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We simulate a free dissipative and coherent-driven Kerr nonlinear system using a time-evolving block decima-
tion (TEBD) algorithm, to study the impact of the initial state on the exact quantum dynamics of the system. The
superposition of two coherent branches results in non-classical time dynamics. The Wigner state representation
confirms that the system ends up saturating to two different branches, through evolving different trajectories,
resulting in de-Gaussification throughout evolution. Furthermore, we also see that the time evolution suffers a
residual effect of the initial state.

.

I. INTRODUCTION

The Kerr effect has shown intensity-dependent phase shift
of light during propagation due to non-linear quadratic
electro-optic (QEO) response which has remained in interest
over centuries, for providing a broad range of applications in
many optical and magnetic devices. The Kerr nonlinearity has
shown some interesting quantum phenomena such as photon
bunching and antibunching [1], photon switching in quantum
interference [2], dynamical optical bistability via bifurcation
process [3] and the generation of non-classical states [4]. All
the setups exhibit bistability due to nonlinear susceptibility as
their predominant characteristic. Theoretically, the multista-
bility of a steady-state Kerr nonlinear system is treated in two
different ways. One way of doing it is by approximating the
state to a coherent one and treating it semi-classically using
the quantum Langevin equation [5, 6]. On the other hand, it
is done by mapping the master equation to the Fokker-Planck
equation which determines the exact quantum mechanical so-
lution [1, 7]. While implementing both theoretical techniques
for the analysis of the steady state, the evolution of an anhar-
monic single-mode field with Kerr nonlinearity is generally
considered, interacting with a zero-temperature reservoir un-
der coherent driving.

In this context, it is essential to mention that such nonlin-
earities are involved with quantum-limited amplification and
parametric coupling, observed in superconducting microwave
cavities [8], which has also been used for quantum control
and manipulation [9]. Besides, Kerr nonlinearity has played
a crucial role in the generation of squeezed states [10, 11], par-
ticularly using optical fibers [12]. Recently, squeezing based
on third-order nonlinear susceptibility has also been used for
the increment of sensitivity in interferometers [13]. The prop-
agation of light in Kerr-based fibers requires long propagation
distances and high powers since the Kerr nonlinearity exhibits
to be very small in silica glass [14]. In this limit, a standard
classical approach based on Maxwell’s equations has been
used which leads to a set of coupled nonlinear Schrödinger
equations [15], which describes the behavior of optical fields
in nonlinear dispersive media which has been seen diversely

∗ souvik.agasti@uhasselt.be

in the phenomena e.g. self-focusing of ultrashort pulses [16–
18], pulse generation [19] and fiber solitons [20]. However,
there are interesting unavoidable quantum effects that can-
not be visible in this classical approach. Therefore, the bor-
derline between classical and quantum descriptions becomes
a genuine question to think about. We explore this conun-
drum here by investigating Wigner’s function in phase-space
methods [21], and quantumness of the state through fidelity
measurement with the possible nearest approximated classi-
cal state [22]. Another important aspect that we explore here
is the impact of the initial state on the dynamical behavior
of such nonlinear quantum systems surviving under constant
drive and spontaneous decoherence, which is experienced pre-
viously in different systems, e.g. impurity-infected solid-state
systems [23], and even in Kerr nonlinear systems [24].

The generation of quantum state in a driven nonlinear dissi-
pative system has proven to be a useful tool in quantum infor-
mation processing. Such quantum-optical treatment of driven
and dissipative oscillators with Kerr nonlinearity is important
in the context of resonators, especially micro and nano res-
onators such as photonic crystals [25] and waveguides [26].
The description of lossy propagation in fibers and crystals,
and switching between two branches shows hysteresis which
has recently been observed experimentally [27, 28] and nu-
merically [24, 29, 30] in Kerr nonlinear system. However,
those approaches remained unable to reveal the nonlinearity-
induced mixed-state solutions of the quantum fluctuations and
dynamical trajectories. Even though efforts had been made
to develop a quantum mechanical exact analytical solution
for the dissipative anharmonic-oscillator by solving Liouville
equation [31, 32], it does not show the effects of the presence
of external drive. Therefore, the demand for studying the ex-
act dynamical behavior of the state under coherent drive is still
there, and how they are being affected by the lifetime of the
system and their initial state; which is the key focus of this
article.

