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Abstract

We test the performance of self-consistent GW and several representative imple-

mentations of vertex corrected G0W0 (G0W0Γ). These approaches are tested on bench-

mark data sets covering full valence spectra (first ionization potentials and some inner

valence shell excitations). For small molecules, when comparing against state of the

art wave function techniques, our results show that full self-consistency in the GW

scheme either systematically outperforms vertex corrected G0W0 or gives results of at

least comparative quality. Moreover, G0W0Γ results in additional computational cost

when compared to G0W0 or self-consistent GW . The dependency of G0W0Γ on the

starting mean-field solution is frequently more dominant than the magnitude of vertex

correction itself. Consequently, for molecular systems, self-consistent GW performed

on imaginary axis (and then followed by modern analytical continuation techniques)

offers a more reliable approach to make predictions of ionization potentials.
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Introduction

Accurate and computationally accessible simulation of molecules and solids is a major goal

when developing new or improving existing computational approaches. Wave function meth-

ods such as coupled cluster method (CC)1–6 and configuration interaction (CI)7–9 have seen

a great success in modeling moderately sized molecules and solids with small unit cells.

However, these ab-initio simulations for larger and more complicated systems still remain

extremely challenging, mainly due to the high computational scaling.

For larger molecules and periodic systems, methods with lower computational scaling

are favorable. Approaches such as density functional theory (DFT)10,11 are more efficient in

tackling systems with large numbers of electrons. However, these methods often struggle to

offer quantitatively accurate predictions when electron correlation plays a significant role.

Moreover, for DFT methods there is a lack of a systematic route to improve the results.

Many-body perturbation theory (MBPT) cast into the Green’s function language pro-

vides an alternative group of ab-initio methods to model electron correlation.12 Most of these

methods such as GW 13–23 or Green’s function second order (GF2)24–28 can be executed with

relatively low computational scaling, especially when compared to wave function theories.

Since the diagrammatic Green’s function expansions are based on perturbation theory,

they also hold a promise of being systematically improvable. In 1965, Hedin proposed a com-

plete set of conjugated equations, detailing the relationships between the Green’s function,

irreducible polarizability, screened Coulomb interaction, vertex function, and self-energy.13

The GW method constitutes a simpler truncated formulation of Hedin’s equations of MBPT.

A more approximated version of GW theory, namely G0W0, where only the first iteration

of the self-consistent loop is performed (vertex function is assumed to be unity), has be-

come one of the most widely applied methodologies in computational electronic structure.

While relatively accurate and computationally inexpensive, G0W0 still lacks full quantitative

accuracy and can qualitatively fail for systems with stronger electron correlations.

One of the proposals of improving G0W0 accuracy is the addition of the vertex function
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Γ as a correction term to G0W0. Those vertex-corrected methods are commonly referred

to as G0W0Γ.29–36 Note that in this manuscript, we refer to G0W0Γ as a general term for

the group of methods that involve the vertex correction. When a specific variant of vertex

correction is being discussed, we use a specific name for that given variant such as G0W0ΓX ,

G0W0Γ
(1)
0 , or G0W0Γ

(NL), introduced later in the Theory section.

Generally, the vertex correction is expected to address stronger electron correlation (or

simply correlation missing at the G0W0 level) in both solids and molecules, and improve

predictions for the band structure and the photo-electron spectrum. However, the imple-

mentations, approximations, and performances of G0W0Γ vary from one version to another

because many different strategies can be used to lower the computational scaling.

The vertex correction will result in addition of new diagrammatic terms to G0W0. An-

other possible strategy is to avoid adding new diagrams and renormalize the Green’s function

lines in the GW expressions. By performing full self-consistency of the Hedin’s equations

(excluding the vertex), we can update the Green’s function G and self-energy Σ in each loop,

resulting in a fully self-consistent GW description (scGW ).37–39

The formal computational scaling of finite-temperature GW using the Matsubara formal-

ism is O(N6), but it can be reduced to O(N4) when density fitted integrals are employed.39,40

When compared with G0W0, the cost of scGW differs only by a prefactor depending on

the number of iterations required to reach convergence. Multiple variants of the GW self-

consistency were introduced in the past. For detailed discussions of these variants, see

Refs.22,39–44

Consequently, two proposals can be put forward to improve the accuracy of G0W0 re-

sults: (i) inclusion of the vertex function directly on top of G0W0 (the G0W0Γ scheme), or

alternatively (ii) performing fully self-consistent GW loops (the scGW scheme). We aim to

investigate the performance improvement of these two routes upon G0W0. These compar-

isons will guide future developments in the Green’s function theories towards robust methods

that provide a good compromise between low computational scaling and high accuracy. We
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focus our investigations on small molecules because accurate ionization data from ab-initio

methods are readily available.

