training data set), respectively. We use K = 350, 000 and K/5 parameter values

for training and validation, respectively, with n∗ = 4 × 107 replicates used to estimate the

theoretical q-quantiles (θ; see Section 2.2). When producing training data, we use an empir-

ical prior distribution for the hyper-parameter set {(ut, σt, ξt) : t = 1, . . . , n}. To construct

this prior, we estimate the GPD-GAM model, as described above but with λ = 0.6 (see

Section 2.2 for details), across 750 bootstrap samples. Draws from the empirical prior on

{(ut, σt, ξt) : t = 1, . . . , n} then correspond to a sample from all bootstrap parameter esti-

mates. To increase the variety of models (and hence, quantiles) used to train the estimator,
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we permute the values of ut, σt, and ξt across {(ut, σt, ξt) : t = 1, . . . , n} when constructing

the training and validation data. As small values of Yt < ut are unlikely to impact the

high q-quantile we seek to infer, we take the distribution of non-exceedances F≤
t (·) to be the

empirical distribution of observations {yt : yt ≤ ut, t = 1, . . . , n}, i.e., all observations that

subceed the time-varying threshold ut. We note that this distribution does not vary over t,

but does vary with the prior draw of {ut : t = 1, . . . , n}.

The estimator is trained using early stopping (see, e.g., Prechelt, 2002); the validation

loss is recorded at each epoch during training, which halts if the validation loss has not

decreased for 10 epochs. We choose the optimal architecture for the neural networks, ϕ

and ψ in Eq. (5), by minimising the risk for a test set of 1000 parameter values (not used

in training); this is provided in Table 1. NBEs are trained on GPUs randomly selected

Table 1: Optimal DNN architecture used in Section 3.1. All layers used rectified linear unit
(ReLU) activation functions, except the final layer, which used the identity function.

Function input dimension output dimension parameters

ψ
[1] [48] 49
[48] [48] 2352

a [48] [48] 0

ϕ
[48] [48] 2352
[48] [1] 49

total trainable parameters: 4802

from within KAUST’s Ibex cluster, see https://www.hpc.kaust.edu.sa/ibex/gpu_nodes

for details (last accessed 13/07/2023).

To illustrate the efficacy of our estimator, Figure 2 presents extreme quantile estimates

for 1000 test data sets. We observe that estimates are generally aligned to the left of the

diagonal, i.e., the majority of estimates in Figure 2 are overestimates. This is a consequence

of the asymmetric loss function (also presented in Figure 2), which favours conservative

estimates of the quantile. We estimate the q-quantile for q = 1 − (6 × 104)−1 to be 201.25.

An estimated 95% confidence interval of (200.79, 201.73) was derived using a non-parametric

bootstrap; due to the amortised nature of our neural estimator, non-parametric bootstrap-

18

https://www.hpc.kaust.edu.sa/ibex/gpu_nodes


based uncertainty estimation is extremely fast, as the estimator does not need to be retrained

for every new sample.
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Figure 2: Left: Extreme quantile estimates for 1000 test data sets. Dark blue points denote
those for which L(θ, θ̂) = 0. Right: Loss function, L(θ0, θ̂) in Eq. (2), for θ0 := 200.

3.2 Extremal dependence estimation

For sub-challenge C3, we estimate p1 and p2 in Eq. (7) using the conditional extremes model

described in Section 2.3. We perform model selection to identify the best covariates to

include in the linear model for the dependence parameters, α−i,t and β−i,t in Eq. (9), by

minimising the AIC over the three separate model fits, i.e., Y−i,t | (Yi,t > u), i = 1, 2, 3,

with u set to the 90% standard Laplace quantile. The best fitting model did not include any

transformation (e.g, log or square) of the covariates, and uses a homogeneous β−i,t function,

i.e., with β−i,t = β−i for all t = 1, . . . , n, and for i = 1, 2, 3.

We use a visual diagnostic to optimise the exceedance threshold u. We fit the three

conditional models for a grid of u values, use Algorithm 2 (with N ′ = 5N) to simulate

N := 107 realisations from the fitted model for Y = (Y1, Y2, Y3), i.e., with time t marginalised

out, and then compute realisations of R := Y1 + Y2 + Y3. The upper tails of the aggregate

variable R are heavily influenced by the extremal dependence structure in the underlying
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Table 2: Sub-challenge C3: Parameter estimates α̂
(0)
−i , α̂

(1)
−i , and β̂−i, for the conditional

extremal dependence model, Y−i,t | Yi,t > u, i = 1, 2, 3. Here, α̂
(1,j)
−i denotes the jth column

of α̂
(1)
−i with j = 1 and j = 2 corresponding to the linear coefficient vector for Season and

