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We consider a nonequilibrium transition that leads to the formation of nonlinear steady-state
structures due to the gas flow scattering on a partially penetrable obstacle. The resulting nonequi-
librium steady state (NESS) corresponds to a two-domain gas structure attained at certain critical
parameters. We use a simple mean-field model of the driven lattice gas with ring topology to
demonstrate that this transition is accompanied by the emergence of local invariants related to a
complex composed of the obstacle and its nearest gas surrounding, which we refer to as obstacle
edges. These invariants are independent of the main system parameters and behave as local first
integrals, at least qualitatively. As a result, the complex becomes insensitive to the noise of external
driving field within the overcritical domain. The emerged invariants describe the conservation of
the number of particles inside the obstacle and strong temporal synchronization or correlation of
gas states at obstacle edges. Such synchronization guarantees the equality to zero of the total edge
current at any time. The robustness against external drive fluctuations is shown to be accompa-
nied by strong spatial localization of induced gas fluctuations near the domain wall separating the
depleted and dense gas phases. Such a behavior can be associated with nonequilibrium protection
effect and synchronization of edges. The transition rates between different NESSs are shown to
be different. The relaxation rates from one NESS to another take complex and real values in the
sub- and overcritical regimes, respectively. The mechanism of these transitions is governed by the
generation of shock waves at the back side of the obstacle. In the subcritical regime, these solitary
waves are generated sequentially many times, while only a single excitation is sufficient to rearrange
the system state in the overcritical regime.

I. INTRODUCTION

The evolution of many dissipative or out-of-
equilibrium systems results in the formation of steady
states, in particular NESSs, implying the system decom-
position into parts. Some of these parts or some of the
resulting states may become insensitive to the external
noise, fluctuations, or perturbations in the system. Of-
ten, such a decomposition is related to topological phe-
nomena, e.g., non-Hermitian skin effect, edge correlation
effect, topological or symmetry protection effects [1–23].

In the equilibrium case, the protection phenomenon
can manifest itself in the formation of a quasi-particle-
like structure in similarity to polaron [24–26] or solvated
ion [27, 28] dressed in a polarization coat of the surround-
ing media. Another example of such a spatial structure
can be a complex of a colloidal particle and a nonlin-
ear “deformation coat” of liquid crystal formed around
it [29–32]. One of the features of such a quasi-particle
formation is the strong coupling or correlation occurring
between the particle and its nearest surrounding, such
that polarization or deformation coat might protect the
inner state of this complex from external fluctuations.

We are interested in a quasi-particle-like structure in
the nonequilibrium case, particularly, in the formation of
a similar structure induced by the gas flow scattering on
an obstacle.
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Steady nonequilibrium structures caused by the scat-
tering of a forced flow on obstacles or impurities repre-
sent a broad class of NESSs of many-body systems [33–
39]. The behavior of such systems admits nonequilibrium
phase transitions when the spatial NESS structure un-
dergoes a dramatic change at certain critical parameters
such as flow velocity, obstacle characteristics, mean gas
density, etc. [33–39]. The properties of these structures
are significantly dependent on whether linear or nonlin-
ear mechanism of scattering is dominant. The same ap-
plies to flow-induced forces acting on obstacles and flow-
induced nonequilibrium interaction between them, which
is usually non-reciprocal, like wake-mediated or nonequi-
librium depletion forces [40–43]. In the case of a gas,
the nonlinear mechanism of scattering can be provoked
by the short-range repulsion between particles leading to
the blockade effect at certain conditions [44].

We focus on nonequilibrium phase transitions leading
to the formation of nonequilibrium nonlinear structures
(like “strata” [45–52]) provoked by the blockade effect
in a gas. In the linear case when one can neglect in-
terparticle interaction (low gas concentration, small gas
flow, high penetration of obstacle), the gas density per-
turbation (wake shape) formed by flow scattering on the
obstacle differs slightly from the equilibrium density and
can be described in terms of the linear response lead-
ing to the asymmetric Green function. In the particular
case of advection-diffusion systems, the Green function
is given by the Yukawa-like form with asymmetric be-
havior of screening length that can be interpreted as dy-
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namic screening length1 determined by flow velocity [56–
58]. The asymptotic behavior of the wake profile exhibits
exponential growth of gas density ahead of the obstacle
and power-law decay of rarefied gas tail behind it [42], at
least in 2D and 3D.

When the interparticle interaction is significant, due to
locally increasing gas density, especially ahead of the ob-
stacle, the nonlinear dynamic screening regime becomes
dominant, manifesting itself as the blockade effect for a
gas with short-range repulsion. This leads to the quali-
tative change of wake shape or gas density profile, which
takes a kink-like form ahead of the obstacle. This cor-
responds to the formation of a dense gas phase with a
sharp boundary. For example, it can be the formation of
strata or bow-shocks near a void in dusty plasmas [45–49]
or the formation of a kink-like density profile describing
a dense-gas phase ahead of obstacles embedded into the
driven hard-core interacting gas or into the driven lattice
gas [42, 59–61].

Qualitatively, the growth of a dense gas phase with a
sharp boundary (a stratum) can be viewed as the growth
of a “nucleus” adjacent to the obstacle that serves as
a nucleation center. One can suppose that the nucleus
surface (domain wall between depleted and dense gas
phases), being an additional scatterer for a gas flow, has
to protect the state of the nucleus–obstacle complex from
the external noise and fluctuations in the rest of the gas.

In this paper, we demonstrate that the nonequilibrium
transition to a two-domain gas structure, with a dense
phase ahead of the obstacle, is accompanied by the emer-
gence of local invariants which behave like local first in-
tegrals. These invariants describe the conservation of the
gas particle number inside the obstacle and the collective
state of the obstacle’s nearest gas surrounding. As a re-
sult, this transition leads to the spatial decomposition of
the system and to the formation of a quasi-particle-like
structure (obstacle complex) caused by the gas flow. We
show that the dense gas phase protects the state of the
obstacle complex from the noise of external driving field.
In addition, noise-induced gas fluctuations are localized
near the domain wall. We associate this effect with pos-
sible nonequilibrium protection effect [1, 12–16, 62, 63].

To this end, we resort to a simple, though specific, case
of one-dimensional driven lattice gas with ring topology.
We consider gas scattering on a single partially pene-
trable impurity, supposing that a driving field that gen-
erates the gas flow is non-conservative. We refer to the
mean-field Smoluchowsky equations [64–66] for the mean
gas occupation numbers of lattice sites. This mean-field
model is related to the so-called ASEP (asymmetric sim-
ple exclusion process) [38, 67–69]. In our approximation,
we neglect fast processes, short-range correlations [70] in
a gas and possible blockade effect due to local fluctua-
tions in a gas [64].

1 The term dynamic screening is borrowed from the realm of col-
lective energy losses by swift ions in condensed matter [53–55].

Our paper is organized as follows. In Sec. II A, we
introduce the mean-field ASEP model on a ring with a
partially penetrable obstacle. In contrast to the well-
known Lebowitz-Janowsky blockage model [50–52, 69],
an obstacle is given by an impurity site with reduced
possible value of vacancies for gas particles. In Sec. II B,
we describe the nonequilibrium phase transition between
two classes of spatial NESS structures. The first class
describes a nonordered gas phase characterized by slight
accumulation of gas particles near obstacle’s front side.
The second one describes an ordered phase correspond-
ing to two-domain gas structures with the kink form of
density profile. The transition into two-domain struc-
tures occurs when the values of mean gas concentration,
driving field, and impurity penetration (or capacity) ex-
ceed certain critical values. We show that this transi-
tion is accompanied by the spatial decomposition of the
system. The occupation of the impurity site and the
total occupation of its edges exhibit invariant behavior
becoming insensitive to variation of main system param-
eters such as driving field, mean gas concentration, the
number of particles, ring size. In Sec. III, we consider
a particular case of a time-fluctuating driving field to
demonstrate that the emerged invariants behave like the
local first integrals and/or adiabatic invariants. We also
show that gas density fluctuations induced by the exter-
nal field noise are suppressed near the impurity and are
strongly localized near the interface between the depleted
and dense gas phases, Sec. IV. This spatial decomposition
of the system points at the possible nonequilibrium pro-
tection effect. The transitions between different NESSs
at the sudden change of the driving field are considered
in Sec. V. We show that the relaxation rates from one
NESS to another are different, except for the states with
the opposite direction of the driving field, and they take
real and complex values in the over- and subcritical re-
gions, respectively. Such an inter-state transitions are
realized by one-step or multi-step scenarios implying the
sequential generation of shock waves in time that leads to
a step-by-step reconfiguration of the system. Concluding
remarks are given in Sec. VI.

II. NONEQUILIBRIUM TRANSITION TO A
TWO-DOMAIN GAS STRUCTURE ON A RING

A. Mean-field ASEP model on a ring with partially
penetrable obstacle. Local-equilibrium

coarse-graining

Our consideration is based on the approach known as
the local equilibrium approximation. This approach is
often exploited to describe kinetics of fluctuations on
macroscopic time scale neglecting fast processes, in par-
ticular, to describe fluctuations in electron-phonon sys-
tems, electron-hole plasma, fluctuations in the system
of adsorbed atoms in the potential relief of a solid-state
substrate, e.g., [71–76].
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The idea of this approach is in the existence of two
different time scales (the fast and slow times) of sys-
tem relaxation to its equilibrium state. During the fast
time, the local spatial equilibrium establishes. Further,
the relaxation is governed by slow processes and goes on
macroscopic scales.

We apply this approach in combination with the mean-
field approximation to describe long-time relaxation ki-
netics near NESS. We resort to the limiting case of two-
component driven lattice gas, that is phenomenological
model of adsorbed atoms in the potential relief of solid-
state substrate. In the end of this part, we consider the
particular case of a narrow channel that can be reduced
to the quasi-1D lattice case. Details about the approach
and used approximations are given in Appendix A.

One gas component represents mobile particles jump-
ing between nearest lattice sites k and j, with mean jump
frequencies, generally, νkj ̸= νjk. The other (heavy)
component is the static one describing distribution of
impurities, assuming that each lattice site can be oc-
cupied by only one gas particle. The state of the sys-
tem is described in terms of the site occupation numbers
n̂k = {0, 1} of mobile particles, and ûk = {0, 1} of im-
purities, n̂k + ûk = {0, 1}, k is site index. In our case,
the local equilibrium approximation means that during
some time interval τ ′ (the long time scale), satisfying the
condition τ ′⟨νkj n̂k(1−ûj−n̂j)⟩ ≫ 1, see [71, 72] and Ap-
pendix A2, the equilibrium of each site with its nearest
environment establishes, i.e., many particles visit the site.
Such coarse-graining allows us to correctly introduce the
fluctuations δnk(t) as a small value for long-time scales
t ≈ τ ′.2 We also avoid difficulties with the introducing of
the time derivative that is problematic when describing
the evolution of discrete variable n̂k, see [70, 74, 77].
One of the methods to eliminate fast processes is

the method of the local equilibrium statistical operator
[75, 76], when the system is averaged by the statistical
operator whose form is similar to the one of equilibrium
statistical operator, but with the local chemical potential
that depends on the slow-time variable. This approach
enables one to describe the kinetics of the fluctuations
δnk(t) by Langevin equation near equilibrium state ne

k
of the system, see [71–73].

However, we are interested in the nonequilibrium
steady states and fluctuations near these states. To this
end, we apply the mean field approximation in the frame-
work of the local equilibrium approach, see Appendix A.
This gives us a the possibility to describe the slow-time
dynamics of the mean occupation numbers 0 ≤ nk(t) ≤ 1,
nk(t) = ⟨n̂k⟩t ≡ ⟨n̂k⟩, in the form that is similar to
the one of the mean field Smoluchowski equation, see

2 For discrete n̂k = {0, 1}, the values δn̂k = n̂k − ⟨n̂k⟩ are not
small in general, since the root-mean-square fluctuation of the
concentration of any site is

〈
δn̂2

k

〉
=

〈
n̂2
k

〉
−⟨n̂k⟩2 = ⟨n̂k⟩−⟨n̂k⟩2,

as a result, the relative magnitude
〈
δn̂2

k

〉
/ ⟨n̂k⟩2 ∼ 1/ ⟨n̂k⟩ can

be quite large.

[42, 59, 65, 66],

∂tnk =
∑
j

(νjknjhk − νkjnkhj), (1)

where hk = 1 − uk − nk, and uk = ûk = {0, 1} is given
distribution of impurity particles, νkj is the mean fre-
quency of jumps of the mobile gas particles from kth site
to its neighboring jth one. The asymmetry in forward-
backward jumps νkj ̸= νjk is caused by external drive,
that will be specified below.

We can also describe the fluctuations δnk near nonequi-
librium steady states ns

k of the system, given by Eq. (1),
by the Langevin equation that, for small δnk, takes the
form, see Appendix A,

∂tδnk =
∑
j

[
νjk
(
hs
kδnj − ns

jδnk

)
− νkj

(
hs
jδnk − ns

kδnj

)]
+ δĨk, (2)

with correlation function of the Langevin source that, for
rare jumps, can be written as〈

δĨk(t)δĨk′ (t′)
〉
≈ 2δ (t− t′)

∑
j

νkjn
s
kh

s
j (δkk′ − δjk′) .

(3)
Obtained equations describe the relaxation kinetics of
the non-equilibrium 2D- or 3D-system only for long-time
scales, when any fast processes and short range correla-
tions can be considered as insignificant. Note that we
can get a more general form of the equation describ-
ing the system kinetics (see Appendix A) that is simi-
lar to the stochastic mean field Smoluchowski equation
[42, 59, 65, 66].