The theoretical investigation of quantum dynamics of Kerr
nonlinear systems is dependent on the Markovian dynamics
of open quantum systems, which is often done by linearized
approximation. This often leads to overlooking non-linearity
introduced interesting dynamical quantum effects in Kerr sys-
tems. Especially, one can not determine the exact dynamical
behavior and the impact of the initial state, analytically. Be-
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sides, the existing theoretical framework does not explain the
dependency of a steady state on the initial state of the sys-
tem. This limitation of analytics motivates numerical treat-
ment to deal with the time evolution. For this purpose, we use
time-evolving block decimation (TEBD) algorithm which is
also capable of time evolution simulations of time-dependent
Hamiltonians. To do that, we transform the multimode en-
vironment to a one-dimensional chain [33] which is com-
posed of numerical diagonalization and renormalization pro-
cess [4, 34]. The algorithm demands to express the state of
the chain as matrix product state (MPS) and the time evolu-
tion goes through simulating the lattice chain in alternative
pairs [35].

In this article, besides analytical theory, we simulate a
coherent-driven Kerr nonlinear system using the TEBD algo-
rithm, to investigate the impact of the initial state on its exact
dynamics. We initiate here with the consistency of the numer-
ical results to its corresponding analytical counterpart, along
with the quantum jump of the system and how the bistable
nature of the steady state is dependent on the external drive.
Earlier, in [4, 24], while simulating the Kerr nonlinear system
using TEBD, we studied the coherent dynamics of the sys-
tem and the quantum fluctuations associated with it. Unlike
that, however, this article investigates the exact quantum dy-
namics of the state for the first time and the influence of the
initial state on it. We visualize it through the evolution of the
Wigner function which gives a picture of how the state settles
on the different locations of phase space. We then character-
ize the quantumness of the dynamics by studying the degree
of coherence and fidelity. For better understanding, we fur-
thermore study the non-Gaussian nature of the evolution. The
investigation gives a better understanding of the evolution of
the system, which provides an intuitive range of acceptance in
which classical or coherent approximation remains valid.

II. THE SYSTEM

The Hamiltonian of a Kerr nonlinear system with an exter-
nal drive is given by

HS = ωSa
†a+ χ”a†

2
a2 + i(a†Ee−iωLt − aE∗eiωLt) (1)

where a† and a are the creation and annihilation operators
of the system. The oscillation frequency of the mode of the
system is ωS . χ” is the anharmonicity parameter which is
generated from the real part of the third-order nonlinear sus-
ceptibility tensor. The external driving field acting on the sys-

tem ⃗̃E(t) = E⃗e−iωLt + E⃗∗eiωLt has an amplitude E and
oscillation frequency ωL. Moving to the frame of the driving
field gives the cavity frequency detuned to ∆ = ωS − ωL. In-
troducing a dissipative thermal bath (B) with the system (S),
the total Hamiltonian gives

Htot = HS +HB +HSB (2)

where HB = limxm→∞
∫ xm

−xm
g(x)d†(x)d(x)dx repre-

sents the Hamiltonian of a multimode thermal reservoir

FIG. 1. Steady state (a-I) Field amplitude and (a-II) phase,
(b) second-order correlation function, (c) fidelity and (d) non-
Gaussianity of the Kerr-nonlinear system with the variation of driv-
ing field amplitude for ∆ = −12g, χ” = 1.5g, γ = 6.28g. TEBD
simulation parameters N = 61, xmax = 60, χ = 36,M = 20, δt =
10−2g−1 and total time of evolution 2g−1.

which is expected to be at zero temperature, and HSB =
limxm→∞

∫ xm

−xm
h(x)

(
a†d(x) + h.c.

)
dx is the interaction

Hamiltonian. g(x) is the frequency of oscillation and for the
environmental mode x. h(x) is the coupling strength between
the system and environment around the mode of oscillation of
the system ωS . d†x and dx are the creation and annihilation
operators that satisfy the usual bosonic commutation relation
[d†x, dx′ ] = δx,x′ . Here, we consider a linear dispersion re-
lation: g(x) = g.x, for the conventional system/bath (S/B)
couplings, where g is the inverse of the density of states. In
this process, we have chosen a hard cutoff frequency limit
of the bath: ωc = g.xm. In addition, the consideration of
Markovian dynamics within the range of frequencies of inter-
est makes the S/B coupling strength mode independent (wide
band limit approximation): h(x) = c0 [36], which character-
izes the properties of the bath through a well-defined spectral
density function J(ω) [37], as

J(ω) =
1

2
γΘ(ω + ωc)Θ(ωc − ω), (3)

where γ = 2πc20 is the rate of dissipation of the system and
Θ is the Heaviside step function. The Heisenberg-Langevin
equation of motion can be obtained semi-classically from the
system Hamiltonian in Eq. (1), which in turn determines the
stationary system field, as
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FIG. 2. Analytically determined steady-state Wigner function for (I) E= 1, (II) E= 8, (III) E= 10 and (IV) E= 20 . All other parameters
remain same with Fig. 1.