Moreover, we are also interested in this comparison as the reliability of vertex corrections

has been a topic of recent discussions in molecular ionization potential (IP) prediction.

Berkelbach and Lewis noted that the additional diagrams in the G0W0Γ scheme did not result

in the improvement of the G0W0 results, if vertex diagrams were added to the polarizability

exclusively, but not to the self-energy.45 Multiple works also noticed that vertex-corrected

G0W0 based on Hartree-Fock references did not improve parent G0W0 results.33,45,46 However,

changing the functional reference to PBE resulted in some improvements reported in in

Ref.33 In the scGW scheme, the Green’s function lines are renormalized in the diagrammatic

expansion and the results are not dependent on the initial mean-field.

In this work, we employ our recently introduced finite temperature scGW method38,39,43

and compare its results against a few representative G0W0Γ schemes presented earlier in the

literature. We compare against three possible ways of approximating vertex, (i) stochastic

methodology developed in the group of Vlček in Ref.,47 (ii) G0W0Γ
(1)
0 implemented by Wang

et al. and presented in Ref.,33 and (iii) G0W0Γ
(NL) implemented in the Kresse’s group and

presented in Ref.32 by Maggio et al.

scGW and vertex corrected G0W0 methodologies are tested on molecular examples and

validated against wave function theories or experimental data. We examine these approaches

both for the first and inner valence shell IPs depending on the availability of related data

sets. Note that the respective performance of scGW and vertex-corrected GW on electronic

gases21 and metals48 can differ from molecular cases. In this work, we restrict our discussion

to the molecular regime unless specified otherwise.

We present our work in this article as follows. In the Theory section, we provide a concise

introduction to finite temperature scGW and a brief review of recent developments in adding

the vertex correction to G0W0. The Computational Procedure section describes the general

calculation protocol we used to conduct predictions. The Results section contains findings
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of this work. We summarize our findings and outlooks in the Conclusions section.

Theory

Hedin’s equations

A set of self-consistent equations detailing the relationship among the self-energy, Green’s

function, screened Coulomb interaction, and irreducible polarizability in many-electron sys-

tems was formulated in Hedin’s foundational article.13

In the derivation of Hedin’s equations, a bare Coulomb interaction v is affected (or

“screened”) by the many-electron environment. The screened Coulomb interaction W is

defined as

W (12) = v(12) + W (13)P (34)v(42), (1)

where numeric compact indices are employed as a shorthand to represent the state of space-

time and spin as 1 = (x1, σ1, t1). Integration over repeated indices is assumed. The irre-

ducible polarizability is defined as

P (34) = iG(45)G(64)
δG−1(56)

δV (3)
, (2)

where V is the time evolution operator. The functional derivative δG−1(56)/δV (3) is called

the vertex function, and expressed as

Γ(12; 3) ≡ −δG−1(12)

δV (3)
= δ(12)δ(13) +

δΣ(12)

δV (3)

= δ(13)δ(23) +
δΣ(12)

δG(45)
G(46)G(75)Γ(67; 3).

(3)

The inclusion of vertex function can be viewed as the information about the interaction

among electrons and holes.49,50

In the original formulation, evaluating the exact vertex function significantly increases
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the computational cost because it is difficult to calculate a four-index functional derivative.

If the vertex function is truncated at the zeroth order in Eq. (3) as Γ(12; 3) ≈ δ(12)δ(13),

then the self-energy Σ and the reduced polarizability P can be calculated without evaluating

the functional derivative as

Σ(12) = iW (13)G(14)Γ(42; 3)

≈ iG(12)W (12),

(4)

P (12) = −iG(23)G(42)Γ(34; 1)

≈ −iG(12)G(21).