In what follows, we consider the particular case of a
lattice in the form of a narrow channel with longitudinal
L∥ and transverse L⊥ sizes, so that L∥ ≫ L⊥. We also as-
sume that external driving field is applied along the chan-
nel. Considering the channel as a set of transverse cells
located along its longitudinal direction we can reduce the
system to the quasi-1D lattice case by the averaging of
Eq. (1) over transverse coordinate, see Appendix A. As a
result, the mean-field dynamics is governed by the equa-
tions of the same form as Eqs. (1), where the number of
1D-lattice site k corresponds to transverse cell number,
the mean occupation number nk corresponds to the the
mean particle concentration in the kth cell, Uk describes
obstacle corresponding to the mean concentration of im-
purities in the cell, hi = 1− nk − Uk is concentration of
vacancies, see Eq. (A12) in Appendix A, and j = k ± 1.
To demonstrate features of nonequilibrium transition to
blockade regime in a gas caused by flow scattering on
impurities we resort to the specific 1D-lattice case with
ring topology and penetrable obstacles. We introduce the
obstacle directly as the cell doped by impurity (heavy)
atoms. In the quasi-1D limit this cell corresponds to the
impurity site that is characterized by the mean concen-
tration U of impurity atoms in the cell. Since U < 1 one
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Figure 1. (a) Periodic chain with ring topology and the impurity site at the origin (below): ν± = ν(1± g) are particle hopping
rates along and against the direction of nonconservative field g. Qualitatively, this “hopping transport” model can be associated
with a potential energy landscape as illustrated (above). (b) Typical NESSs in subcritical regime, at n̄ = 0.3, U = 0.6, and
g = 0.02, 0.1, 0.18 < gc. (c) Typical NESSs in overcritical regime at n̄ = 0.3, U = 0.6, and g = 0.6, 0.7, 0.8 > gc. The number
of lattice sites L0 = 401, the ring length 2L = 400ℓ, with lattice constant ℓ. The distributions in (b) and (c) were obtained
from direct numerical solutions of the mean-field Eq. (4)–(5) as steady-state profiles established after ≈ 1.6× 107 time steps of
evolution since the driving field was switched from g0 = 0 to g at t0 = 0. The resulting NESS was regarded as finally established
if maxk[nk(τ)− nk(τ −∆τ)] ≤ 10−30 with ∆τ = 0.01, where τ = νt, see Appendix A6 on details of numerical implementation.

can regard the impurity site as the partially penetrable
one.

In this setting, the gas kinetics is given by equations
for mean occupation numbers nk(t):

ṅk = Jk−1,k − Jk,k+1, (4)

where Jk,k+1 is bond current between k and k + 1 sites:

Jk,k+1 = ν+nk(1−nk+1−Uk+1)− ν−nk+1(1−nk −Uk),
(5)

where ν± = ν±δν are forward-backward particle hopping
rates between nearest sites. The asymmetry ±δν = ±νg
is caused by the action of nonconservative driving force
or field g. The nonconservative force is usually inherent
for transport problems on a ring, as it is for colloidal
particle in a periodic potential, see [78]. In the case
of an infinite system, driving field can be given by con-
servative force that leads to asymmetric particle jumps
νji ≈ ν[1 + g · (ri − rj)/ℓ] where |g| = ℓ|G|/(2kT ) < 1, ℓ
is the lattice constant, and G is external drive, see [42].
This form corresponds to the one of the wind force often
encountered in electromigration of adsorbed atoms on a
solid-state substrate, see, e.g., [79–81].

In contrast to most ASEP-based models of the block-
ade effect (including numerous versions [50–52, 82–89]),
where obstacles often realized via defect bonds, e.g., slow
bonds, we implement the obstacle as the partially trans-
parent impurity-site3 that corresponds to the channel
cell partially occupied by impurity (heavy) gas parti-
cles with concentration U . Such obstacle manifests it-
self in decreasing of occupation probability of this site

3 Sometimes, the terms like “defective sites” are associated with
the set of distinct bonds with modified hopping rates. To avoid
confusion in terminology, we use the term “impurity site” instead
of the used terms “slow site” or “defective site”, see [50, 84].

by a gas particle (due to the decreasing of possible va-
cancies 1 − U), and in the reduction of transition rates
to this site from nearest neighbor sites. Qualitatively,
U can be associated with effective potential created by
impurity atoms in the cell corresponding to the impu-
rity site, as illustrated in Fig. 1(a). This potential is
entailed by strong short-range (hard-core) repulsion be-
tween adsorbed atoms in the same minimum of poten-
tial relief. Another difference from standard ASEP-like
blockage problem setups is in the use of so-called exclu-
sion process with external field [90–92]. In this case, the
transition to a blockade regime occurs not only at cer-
tain critical values of mean gas concentration and obsta-
cle transparency parameter, but also critically depends
on the driving field value.

Note again that under used approximations we neglect
fast processes, short-range correlations, local memory ef-
fect [70], and possible nonequilibrium transition induced
by local fluctuations in a gas [91, 93, 94].

For simplicity, we consider a particular case of single
inclusion and neglect effects entailed by collective scat-
tering. The latter would lead to a number of specific
features caused by the additional induced correlations be-
tween impurities [95]. The impurity is placed at zeroth
lattice site Uk = Uδk,0, and the numbering of lattice sites
is taken as −L ≤ k ≤ L, see Fig. 1(a). The total number
of ring sites is L0 = 2L + 1. Equations (4) are supple-
mented by periodic boundary conditions nL+1 = n−L.

B. Nonequilibrium transition to two-domain gas
structure

We consider the nonequilibrium transition emerging
between the main two types (or classes) of nonequilib-
rium, steady-state, spatial gas structures which can be
formed by flow scattering on the obstacle at t → ∞.
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These NESSs are determined by the system’s parameters:
the driving field g, the mean gas concentration n̄ = N/L0

(N is the particle number), and impurity capacity 1−U .
We show that the transition to the two-domain gas struc-
ture with dense and depleted phases is accompanied by
the emergence of quantities which become insensitive to
variations of the main parameters driving the system,
i.e., behave like invariants. We also estimate critical val-
ues (n̄c, gc, Uc) and changes in the asymptotic behavior
of order parameters, which characterize this transition.

In the steady-state case, ṅk = Jk−1,k−Jk,k+1 = 0, the
system has an additional conserved quantity, besides the
particle number N (or mean gas concentration n̄). It is
a current Jk,k+1 = J = const, Eq. (5), flowing through
each bond (k, k + 1) of the ring

ν+nk(1−nk+1−Uδk+1,0)− ν−nk+1(1−nk −Uδk,0) = J
(6)

written for the case of single impurity site at k = 0, i.e.,
Uk = Uδk,0.
One can qualitatively estimate the value of J . For

a sufficiently large ring L ≫ 1, one can suppose that
far from the impurity, |k| ≫ 1, the site-occupancies are
approximately equal, i.e., n−L ≈ nL ≈ n∞, that gives

J∞ = JL,−L ≈ (ν+ − ν−)n∞(1− n∞). (7)

There are two main classes of nonequilibrium steady
structures formed in the system at t → ∞. The first
one is resulted by flow scattering on obstacle at rela-
tively small values of n̄, g, and U , see Fig. 1(b). The
second class is described by kink-type spatial structures
of NESS, and corresponds to emergence of two-domain
gas structure when parameters (n̄, g, U) exceed certain
critical values (n̄c, gc, Uc), see Fig. 1(c). Note that such
a structure is the effect of the ring topology. In contrast,
in the case of an infinite chain, the gas density perturba-
tion caused by flow scattering can be located around the
obstacle and dumps to equilibrium state at infinity.

Such behavior of gas concentration along the chain
can be qualitatively explained. In the subcritical case
(g < gc), the external field g winds gas particles towards
the end of chain corresponding to the one of the obstacle
edges, that is analogical to skin effect with a slight ac-
cumulation of the particles near the boundary of a chain
[1]. Far from obstacle, the gas concentration have to
weakly differ from its equilibrium value n∞ ≈ ne ≈ n̄, as
a result, the steady state current J∞ weakly differs from
current for obstacle-free gas, similarly as in [89, 96]. In
other words, the obstacle effect on the system is spatially
localized.

In the case of overcritical regime (g > gc) character-
ized by two-domain gas structure, we can say about some
saturation effect with respect to the field g.
For finite g (g > gc) the profile of two-domain struc-

ture (domain sizes, their densities) depends on g, ex-
cept for the the impurity site k = 0, whose occupa-
tion n0(g) = const is insensitive to the field g, Fig. 1(c).
In this context, gc plays the role of saturation field for

impurity-site state. To explain the saturation of impurity
site k = 0 by gas particles we resort to the “spin” repre-
sentation σk via the replacement nk = (1−Uk)/2+σk (the
formal correspondence Lattice-Gas—Ising models [97]).
The dense gas phase is restricted by two domain walls.
The first wall (kink) is located far from inclusion site,
k = 0, and position of its center ks is determined by the
applied field g. The center of other wall (anti-kink) is
pinned by the impurity site k = 0. Intuitively, the posi-
tive spins (σk > 0) describe the dense gas phase, and neg-
ative ones (σk < 0) do the rarefied gas phase. The value
σk∗ = 0 has to correspond to the center of a domain wall
separating two phases, and located at site k∗. It means
that the gas concentration at the centers of domain walls
corresponds to the half-filling of the available vacancies
for these sites k∗. As a result, nks

= 1/2 for the wall
located far from inclusion (Uks

= 0), and n0 = (1−U)/2
for the wall pinned by impurity. Below we show that this
is indeed the case.

In what follows, we restrict our consideration mainly
to the case n̄ < 1/2. Analogous description in n̄ > 1/2
regime is straightforward by virtue of wake inversion
effect [42, 44], stemming from particle-hole symmetry,
when the kink profile describes a cavity behind the obsta-
cle. This case corresponds to what is called high-density
(HD) phase in ASEP models [69]. In particular, the sym-
metry relative to n̄ ↔ 1 − n̄ interchange is evident from
numerical calculations in the n̄ ∈ [0 1] range, as is shown
in this subsection later.

Subcritical region. In the equilibrium case (in the ab-
sence of driving field, g = 0), the current J = 0. On
the average, the gas has no structure, akin to quasi-one-
dimensional liquid in equilibrium [98]. The equilibrium
distribution of mean occupation numbers nk is given by
expression

ne
k = (1− U)neδk,0 + ne(1− δk,0), (8)

where ne = (1 − U)−1n̄, and U = U/L0. At small driv-
ing field g ≪ 1, and/or small mean gas concentration
n̄ ≪ 1, and/or high impurity penetrability U ≪ 1, the
distribution of gas density perturbation δnk, caused by
flow scattering on the obstacle, weakly deviates from its
equilibrium value ne (or mean gas concentration n̄) for a
large ring, L0 ≫ 1. The scattering leads to the relatively
small accumulation of gas particles ahead of the obstacle
(the impurity site), see Fig. 1(b).
This class of steady-state structures or solutions can

be easily estimated by resorting to the continuum limit
of Eqs. (4) for gas density n(x) outside impurity site,
see Appendix B. In the lowest order of the long-wave
approximation, n(x) is governed by the Burgers equation.
Representing gas concentration n(x) = n̄+ δn(x) out-

side the inclusion and occupancy of impurity site n0 =
n̄+ δn0 as small deviations from mean gas concentration
n̄ one can obtain linearized equations corresponding to
Eq. (6)

−∂xδn+ 2gn̄(1− n̄)δn = δJ, (9a)
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Figure 2. Behavior of density distribution (NESS pro-
file) ahead of the obstacle in subcritical regime at n̄ = 0.1,
U = 0.6, and g = 0.2 < gc: comparison of numerical result
and analytical asymptotics, Eq. (10). Here x corresponds to
continuous coordinate, k is the site index, and L0 = 401. The
distribution of nk was obtained from the numerical solution
of mean-field equations (4)–(5) in the same way as in Fig. 1,
see also Appendix A6 for details.

δn−1

[
ν+(1− U − n̄) + ν−n̄

]
− δn0

[
ν+n̄+ ν−(1− n̄)

]
= δJ + ν+Un̄, (9b)

δn0

[
ν+(1− n̄) + ν−n̄

]
− δn1

[
ν+n̄+ ν−(1− U − n̄)

]
= δJ − ν−Un̄. (9c)

Here we change coordinate system for dimensionless vari-
able −2L < x < 0 so that occupancies on impurity edges
are written as δn−1 = δn(0−) and δn1 = δn(−2L + 0).
These equations are supplemented by one for conserva-
tion of the particle number (or n̄) to obtain unknown
constants δn−1, δn1, δn0 and δJ = J − 2gn̄(1− n̄).

In zeroth order in λ/L0 ≪ 1, see Appendix B, behavior
of δn(x) takes the simplest form

δn ≈ δn−1 exp(λx), (10)

where λ−1 = 2gn̄(1 − n̄) is dynamic screening length.
This approximation neglects the difference between n∞
and n̄ far away from the obstacle (actually n∞ < n̄ ). As
a result, δJ ≈ δn1 ≈ 0. Nevertheless, obtained results
for δn(x) as well as for δn0(n̄, g, U) and δn−1(n̄, g, U) [ex-
pressions for which are given by Eqs. (B18) and (B19)]
are in more-or-less good agreement with asymptotic nu-
merical results obtained from Eqs. (4) at long times, see
Figs. 2 and 3.

In subcritical domain, the class of nonequilibrium
steady structures of the gas or the class of stationary
solution of the system Eqs. (4) correspond to the linear
dynamic screening regime. The spatial structure of the
gas exhibits exponential growth region, due to particle
accumulation ahead of the obstacle, with characteristic
length λ ≈ [2gn̄(1− n̄)]−1, while behind the obstacle, we

have small density deviation from the equilibrium value
ne ≈ n̄. Such particle accumulation near the obstacle
edge is the simplest manifestation of non-Hermitian skin
effect, see [1, 18].

Overcritical region. If the system parameters n̄, U ,
and g exceed certain critical values (n̄c, Uc, gc), the sys-
tem undergoes transition to two-domain structure with
depleted and dense gas phases Fig. 1(c). The spatial
structures of NESS behave similarly to a kink solution.

To find critical estimates of (n̄c, Uc, gc) and to assess
the behavior of the main characteristics of this transi-
tion, we resort to the rough approximation of a solution4

representing it as a kink with sharp step

nk =


n∞, −L ≤ k < −S
1− n∞, −S ≤ k < 0
n0, k = 0
n∞, 0 < k ≤ L.

(11)

In the case of a single impurity, the class of the approxi-
mate kink-type solutions, Eq. (11), is determined by con-
centration n∞, the mean occupation number of the im-
purity site n0 and the length of dense phase (stratum) S
corresponding to the lattice site k = ks = −S.

Note that at ks = −S = −L and n0 = (1 − U)/2,
Eq. (11) gives exact particular single-kink solution for a
finite chain. Generally, result is sensitive to the choice of
boundary condition for a finite unclosed chain.