FIG. 3. Time evolution of Wigner function for (I) E= 1, (II) E= 8, (III) E= 10 and (IV) E= 20, and initial field (a)α(0) = [0, 0],
(b)α(0) = [1.5, 0.33π] and (c)α(0) = [2.5,−0.37π]; for the time 0.1, 0.3, 0.8, 2g−1 (from bottom to top) . All other parameters remain the
same with Fig. 1. See videographic representation of the evolution of Wigner function in Supplementary Material .

|E|2 = |α|2
(
(∆ + 2χ”|α|2)2 + γ2

4

)
, (4)

where α is the steady-state system field. The semi-classical
analytical solution determines the branch values and the tran-
sition region [24]. In order to observe classical bistability, the

detuning has to be adjusted to ∆ < −γ
√

3
4 . Based on the

theoretical framework defined here, we simulate the dynam-
ical behavior numerically, which includes the transformation
of the S/B coupling model to a 1D chain and simulates after-

ward using the TEBD algorithm (See Appendix A)[34]. Fol-
lowing the algorithm, we express the state of the chain as MPS
using Schmidt decomposition and perform real-time simula-
tion using second-order Suzuki-Trotter expansion [35]. The
technique has been used successfully before in [4, 24] for the
simulation of the Kerr nonlinear system. We also explained
the applicability and limitations of the technique in [4], where
we explained numerical complexity and the reliable time steps
that can be accepted for the simulation. Besides, we also ex-
plained the reliable size of the chain, i.e. number of sites, the
size of Hilbert space, and the Schmidt number.

The Kerr nonlinear bistability, seen in 4, motivates us to
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FIG. 4. Evolution of second order correlation function for the initial field (i)α(0) = [0, 0], (ii)α(0) = [1.5, 0.33π] and (iii)α(0) =
[2.5,−0.37π] in the top row, and (a) E= 1, (b) E= 8, (c) E= 10 and (d) E= 20 in bottom row . All other parameters remain same
with Fig. 1.

FIG. 5. Fidality of the states while evolving for the initial field (i)α(0) = [0, 0], (ii)α(0) = [1.5, 0.33π] and (iii)α(0) = [2.5,−0.37π] in the
top row, and (a) E= 1, (b) E= 8, (c) E= 10 and (d) E= 20 in bottom row . All other parameters remain same with Fig. 1.

consider three different initial conditions, to investigate the
switching effects on the dynamical behavior. Earlier in [24],
we have seen that the dynamical behavior and the operational
frequency are highly dependent on the initial state of the sys-
tem.

III. STEADY STATE

In Schrödinger picture, one can derive the exact quantum
mechanical solution of the moment calculating generalized
function by mapping the master equation into the Fokker-
Planck equation [1]. This in turn helps to determine the
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FIG. 6. Non-Gaussianity of the states while evolving for the initial field (i)α(0) = [0, 0], (ii)α(0) = [1.5, 0.33π] and (iii)α(0) =
[2.5,−0.37π] in the top row, and (a) E= 1, (b) E= 8, (c) E= 10 and (d) E= 20 in bottom row . All other parameters remain same
with Fig. 1.

steady-state field amplitude (αS), second-order correlation
function (g2(0)) for the coherent field α as

αS = G(0,1) (5a)

g2(0) = G(2,2)/(G(1,1))2 (5b)

where

G(m,n) =
(−1)n(E/iχ”)(m+n)Γ(p)Γ(q)F

(
p+ n, q +m, 2[E0/χ”]

2
)

Γ(p+ n)Γ(q +m)F
(
p, q, 2[E0/χ”]2

) (6)

is the moment calculating a generalized function. Here
E0 = E = E∗, p = [ ∆χ” + γ

2iχ” ], q = [ ∆χ” − γ
2iχ” ] and

F
(
p, q, z

)
= F

(
[], [p, q], z

)
is the 0F2 hypergeometric func-

tion.