(5)

The name GW approximation (GWA) was coined to signify the exclusion of vertex function

in Hedin’s equations.13,16 The GWA scheme is depicted by the trapezoidal loop in the right

diagram of Figure 1.

G

Γ

PW

Σ

G

Γ

PW

Σ

P ≈ -iG
GΣ = iG

W
Γ

P 
≈ 

-iG
G

Γ Σ = iG
W

Γ

Figure 1: Left: The self-energy, Green’s function, vertex function, irreducible polarizability,
and screened Coulomb interaction conjugated by Hedin’s equations. Right: The GW ap-
proximation loop of Hedin’s equations without inclusion of the vertex function.

G0W0 and self-consistent GW

GWA can be executed in two ways. One of them called G0W0 is the first iteration of the

Hedin’s equations loop without the inclusion of the vertex function where the zeroth order

Green’s function G0 is evaluated using a mean-field Hamiltonian (Hartree-Fock or DFT).
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Then the Green’s function is used to evaluate the self-energy. Usually, only the diagonal

elements of the self-energy matrix are evaluated and the quasiparticle (QP) approximation

is then employed to afford spectral quantities.23

Fully self-consistent GW (scGW ) is executed if all the quantities (excluding the vertex

function) described by Hedin’s equations are iterated until self-consistency. For the imple-

mentation details of scGW as performed in the Zgid group, we encourage the reader to

consult Ref.51 for molecular problems, Refs.38,39,52 for periodic solid problems, and Ref.43 for

relativistic problems in periodic solids.

In our finite temperature scGW implementation, we express the frequency/time depen-

dent quantities on an imaginary axis grid.53–56 No diagonal approximation to the self-energy

is used and all the matrix elements of self-energy for all the frequencies are evaluated and

included in the self-consistent equations. The total self-energy in scGW is expressed as

ΣGW [G](iω) = ΣGW
∞ [G] + Σ̃GW [G](iω), (6)

where ΣGW
∞ [G] is the static part of self-energy evaluated using the first order diagrams

(Hartree and exchange) employing the correlated one-body density matrix, and Σ̃GW [G](iω)

is the frequency-dependent dynamical part of self-energy. Both self-energy parts, dynamic

and static, depend on Green’s function and are evaluated iteratively until achieving self-

consistency.

In our implementation, the density-fitting approximation57 is used to decompose two-

electron integrals. Overall, the computational cost of our scGW scales as O(NτN
2
orbN

2
aux).

where Nτ is the number of imaginary time grid points, Norb is the number of orbitals in

the problem, and Naux is the number of auxiliary basis functions used in the density fitting

procedure.

No QP approximation is evoked to evaluate spectral quantities in our version of scGW .

To yield spectral information, the finite-temperature Green’s function from the imaginary
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axis is continued to the real frequency axis with the help of the Nevanlinna analytical con-

tinuation technique introduced by Fei et al.58,59 The spectral function can be derived from

the continued Green’s function as

G(iω)
Nevanlinna−−−−−−−−−−−−−→

analytical continuation
A(ω) = − 1

π
Im [Tr[G(ω)]] . (7)

Spectral functions rendered by Nevanlinna analytical continuation are positive and nor-

malized by definition, which helps to resolve the isolated ionization peaks in the PES. We

use the notation “scGW” to refer to our finite-temperature implementation which exactly

follows the procedure of self-consistent Hedin equation without including the vertex. This

procedure is then followed by the Nevanlinna analytical continuation. Our scGW scheme

should contrasted to other self-consistency schemes such as the ones proposed by Schilfgaard-

Kotani-Faleev ,60,61 and eigenvalue-self-consistent GW .62 These schemes constitute a further

departure from Hedin’s original scheme.

Practical implementations of vertex correction

It is believed that introducing the vertex function Γ as a correction term on top of GWA

can improve its accuracy. The rigorous evaluation of vertex function is difficult due to the

presence of the four-point functional derivative (δΣ/δG) in Eq. 3 and due to the necessity of

iterative self-consistent evaluation of both self-energy Σ and irreducible polarizability P since

they involve Γ in their respective Eqs. 4 and 5. Consequently, in practical implementations

of the vertex correction, many approximations are introduced to lower the computational

cost and make such evaluations viable.