Under approximation Eq. (11), n∞ and n0 can be ob-
tained from equations J−1,0 = J∞ and J0,1 = J∞, see
Eq. (6),

ν+n−1(1− n0 − U)− ν−n0(1− n−1) = J∞, (12a)

ν+n0(1− n1)− ν−n1(1− n0 − U) = J∞, (12b)

where n−1 = 1 − n∞ and n1 = n∞ are the occupation
numbers of the nearest sites from the left and to the right
of the impurity, correspondingly, and the current J∞ is
given by Eq. (7). Equations (12) can be rewritten in the
form{

ν+(1− n∞) + ν−n∞
}
(1− U − 2n0) = 0, (13a)

{
ν+(1− n∞)− ν−n∞

}
(1− U)

= 2(ν+ − ν−)n∞(1− n∞). (13b)

It follows directly from Eq. (13a) that the mean occu-
pancy of impurity site by gas particles

n0 =
1− U

2
(14)

4 In this case, the long-wavelength approximation (usual Burgers
equation) is not sufficient since the width of the domain wall
pinned by impurity site is of the order of the lattice constant ℓ.
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Figure 3. Occupations of impurity site n0, its edges n±1, and
their half-sum as a function of external field g. Above crit-
ical field gc, determining the phase transition to kink-profile
NESS, quantities n0 and n−1 + n1 are no longer dependent
on g. Here, n̄ = 0.3, U = 0.6, and L0 = 401. The results
are obtained based on the numerical solution of mean-field
equations (4)–(5) in the same way as in Fig. 1, see also Ap-
pendix A6 for details.

is determined only by the impurity capacity (1 − U). It
does not depend on the number or mean concentration
n̄ of particles, on the value of driving field g and as a
result on the current J∞ flowing through the obstacle, in
contrast to the subcritical regime, Figs. 3 and 5. The
value of n0 saturates at the nonequilibrium transition and
corresponds to the half-filling of the impurity site. Note
that half-filling is a property of the center of domain wall
separating dense and depleted phases. In addition, the
value of n0 also does not depend on amplitude 1 − 2n∞
and length S of the kink.

In other words, saturation or half-filling of the impurity
n0/(1−U) = 1/2 indicates the emergence of ordered two-
domain structure in the system and can serve as invariant
that characterizes the class of kink-type solutions, despite
their form that is determined by three parameters n̄, U, g,
see Fig. 1(c).

Equation (13b) has two distinct solutions from which
only one,

n∞(g) =
1

2

1 +
n0

g
−

[
1− 2n0 +

(
n0

g

)2
] 1

2

 , (15)

satisfies the condition 0 ≤ n∞ ≤ 1, where n0 = n0(U)
is given by Eq. (14), and ν± = ν(1 ± g) is taken into
account. As is seen, concentration n∞, determining the
amplitudes of two gas phases, loses its dependence on
the total number of particles N in the system or mean
gas density n̄ (for n̄ > nc), Fig. 4(a). Figure 4(b) is the
comparison of n∞(g) estimate against numerical result
showing a good agreement.

Using Eq. (15) one can easily estimate the length S of
dense gas phase or position of the second domain wall
(the first one coincides with impurity site). Taking into
account the particle number conservation and our ap-

Figure 4. (a) Plot shows the existence of critical concen-
tration value n̄c above which n∞ no longer depends on n̄,
signifying the transition into two-domain structure at n̄ > nc

(for g = 0.5). (b) Dependence of concentration n∞ on field g.
Analytical solution for n∞ is given by Eq. (15). (c) Depen-
dence of domain wall position ks = −S(g) or the spatial width
of dense phase S(g) on the driving field g (numerical against
Eq. (17)). The numerical values of S were taken as the clos-
est site to the domain wall ks defined by n(ks) = 1/2, cf. [61]
for domain wall stopping criterion. (d) Inter-particle correla-
tions at the nearest sites δnkδnk+1, where δnk = nk − n̄, and

(. . . ) = L−1
0

∑
k(. . . ); analytical curve is given by Eq. (20).

Gas concentration n̄ = 0.3 for (a), (c), and (d); U = 0.6 and
L0 = 401 for all panels. The results are obtained based on
the numerical solution of mean-field equations (4)–(5) in the
same way as in Fig. 1, see also Appendix A6 for details.

proximation for nk Eq. (11) one can write

L∑
k=−L

nk = (2L− S)n∞ + S(1− n∞) + n0 = N. (16)

It enables to write expression for fraction of the ring S/L0

occupied by dense phase

S

L0
=

n̄− n∞

1− 2n∞
+

1

L0

n∞ − n0

1− 2n∞
≈ n̄− n∞

1− 2n∞
. (17)

For a large ring, L0 ≫ 1, the part of the ring occupied
by dense phase does not depend on its size and is deter-
mined only by mean concentration n̄ and concentration
at infinity n∞. This gives a good agreement with numer-
ical data, Fig. 4(c). The latter is the result of strong cor-
relations between gas particles in the presence of driving
field within ring topology — when external field g gathers
gas particles from all over the system towards impurity.
To demonstrate enhancement of inter-particles correla-

tion after the nonequilibrium transition we consider cor-
relation at the nearest sites

δnkδnk+1 = nknk+1 − n̄2, (18)
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Figure 5. (Upper row) Two-dimensional projections of the critical surface for the phase diagram given in (U, n̄, g) parameter
space: (a) (U, n̄)-projection at g = 0.5, (b) (g, U)-projection at n̄ = 0.3, and (c) (g, n̄)-projection at U = 0.6. (Lower row)
Corresponding behaviors of η0 = n0/(1 − U) as a function of the same pairs of parameters. The plateaux at η0 = 0.5
correspond to the kink-phase (two spatial domains). Analytically estimated phase boundaries (solid lines) are given by (a)
U(n̄) = 1− [4n̄(1− n̄)]/(3− 4n̄), (b) U(g) = 1− [4gn(1− n)]/(1− 2n+ g), and (c) g(n̄) = (1−U)(1− 2n̄)/[4n̄(1− n̄) +U − 1].
Ring length is 2L = 400ℓ for all cases. Panels (a) and (c) features inversion symmetry in n̄ between high-density (HD) and
low-density (LD) phases known in ASEP models [69]. The results are obtained based on the numerical solution of mean-field
equations (4)–(5) in the same way as in Fig. 1, see also Appendix A6 for details.

where (. . . ) = L−1
0

∑
k(. . . ), and δnk = nk − n̄. Taking

into account

Jk,k+1 = J∞ = (ν+ − ν−)n∞(1− n∞),

it is easy to show that

nknk+1 = n̄− n∞(1− n∞)−

− 1

ν+ − ν−
(ν+nkUk+1 − ν−nk+1Uk). (19)

In case of single impurity (Uk = δk,0), the last term in
Eq. (19) reads (U/2gL0) [(1− 2n∞) + g]. For a large ring
(L0 ≫ 1), this term can be neglected and expression (18)
takes the form analogous to gas compressibility, see [99],

δnkδnk+1 ≈ n̄(1− n̄)− n∞(1− n∞). (20)

As it follows from Fig. 4(d), expression (20) gives a good
agreement with the numerical results for overcritical do-
main.

Expressions (15) or (13b) allow us also to obtain
the simple analytical expression of the form Bc =
B(n̄, U, g) = 0 for the critical interface separating two dif-
ferent classes of NESS in the space of system parameters
(n̄, U, g) (the transition phase diagram). The two-domain
structure becomes unstable when n∞ approaches to the
equilibrium concentration ne ≈ n̄, see Figs. 4(b). Setting
n∞ ≈ n̄ in Eq. (15) or Eq. (13b) we obtain approximate
equation for critical surface Bc:

g ≈ (1− U)(1− 2n̄)

4n̄(1− n̄)− (1− U)
, (21)

which gives more-or-less good agrement with the numer-
ical results, see Fig. 5.

Note that expressions n0 = (1−U)/2 and n−1+n1 = 1
are exact and satisfy Eqs. (13). This follows from the
equation for impurity site occupancy ∂tn0 = J−1,0 −
J0,1 = 0 that expresses n0 in terms of gas states on im-
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purity edges:

n0 =
1− U

2

(
1 +

n−1 + n1 − 1

g(n−1 − n1) + 1

)
. (22)

This means that after the transition to the steady
two-domain gas structure, the system possesses two
invariants—impurity occupancy n0 and the total occu-
pation of its edges n−1 + n1 = 1 which are insensi-
tive to variations of the main system parameters, Fig. 3.
Such a behavior of impurity edges can be considered as
strong correlation of gas states at impurity edges, and
the nonequilibrium transition can be characterized by
switching between the diffusive skin effect and the edge-
edge correlation one. Note that we exploit the rough
model of asymmetric hopping transport. Our considera-
tion is limited by the coordinate representation and loses
the spectral properties of the system which are basic in
the description of many exotic topological phenomena in
non-Hermitian systems, see e.g., [4–7, 62, 100].

The universal behavior of the local invariants enables
us to suppose that impurity state and correlated state of
its edges can behave as local first integrals, i.e., n0(t) =
const and n+1(t)+n−1(t) = 1, after nonequilibrium phase
transition (g > gc, U > Uc, n̄ > n̄c) and, as a result, can
become insensitive to the noise of external field δg(t) and
to the fluctuations of the number of particles δN(t) in the
system. To qualitatively demonstrate the emergence of
local first integrals we resort to the particular case of the
time-dependent external non-conservative force g(t) =
g + δg(t).

III. EMERGENT LOCAL FIRST INTEGRALS

Generally, the problem of obtaining invariants and lo-
cal first integrals for the dynamical system (4)–(5) is of
independent interest, see, e.g., [101–103]. Here we quali-
tatively consider this question supplementing our reason-
ing by numerical results. For the numerical simulations,
we will consider discrete changes of the field g(t) in time,
that is similar to telegraph-like processes.

To qualitatively illustrate emergence of local first inte-
grals in the overcritical domain (U > Uc, n̄ > n̄c, g > gc),
we resort to the simplest case when the field g(t) jumps
from g = const > gc to g′ = g + δg = const > gc at time
moment t0 = 0 supposing that previously the system
is in steady state n⃗g = (ng

−L, . . . , n
g
L)

T (the superscript
T denotes transposition). In fact, we are interested in
time-relaxation of the system from one steady state n⃗g

(corresponding to field value g) to another one n⃗g′
. For

this simple case, we show that occupation of the impurity
site n0(t) = (1−U)/2 and of its edges n1(t)+n−1(t) = 1
can behave like local first integrals in the vicinity of non-
critical point n⃗g. Numerically, we demonstrate the emer-
gence of these invariants as adiabatic ones at least for
the system under the action of the time-fluctuating field
g(t).

Figure 6. Numerical illustration of the emergence of local in-
variants (local first integrals) n0(τ) = (1− U)/2 = const and
n±1(τ) = n1(τ) + n−1(τ) ≈ 1 after nonequilibrium transition
at g > gc for the case of driving field noise g(τ) = g + δg(τ).
Exploited noise samples are shown at the top panel, both
have switching frequency λ = 0.02. For both kinds of noises
the drive g(t) fluctuates around g = 0.2 (subcritical regime)
or g = 0.8 (overcritical regime) with maximum amplitude
|δg(t)| = 0.1. Here, ring length 2L = 400ℓ, average density
(filling fraction) n̄ = 0.3, and U = 0.6. Enlarged segment of
n1(τ) shows relaxation between |g = 0.7⟩ ⇄ |g = 0.9⟩ with
dominant asymptotic behavior ∼ e−γτ , implying decay rate
γ ≫ λ. The results shown are obtained based on the numeri-
cal solution of mean-field equations (4)–(5) with δg(τk) being
a sampled random realization of a stochastic process (either
telegraphic or random periodic noise), see Appendix A6 for
details.

For convenience, we rewrite the dynamical system (4)–
(5) in the form

∂tn⃗ = f⃗g′
(n⃗), (23a)

fg′

i (n⃗) = Jg′

i−1,i − Jg′

i,i+1, (23b)

with initial condition

n⃗
∣∣
t=0

= n⃗g. (24)

Here n⃗ = (n−L, . . . , nL)
T , nk is the mean occupation

number of kth site, n⃗g is nonequilibrium steady state

corresponding to field g, the bond flow Jg′

i,i+1 given by

expression (6) is written for field g′ = g + δg, i.e., ν± =
ν(1± g′).

The formal solution of (23a) can be represented in the
Lie-series form, see, e.g., [101, 104],

n⃗(t) = etD
g′

n⃗
∣∣
n⃗=n⃗g , (25)
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Figure 7. Time invariance of quantity n±k = n−k + n+k ≈ 1 against dynamic fluctuations of driving g within g > gc domain.
External drive g(τ) is governed by periodic random noise around the mean value g = 0.8 > gc as in Fig. 6 (see caption). In
the subplot (a) the example of time behavior of n±k is shown for k = 2. In the subplot (b) the averaging is performed over
6× 103 [νt] during which g(τ) approximately reaches the mean value g = 0.8± 0.01. The quantity n±k(t) holds quasi-invariant
within the interval from k = 1 up to ≈ ks. As can be seen from (c) the invariance weakens slowly until certain k∗ which
can be naturally associated with the size of obstacle complex. In the interval k∗ < k < ⟨ks⟩t, the quasi-invariants n±k ≈ 1
undergo destruction and reach complete destruction at the domain wall position ⟨ks⟩t, as confirmed by numerical calculation

of dispersion ⟨∆n2
±k⟩t =

〈
(n±k − ⟨n±k⟩t)

2
〉
t
≈ 10−30 − 10−9 for dense gas phase 0 < k < 40, where ⟨. . . ⟩t =

1
T

∑T
t=0 . . . and

symbol ∆ is used (instead of δ in the main text) in order to denote numerically obtained values. One can say that obstacle
complex, i.e., the domain |k| < k∗, is protected from g noise-induced fluctuations. The results shown are obtained based on
the numerical solution of mean-field equations (4)–(5) with δg(τk) being a sampled random realization of the periodic random
process, see Appendix A6 for details.