We compare analytically determined exact quantum me-
chanical steady-state behavior from Eq. (5) in Fig. 1 to
compare with the corresponding numerical counterpart de-
termined by the TEBD numerical methods. The comparison
justifies the consistency between them. The amplitudes and
phases of the steady-state system fields (Eq. (5a)) are plotted
in Fig. 1 (a)(I and II, respectively); which shows, both the so-
lutions, moreover, follows each other. Also, the solutions have
been seen to remain analogous to classical bistability. How-
ever, unlike semi-classical solutions, the quantum mechani-
cal solution gives a superposition of two stable branches and,
therefore, does not exhibit multiple stable states for any partic-

ular drive. Following that, the steady-state system field loses
its linear behavior with the increment of the external drive, and
the system tends to jump from one steady state to another. As
the coherent states are non-orthogonal, we see a non-classical
states are generated in the quantum mechanical solution, es-
pecially around the transition region. Therefore, we observe
a peak in Fig. 1 (b), in the plot of second-order correlation
function (g2(0)) at that region. The non-classical nature of
the evolution is confirmed by the deviation of (g2(0)) from
the unit value, which can be understood by the Eq. (5b). For
weaker drives the quantity is seen to be (g2(0)) > 1 which is
caused by the bunching modes of the super-Poissonian statis-
tical distribution of photons (variance > average photon num-
ber). On the other hand, the system is seen to stabilize to
an anti-bunching mode with the sub-Poissonian distribution
of photons (variance < average photon number), for stronger
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drives; which may lead to obtain squeezed states. Therefore,
evolution in two branches is anticipated to exhibit opposite
characteristics. The plot also indicates that the moving from
lower to the upper branch while increasing the strength of the
drive, causes the system to undergo from bunching to the anti-
bunching steady-state mode.

Another quantitative way to visualize how close the quan-
tum state is to its quasiclassical solution is the corresponding
fidelity [22]. The quantity is expressed as

F(t) = Tr [ϱ(t)ϱcl(t)] = π

∫
dαW (α)Wcl(α) (7)

which measures the overlap of the quantum state (ϱ) to
its nearest classical one (ϱcl) which is defined by ϱcl(t) =
|αcl⟩⟨αcl|, where αcl(t) = Tr [aϱ(t)]. Another way, one can
say it is a measure of the overlap between steady-state Wigner
function (W (α)) to that of the closest classical one Wcl rep-
resenting Wigner function of the state corresponds to the state
ϱcl(t), which is expected to be perfectly Gaussian in shape.
Following the measurement of (g2(0)), the fidelity measure-
ment in Fig. 1(c) shows that the steady state deviates the most
from its closest classical counterpart around the transition re-
gion. However, the fidelity remains larger for low-intensity
fields in the lower branch compared to the upper one. Since
the result is a prescription for the mathematical quantification
of the degree of similarity between the quantum state to its
closest classical one, it signifies the study of quantum dynam-
ics through linearized approximation (as done previously in
[24]) gives less error when the state undergoes thorough one
among two branches (especially, at lower branch). The quan-
tumness of the state becomes more robust around the tran-
sition region. Since the fidelity quantifies how close is the
produced state to its classical counterpart, the information is
useful in quantum information processing, as the preparation
of a quantum state is limited by imperfection

The non-classicality of the system provokes to check the
non-Gaussian nature of the system, which has been of inter-
est over decades for its application in quantum communica-
tion [38, 39] and optomechanical systems [40]. The non-
Gaussianity of a continuous variable state (ϱ) is typically
quantified by the quantum relative entropy as

S(ϱ||ϱG) = Tr [ϱ(log ϱ− log ϱG)] (8)

measuring distance between the quantum state ϱ and the
closest Gaussian state ϱG as a reference (0 ≤ S(ϱ||ϱG) ≤ ∞)
[41, 42], where S(ϱ) = −Tr [ϱ(log ϱ)] is the von Neumann
Entropy. The closest Gaussian state ϱG is defined to have the
same first and second moments, and therefore, the same corre-
lation matrix. The plot of non-Gaussianity in Fig. 1(d) shows
that the deviation from Gaussianity maximizes when the sys-
tem goes into the transition region, and the lower branch sta-
bilizes closer to a Gaussian state compared to the upper one.

The non-classical steady-state can better be understood
from the shape of the Wigner function, i.e. deviation from
its Gaussian nature. Even though, the dynamics of the state

evolving freely under the influence of Kerr nonlinearity has
been studied before through the Wigner function [43], the
dissipation was not considered. Therefore, the dynamics of
the dissipative Kerr nonlinear system are yet to be studied.
The steady-state Wigner function (W (α)) can be calculated
analytically from the solution of the master equation using
moment calculating generalized function (Eq. (6)) (See Ap-
pendix B):

W (α) =
2

π
e−2|α|2

∑
k,m,n

(−1)k2k+m+n

k!m!n!
α∗nαmG(k+m,k+n).