It is frequently argued that scGW overestimates band gaps.21,63 Thus G0W0, which ben-

efits from the error cancellation between the mean-field starting point and a subsequent GW

evaluation, is used as an affordable alternative. In this approximation, Γ is evaluated on top

of G0W0 resulting in a G0W0Γ method. However, even in this simplified scenario further
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approximations are necessary to make the final evaluation of G0W0Γ possible. Here, we

summarize recent developments of practical G0W0Γ implementations.

Reining and coworkers introduced the ρ/G-approach,30,64,65 in which a two-part vertex

correction was proposed as

Γ(12; 3) = δ(13)δ(23) + δ(12)f eff
xc (14)P (43)

+ ∆Γ(12; 3),

(8)

∆Γ(12; 3) =

[
δΣxc(12)

δρ(4)
− δ(12)f eff

xc (14)

]
P (43). (9)

The first two terms in Eq. 8 are defined as a “local” part while ∆Γ is called the “non-local”

term because ∆Γ has zero contribution to P .

In both the local and non-local parts, f eff
xc is included. It serves as an auxiliary effec-

tive function used to obtain P easily from only two-point quantities. f eff
xc has an exact

definition which involves a three-point kernel δΣxc/δρ, but is often approximated with vxc

(δΣxc/δρ ≈ δvxc/δρ) retrieved from the starting mean-field calculation. Such a local vertex

correction is relatively inexpensive to compute, but alone it is insufficient in improving G0W0

accuracy.64,66,67

Kresse and co-workers32,68 reported their version of non-local vertex correction imple-

mentation with the re-formulated four-point notation, given by

Γ(1234) = δ(13)δ(24)

+ i
δΣxc(12)

δG(56)
G(57)G(86)Γ(7834),

(10)

instead of the Hedin’s original three-point one. The four-point kernel is approximated as

i
δΣxc(12)

δG(56)
≈ −δ(26)δ(15)δ(t1, t2)W

RPA(x1,x2, ω = 0), (11)
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where WRPA is the screened Coulomb interaction, estimated with the random phase approxi-

mation employing the frequency-dependent exact-exchange kernel fx (RPAx).69,70 Moreover,

the static estimation of ω = 0 is applied,13,71 assuming that the kernel is relatively frequency

independent. Even with RPAx, it is still preferred to evaluate the approximated kernel

with a HF starting point instead of a GW reference state. By doing so, screened Coulomb

interaction WRPA could be further simplified as the bare Coulomb interaction v(x1,x2) as

i
δΣxc(12)

δG(56)
≈ −δ(26)δ(15)δ(t1, t2)v(x1,x2). (12)

The implementation of G0W0Γ scales formally as O(N6).32 In this work we refer to this

implementation as G0W0Γ
(NL), where “NL” stands for “non-local”.

Wang et al.33 reported vertex function truncated at the first order. By plugging in GW

approximated self-energy ΣGW in the δΣ/δG kernel as

δΣ(12)

δG(45)
≈ δΣGW (12)

δG(45)
=

δ[iG(12)W (12)]

δG(45)

= iδ(14)δ(25)W (12) + G(12)
δW (12)

δG(45)
.

(13)

Inserting the approximated expression into Eq. (3), it becomes

Γ(12; 3) = δ(13)δ(23)

+ iW (12)G(16)G(72) Γ(67; 3)︸ ︷︷ ︸
≈δ(63)δ(73)

+ . . .
(14)

By truncating any terms involving order equal to or higher than O(W 2), the first order

vertex function is equivalent to the full second-order self-energy in terms of W (FSOS-W )

as

Γ(1)(12; 3) ≈ δ(13)δ(23)

+ iW (12)G(13)G(32).