Dg′
= f⃗g′

(n⃗) ∂
∂n⃗ =

∑
i

(
Jg′

i−1,i − Jg′

i,i+1

) ∂

∂ni
. (26)

Taking into account that f⃗g(n⃗g) = 0⃗ for steady state n⃗g,
and as a result Dgn⃗

∣∣
n⃗=n⃗g = 0, it is convenient to rewrite

operator Dg′
in the form:

Dg′
= Dg + δD =

(
f⃗g + δgϕ⃗

) ∂

∂n⃗
, (27)

where

ϕi = (1− 2ni − Uδi,0)(ni−1 − ni+1) + Uni(δi,−1 − δi,1).
(28)

From (28) and (27) it follows that

Dg′
n0

∣∣
n⃗=n⃗g = ϕ0

∣∣
ng
0=(1−U)/2

= 0. (29)

This means that ng
0 = (1 − U)/2 behaves as local first

integral at least in the vicinity of non critical point n⃗ = n⃗g

[f⃗g′
(n⃗g) ̸= 0⃗], see Fig. 6. Recall that ng

0 = (1 − U)/2 is
the exact steady state solution for impurity site only.5

5 It would be desirable to show that exp(tDg′ )n0

∣∣
n⃗g = ng

0 =

(1 − U)/2. Note, one can show that exp(tδD)n0

∣∣
n⃗g =

[n0 + (1− U − 2n0)ξ(n⃗)]
∣∣
n⃗g = ng

0 = (1 − U)/2 as well as

exp(tDg) exp(tδD)n0

∣∣
n⃗g = ng

0, where ξ is some function. How-
ever, to prove the general statement, using, for instance, Trotter’s
product formula, the exact steady state solution n⃗g , i.e., for all
the sites, is needed.

Note that if n0 = 1−U −n0 = (1−U)/2 were integral
of motion then quantity n±1(t) = n−1(t) + n1(t) would
be the integral of motion as well that immediately follows
from equation for n0(t):

0 = ∂tn0 = J−1,0−J0,1 = n0(ν
++ν−)[n−1(t)+n1(t)−1].

To qualitatively show that quantity n±1(t) ≈ 1 be-
haves like local invariant we use our approximate solution
for steady state distribution ng

k with sharp step form (11).
Action of Lie operator gives

Dg′
(n−1 + n1)

∣∣
n⃗=n⃗g = (30)

(δg/g)
[
(ng

−1 + ng
1)− (ng

−2 + ng
2)
] ∣∣∣ng

−1=ng
−2≈1−n∞

ng
1=ng

2≈n∞

= 0

in the vicinity of our approximate solution, see Fig. 6.
This approximation gives a series of such quasi-invariants
n±k(t) = n−k(t) + nk(t) = 1 which undergo destruction
near site k = ks corresponding to the position of interface
between dense-depleted gas phases (domain wall). This is
in qualitative agreement with numerical solution, Fig. 7.
However, numerical results suggest that quantities n±k

behave like adiabatic invariants ⟨n±k⟩t ≈ 1 undergoing
weakening as k tends to k = k∗ < ⟨ks⟩t and complete
destruction near characteristic wall position ⟨ks⟩t as it
follows from the case of fluctuating field g(t), see Fig. 7.
Here ⟨. . .⟩t denotes time averaging. The value k∗ can
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be related to the size of obstacle complex (the region
|k| < k∗) which is protected from g-noise-induced fluctu-
ations. In contrast, the system loses the invariants and
correlated time-behavior for sites near the impurity in
the subcritical domain (g(t) < gc, U > Uc, n̄ > n̄c). The
state of the impurity and its surroundings are sensitive to
fluctuations of the driving field g(t) as is shown in Figs. 6
and 7.

Note that the impurity filling conservation in time,
n0 = (1 − U)/2 = const, requires equality of the in-
coming and outgoing currents at impurity, that means
strong gas correlation at opposite its edges. Synchro-
nized behavior of the gas states at the opposite impu-
rity edges n−1(t) + n1(t) = 1 guarantees that incom-
ing and outgoing currents at the impurity are equal
J−1,0(t) = J0,1(t) = n0 [ν

+(t)n−1(t)− ν−(t)n1(t)] =
νn0 [n−1(t)− n1(t) + g(t)], that is a necessary condition
for impurity filling conservation. Such synchronized dy-
namics can be formally viewed as a manifestation of the
edge correlation effect.

Thus, the nonlinear dynamic screening effect caused by
gas flow scattering on the impurity leads to the formation
of gas dense phase near the impurity. This effect leads
to decomposition of the system with emergence of in-
variant behavior of impurity state and strong correlated
behavior of a gas on the impurity edges in overcritical
domain. The growth of dense gas phase near impurity
can be speculatively considered as the growth of a nu-
cleus around impurity serving as a nucleation centre the
“size” of which is larger than the critical one that for-
mally corresponds to the condition U > Uc. In addition,
the boundary of nucleus (dense gas phase) being an addi-
tional scatterer protects it’s own center (impurity state)
against fluctuations in a gas.

We can say that the interface appearing between dense
and depleted gas phases (the domain wall) results in pro-
tection of the state of the “impurity-dense gas” complex
against fluctuations in the rest of the gas and against
noise of external field. We can associate such a decom-
position with nonequilibrium protection effect by analogy
with topological protection effect, and edge correlation
one (see, e.g., [13–16]).

IV. SPATIAL LOCALIZATION OF INDUCED
FLUCTUATIONS

As we have seen, the reaction of the system to external
noise δg(t) below the phase transition (g < gc) and above
(g > gc) is qualitatively different, see Fig. 6. Within the
subcritical region, noise-induced fluctuations of density
are distributed over all the system, reaching the maxi-
mum at impurity site, Fig. 8, see also Fig. 7. Contrary,
above the transition (g > gc), the fluctuations are sup-
pressed near impurity. In addition, the main part of the
fluctuations in a gas are localized near nucleus boundary
(domain wall), Figs. 8 and 7.

Here, we make an attempt to explain qualitatively the

localization of induced fluctuations at the domain-wall
position and to estimate the characteristic amplitude of
density fluctuations within depleted gas phase and in the
vicinity of nucleus boundary.
For the low-frequency external-field noise δg(t), the

system response is determined by the system of non-
linear stochastic equations Eq. (1) for the dynamics of
mean occupation numbers nk(t) at lattice sites k, where
ν±(t) = ν ± ν[g + δg(t)], see Appendix A. We consider
the perturbation of occupation numbers (concentration)
at sites nk(t) = ng

k + δnk(t), caused by external noise
δg(t), close to NESS ng

k corresponding to field g (suppos-
ing |δg| ≪ g, g + δg(t) > gc, and |δnk| ≪ ng

k). In this
case, the kinetics of gas fluctuations δnk is governed by
the complete system of Langevin equations (A14)–(A15)
for each site. However, as we have seen, the steady-state
concentration distribution ng

k in depleted phase behind
the impurity (k ≥ 1) up to the position of domain wall
(k < −S) can be treated as constant ng

k ≈ n∞, Eq. (11).
We consider the perturbation of occupation numbers

(concentration) at sites nk(t) = ng
k + δnk(t), caused by

external noise δg(t), close to NESS ng
k corresponding to

field g (supposing |δg| ≪ g and |δnk| ≪ ng
k). As we

have seen, the steady-state concentration distribution ng
k

in depleted phase behind the impurity (k ≥ 1) up to
the position of domain wall (k < −S) can be treated as
constant ng

k ≈ n∞, Eq. (11).
Then, to estimate characteristic amplitude of fluctu-

ations
√
⟨δn2

k⟩ in the depleted phase it is sufficient to
consider behavior of concentration n1(t) = ng

1 + δn1(t)
at the nearest to the impurity site k = 1. Stochastic
equation for n1(t) reads:

ṅ1(t) = J0,1 − J1,2 = ν+n0h1(t)− ν−n1(t)h0

− [ν+n1(t)h2(t)− ν−n2(t)h1(t)], (31)

where ν± = ν ± ν(g + δg(t)), h1(2) = 1 − n1(2), and n0

is taken into account to be the local first integral, n0 =
n̄0 = 1−U−n0 = (1−U)/2. Assuming that the behaviors
of mean occupation numbers n1(t) = ng

1 + δn1(t) and
n2(t) = ng

2 + δn2(t) at neighboring sites 1 and 2 do not
differ significantly, n2(t) ≈ n1(t) = ng

1+δn1, within linear
approximation, we obtain closed Langevin equation on
the deviation of mean occupation number δn1(t) from its
steady-state value ng

1 = n∞ at the nearest to the impurity
site:

δṅ1 ≈ −γδn1 −Aδg, (32)

where

γ = 2ν[n0 + g(1− 2n1)] = 2ν[n0 + g(1− 2n∞)], (33)

and

A = −ν[n0 − 2n1n̄1] = νn0(1− 2n∞)/g. (34)

In the latter expression we have accounted for Eq. (13b).
The rate γ, Eq. (33), is the rate of relaxation towards

a NESS |g, U, n̄⟩ corresponding to the kink configuration
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Figure 8. The square root dispersion ⟨∆n2
k⟩

1/2

t =
〈
(nk − ⟨nk⟩t)

2
〉1/2
t

of the noise-induced fluctuations of the kth site occupation
number (a) for periodic random noise with λ = 0.02, such as in Figs. 6 and 7(a), below gc (⟨g⟩t = 0.2) and above gc (⟨g⟩t = 0.8).
(Symbol ∆ is used, instead of δ in the main text, in order to denote numerically obtained values.) In the subcritical domain
(g < gc), the fluctuations induced by the multiplicative noise are mostly distributed near the impurity with the accumulation
ahead of it, the site k = 0. On the contrary, in overcritical domain (g > gc), the noise-induced fluctuations are totally suppressed
in the impurity, k = 0, and strongly localized near the defect (the domain wall) position ⟨ks⟩t. This local enhancement of
density-fluctuations intensity nearby the domain wall (phase coexistence layer) is caused by its back/forward trembling or, in
other words, by noise-induced floating of the domain wall position with time, Fig. 9. (b) shows the zoomed in region from
(a) near the impurity, k ∈ [−20 20]. (c) and (d) shows the same as (a) above gc (⟨g⟩t = 0.8, δg = 0.1) but for telegraphic
noises with λ = 0.02 and λ = 0.002, respectively. Other parameters: 2L = 400ℓ, n̄ = 0.3, and U = 0.6. The results shown are
obtained based on the numerical solution of mean-field equations (4)–(5) with δg(τk) being a sampled random realization of a
stochastic process (either telegraphic or random periodic noise), see Appendix A6 for details.

determined by the external field g > gc, impurity state
U > Uc (n0 = (1 − U)/2), and mean gas concentration
(or particle number) n̄ > n̄c.
It is worth to note that relaxation rate, Eq. (33), de-

pends on g and U only, γ = γg,U , and does not depend on
mean concentration n̄. This means, that transition rates
γ1,2 and γ2,1 between two NESSs, |1⟩ and |2⟩, with dif-
ferent g1 ̸= g2 and/or U1 ̸= U2, are different, γ1,2 ̸= γ2,1,
see Sec. V for details.

It is easy to write the solution of Eq. (32) and the
expression for autocorrelation function or dispersion of
fluctuations of the mean occupation number δn1 close to
the NESS ng

1 = n∞(g):

δn1 = −e−γt

t∫
0

dt1e
γt1Aδg(t1), (35)

〈
δn2

1

〉
= e−2γt

t∫
0

dt1

t∫
0

dt2e
γ(t1+t2)A2⟨δg(t1)δg(t2)⟩.

(36)
Here, we assume that at the initial moment the system
was in a NESS n1(t = 0) = ng

1 = n∞(g).
For simplicity, we consider the ordinary telegraphic

process [105, 106], see Fig. 6, where δg(t) takes two
values, ±δg, with amplitude δg and switching rate
λ, for which the correlation function takes the form
⟨δg(t1)δg(t2)⟩ = (δg)2 exp(−2λ|t1 − t2|), and expression
(36) is written as

〈
δn2

1

〉
≈ (δgA)2/[γ(γ − 2λ)] at t → ∞.

For the parameter values used in numerical solution
(Figs. 6 and 8), n0 = 0.2, n∞ ≈ 0.22, g = 0.8, noise

switching rate λ ∼ 2 × 10−2ν, and noise amplitude
δg ∼ 10−1, we obtain the decay rate γ ∼ 1.3ν with
Eq. (33), that is consistent with numerical results, cf.
inset in Fig. 7. It is easy to notice, γ ≫ λ. In this case,
dispersion Eq. (36) takes the form

〈
δn2

1(∞)

〉
≈
(
δgA

γ

)2

=

[
n0(1− 2n∞)δg

2g[n0 + g(1− 2n∞)]

]2
∝ 1.16× 10−4, (37)

which also agrees well with numerical calculations for
characteristic dispersion of concentration outside the im-
purity and domain wall, see Figs. 8.

Obtained approximate results make sense only if g ≫
|δg| and |g+ δg(t)| > gc, and do not applicable for g ≈ 0.
To consider fluctuations δn near equilibrium steady state
ne, corresponding to g = 0, so simple approximation is
not enough. The condition g ≫ |δg| means that field
noise δg(t) does not change the direction of driving field.

Let us estimate the dispersion of fluctuations around
characteristic position of domain wall. Note, condition
γ ≫ λ implies that the system asymptotically reaches its
NESS over the time between two consecutive switches of
the field δg(t). In other words, the system follows the
field and adapts to its new values with a slight delay.
That facilitates the problem—assuming fluctuations in
the system δn1(t) to be governed by the telegraphic pro-
cess as well. The system stays on average (equally-likely)
in two NESSs, |g+δg⟩ and |g−δg⟩ described by the kinks
at the fields g + δg and g − δg, see Fig. 9.