(9)
Fig. 2 plots the Wigner function from the analytical steady

state solution of Eq. (9), which exhibits, while increasing the
strength of the drive (I-IV), the bump is seen to be stabilized at
different locations of phase space at a steady state. The bump
is seen to be splitting into two around the transition region (II
and III), which reminds the fact that the state is constructed
by the superposition of two coherent states belonging to two
different branches. Eventually, the shape loses its Gaussian
nature and generates a non-classical state.

The initial state has been shown to have a clear impact on
the steady-state behavior of the system. For different initial
states, a residual effect is observed in the quantum jumps from
one branch to another, which occurs at the different driving
fields around the classically determined transition region. Fig.
1 (a) shows that the steady state intends to transit from bunch-
ing to anti-bunching mode earlier in the TEBD-determined
quantum mechanical estimation, for the initial state belong-
ing in the upper branch. This results shifting the peak of
(g2(0)) in Fig. 1 (b), towards the weaker drive. Therefore,
this also causes to push the dip towards a weaker field when
we estimate fidelity numerically in Fig. 1 (c). Following non-
classicality, the non-Gaussianity measurement has also wit-
nessed a similar phenomenon in Fig. 1(d), where we ob-
serve the bump of non-Gaussianity moves toward the lower
driving field, around the classical transition region, when the
system starts evolving from a stable state of higher branch.
The phenomenon can also be understood better by comparing
the numerically determined Wigner function to its analytical
counterpart. The steady-state Wigner function in the top plots
of Fig. 3(a-d)(also in Supplementary Material) shows the in-
evitable difference with Fig. 2, as the bump moving earlier
when the system starts evolving from an initial state at the
upper branch, causing the early shift of the peak(dip) of non-
Gaussianity (fidelity) in Fig. 1. It, therefore, inspires to study
the exact time dynamics of the Kerr nonlinear system to visu-
alize the evolution of the state.

It is to be noted that analytically determined results of
steady states do not show any impact on the initial state of the
system. This happens because it presents an ideal result that
can be obtained after an infinite time of evolution. Therefore,
it can be anticipated that the increment of the time of evolution
can reduce the hysteresis effect, directing the steady state nar-
rowing down toward analytical results. Intensive attempts are
made to understand such hysteresis in Kerr nonlinear systems
experimentally in [27, 28] and numerically in [24, 29, 30].
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IV. QUANTUM DYNAMICS

The exact dynamical behavior and the evolution of the
state can better be understood through the evolution of the
Wigner function in Fig. 3, representing the quasi-probabilities
in phase space for different times. Since the initial states
are coherent, it determines the phase space location of the
Wigner functions which is shaped to be a Gaussian hump.
Following the semi-classically determined upper branch, un-
der stronger drive, the bump of the Wigner function stabilizes
rotating clockwise rotation ( Fig. 3IV(a) and IV(b)), whereas
the bump rotates in a counter-clockwise direction when the
system falls to a lower branch under a weaker drive ( Fig.
3I(b) and I(c)). As the photons are distributed oppositely
in two different branches (super-Poissonian in the lower and
sub-Poissonian in the upper branch), the dynamical behav-
ior is anticipated to be opposite, which we discussed in the
previous section. The rotational direction is determined by
the branch values (including their phases) of the internal field
[4, 30].The numerical method also remains helpful to provide
a parallel description of non-driven dissipative nonlinear sys-
tems, which one can compare with analytics given in [31, 32]
The phenomenon is also hinted in [24] where we determined
the dynamical behavior of the classical field of the different
branches of the system. However, this article presents a way
to visualize the evolution of state, by studying its exact quan-
tum dynamics. Interestingly, in the transition region, the bump
splits into two and moves in opposite directions to stabilize
two different branches ( Fig. 3(II and III)(a-c)). The existence
of both the bumps together exhibits the superposition of two
different coherent states, resulting in a non-classical nature of
the time evolution. Also, one can distinguish the difference in
the probability distributions from the shape of the bumps. The
non-uniform distribution of the bump in the lower branch in-
dicates the super-Poissonian distribution, whereas a squeezed
bump is seen in the upper branches, indicating a squeezed
state with the sub-Poissonian distribution. Unsurprisingly, the
upper (lower) bump gets stronger (weaker) with the increment
of the strength of the drive. However, the evolution process
around the transition region is observed to be very slow, and
therefore, a perfect steady state almost remains unachieved at
the end of time evolution.

For better visualization of the exact dynamical behavior
of the evolution, we plot the evolution of the Wigner func-
tion through videographic representation in the Supplemen-
tary Material, which clearly shows the bump of the Wigner
function rotates in different directions in phase space, while
evolving in different branches. Therefore, the splitting of the
bump into two and moving in opposite directions in the tran-
sition region is also better understood there.