(15)
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Since only a single iteration is performed to evaluate such a vertex, a subscript of 0 is

added to Γ(1). The computation cost for G0W0Γ
(1)
0 formally scales as O(N5).33

Vlček72 utilized the non-local exchange term in the starting mean-field calculation for

the G0W0 method to construct an approximated non-local vertex function ΓX . In this work,

the four-point derivative kernel is approximated as

δΣtotal(12)

δG(45)
≈ δ[Σhartree(12) + Σexchange(12)]

δG(45)

= −ν(25)δ(45)δ(12) + ν(12)δ(52)δ(41),

(16)

where ν(12) = δ(t1−t2)
|r1−r2| . In the evaluation process of ΓX , a stochastic sampling method,

instead of the commonly used deterministic one, is used to further minimize computational

cost, which gives the evaluation of ΓX a sub-linear computational scaling.72 We refer to this

approach simply as G0W0ΓX for clarity, but readers should note its stochastic nature.

To summarize, the approximations often used to implement vertex corrections can be

categorized by five major categories: (i) estimation of δΣ/δG kernel; (ii) truncation of Γ, or

approximation of Γ with diagrammatic approaches; (iii) correction of Σ only (no correction of

P ); (iv) operation only on the diagonal elements of certain matrices; (v) avoidance of full self-

consistency. Even though all these variants are under the same name of “vertex corrections”,

their practical implementations can be significantly different from one to another.

In this article, we compare the performance of our scGW with G0W0ΓX , G0W0Γ
(1)
0 , and

G0W0Γ
(NL).

Computational Procedure

Geometries for molecules within the GW100 set73 were obtained from Ref.74 Any additional

molecules not included the GW100 set were selected from the G2 data set.75 The additional

G2 geometries were taken from Ref.76

All scGW calculations were performed on the imaginary time and frequency axes using
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our implementation reported in Ref.39 For the starting mean-field calculations, we use both

HF and DFT (PBE functional).77 We employed the inverse temperature of β = 1000 E−1
h ,

which corresponds to temperature T = 315.8 K. To render the spectral function from

our results on the imaginary frequency axis, converged Green’s functions from scGW are

continued to the real frequency axis with Nevanlinna analytical continuation technique.58,59

This procedure allows us to identify the first and inner valence shell IP values from the

spectral function peaks.

In some cases, we provide the complete basis set (CBS) limit78,79 using our scGW results.

In such cases, we extrapolate the results with respect to the inverse of the numbers of orbitals

that vary with the basis set size. The function is f(n) = EIP
∞ + kn−1, in which EIP

∞ is the

extrapolated IP value and n is the number of basis functions.80

For the G0W0 calculations that are reported from our code, we follow the same imaginary

axis methodology. We transform the first iteration of scGW self-energy (on the Matsubara

axis) to the molecular orbital basis corresponding to the initial mean-field solution (HF or

PBE). We then use the Padé analytic continuation,81 implemented in the PySCF quantum

chemistry package,82,83 to obtain the self-energy on the real frequency axis. Ionization po-

tential and other quasiparticle excitations are then calculated by solving the quasiparticle

equation,

ϵp = ϵ0p + ⟨ϕp| (Σ(ϵ) − vxc) |ϕp⟩ , (17)

where ⟨ϕp|Σ(ω)|ϕp⟩ is the analytically continued diagonal part of the self-energy, and vxc is

the Hartree plus exchange-correlation potential of the corresponding mean-field reference.

G0W0Γ results and statistical criteria in the Results section are either cited or or calculated

from data reported in relevant literature.

Other input parameters for our calculations (basis set, starting mean-field, etc.) vary to

facilitate different comparisons. See corresponding subsections in the Results section and

Supporting Information for a more detailed description.
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Results

We employ the finite-temperature scGW method to determine molecular IPs and conduct

a comparative analysis of its performance against previously established vertex-corrected

GW results. To ensure that G0W0 and scGW from our code can be directly compared with

the GW100 benchmark data, we first inspect the validity of our finite-temperature GW by

comparing it with past GW implementations in Fig. S4 of the Supporting Information.

This test demonstrates that the density fitting procedure used in our GW implementation,

and necessary analytical continuation techniques to obtain spectral data, have no significant

bearing on accuracy of our data when compared against the GW100 benchmark data.