The distribution function for n1 can be written as fol-
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Figure 9. Schematic representation of g-noise-induced wall
shifting approximation.

lows

P(n1) =
1

2
δ(n1 − ng+δg

1 ) +
1

2
δ(n1 − ng−δg

1 ), (38)

where ng±δg
1 denotes steady-state values of n1 at the field

g±δg. Far away from the domain wall and impurity site,
the dispersion of induced fluctuations of concentration
takes the form

⟨δn2
1⟩ =

〈
n2
1 − ⟨n1⟩2

〉
=

(ng−δg
1 − ng+δg

1 )2

4
. (39)

Here, ng±δg
1 = n∞(g ± δg), where n∞(g ± δg) is given

by Eq. (15). The explicit form of expression for ⟨δn2
⟨ks⟩⟩

is a bit cumbersome and is presented in Appendix C.
However, in the limiting case g ≫ δg, we can approx-
imately write n∞(g ± δg) ≈ n∞(g) ± n′

∞(g)δg, where
n′
∞(g) = d

dgn∞(g) and n∞(g) is given by Eq. (15). Then,

1

2

(
ng−δg − ng+δg

)
≈ −n′

∞δg ≈ n0

2g

(1− 2n∞)δg

n0 + g(1− 2n∞)

that expectedly leads to the same expression for ⟨δn2
1⟩ as

in Eq. (37), obtained in a different manner. The direct
evaluation of Eq. (39) for the given parameters yields
⟨δn2

1⟩ ≈ 1.44 × 10−4, cf. Eq. (37), which gives a good
agreement with numerical calculations, Figs. 8(a) and
8(c). The mean position of the kink-wall (site’s num-
ber) ⟨ks⟩ ≈ kgs = −S, see Eq. (17), and the kink height
≈ (1 − ng

1) are determined by the stationary value ng
1

at the field g. Taking into account that mean position
kg+δg
s < ⟨ks⟩ < kg−δg

s , Fig. 9, we can roughly estimate
the dispersion of fluctuations of site occupation nearby
the characteristic position of domain wall, namely, at the
site ⟨ks⟩. The distribution function for n⟨ks⟩ can be rep-
resented as, see Fig. 9,

P
(
n⟨ks⟩

)
=

1

2
δ(n⟨ks⟩ − (1− ng+δg

1 )) +
1

2
δ(n⟨ks⟩ − ng−δg

1 ),

(40)
and the dispersion takes the form

⟨δn2
⟨ks⟩⟩ =

〈
n2
⟨ks⟩ − ⟨n⟨ks⟩⟩

2
〉
=

(
1

2
− ⟨n1⟩

)2

, (41)

where ⟨n1⟩ = (ng−δg
1 + ng+δg

1 )/2. In the limit g ≫ δg,√
⟨δn2

⟨ks⟩⟩ ≈
1
2 (1−2n∞)+O(δg2) characterizes the uncer-

tainty of the center point along the vertical of the wall
due to our approximate kink-solution with sharp form,
Eq. (11). From (41) and (39), one can obtain the esti-
mate for characteristic enhancement of induced fluctua-
tions of gas concentration in the vicinity of domain wall
as compared to fluctuation distant from it:√

⟨δn2
⟨ks⟩⟩

⟨δn2
1⟩

=
1− ng−δg

1 − ng+δg
1

ng−δg
1 − ng+δg

1

, (42)

In the limiting case g ≫ δg,√
⟨δn2

⟨ks⟩⟩
⟨δn2

1⟩
≈ g

δg

n0 + (1− 2n∞) g

n0
, (43)

where n∞ = n∞(g, U) is given by Eq. (15), see Ap-
pendix C. The direct evaluation of Eq. (42) for the given

parameters yields
√
⟨δn2

⟨ks⟩⟩/⟨δn
2
1⟩ ∼ 23.57, which shows

more-or-less good consistence with numerical results, see
Fig. 8(c).
The obtained results (37), (39), and (42) do not depend

on the random switching rate λ of the external field since
the relaxation rate of the system γ ≫ λ, as it was shown
for the given system parameters as least, i.e., the system
is also governed by the similar telegraphic process. In this
case, our simple qualitative estimates (37), (39), (41),
and (42) give a good agreement with the direct numerical
solution of the nonlinear stochastic Langevin equation
based on Eq. (4) [Eq. (A16)], with multiplicative noise
given by the telegraphic process of the driving field g(t) =
g + δg(t).
Thus, it has been shown that the external field g-noise

(g > gc) induces density fluctuations only outside the
impurity complex with their strong localization near the
domain wall, Figs. 8(a)–(c). The latter is caused by the
instability of the wall position, similar to the nucleus sur-
face fluctuations during the first-order phase transitions,
see, e.g., [107, 108]. In contrast, in the subcritical re-
gion (g < gc), Fig. 8(a), the fluctuations are distributed
throughout the system with a maximum near the impu-
rity the magnitude of which is an order less than the one
in supercritical region.
In the both cases, above and below critical point gc, the

most of the induced fluctuations are accumulated near
lattice defects which act as the main scatterers of gas
flow. In the first case (g < gc), the induced fluctua-
tions are concentrated only ahead of the impurity site
(the obstacle), Figs. 8(a),(b). The states of the sites be-
hind the impurity are weakly affected by fluctuations, i.e.,
the scatterer suppresses fluctuations behind itself. In the
second case (g > gc), corresponding to two-domain gas
structure, the fluctuations are localized near the domain
wall that can be described as the topological defect. It
is significant that gas fluctuations are totally suppressed
inside the obstacle located behind the defect. In other
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words, the tightly bound structure of the defect and the
obstacle state, emerging after the phase transition, can be
considered as an nonequilibrium quasiparticle similarly
to one in liquid crystal [29, 30]. The role of the defect
(domain wall) is to protect the obstacle state from the
external fluctuations, in our particular case, from ones
induced by a noise of the external driving field g.

V. TRANSITION RATES BETWEEN
DIFFERENT NESSS

As it was mentioned above, the damping rate γ of
the fluctuations, induced by the external noise δg(t) near
NESS |g⟩, depends on the magnitude of the carrier field g
and impurity state n0 (or U), and it does not depend on
mean particle concentration n̄. This means that transi-
tion rates γ1,2 and γ2,1 for transitions between two NESSs
|1⟩ → |2⟩ and |2⟩ → |1⟩ with different g1 ̸= g2 and/or
U1 ̸= U2 can be different, γ1,2 ̸= γ2,1.
Here we make simple analytical estimation of these

rates comparing them with asymptotic form of relax-
ation time values obtained from numerical solution, and
show that γ1,2 = γ2,1 if states |1⟩ and |2⟩ are different in
field direction±g that corresponds to transitions between
steady states |g⟩ ⇆ | − g⟩.
We consider relaxation of the system to its NESS |g′⟩

supposing that initially, i.e., at t = 0, the system was
in the NESS |g⟩, i.e., the driving field g abruptly (non-
adiabatically) changes its value form g to g′ at t = 0.
To qualitatively demonstrate that γg′,g ̸= γg,g′ we

again consider the time behavior of mean occupation
number n1(t) only for the nearest to the impurity site
k = 1:

ṅ1 = ν+g′n0h1 − ν−g′n1h0 − [ν+g′n1h2 − ν−g′n2h1], (44)

with initial condition n1|t=0 = ng
1. Here ν±g′ = ν(1 ± g′)

and ng
1 is steady state of n1 corresponding to the field

magnitude g.
The numerical results, see Figs. 10 and 11, demonstrate

two-stage relaxation mechanism for the transition ng
1 →

ng′

1 : the fast relaxation γ′
g,g′ prevails for initial times, and

slow one γ′′
g,g′ does for long time scales, γ′

g,g′ ≫ γ′′
g,g′ :

|n1(t)− ng′

1 | ≈ |ng
1 − ng′

1 | exp(−γ′
g,g′t) + btα exp(−γ′′

g,g′t)
(45)

obtained from numerical solution of complete system of
nonlinear equations for nk(t), cf. Fig. 10. The system
transition to new steady state is collective processes, and
is described by collective spectrum of relaxation rates (at
least in the linear approximation ), as a result, the relax-
ation for each site is determined by the set of different
relaxation times. Above, we have estimated the relax-
ation rate γ to the steady state |g′⟩, Eq. (33), that is
obtained in the linear approximation for a small initial
perturbation of this state, and as a result, is irrelevant
to the initial state.

Figure 10. Overcritical regime (within the domain g > gc)
Numerically obtained γ for transitions |g = 0.7⟩ ⇄ |g = 0.9⟩.
Generally, n1(νt) decays according to Eq. (45), where expo-
nential behavior is decomposed into a fast decay with γ′ at
initial times and a slower decay with γ′′ at moderate times, see
figure insets; for estimate on upper plot (solid line) b = 0.0025,
α = 0.3. As a rough estimate, we can use dominant (fastest)
asymptotic behavior of transition rate γ′, and associate char-
acteristic relaxation time with τ = 1

γ′ . The results shown are
obtained based on the numerical solution of mean-field equa-
tions (4)–(5), see Appendix A6 for details.

To take into account the initial state |g⟩, and to quali-
tatively estimate the fast relaxation rate we consider the
decay of the state |g⟩ caused by an abrupt change of the
driving field value from g to g′.
We estimate the characteristic relaxation time τ =

τg,g′ corresponding to the transition ng
1 → ng′

1 by the
approximate formula

ṅ1|t=0 ≈ 1

τ

τ∫
0

ṅ1 dt ≈ ng
1 − ng′

1

τ
, (46)

formally supposing that mean rate of the transition |g⟩ →
|g′⟩ coincides with the initial rate of the decay of state |g⟩.
We also assume and that n1(t) has decreasing behaviour

and n1(τ) ≈ ng′

1 . Expression for ṅ1|t=0 follows from (44):

ṅ1|t=0 = ν+g′n
g
0h

g
1−ν−g′n

g
1h

g
0−
(
ν+g′n

g
1h

g
2 − ν−g′n

g
2h

g
1

)
. (47)

This expression can be simplified by representing acting
field as g′ = g + ∆g (where ∆g = g′ − g) and taking
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Figure 11. Subcritical regime (within the domain g < gc):
(a) Numerically obtained decay rate γ′ for transition from

g = 0.1 to g = 0.3. n1(τ) decays as ∼ Ae−γ′τ cos(ω′τ)
with exponent describing the envelope behavior, and A =

n
(0.3)
1 −n

(0.1)
1 = −0.0025. (b) The same for reverse transition.

n1(τ) decays as ∼ Ae−γ′τ cos(ω′τ), with A = n
(0.1)
1 −n

(0.3)
1 =

0.0025 and exponent describing corresponding envelope be-
havior. The results shown are obtained based on the numeri-
cal solution of mean-field equations (4)–(5), see Appendix A6
for details.

into account that ng
1, n

g
2, n

g
0 = n0 = n0 = (1− U)/2 are

steady states corresponding to field g:

ṅ1|t=0 = ν∆g [n0 − (ng
1h

g
2 + ng

2h
g
1)] . (48)

From (44) and (48), we obtain characteristic time of tran-
sition from the state |g⟩ to the state |g′⟩:

τg,g′ = ν−1n
g′

1 − ng
1

g′ − g
[n0 − (ng

1h
g
2 + ng

2h
g
1)]

−1
. (49)

Taking into account the fact that ng
1 ≈ ng

2 and Eq. (13b)
we can write the rough estimation for transition rate
γg,g′ ∼ τ−1

g,g′ between two NESSs,

γg,g′ ≈ −ν

(
ng′

1 − ng
1

g′ − g

)−1 [
n0

g
(1− 2ng

1)

]
. (50)

(final state      )

Figure 12. Transition rate γ′(g, g′) (numerical) correspond-
ing to the fast-time part of relaxation from |g⟩ → |g′⟩, see
Fig. 10, solid lines plotted for different values of initial field
g = 0.6, 0.7, 0.8, 0.9. The transition rate γ(g, g′), Eq. (50), is
estimated as the decay rate of the state |g⟩ at sudden field
switching g → g′, dashed lines for the same parameters. The
order of plotted lines, both solid and dashed, corresponds to
the descending value of g, in accordance with the legend: lines
higher on the plot correspond to larger values of g. Empty
circles correspond to g ≡ g′ case. γ(g′) is relaxation rate to
steady state |g′⟩ regardless of an initial state |g⟩, estimated
by Eq. (33), thick solid line. The results shown are obtained
based on the numerical solution of mean-field equations (4)–
(5), see Appendix A6 for details.

It directly follows from Eq. (50) that γg,g′ ̸= γg′,g:

γg,g′

γg′,g
≈ g′

g

1− 2ng
1

1− 2ng′

1

. (51)

The ratio
γg,g′

γg′,g
> 1 for transitions with g′ > g as it

follows from Fig. 12. The estimated values of γg,g′ are
in a agreement with one of γ′

g,g′ obtained numerically
that describes the fast relaxation corresponding to main
asymptotics of Eq. (45), Fig. 12. As an example, for
transitions |g = 0.7⟩ ⇄ |g′ = 0.9⟩ at given U = 0.6, n̄ =
0.3, the estimated values are γg,g′ = 1.286ν (numerically
γ′
g,g′ = 1.389ν) and γg′,g = 1.089ν (numerically γ′

g′,g =

1.074ν).6

6 Note that the approximation Eq. (46) can be applied to any site

k: τk ≈ (ng
k −ng′

k )/ṅk|t=0. The fast relaxation stage prevails for
the regions with strong inhomogeneous distribution ng

k of initial
state.
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However, γg,g′ = γg′,g can be realized for transitions
between steady states with different directions of the field
g, i.e., |g⟩ ⇆ |−g⟩. This is intuitively clear as changing of
the field sign to opposite leads to the similar kink-form
NESS with gas concentration distribution n−g

k = ng
−k

obtained from initial concentration ng
k by inversion with

respect to impurity site k = 0. Note, that the states
| ± g⟩ correspond to the states with different sign of the
winding number naturally appearing for ASEP on the
ring, see, e.g., [109, 110].