We investigate the nonclassical dynamical behavior of the
Kerr nonlinear system by plotting the time evolution of the
second-order correlation function (g2(0)) in Fig. 4. It exhibits
that the system intends evolving through bunching modes
(g2(0) > 1) for weaker drives, and anti-bunching modes
(g2(0) < 1) for stronger drives. More importingly, the system
starts evolving through bunching modes (g2(0) > 1) when
the initial state remains at lower (α(0) = 0) or metastable

(α(0) = [1.5, 0.33π]) branch. However, if the system starts
from upper branch (α(0) = [2.5,−0.37π]), it starts evolving
through anti-bunching modes (g2(0) < 1) . Also, following
the Wigner function in Fig. 3(II and III) (also in Supplemen-
tary Material), the evolution of g2(0) at Fig. 4(b) shows the
system takes longer time to saturate. Throughout the evolution
process, the non-classicality moreover exhibits remain highly
valued when the system evolves through transition regions.

Following the second-order correlation function, we ana-
lyzed the dynamical behavior of the system through the evo-
lution of fidelity. Fig. 5 shows that the system moreover
evolves through higher fidelity in the lower branch compared
to the upper branch. As the system evolves through a non-
classical state when it steps into the transition region, due to
superposition of two coherent branches; a rapid reduction of
fidelity is observed when the system takes a quantum jump
from one branch to another during evolution. However, when
the system goes back to one among two stable branches, fi-
delity rises up ( Fig. 5(a,d)). Since the fidelity measures how
close the state is to its quasiclassical approximation, its re-
maining closer to unit value enables acceptability of the mean-
field dynamics. However, a reduction from its unit value raises
concern while accepting that approximation. Fig. 5(a,d) also
shows that while looking at the impacts of the initial state
on fidelity measurements, we notice that the fidelity reduces
more during the transition when the initial state belongs com-
pletely different (in a different branch) than the final state.

A quantum state is identified to be Gaussian from the Gus-
sianity of its characteristic function, which makes the Wigner
function to be in Gaussian shape. Distortion of the bump of
the Wigner function from its Gaussian shape in Fig. 3 (also in
Supplementary Material) and the fluctuation of second-order
correlation provokes to estimate of the non-Gaussianity of the
Kerr-nonlinear system throughout evolution, which is quan-
tified by the quantum relative entropy, given in Eq. (8). It
appears that the non-Gaussianity moreover follows the profile
of fidelity. Fig. 6 shows that the non-Gaussianity increases
when the system jumps from one branch to another. The state
tends to remain non-Gaussian throughout the transition re-
gion and approaches Gaussianity when it stabilizes to one of
the branches. Following fidelity, it also shows the evolution
of the system through the upper branch remains more non-
Gaussian than the lower branch. Following fidelity, Fig. 3(a,d)
also shows that the non-Gaussianity increases more during the
transition when the initial state belongs completely different
(in a different branch) than the final state.

V. CONCLUSION

We have seen the TEBD numerical techniques can be
used to study the dynamics of the Kerr nonlinear system,
successfully, which brings better accuracy while determin-
ing the quantum fluctuations. The estimation of the steady-
state system field shows that the TEBD numerical simula-
tion follows the quantum mechanical exact analytical solution,
which exhibits the quantum jump occurring around the clas-
sically determined transition region. The semi-classical so-
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lution exhibits bistability and determines branch values. The
TEBD numerical result produces a superposition of two clas-
sical branches. The phenomenon, therefore, generates non-
classical states, which have been confirmed by determining
the second-order correlation function and Wigner function.
Deviation from classical nature causes a reduction in the fi-
delity measurement and results in de-Gaussification of the
state. While performing these characterizations, we notice
that the system suffers a residual effect of the initial state,
especially around the transition region. The phenomenon is
witnessed as the earlier occurrence of the quantum jump of
the system from bunching to the anti-bunching mode when
it starts evolving from an initial state belonging to the upper
branch. Wigner function exhibits bumps on the different lo-
cations of phase space for different steady states. The differ-
ence becomes prominent for the different branches of bistabil-
ity. Analyzing the dynamical behavior of the system, we have
seen that the bump rotates in the opposite direction when the
system evolves through different branches. Around the transi-
tion region, the bump splits into two and rotates in opposite di-
rections. This brings to witness the maximization of quantum-
ness and therefore, de-Gaussification when the system suf-
fers transition. We also observe that the evolution through
the lower branch remains closer to the corresponding classi-
cal solution and therefore more Gaussian, than that of an up-
per branch. Based on the performance of the TEBD numerical
technique, we conclude by saying that it is a promising plat-
form to handle nonlinear open quantum systems. The method
has been able to provide a quantum mechanical description of
hysteresis experimentally observed before in nonlinear optical
systems [27, 28]