In this section, we first compare our scGW results and the valence shell excitations

obtained for a stochastic implementation of G0W0ΓX .47 We then move on to focus on only

the first IP peaks for which more data are available. To this end, we compare the first-

order vertex corrected G0W0Γ
(1)
0 method with our scGW results for the GW100 dataset.33

Similarly, we compare scGW to G0W0Γ
(NL) for another set of 29 molecules.32 These results

are compared with either highly accurate theoretical reference or experimental benchmark

data.

Comparison of scGW and stochastic G0W0ΓX for valence shell exci-

tations

The objective of this subsection is to compare the IP peaks obtained from our scGW imple-

mentation to stochastic G0W0ΓX as implemented and presented by Vlček and co-workers.47

To do so, for five small systems, we look at the IP peaks arising from both the first (or

the highest occupied molecular orbital, i.e. HOMO) and the inner valence shell excitations:

H2O, N2, NH3, C2H2, CH4 and three additional systems: CO, HF and C2H4.

To establish an equal footing for comparing the two methods, we use the same basis sets,

extrapolation technique and molecular geometries as in Ref.47 That is, we perform calcula-
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tions in aug-cc-pVXZ (X = D, T, Q) basis sets84–86 and use HF data as initial inputs for

the GW calculations. Final scGW results are extrapolated to the basis set limit in a given

basis set family.80 We report the first few IP peaks for each molecule so that non-degenerate

isolated energy levels can be clearly differentiated. Results from both scGW and stochastic

G0W0ΓX are compared against reference data from adaptive sampling configuration interac-

tion (ASCI)87,88 method, also reported in Ref.47
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Figure 2: (a) Absolute errors of scGW , G0W0ΓX ,47 and EOM-CCSD predictions of the first
and inner shell ionization peaks as compared with ASCI benchmarks. Note that the bar
signified with a purple “*” sign means that EOM-CCSD calculation did not converge and
the absolute error is not necessarily zero. Shaded areas are within the multi-quasiparticle
peak (MQP) regime. (b) Additional molecules calculated with scGW and EOM-CCSD
compared with EOM-CCSDT benchmarks. (c) Absolute errors between ASCI and EOM-
CCSDT benchmarks.

In Fig. 2(a), we plot IP peaks computed by stochastic G0W0ΓX , scGW and EOM-CCSD

compared against ASCI benchmarks for the 16 excitations from the 5 systems. Out of

the total 16 values reported, scGW yields more accurate data than G0W0ΓX for 11 peaks.
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However, out of the five peaks where G0W0ΓX is better than scGW , only for the following

three peaks, the difference is more than 0.2 eV: the fourth ionization peak of ammonia, the

second/third peaks of N2, and the fifth peak of acetylene. For the IP data in Fig. 2(a), the

mean absolute error (MAE) with respect to ASCI for scGW is 0.24 eV, and for stochastic

G0W0ΓX is 0.37 eV. Compared with a 1.47 eV MAE given by G0W0, both scGW and

G0W0ΓX yield inner excitations with much better accuracy.

In addition to the ACSI method, we also compare our results to equation of motion

coupled cluster (EOM-CC)89–93 hierarchy. EOM-CC methods are systematically improvable

when adding more excitations and hence here we use EOM-CCSD and EOM-CCSDT values.

All EOM-CC calculations were performed using CFOUR quantum chemistry package.94 Both

EOM-CCSD and EOM-CCSDT were performed with aug-cc-pVQZ basis and not extrapo-

lated to the basis set limit. In Fig. 2(c), we look at the difference between inner IPs predicted

by EOM-CCSDT and ASCI benchmarks. We observe that the two methods are generally

in good agreement with each other (see Table. SI in the Supporting Information). There-

fore, EOM-CCSDT could also be used as a benchmark against which GW results can be

compared. Discrepancies between ASCI and EOM-CCSDT tend to increase for deep inner

excitations, it remains unclear which of the two methods is more accurate.

Moreover, the comparison allows us to assess the scGW method against different levels

of excitations used in EOM-CC, i.e. EOM-CCSD and EOM-CCSDT. This is helpful for

understanding the accuracy that can be expected from scGW for IP predictions.