The situation is different for the transitions between
steady states below critical point (g, g′ < gc). The
dynamics of n1(t) during the transition |g⟩ → |g′⟩ is
shown on Figs. 11(a) and 11(b). The evolution of this
transition in time has a damped oscillating form. In
particular, the main asymptotics for n1(t) behaves like
∼ exp(−γ′

g,g′ + iω′
g,g′)t + c.c., see Figs. 11. The behav-

ior of n∞(t), and J(t) has similar oscillating character as
well. This indicates that eigenvalues of the system of the
equations (at least for the linearized one) have complex
values in contrast to the case g > gc, where eigenvalues
are real. The nature of these oscillations is in the gen-
eration of shock wave (solitary wave) on the one of im-
purity edges, at non-adiabatic switching of the field from
g to g′, which many times runs around the ring. More
precisely, the system rebuilds from one steady state to
another in portions by sequential generation of solitary
wave at the back side of impurity and by its traveling
around the ring. In the case of g > gc, one solitary wave
is enough to rearrange from one kink state to another. In
the latter case, the transmission of a solitary dissipative
wave through the dense phase is hindered due to prohib-
ited diffusion of particles in this localized region. This
is another interesting manifestation of protection phe-
nomenon concerning the dynamics of steady state for-
mation. Sudden changes of the driving field, either in
subcritical or supercritical regime, always give rise to the
creation of a “quasi-particle”, namely, the generation and
traveling dissipative soliton in the wake region of impu-
rity, see [61]. The steady state is established as a result of
solitary wave run around the system. While below criti-
cal point, such a soliton can make several turns over the
ring passing through the impurity again and again, above
the transition point we observe only one turn, so that
the transmission of the quasi-particle through impurity-
nucleus complex appears to be prohibited. This forbid-
den transport of dissipative solitons can be interpreted
physically by the absence of diffusion flow within the flat
density plateau of the stratum region: locally suppressed
diffusion (dissipative) processes makes the existence of
dissipation assisted quasi-particles impossible. Thus, the
total diffusion flow over the ring vanishes as well. The
impurity becomes protected from the dissipative solitary
perturbations traveling over the ring. Similar effect of
the forbidden diffusion of quasi-particles was found in
[12] under entanglement phase transition induced by the
non-Hermitian skin effect.

It is necessary to emphasize that magnitudes of

damping rates γg,g′ of inter-NESS transitions before
({g1, g′1} < gc) and after ({g2, g′2} > gc) phase transi-
tion can differ significantly so that γg1,g′

1
≪ γg2,g′

2
. In

the particular case γ′
(0.1),(0.3)/γ

′
(0.7),(0.9) ∝ 10−4. This

means strongly correlated behavior of the system with a
domain structure above the critical point gc.
Note that we can consider the g-field environment as a

second “reservoir” for gas system in addition to the ther-
mal bath that initiates usual particle diffusion. For exam-
ple, when adsorbed atoms interact simultaneously with
thermal phonons of a solid-state substrate, and with the
fluctuations of the external electromagnetic field. The
fact that the transition rates between two steady states
are different, γg,g′ ̸= γg′,g, could mean that the additional
“heat” Q ∝ ln γg,g′/γg′,g can be transferred to g-field
“reservoir” during such switching, see, e.g., [111, 112].
However, this question requires more careful and detailed
consideration that goes beyond our approximations.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have focused on some features of
the nonequilibrium transition leading to the formation
of nonlinear steady-state structures. The corresponding
NESS configuration results from the gas flow scattering
on a partially penetrable obstacle. The occurrence of
nonlinear structures is provoked by the blockade effect
in a gas with short-range repulsion. It manifests itself
in the formation of a two-domain gas structure with a
sharp boundary of dense-phase (kink-form profile) ahead
of the obstacle. This transition takes place when the val-
ues of mean gas concentration, driving field, and obstacle
potential exceed certain critical values (n̄c, gc, Uc).
The main result of this work is that such transitions

can be accompanied by the emergence of local invariants
(local first integrals) which indicate the spatial system
decomposition. The first invariant corresponds to the
conservation of the number of gas particles inside the ob-
stacle. This invariant is insensitive to a further increase
or changes in the mean gas concentration or in the driv-
ing field. As a result, within this overcritical region, the
obstacle state becomes robust against temporal fluctua-
tions or noise of the external driving field. At the same
time, the rest of the system remains dependent on the
total particle number and the external field. The neces-
sary condition for such a decomposition is that the total
current flowing through the obstacle boundary should be
equal to zero, despite the fact that the local current fluc-
tuates in time all over the system as well as inside the
obstacle. This means synchronization between currents
or gas states at different points of the obstacle boundary.
Such a synchronized dynamics is described by the second
local invariant that can be viewed as manifestation of the
edges correlation effect. As a matter of fact, the rest of
the system serves as a reservoir for the obstacle that en-
sures the particle number conservation in this region as
main parameters driving the system change.
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Another interesting effect is the spatial localization of
the gas fluctuations induced by the external drive noise
in the overcritical regime. The domain wall between the
dense and depleted gas phases as if captures or accumu-
lates the fluctuations in the system, thereby protects the
obstacle state against them. The concentration of in-
duced fluctuations near the domain wall is caused by its
instability under the action of the external noise. In some
sense, this is similar to the growth of a nucleus at the
first order phase transition, where the fluctuations of the
nucleus surface are due to the active adsorbing and des-
orbing processes. The formation of the dense gas phase
near the obstacle can be viewed as the nucleus growth ad-
justing to the obstacle as to the nucleation center whose
size is larger than the critical one (U > Uc). One can
consider this effect as the manifestation of the nonequi-
librium protection effect when the domain wall serves as
an additional scatterer and protects the state of the dense
gas phase and the obstacle state. Note that the similar
effect can take place not only for a single obstacle but
also for a finite-sized cluster of obstacles at least in the
1D case [95].

To demonstrate a possibility of these effects we con-
sider the quasi-1D driven lattice gas with impurity sites
as a limiting case of 2D or 3D gas doped by impurity par-
ticles in a narrow channel. We resort to the simplest case
of ring geometry and one partially penetrable obstacle as
a site with the reduced mean number of available vacan-
cies (1−U) that corresponds to the channel cell partially
occupied by impurity particles with mean concentration
U . To to describe the nonequilibrium steady-states and
long-time fluctuations near them we use coarse-grained
description based on the combination of local equilibrium
approach and mean-field approximation.

In this setting, we found the form of phase diagram,
i.e., the critical surface (n̄c, gc, Uc), for the transition to
the two-domain gas structure with dense gas phase at-
tached to the impurity. The transition is accompanied
by the onset of two local invariants in relation to the ex-
ternal drive g, and gas concentration n̄. The first one is
the invariant state of the impurity site n0 = (1 − U)/2
corresponding to its half-filling, regardless of the den-
sities and sizes of two gas domains, determined by n̄,
g, and U . Alone with integral order parameter, e.g.,
one describing enhancement of mean interparticle cor-
relations, Fig. 4(d), the saturation of the impurity site,
n0 = (1 − U)/2, can serve as the local order parameter
for this nonequilibrium transition. Note that the impu-
rity site saturation up to the finite value less than unity
(half-filling) also means that the full blockade regime in
the system can never be reached, except for the case of
fully unpenetrable impurity site U = 1.
Another emerging local invariant determines the

strongly correlated behavior of the gas states at the op-
posite edges of the impurity and correspond at least to
the adiabatic invariance of the total occupation of im-
purity edges (adjacent sites), n−1(t) + n1(t) = 1. This
leads to the equality of the incoming and outgoing cur-

rents at the impurity ensuring the particle conservation
at the impurity site n0(t) = const. Such a strong syn-
chronized dynamics of currents at its opposite edges can
be viewed as manifestation of the edge correlation effect.
Note that this nonequilibrium transition can be charac-
terized as the transformation of the diffusive skin effect
[1, 18] into the effect similar to the edge correlation one.
Our model have enabled the analysis of long-time-scale

fluctuations and their spatial distribution near nonequi-
librium steady states. This concerns both thermal fluc-
tuations as well as gas fluctuations induced by the noise
of the field. To demonstrate that the dense gas phase
protects the impurity complex from the external fluctu-
ations, we consider the particular case of induced gas
fluctuations provoked by the low-frequency noise of ex-
ternal driving field. g(t) , Fig. 6. The external field
noise g(t) at g > gc was shown to induce density long-
time fluctuations only outside the impurity complex with
their strong localization near the domain wall. The lat-
ter is caused by the fluctuations of the wall position. In
contrast, in the subcritical region (g < gc), the fluctu-
ations are distributed uniformly throughout the system
with maximum localization near the impurity, cf. Figs. 7
and 8. It is also shown that the characteristic relax-
ation times of the system to the nonequilibrium station-
ary state above the threshold are at least an order of
magnitude higher than those below the transition. Note
that the relaxation rates of the linearized dynamical sys-
tem are complex below the threshold and are real above
it.
The rate of transitions between two different NESSs

corresponding to two different values of g are different,
except for the case where they are distinguished by the
direction of non-conservative driving field g, or by the
sign of their winding number, which is similar to non-
Hermitian systems, see, e.g., [1, 62, 63]. Relaxation from
one NESS to another is governed by the one-step or
multi-step mechanism caused by the sequential genera-
tion of shock waves at one impurity edge. In addition,
the transition rates demonstrate two time-scales of relax-
ation to a final state.

There are variety of 1D or quasi-1D models describing
the nonequilibrium transition with the onset of domain
structure caused by an obstacle in a drifting gas. These
models differ by the manner of the implementation of an
obstacle. The classical blockage 1D-lattice gas models
associate the obstacle with defect bonds with modified
hopping rates, often reduced rates [50–52, 82–84, 113].
Defects are assumed to be as static. Another approach
is to associate the obstacles with the particles of the sec-
ond gas component, impurities, usually assumed to be
mobile. This class of models is related to the quasi-1D
lattice models corresponding to the limiting case of a
narrow channel. These models adequately describe the
behavior of colloidal, impurity, tracer particles, as well
traffic jam effect in confined (narrow channel) geometry
[89, 114–119]. Our model suggests that the second gas
component is static, and can be referred to as the quasi-
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1D driven lattice gas with impurity site. Naturally that
some our results reproduce in part the results obtained
in other blockage models. In particular, the indepen-
dence of the gas concentration n∞ far from obstacle on
the total particle number (or mean gas concentration n̄),
as well as the existence of several system phase states
in the low and high density cases, cf. [50–52, 69, 82–
84, 89, 96, 113, 120]. The behaviors of critical transition
curves in the classical slow bond model and in our “impu-
rity site” one are in agreement at relatively weak field g <
1; the phase boundary curves on the 2D coordinate plane:
gas concentration and corresponding obstacle parameter,
i.e., (n̄, slow-bond rate/impurity-site vacancies), e.g., cf.
Fig. 5(a) and Fig. 18 in Ref. [69], see also [50–52, 69, 113].
The case of strong field g ≫ 1 assumes the high mag-
nitude of gas current flowing along the chain, that can
result in the nonequilibrium transition induced by local
gas fluctuations without any obstacle [64, 91, 93, 94].
This case is not considered in the present paper. Our re-
sults partially echo those obtained in recent works [89, 96]
for the case of driven two-component system of a mobile
heavy particle (free defect) and normal gas component
with reduced transition rate of their mutual inter-site
exchange. The first it is the fact that the system is prac-
tically insensitive to the obstacle (free defect), the effects
of which is local for subcritical regime. As was shown in
[89], the change in time of defect position (its local jump)
generates density wave going around the system. In our
case, the static obstacle generates similar density waves
at jump in time of the value of external driving field g. In
[89], it seems for the first time, the emergence of global
coherent effect have been shown at system transition to
the domain structure (shock phase), when local current
fluctuations of the defect particle induce long-range cur-
rent fluctuations of the order of system size. Authors of
[89] mainly focus on the value of the deviation of time-
and space-averaged (over all the bonds) current from its
mean value based on the long time limit for large devia-
tion function,7 and also describe the discontinuous change
in scaling behavior of diffusive constant, as of order pa-
rameter, at this nonequilibrium phase transition. In con-
trast, we stay in the framework of Langevin equations
for the long-time- and spatial-fluctuations of gas concen-
tration near its spatially inhomogeneous nonequilibrium
steady state to consider the local density deviations, that
enables us to qualitatively explain their spatial localiza-
tion near the domain wall. One of the important defi-
ciencies of our model is neglecting the fast processes in
a gas. This, in turn, leads to neglecting of short-range
correlations between gas particles, see, e.g., [42, 61, 126],
and a possibility of nonequilibrium phase transition in-
duced by local gas fluctuations without any obstacles

7 The dynamical phase transitions associated with time-integrated
observables, in particular, fluctuations of total current through
the system, occurring in diffusive (ASEP) systems were exten-
sively studied within the so-called macroscopic fluctuation theory
[90, 121–125].

[64, 91, 93, 94], that is significant at high enough field
g.

The nonequilibrium transition with the formation of
nonlinear structures like stratum, and effects like protec-
tion and edge synchronization ones can take place in the
case of gas flow scattering on a finite cluster of impurities.
Note that the gas flow scattering on an impurity clus-
ter and the total drag force acting on the cluster signifi-
cantly depend on its structure factor. As was shown for
2D case, scattering and the drag force can be enhanced
by the decomposition of a solid obstacle into fragments
or a sparse cluster of impurities. This enhancement is
due to the collective scattering effect implying the onset
of the common wake around impurities, and it is more
efficient for disordered clusters as compared to the reg-
ular ones, see, e.g., [61]. At the same time, the mecha-
nism of gas scattering determines the features of induced
nonequilibrium (flow- or wake-mediated) inter-impurity
interaction [40–42, 127] which usually belongs to the non-
reciprocal type [43, 128]. Crossover between linear and
nonlinear regimes of dynamic screening can drastically
change this interaction. In particular, the formation of a
common coat of gas density perturbation accompanied by
the blockade effect around impurities can result in their
dissipative binding [129, 130]. In the case of finite clus-
ters, the collective scattering effect can lead to the shift of
critical points of the nonequilibrium transition, for exam-
ple, to the reduction of the critical value of driving field
gc. The protection effect can manifest itself in suppress-
ing flow-induced correlations between obstacles after the
nonequilibrium transition to the domain gas structure,
at least in 1D [95]. The quasi-one-dimensional domain
gas structures can serve as an example of nonequilibrium
atomic-wire structure, whose shape is controlled by the
external drive. This might be realized by the wind effect
[131] for adsorbed atoms on the anisotropic or stepped
solid-state substrate. It would be interesting to consider
a possibility for analogous system decomposition, bound-
ary current synchronization, and protection effect in 2D
and 3D, i.e., when the wake around a cluster of obstacles
protects its internal state or internal dynamics against
external fluctuations or perturbations.
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Appendix A: Model

In this section we describe the main approximations
used in our model. The model is based on the combi-
nation of the local equilibrium approach, and the mean
field approximation. Firstly, we shortly discuss the lo-
cal equilibrium approach that is based on the existence
of different time-scales; the Langevin equation describ-
ing the nonequilibrium fluctuations for long time-scales,
neglecting fast processes. Farther, we consider the mean
field approximation in the framework of local equilibrium
approach to describe nonequilibrium steady states and
fluctuation near them. In the end, we briefly discuss the
case of the narrow channel for driven lattice gas doped by
impurity (heavy) particles, and its reduction to quasi-1D
lattice.