The Gaussian states are important for several functionals in
quantum information, the study of non-Gaussianity could be
useful in quantum communication and teleportation [38, 39].
Besides, it will also be useful for the phase control in switch-
ing systems [44], especially in the determination of the accept-
able range of the control drive around the transition region due
to its nonclassical behavior. Also, the non-linear susceptibility
has a strong control in the generation of TMSV, which has im-
mense experimental applications. Besides, second-order non-
linear susceptibility, recently, third-order susceptibility has
also been used in the generation of squeezed states in inter-
ferometers [13]. More importantly, the quantum dynamics of
Kerr-nonlinearity provides a strong base to study optical fields
in nonlinear dispersive media [9, 25, 26]. Moreover, the anal-
ysis gives a useful background especially to study pulse prop-
agation in nonlinear media and applicability in the fabrication
of switching systems.
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Appendix A: TEBD FOR OPEN QUANTUM SYSTEM

The S/B coupling model of an open quantum system
is defined as one of the systems being coupled to several
modes of the bath. Therefore, it is required to transform
the Hamiltonian bath operators to map to a semi-infinite lat-
tice chain, which becomes useful to implement the TEBD
numerical scheme for the simulation of the S/B coupling
model. This is done through a unitary transformation: bn =∫ xm

−xm
Un(x)d(x)dx. In this case, a normalized shifted Leg-

endre polynomial has appeared to be a natural choice as the
unitary operator for exhibiting spectral density in the form of

Eq. (3). The unitary operator Un(x) =
√

(2n+1)
2xm

Ln(x/xm),
defined in the range of x ∈ [−xm, xm], satisfies orthogonality
condition:

∫
dxUn(x)Um(x) = δn,m. Therefore, one obtains

the transformed Hamiltonian as

Hchain = HS + η′
(
a†b0 + ab†0

)
(A1)

+ lim
N→∞

[
N∑

n=0

ωnb
†
nbn +

N−1∑
n=0

ηn

(
b†nbn+1 + bnb

†
n+1

)]

where the coefficients are η′ = c0
√
2ωc, ωn = 0 and

, ηn = ωc

(
n+1√

(2n+1)(2n+3)

)
. A schematic diagram of the

transformation is presented in Fig. 7(a). Such mappings have
been used previously in Ref. [45] for the simulation of open
quantum systems which applies to spin-boson models [46]
and biomolecular aggregates [47].

Afterward, for the simulation of the chain using the TEBD
algorithm, we express the state of the chain in terms of an
MPS:

|Ψ⟩ =
χ∑

α1,.,αN+1=0

M∑
i1...iN=0

λ[1]
α1
Γ[1]i2
α1α2

λ[2]
α2
Γ[2]i3
α2α3

· . (A2)

.. · λ[N ]
αN

Γ[N ]iN
αN

λ[N+1]
αN+1

|i1, i2, .., iN−1, iN ⟩

The MPS state is obtained through the Schmidt decomposi-
tion of the pure state of N sites where χ is the Schmidt number
and M is the dimension of local Hilbert space. This process
expresses the coefficients of the state in the tensor product
form and reduces the dimension from MN to N ×M ×χ×χ
where χ is the Schmidt number. The decomposition of a state
is performed by singular value decomposition which gener-
ates bipartite splitting between two local Hilbert spaces in the
chain. In this process, we only deal with MNχ2 + (N + 1)χ
terms. Fig. 7 (b) shows the method of numerical simulation
diagrammatically, for the real-time evolution, where we used
second-order Suzuki Trotter (ST) expansion which resumes
the unitary evolution operator as

Uδt = e−iδtHchain = e−iFδt/2e−iGδte−iFδt/2 +O[δt3]
(A3)
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where, F =
∑

i odd H
i,i+1
chain and G =

∑
i even H

i,i+1
chain. The

ST expansion minimizes the error in 3rd order of time steps
by evolving the pairs of alternate sites.