Atmosphere, respectively. Values in the jth row give the component of the parameter vector
for Y−i,t that corresponds to Yj,t, j = 1, 2, 3 (and so are missing for j = i).

i = 1 i = 2 i = 3

α̂
(0)
−i α̂

(1,1)
−i α̂

(1,2)
−i β̂−i α̂

(0)
−i α̂

(1,1)
−i α̂

(1,2)
−i β̂−i α̂

(0)
−i α̂

(1,1)
−i α̂

(1,2)
−i β̂−i

Y1,t - - - - −0.08 0.22 0.08 0.81 0.15 −0.33 0.01 0.97
Y2,t 0.56 −0.06 0.07 0.70 - - - - 0.01 −0.07 0.01 0.45
Y3,t 0.28 −0.02 0.07 0.82 0.24 −0.14 0.14 0.09 - - - -

(Y1, Y2, Y3) (Richards and Tawn, 2022). Hence, we can exploit the empirical distribution of

the aggregate as a diagnostic measure for the quality of the dependence model fit. We choose

the optimal u as that which provides the best estimates for extreme quantiles of R; this is

achieved through visual inspection of a Q-Q plot (see, also, Richards et al., 2022, 2023c).

For brevity, we test only two values of u: the 90% and 95% standard Laplace quantiles.

We found the optimal u to be the latter, and we illustrate the corresponding Q-Q plot in

Figure 3. Table 2 provides the corresponding parameters estimates α̂
(0)
−i , α̂

(1)
−i , and β̂−i, for

i = 1, 2, 3.

Example realisations from the fitted model are illustrated in Figure 3. Good model fit is

illustrated, as the realisations mimic the extremal characteristics of the observed data. Prob-

abilities p1 and p2 are estimated empirically from the aforementioned N = 107realisations of

(Y1, Y2, Y3), and found to be p̂1 = 3.13× 10−5 and p̂2 = 2.29× 10−5, respectively.

For sub-challenge C4, we estimate p3 and p4 in Eq. (14) using the non-parametric tail

probability estimators defined in Eq. (18) and Eq. (19), respectively. However, we first

seek to decompose the high-dimensional random vector Y into strongly tail-dependent sub-

vectors. Our reasoning is threefold: i) the estimator in Eq. (19) requires strong assumptions

about the joint upper tail decay of the random vector Y which are unlikely to hold for

high dimension d; ii) reliable estimation of the intermediate exceedance probability, p̂(ϕ∗) in

Eq. (18), becomes difficult as d grows large; iii) Krupskii and Joe (2019) observed through
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Figure 3: Top-left panel: Q-Q plot for the simulated and empirical sum R = Y1 + Y2 + Y3.
Other panels provide scatter plots of (black) observations and (blue) realisations from the
fitted conditional extremal dependence models. Red vertical and horizontal lines correspond
to the exceedance threshold u, i.e., the 95% marginal quantile.

simulations that the estimator in Eq. (18) provides more accurate estimates when the true

value of η is close to one, i.e., when Y exhibits strong upper tail dependence.

We identify sub-vectors by estimating the EDM between all pairs of components of Y,

with α = 2, ∥ · ∥ set to the L2 norm, and with u in Eq. (13) taken to be the empirical
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Figure 4: Left: Heatmap of pairwise EDM estimates grouped using hierarchical clustering,
alongside the corresponding dendrogram. Right: Threshold stability plots of estimated log-
exceedance probabilities, log(p̂3) and log(p̂4), against the intermediate quantile ϕ∗ used in
their estimation. Red horizontal lines denote the optimal choice of ϕ∗.

0.99-quantile. Estimates are presented in a heatmap in Figure 4, with values grouped using

hierarchical clustering. An appropriate grouping can be found by visual inspection of Fig-

ure 4; the clustered heatmap produces a block-diagonal matrix with five blocks (with size

ranging from 8–13 components), and with elements of the off-diagonal blocks close to zero.

For less well-behaved data, the number of clusters (and sub-vectors of Y) can instead be

determined by placing a cut-off at an appropriate point on the clustering dendrogram.

We decompose Y into the five sub-vectors suggested by Figure 4, which we denote by Yi

for i = 1, . . . , 5. Estimation of p3 then follows under the approximation

p3 = Pr(Y1 > s1, . . . , Y50 > s1) ≈
5∏

i=1

Pr

( ⋂
Y ∈Yi

Y > s1

)
, (20)

and similarly for p4 (with the exceedance value s1 or s2 chosen appropriately). That is,

we assume complete independence between the sub-vectors of Y to approximate p3 and p4.