1. The Langevin equation for nonequilibrium
hopping system. We consider a periodic potential for
particles, for example, a potential relief of solid state sub-
strate for adsorbed atoms (adatoms). The potential relief
forms the periodical lattice whose sites correspond to the
potential relief minima. Adatoms spend most of time τl
at the minima of relief and occasionally jump (overbarrier
transition) to other minima due to thermal vibrations of
the substrate atoms, that is possible for relatively small
temperature. We also suppose that only one adatom can
be trapped by the minimum of potential relief due to
strong short-range repulsion between adatoms, i.e., the
state of site i can be described by its occupation num-
ber n̂i that takes two values 0 for empty site, and 1 for
occupied one. The state of the adatom system is fully de-
scribed by the set of lattice sites {n̂i}. For simplicity, we
neglect possible interaction between adatoms at different
sites, which can exceed kBT , but should be smaller than
the height of potential barrier (activation energy) sepa-
rating lattice sites. In the case when the time duration τ0
of adatom jumps from one site to other is much smaller
than the average lifetime τl, one can write the balance
equation for a change in the population of the i-th site
over time ∆t (∆t ≫ τ0) [71, 72]:

n̂i(t+∆t)− n̂i(t) =
∑
j

(Iji − Iij) , (A1)

where Iij is the number of jumps of adatoms from the
ith to the jth minimum during time ∆t.

For ∆t ≪ τl, one can introduce the mean frequency
of jumps νi,j , and extract from Ii,j the mean number of

jumps νi,j n̂iĥj∆t during the time ∆t, here ĥi = 1−n̂i de-

scribes vacancies. The quantity δIi,j = Ii,j − νi,j n̂î̂hj∆t
is the fluctuation of the jump numbers from the ith site
to jth one per unit time. Equation (A1) can be rewritten
as [71]:

[n̂i(t+∆t)− n̂i(t)] /∆t =
∑
j

(
νjin̂j ĥi − νij n̂iĥj

)
+ δIi,

(A2)
where the term δIi =

∑
j(δIj,i−δIi,j) is Langevin source

of fluctuation in the evolution equation for the population

of ith site. In the simplest case one can estimate the form
of the correlation function of this source ⟨δIi(t)δIi′ (t′)⟩.
If we assume that the adatom jumps occur due to spa-
tially and temporally uncorrelated impulses of substrate
atoms then ⟨δIij(t)δIi′j′(t′) (t′)⟩ ≠ 0 only for i = i′,
j = j′, t = t′. Taking into account that ⟨δIijνijnihj⟩ = 0
(by the definition of δIij), and the probability of two
or more jumps from the ith minimum to the jth within
time ∆t is negligible (i.e., Iij = 0 or 1), that means〈
I2ij
〉
= ⟨Iij⟩, we find〈
(δIij)

2
〉

= (∆t)−1
〈
νij n̂iĥj

〉
−
〈
ν2ij n̂iĥj

〉
(A3)

≈ (∆t)−1
〈
νij n̂iĥj

〉
. (A4)

Using (A3), we obtain the correlation function of the
Langevin source of fluctuations, see [71, 72]

⟨δIi(t)δIi′ (t′)⟩ =

δ (t− t′)
∑
j

(〈
νij n̂iĥj

〉
+
〈
νjin̂j ĥi

〉)
(δii′ − δji′) .

(A5)

The Langevin source can be considered as δ-correlated
only for the time scale that is much longer than τ0. Ob-
tained equations (A2) and (A5) describing fluctuation in
nonequilibrium system have general form, and are not
related to the specific form of statistical operator. They
are based on two different time-scales: the mean-lifetime
τl of adatom at site, and the time τ0 of its transition to
other site.

In the same manner we can write down the equations
describing fluctuations in multicomponent adsorbate sys-
tem [127]:

[n̂α
i (t+∆t)− n̂α

i (t)]/∆t =
∑
j

(
ναjin̂

α
j ĥi− ναij n̂

α
i ĥj

)
+ δIαi ,

(A6)
where n̂α

i = {0, 1} are the site occupation numbers cor-
responding to the different sorts of adatoms α. Here

ĥj = 1 −
∑

α n̂α
j , and ναij is mean jump frequency of

α-particle from ith to jth site. We also assume that each
site can be occupied only by one particle. The Langevin
source of the current fluctuations δIαi on site i reads

δIαi =
∑

j δI
α
ji − δIαij , where δIαij = Iαij − ναij n̂

α
i ĥj∆t.

Our particular interest is the case of two component
lattice gas with the one “heavy” component, say α = 0,
so that ν1ij ≫ ν0ij . For simplicity we assume that the

“heavy” component n̂0
i = ûi is static, i.e., describes im-

purity adatoms, equation for mobile component n̂1
i = n̂i

has the same form as Eq. (A2), where ĥi = 1 − n̂i − ûi.
This equation, as a result, describes the kinetics and fluc-
tuations in the limiting case of adsorbed layer doped by
impurity (heavy) adatoms.

2. The local-equilibrium approximation. In the
present form, Eqs. (A2), and (A5), we face into difficul-
ties in description of fluctuation in such system. It is to
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adequately introduce the fluctuations of site occupation
numbers δn̂i = n̂i − ⟨n̂i⟩, which are not small in general.
Since the root-mean-square fluctuation of the concentra-
tion of any minimum

〈
δn̂2

i

〉
=
〈
n̂2
i

〉
−⟨n̂i⟩2 = ⟨n̂i⟩−⟨n̂i⟩2,

the relative magnitude
〈
δn̂2

i

〉
/ ⟨n̂i⟩2 ∼ 1/ ⟨n̂i⟩ can be

quite large. Another problem that is also related to dis-
crete value of n̂i = {0, 1}, is to introduce the time deriva-
tive, see, e.g., [70, 74]. To avoid such difficulties it is often
used a coarse-grained description of the system, see e.g.,
[71, 75, 76]. The averaging is made not over the states
of particles, but over a certain time interval τ ′, satisfy-

ing the condition ⟨νij n̂iĥj⟩ ≫ (τ ′)−1. This means that a
large number of particles visit a given site over the time
τ ′. This allows us to consider the τ ′-averaged values of
⟨δn̂i⟩τ ′ as small, since it is about the fluctuations of a
large number of particles. After such averaging, we lose
information about “fast” processes.

The idea of the local equilibrium approximation [75,
76] is based on the existence of two different time scales
of a system relaxation to equilibrium state (the fast and
slow time-variables). The first (the fast time) is charac-
terized by the rate of the establishment of the local equi-
librium at a site (or a potential relief minimum), that

is of the order of ⟨νij n̂iĥj⟩−1. During this time, the es-
tablishing of the equilibrium of each site with its nearest
environment occurs. Further, the process of the system
relaxation goes on macroscopic spatial scales.

To describe the evolution of fluctuations ⟨δn̂i⟩τ ′ for
the macroscopic time-scale t (the slow time) it is needed
to eliminate in some way the fast processes by formal
averaging of our equation over the time scale τ ′ ≈ t

∂t⟨n̂i⟩τ ′ =
∑
j

〈
νjin̂j ĥi − νij n̂iĥj

〉
τ ′
+ ⟨δIi⟩τ ′ , (A7)

and obtain the equations for δni(t) = ⟨δn̂i⟩τ ′=t ≡ ⟨δn̂i⟩
in closed form. This problem is related to the one of the
elimination of fast variables. For the particle-field sys-
tems, e.g., atom-photon, particle-phonon ones, the elim-
ination of fast variable, like photon or phonon, can be
made in the second order of perturbation theory that
leads to the equation for the reduced atom (particle) den-
sity matrix in the Lindblad form [105, 132–134]. The
phenomenological approach based on the classical lattice
gas initially faces the problem of the absence of an explic-
itly given field (e.g., phonons) that induces the adatom
jumps between different sites (potential relief minima).
By these reasons, in order to phenomenologically describe
the evolution of the system in slow time t, the additional
assumptions are usually used.

One of the consistent ways to describe the fluctuations
δni and obtain Langevin equation of its evolution for the
macroscopic time-scale (the slow time) is to use the ap-
proach of the local equilibrium statistical operator [75].
The averaging of physical variables by the statistical op-
erator is equivalent to the averaging over infinite time-
interval (the ergodic hypothesis). In the local equilibrium
approach [75, 76], it is supposed that averaging over finite

time scales τ ′ is equivalent to the averaging over statis-
tical operator ρ̂(t) = ρ̂e(µ+ δµi(t), T + δTi(t)), the form
of which is similar to equilibrium statistical operator8

ρ̂e(µ, T ), but with chemical potential µ(t) = µ + δµi(t)
and temperature T (t) = T + δTi(t) slowly evolving in
time and varying in space.9 The contribution of δT is
usually omitted due to high heat transfer into substrate.
The averaging of Eq. (A7) over δρ̂(t) = ρ̂(t) − ρ̂e ≈
ρ̂e(kBT )

−1
∑

i δµi(n̂i − ne) enables one to obtain, in the
explicit form, the Langevin equation and diffusive corre-
lation function of Langevin source, describing the fluctua-
tions δni(t) = Sp{δρ̂(t)ni} near homogeneous or weakly-
inhomogeneous equilibrium state ne, see [71, 72].

However, we are interested in the case of fluc-
tuations near strongly inhomogeneous nonequilibrium
steady states caused by external driving field. We re-
sort to the mean-field approximation instead of the local
equilibrium operator approach.10

3. Fluctuations near nonequilibrium steady
states. The mean field approximation. Up to
this point we do not specify the asymmetry of forward-
backward particle jumps νij ̸= νji that is related to the
form of potential relief. In particular, the asymmetry
can be caused by an external field that induces parti-
cle drag. In the case of an infinite system, driving field
can be given by conservative force that leads to asym-
metric particle jumps νji ≈ ν[1 + g · (ri − rj)/ℓ] where
|g| = ℓ|G|/(2kT ) < 1, ℓ is the lattice constant, and G is
external drive, see [42]. This form corresponds to the one
of the wind force often encountered in electromigration
of adsorbed atoms on a solid-state substrate, see, e.g.,
[79–81].

To describe nonequilibrium steady states ns
i , and fluc-

tuation δni(t) near them in the framework of the local
equilibrium approach we apply the mean field approxi-
mation.

We represent the site occupation numbers in the form
n̂i = ⟨n̂i⟩0τ ′=t + δn̂i, assuming that ⟨n̂i⟩0τ ′=t ≡ ⟨n̂i⟩0 =
ni(t) is governed by the mean-field equations for the slow
time variable t,

∂tni =
∑
j

νjinjhi − νijnihj , (A8)

that is the lattice version of the mean field Smoluchowski
Equation [42, 59, 65, 66]. Substituting n̂i into Eq. (A7)

8 Here we assume that ρ̂e = Z−1 exp[(µN̂ − Ĥ)/kBT ], where N̂ is

the total particle number operator, Ĥ is the Hamiltonian given
in occupation number representation.

9 Introduction of local chemical potential is a usual practice to
describe weakly inhomogeneous plasma, for example, the De-
bye–Hückel screening length [135].

10 We do not resort to the description in terms of local statisti-
cal operator by yet another reason. The description in terms
of chemical potential (the grand canonical ensemble) can lead
to partial suppression of the local density fluctuations by par-
ticle reservoir in compared with the system with fixed particle
number.
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and averaging it over the time t = τ ′ we obtain the
Langevin equation describing fluctuations ⟨δn̂i⟩t=τ ′ ≡
⟨δn̂i⟩ for the macroscopic- (slow-) time scales:

∂t⟨δn̂i⟩ =
∑
j

〈
νji (nj + δn̂j) (hi − δn̂i)

−νij (ni + δn̂i) (hi − δn̂i)
〉

−
∑
j

(νjinjhi − νijnihj) + δĨi. (A9)

Our phenomenological approach based on the mean
field equations (A8) and (A9) enables us to consider the
fluctuations near nonequilibriun steady states ns

i those
can be obtained as solutions of

∑
j νjin

s
jh

s
i −νijn

s
ih

s
j = 0,

Eq. (A8) at ∂tn
s
i = 0. Taking into account that δni ≫

⟨δn̂iδn̂j⟩ we can linearize Eq. (A9) which is written as

∂tδni =
∑
j

[
νji
(
hs
i δnj − ns

jδni

)
− νij

(
hs
jδni − ns

i δnj

)]
+ δĨi. (A10)

The correlation function for Langevin source associated
with slow time takes the form〈

δĨi(t)δĨi′ (t
′)
〉
≈ 2δ (t− t′)

∑
j

νijn
s
ih

s
j (δii′ − δji′) .

(A11)
In the case when interaction between particles located at
different sites is negligible, one can apply the mean-field
factorization ⟨ninj⟩ ≈ ⟨ni⟩⟨nj⟩ directly to Eq. (A7),11

and obtain the lattice form of the stochastic mean field
Smoluchowski equation [42, 59, 65, 66]. In the case of
the representation Eq. (A9), the mean-field approxima-
tion ⟨δn̂iδn̂j⟩ ≈ ⟨δn̂i⟩⟨δn̂j⟩ enable us to write down the
mean field Langevin equation for macroscopic fluctuation
δni(t) = ⟨δn̂i⟩.

Obtained phenomenological equation is valid only for
long-time scales and neglects any fast processes. In addi-
tion, we lose the possible correlations between particles
during the short times such as local memory effect, the
increasing of probability of the next back jump of the
particle near the particle of another sort [70]. We also ne-
glect the short-range correlations that can be especially
significant in the case of interparticle interaction which
usually exceeds kBT .
In what follows we consider the quasi-one-dimensional

case corresponding to narrow channel.

4. The quasi-one-dimensional driven lattice gas
model on a ring with obstacle. We consider the par-
ticular case of a lattice in the form of a narrow channel
with longitudinal L∥ and transverse L⊥ sizes, so that

11 For interacting particles, such simple factorization is not applica-
ble. The interparticle interaction usually exceeds kBT , and the
correlation between them can be significant.