The simulation parameters are typically estimated by min-
imizing errors which appear mainly in two ways. Firstly, by
modeling the S/B coupling Hamiltonian to a 1D chain, and
secondly, by each step of simulation of the real-time evolu-
tion. The modeling error is contributed by the canonical trans-
formation of S/B coupling to the 1D chain. In practice, we
choose a model where the chain has a finite length because the
number of modes of the bath is finite, which causes the recur-
rence of the particle from the end of the chain. The recurrence
time is dependent on the group velocity. The recurrence time
increases with the increment of the length of the chain, which
happens since the increment of the number of sites reduces
the group velocity for the particle to travel. The increment
of the cutoff frequency increases the group velocity, forcing
the particle to travel faster in the lattice, causing the reduction
of the recurrence time. Apart from this, there are two other
major sources. One is the Suzuki-Trotter error is introduced
by the finite size of the time step, and tends to concentrate on
the overall phase for real-time evolution. The accuracy of the
simulation improved with the reduction time step. The other
type of simulation error appears due to the finite sizes of the
time step and the truncation of the Hilbert space and Schmidt
number. While truncating the Hilbert space and Schmidt num-
ber, one has to take care that the state shall be expressed with
minimal error throughout evolution, i.e. the set has to be com-
plete. Previously, we discussed extensively a quantification of
error while optimizing parameters in Ref. [4, 34].

Appendix B: ANALYTICAL REPRESENTATION OF
STEADY STATE

The steady state of the Kerr non-linear system is determined
in terms of the P function, by mapping the master equation to
the Fokker-Planck equation [1]. The P function is given by

P (α, β) = αp−2βq−2 exp(2αβ − E

iχ”α
+

E∗

iχ”β
), (B1)

which represents the state on a coherent basis as

ϱ =

∫
|α⟩⟨β∗|
⟨β∗|α⟩

P (α, β)dµ(α, β), (B2)

where µ(α, β) is the integration measure that can be chosen
according to different classes of representations. The coherent
basis is not orthogonal to each other, giving

⟨β|α⟩ = exp(β∗α− |α|2/2− |β|2/2). (B3)

The normalization condition of the density matrix (ϱ) im-
poses a normalization condition on the P function. Therefore,
the normalization factor deduced as

N =

∫
P (α, β)dµ(α, β), (B4)

is expected to be unit valued (N = 1). To obtain the state
on number basis, one has to expand the coherent states in
terms of number basis:

|α⟩ =
∑
n

1√
(n!)

exp(−|α|2/2)αn|n⟩. (B5)

This afterward expresses the state of the system as

ϱ =

∫ ∑
n,m

αnβm√
(n!m!)

e−βα|n⟩⟨m|P (α, β)dµ(α, β). (B6)

To determine the matrix coefficients, one has to determine
the moments of the state. One can define a generalized func-
tion that calculates all possible moments of the system, as

G(m,n) = ⟨a†man⟩ = 1

N

∫
βmαnP (α, β)dµ(α, β), (B7)

which is determined by the Eq. (6) [1]. This eventually
determines the state (Eq. (B6)) as

ϱ =
∑
n,m

1√
(n!m!)

∑
r

(−1)r

r!
G(m+r,n+r)|n⟩⟨m|. (B8)

Another way of expressing the state in a coherent basis is
through the Wigner function, for which one needs to define
the characteristic function:

χ(η) = χN (η)e(−
1
2 |η|

2) (B9)

where χN (η) is the normally ordered characteristic func-
tion, defined by

χN (η) = Tr
[
ϱeηa

†
e−η∗a

]
. (B10)

The Wigner function is defined as

W (ζ) =
1

π2

∫
e(η

∗ζ−ηζ∗)χ(η)d2η. (B11)

Substituting (B6) into Eq. (B10), one can rewrite the
Wigner function as

W (ζ) =
1

π2

∫
P (α, β)eη(β−ζ∗)e−η∗(α−ζ)e−

1
2 |η|

2

d2η dµ(α, β)

(B12)
One can evaluate the integral using the identity
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FIG. 7. (a) Transformation of Hamiltonian from system/bath coupling model to semi-infinite chain model. (b) Diagrammatic expression of
the real-time evolution operation on alternating pair

1

π

∫
d2η exp

[
−λ|η|2 + µη + νη∗

]
=

1

λ
exp

[µν
λ

]
(B13)

Replacing λ = 1
2 , µ = (β − ζ∗), ν = −(α − ζ), one

rexpresses Eq. (B12) as

W (ζ) =
2

π

∫
P (α, β)e−2(β−ζ∗)(α−ζ)dµ(α, β) (B14)

Expanding the exponentials in the Power series

e−2(β−ζ∗)(α−ζ) = e−2(|ζ|2)

(∑
k

(−2)kβkαk

k!

)(∑
n

(2)nζ∗nαn

n!

)(∑
m

(2)mβmζm

m!

)
,

and using the moment generating function in Eq. (6), one determines the steady state Wigner function of the Coherent
driven Kerr nonlinear system, which is given in Eq. (9).
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