Exceedance probabilities for each sub-vector are estimated using the methodology described

in Section 2.5. We fix the intermediate quantile level ϕ∗ in Eq. (18) across all sub-vectors

and for estimation of both p3 and p4. An optimal value ϕ̂∗ is chosen via a threshold stability

plot (see, e.g., Coles, 2001). In Figure 4, we present estimates of log(p3) and log(p4) for a
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sequence of ϕ∗ values in [0.1, 0.4]. We choose ϕ̂∗ as the smallest ϕ∗ such that there is visual

stability in Figure 4 for estimates of both log(p3) and log(p4) when ϕ∗ > ϕ̂∗. In this case,

we adopt ϕ̂∗ = 0.25 as the optimal value. We use a non-parametric bootstrap with 200

samples to assess uncertainty in estimates of p3 and p4. The resulting bootstrap median2

estimates of log(p3) and log(p4) (and their estimated 95% confidence intervals) are −59.38

(−68.46,−49.82) and −55.24 (−60.12,−49.79), respectively.

4 Conclusion

We proposed four frameworks for the estimation of exceedance probabilities and levels as-

sociated with extreme events. To estimate extreme conditional quantiles, we adopted an

additive model that represents parameters in a peaks-over-threshold model as splines. To

estimate univariate quantiles in an unconditional setting, we constructed a neural Bayes es-

timator that estimates a quantile subject to a conservative loss function. Our new approach

to quantile estimation is amortised, likelihood-free, and requires few parametric assumptions

about the underlying distribution. For multivariate data, we considered two frameworks: i)

in the presence of covariates, we adopted a non-stationary conditional extremal dependence

model to capture linear trends in extremal dependence parameters, and ii) in the absence of

covariates, we proposed a non-parametric estimator for multivariate tail probabilities that

can be applied to high-dimensional (d = 50) data via a sparse decomposition using pairwise

extremal dependence measures. We validated these modelling approaches by using them to

win the EVA (2023) Conference Data Challenge (Rohrbeck et al., 2023).

We illustrated the efficacy of additive GPD regression models for estimating extreme

conditional quantiles. Machine learning-based extreme quantile regression models using, for

example, random forests (Gnecco et al., 2024), gradient boosting (Velthoen et al., 2023),

and neural networks (Pasche and Engelke, 2022; Richards et al., 2023a; Richards and Huser,

2024) may offer a potentially more flexible alternative to additive models.

2We submitted the median over bootstrap estimates for the data competition.
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We designed a neural Bayes estimator (NBE) to perform simulation-based inference for

extreme quantiles. To train this estimator, we constructed an empirical prior measure π(·)

for the extreme quantile, by simulating from a family of pre-defined peaks-over-threshold

models. The resulting NBE was optimal with respect to the prior measure π(·). Whilst our

estimator performed well in the application, the underlying truth was a peaks-over-threshold

model (Rohrbeck et al., 2023), and, hence, the truth distribution was contained within the

class of distributions covered by π(·). We note that our estimator may not perform as well

when the converse holds, and the true distribution of Y is not approximated well by any

family in π(·). Further study of the optimality properties of our proposed NBE is required

and, in particular, its efficacy under model misspecification.

We proposed an extension of the conditional extremal dependence regression model (Win-

ter et al., 2016) and highlighted its efficacy for estimation of extreme exceedance probabilities.

Our conditional model performed well in practice, but alternative multivariate extremal de-

pendence regression models, which rely on more classical assumptions about the extremal

behaviour of Y, e.g., regular or hidden regular variation, could have been tested (see, e.g.,

Cooley et al., 2012; de Carvalho et al., 2022; Murphy-Barltrop and Wadsworth, 2022). In our

application, we tested only two values for the exceedance threshold u in (8), and quantified

goodness-of-fit through visual inspection of Q-Q plots for the aggregate R (see Figure 3). A

more rigorous testing procedure could be employed, whereby a grid of u values are tested

and the optimal u is taken to minimise some numerical measure of fit; see, e.g., Murphy et al.

(2024), who proposed an automated threshold selection procedure for peaks-over-threshold

models.

Finally, we proposed an extension of the non-parametric tail probability estimator of

Krupskii and Joe (2019) to account for different levels of marginal decay for components of a

random vector. Whilst we were able to showcase the efficacy of our estimator by using it to

win sub-challenge C4 of the EVA (2023) Conference Data Challenge, we have not provided

any theoretical guarantees for the estimator; we leave this as a future endeavour.
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