Figure 13. Schematic illustration of quasi-one-dimensional
lattice gas corresponding to narrow channel system. Black
circles correspond to mobile particles and red (gray) ones to
impurity (“heavy”) particles. The cell i + 1 is partially oc-
cupied by impurity particles, that corresponds to partially
penetrable site i+ 1 for 1D lattice.

L∥ ≫ L⊥. According to [114–117], the case of a narrow
channel can be effectively considered as quasi-1D lat-
tice gas. The quasi-one-dimensional approximation for
a narrow channel can be performed at any step. This
approximation is related to the additional averaging of
the equation over the transverse size L⊥ of a channel.
We represent the coordinate of site i as ri = (xi, r

⊥
i ),

where xi is the coordinate along the channel, and r⊥i is
its transverse coordinate (relatively to x), see Fig. 13.
Then i numerates the transverse cells along the chan-
nel. Since the averaging over transverse coordinate r⊥i
does not change the total particle number Ni in ith cell
⟨n̂i,r⊥i

⟩
⊥

= Ni/L⊥, and the interaction between parti-

cles located on different sites is negligible one can use
the approximate mean-field factorization ⟨⟨n̂in̂j⟩t⟩⊥ ≈
⟨⟨n̂i⟩t⟩⊥⟨⟨n̂j⟩t⟩⊥. As a result we obtain the mean field
Smoluchowski equation, similar to Eq. (A8), for quasi-
one-dimensional channel, where i numbers the sites of
quasi-1D lattice.12 Now, the long-time dynamics of the
quasi-1D system, Eq. (A8), is written in terms of the
mean occupation numbers (concentrations) of lattice site
i by gas particles ni(t), corresponding to its mean con-
centration in ith cell, vacancies hi = 1 − ni − Ui, and
impurities Ui:

ni = ⟨⟨n̂i⟩t⟩⊥, hi = 1− ⟨ûi⟩⊥ − ⟨⟨n̂i⟩t⟩⊥, Ui = ⟨ûi⟩⊥,
(A12)

so that 0 ≤ ni(t) + Ui ≤ 1 for each site, see, e.g.,
[42, 59, 66]. It is assumed that the particles of the mobile
gas component perform jumps only between neighboring
sites, i.e., j = i± 1, and external driving field is applied

12 In the case L∥ ≫ L⊥ ≫ ℓ, the averaging over transverse size
may be enough to describe the system in terms of the mean
site occupation numbers 0 < nk < 1 and to use the mean-field
approximation without the averaging over long-time scale.
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along the quasi-one-dimensional channel. Formally, con-
sidered model can be associated with mean-field version
of ASEP [50–52, 69, 82–88].

In this setting, the gas kinetic equation (A8) for mean
occupation numbers ni(t) takes the form

ṅi = Ji−1,i − Ji,i+1, (A13)

where Ji,i+1 = ν+nihi+1 − ν−ni+1hi is bond current be-
tween i and i + 1 sites, and ν± = ν ± δν are forward-
backward particle hopping rates between nearest sites.
The asymmetry ±δν = ±νg is caused by the action of
driving force or field g which is supposed to be nonconser-
vative for the chain with periodic boundary conditions.

5. Fluctuations induced by external drive noise.
This phenomenological approach does not specify the
stochastic field which initiates the jumps of the par-
ticles between different sites, and, as result, does non
specify the form of the Langevin source in the terms of
this field. Usually, the correlation function of Langevin
source, is associated with thermal fluctuations initiated
by a substrate vibrations (or phonons). In general, the
jumps can be caused by particle interactions with differ-
ent fields simultaneously, as is often case in solid-state
state physics.13 In this approach we can not directly
separate the contributions of the different mechanisms
into particle jumps. We can do this only by the phe-
nomenological constant of the mean hopping rate νij . In
our particular case, the particle jumps can by associated
on the one hand, with thermal fluctuations in a sub-
strate that determines a diffusive (advection-diffusion)
processes characterized by hopping rate ν, and on the
other hand, with fluctuations or noise of the external
driving field g + δg(t) near its stationary value g. In
the case when the typical frequencies λ of the field noise
are much smaller than ones of thermal fluctuations, i.e.,

⟨νij n̂iĥj⟩τ ′ ≫ λ, one can extract noise-induced fluctua-
tions. For long-time scales t ≫ λ−1, the Langevin equa-
tion for such gas fluctuations δni can be written in cus-
tomary form where Langevin source is exactly given in
terms of the stochastic field (processes) δg. In the linear
approximation over small δni, and δg, the gas fluctua-
tions near nonequilibrium steady state are described by
Langevin equations with additive noise

∂tδni = Cg
i δni−1 −

[
C̄g

i−1 + Cg
i+1

]
δni + C̄g

i δni+1

+ δĨgi . (A14)

Here, Cg
i = ν+hg

i + ν−ng
i , C̄

g
i = ν+ng

i + ν−hg
i , where

hg
i = 1− Ui − ng

i , and ng
i is nonequilibrium steady-state

13 For instance, the interaction of adsorbed atoms (or some quasi-
particle) with phonon field of a solid-state substrate and external
electromagnetic (photon) one. It is so could photo-induced dif-
fusion realized, for example, due to the recoil effect for an atom
by spontaneous photon emission, which described by atom recoil
temperature, usually low.

solution of Eq. (A13) at given g = const. The Langevin
source is written as

δĨgi = νδg
[
(ng

i−1 − ng
i+1)h

g
i + ng

i (h
g
i−1 − hg

i+1)
]
. (A15)

The general form of these stochastic equations corre-
sponds to the ones with multiplicative noise, Eq. (A13).
The equation (A13), and (A14) are of our particular in-
terest in the present work.
6. Numerical calculation. For all the numerical

calculations we use discrete-time version of Eq. (A13):

ni(τk)− ni(τk +∆τ) = ∆τ (Ji−1,i − Ji,i+1) , (A16)

with

Ji,i+1 = ν+(τk)ni(1−ni+1−Ui+1)−ν−(τk)ni+1(1−ni−Ui),
(A17)

where ν± = 1±g(τk) and τk = νtk is dimensionless time.
The steady-state solution of Eq. (A16) is obtained as a
limit τk ≫ ∆τ (i.e., NESS at t → ∞), for ν± = 1 ± g,
and g = const. In order to control the precision of steadi-
ness, the resulting numerical NESS was regarded as fi-
nally established if maxk[nk(τ)−nk(τ−∆τ)] ≤ 10−30, cf.
Fig. 1. This condition of iteration procedure termination
ensures that the local changes of the density profile dur-
ing ∆τ become small enough. To describe fluctuations
in a gas induced by the field noise δg(τk) we use solution
of Eq. (A16), where ν± = 1 ± [ḡ + δg(τk)] and δg(τk) is
generated random realization of a stochastic process.

Appendix B: Continuum limit. Linear
approximation of Burgers equation.

Here we consider continuum limit for gas concentration
outside the impurity introducing continuum coordinate
k → x and setting nk → n(x), see Fig. 14. Quantity

Figure 14. Continuum representation for the ring, where
n(−0) = n−1 and n(−2L + 0) = n1 correspond to site oc-
cupations for lattice ring respectively.

nk+1 in this approximation is written as

nk+1 → n(x+ l) = el∂xn(x), (B1)

where ∂x ≡ ∂/∂x. In what follows we use dimensionless
coordinate x/l → x. In this representation, stationary
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equation outside impurity Jk−1,k −Jk,k+1 = 0 is approx-
imated (taking into account the first nonvanishing terms)
by the stationary Burgers equation

∂x [−∂xn+ 2gn(1− n)] = 0, (B2)

or

−∂xn+ 2gn(1− n) = J = const. (B3)

For convenience, we change the coordinate system by
taking −2L < x < 0, see Fig. 14, and suppose that
n(−0) = n−1 and n(−2L + 0) = n1 correspond to the
occupations numbers on the left and the right nearest
to the impurity site ones. Equations for currents at two
impurity bonds (−1, 0) and (0, 1) are no change

J−1,0 = ν+n−1 (1− n0 − U)− ν−n0 (1− n−1) = J,
(B4)

J0,1 = ν+n0 (1− n1)− ν−n1 (1− n0 − U) = J. (B5)

Equations (B3), (B4) and (B5) are supplemented by one
for the conservation of the particle number in the ring or
mean gas concentration n̄

−2L∫
0

n(x)dx+ n0 = (2L+ 1)n̄. (B6)

For the large ring L0 = 2L + 1 ≫ 1, we will neglect the
term n0/(2L+ 1):

1

L0

−L0∫
0

n(x)dx ≈ n̄. (B7)

We are interested in the subcritical case when induced
by scattering gas density perturbation weakly deviates
from its equilibrium value ne ≈ n̄. Representing gas con-
centration n(x) = n̄ + δn(x) outside the inclusion and
occupancy of impurity site n0 = n̄ + δn0 as small per-
turbation of mean gas concentration n̄ one can obtain
linearized form of equations (B3), (B4), and (B5):

−∂xδn+ 2gn̄(1− n̄)δn = J − 2gn̄(1− n̄) = δJ, (B8a)

δn−1

[
ν+(1− U − n̄) + ν−n̄

]
− δn0

[
ν+n̄+ ν−(1− n̄)

]
= δJ + ν+Un̄, (B8b)

δn0

[
ν+(1− n̄) + ν−n̄

]
− δn1

[
ν+n̄+ ν−(1− U − n̄)

]
= δJ − ν−Un̄. (B8c)

Solution of Eq. (B3) can be written as

δn(x) =
δJ

λ
+ Ceλx, (B9)

where λ = 2gn̄(1− n̄), and unknown constants δJ and C can be expressed through δn−1 and δn1.

δn1 =
δJ

λ
+ Ce−λL0 , (B10)

δn−1 =
δJ

λ
+ C. (B11)

As a result, the total system of equations to obtain unknown constants δn−1, δn0, δn1, and δJ takes the form

δn1

(
1− (λL0)

−1 + (λL0)
−1e−λL0

)
≈ δn−1

(
−(λL0)

−1 +
(
1 + (λL0)

−1
)
e−λL0

)
, (B12)

δn−1

(
ν+(1− n̄+ U) + ν−n̄

)
− δn0

(
ν+n̄+ ν−(1− n̄)

)
= δJ + ν+n̄U, (B13)

δn0

(
ν+(1− n̄) + ν−n̄

)
− δn1

(
ν+n̄+ ν−(1− n̄− U)

)
= δJ − ν−n̄U, (B14)

δJ = λ
δn1 − e−λL0δn−1

1− e−λL0
. (B15)

Neglecting terms of the order of (λL0)
−1, we get sim-

ple expressions for the concentration distribution δn(x),
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the current deviation δJ , and site occupation numbers
δn{−1,0,1}

δn(x) = δn−1e
λx, (B16)

δn1 ≈ δJ ≈ 0, (B17)

δn0 ≈ − (1− g)Un̄

1 + (1− 2n̄)g
, (B18)

δn−1 ≈ 4

1− U + (1− U − 2n̄)g
· (1− n̄)gUn̄

1 + (1− 2n̄)g
. (B19)

In the approximation that takes into account terms of
the order of (λL0)

−1, we get that δn1 ≈ −(λL0)
−1δn−1,

δJ ≈ λδn1, and δn(x) = δn1 + (δn−1 − δn1)e
λx.

Appendix C: Explicit expressions for Eqs. (39) and
(42)

The dispersion has the form√
⟨δn2

⟨ks⟩⟩ =
〈
n2
⟨ks⟩ − ⟨n⟨ks⟩⟩

2
〉 1

2

=
1

2
− ⟨n1⟩, (C1)

where, substituting ⟨n1⟩ = (ng−δg
1 + ng+δg

1 )/2, one ob-
tains

√
⟨δn2

⟨ks⟩⟩ =
1

2

(
1− (ng−δg

1 + ng+δg
1 )

)
, (C2)

and ng
1 = n∞(g) is given by Eq. (15), we get

ng±δg
1 = n∞(g ± δg)

=
1

2

1 +
n0

g ± δg
−

[
1− 2n0 +

(
n0

g ± δg

)2
] 1

2

 , (C3)

That being inserted into Eq. (C2) gives the complete ex-
pression for dispersion for arbitrary δg:

√
⟨δn2

⟨ks⟩⟩ =
1

4

− 2n0g

g2 − (δg)2
+

√
1− 2n0 +

(
n0

g − δg

)2

+

√
1− 2n0 +

(
n0

g + δg

)2
 . (C4)

where n0 = n0(U) = (1−U)/2. In the limit g ≫ δg, this

expression simplifies to
√

⟨δn2
⟨ks⟩⟩ ≈

1
2 (1− 2n∞).

Characteristic enhancement of induced fluctuations of
gas concentration in the vicinity of domain wall as com-

pared to fluctuation distant from it is given by ratio
Eq. (42), whose explicit form can be obtained by com-
bining explicit expression for

√
⟨δn2

1⟩ = (ng−δg − ng+δg)/2 =
2n0δg

g2 − (δg)2
+

√
1− 2n0 +

(
n0

g + δg

)2

−

√
1− 2n0 +

(
n0

g − δg

)2

, (C5)

see Eq. (39), and Eq. (C4):

√
⟨δn2

⟨ks⟩⟩
⟨δn2

1⟩
=

−
2n0g

g2 − (δg)2
+

√
1− 2n0 +

(
n0

g − δg

)2

+

√
1− 2n0 +

(
n0

g + δg

)2

2n0δg

g2 − (δg)2
+

√
1− 2n0 +

(
n0

g + δg

)2

−

√
1− 2n0 +

(
n0

g − δg

)2
. (C6)

For parameters δg = 0.1, g = 0.8, U = 0.6, Eq. (C6) yields
√

⟨δn2
⟨ks⟩⟩/⟨δn

2
1⟩ ≈ 23.57. In the limit g ≫ δg, the
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explicit expression for the enhancement ratio in Eq. (43), obtained by substituting Eq. (15), has the form√
⟨δn2

⟨ks⟩⟩
⟨δn2

1⟩
≈ g2

n0δg

√
1− 2n0 +

(
n0

g

)2

. (C7)

The latter expression, for the same set of parameter val-

ues, yields
√

⟨δn2
⟨ks⟩⟩/⟨δn

2
1⟩ ≈ 26.04.
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