In Fig. 2(b), we compare the ionization peaks from scGW and EOM-CCSD for ethylene

(C2H4), hydrogen fluoride (HF) and carbon monoxide (CO). For these systems, we employ

EOM-CCSDT results in the aug-cc-pVQZ basis-set as reference. Overall, based on the

results in panels (a) and (b) of Fig. 2, as well as additional data in Fig. S3 of Supporting

Information, we deduce that scGW is similar in accuracy as EOM-CCSD. This similarity is

not surprising as connections between GW , RPA, and coupled cluster theory have been well

studied.95–99 However, it is worth noticing that EOM-CCSD data were difficult to obtain
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due to convergence problems for some of the inner peaks while scGW converged without

any difficulty. It is also worth mentioning that for the 4th peaks of H2O and N2, G0W0ΓX

gave relatively poor results. For H2O and N2, scGW gave very good results, confirming

that the difficulty in illustrating these IPs comes from lack of optimization of orbitals in

G0W0ΓX and not necessarily from the presence of strong correlation. Only the 4th peak of

nitrogen displays signs of strong correlation which is not recovered by G0W0ΓX , and also in

EOM-CCSD due to lack of complete convergence.

Further analyzing the results in Fig. 2, the IP data, particularly in panel (a), can be sepa-

rated into two regimes: (i) single, individual quasiparticle (SQP) and (ii) multi-quasiparticle

(MQP).47,100 For SQPs, the quasiparticle (or the ionization) peak carries most of the spectral

weight. Such peaks can be recovered accurately by GW methods.101 On the other hand,

for MQP, a significant amount of spectral weight is transferred to satellite features, often

referred to as shake-up satellites in molecules.47 Mean-field and perturbative methods such

as DFT and GW are not adept in describing MQPs, as one needs to account for complicated

interactions among many excited states.50 The general belief is that one can obtain better

results for the MQPs by adding higher-order quantum corrections via inclusion of the vertex

term, which describes dynamical two-particle correlations.41 However, when looking at the

accuracy of the fully self-consistent GW in Fig. 2, we observe that both peaks in the SQP

and MQP regimes are well recovered by scGW . Therefore, at least based on the examples

considered here, we can confidently say that achieving full self-consistency in GW provides

results that are equally, if not more, accurate than G0W0Γ. While both methods provide

significant improvements over G0W0, one could argue that scGW is more advantageous over

G0W0Γ as it provides access to other thermodynamic quantities such as total energy, entropy,

etc., in addition to the reliable IP prediction and it is independent of the starting point.

Consequently, at least for the examples listed in Fig. 2(a), the vertex correction seem

to be unnecessary and very good results can be obtained by employing scGW alone. To

confirm the points observed above, we plotted spectral functions for selected molecules in
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the Supporting Information (see Fig. S1 and S2). We observe that scGW also produces

similar complicated MQP regime peak structures as reported in Ref.47

Comparison of scGW and G0W0Γ
(1)
0 for first IP peaks

Here, we compare the performance of our scGW to G0W0Γ
(1) as implemented by Wang et

al. and presented in Ref.33 for the GW100 dataset.20,73,102,103 This comparison is done only

for the first ionization potential peaks, where molecular data sets are more readily available.

To ensure that our scGW data can be compared against the G0W0Γ
(1) data , we evaluated

our scGW in the same basis set, i.e., def2-TZVPP. For similar reason, for G0W0 data, we

compare both Hartree-Fock and PBE as mean-field starting points for GW calculations.

In Fig. 3, we list the first IPs for the GW100 molecular data set. In the top panel, we

compare the scGW and G0W0Γ
(1)
0 errors in IPs based on both the PBE and HF starting

points. In the bottom panel, we compare IPs for scGW and G0W0 method based on two

starting points used in the top panel. All the results are plotted as errors with respect to

∆CCSD(T) reference values.104

By categorizing the GW100 molecules into ten groups, we observe that scGW produces

low and consistent errors for hydrides, halogenides, and most oxides. For dimers, hydrocar-

bons, and aromatics, the errors is higher. For compounds involving bonds with strong polar

or ionic character (e.g., CF4, SO2, and MgO) scGW displays larger errors. Unsaturated

bonding character (P2, As2, BN, HCN) also contributes to abnormal errors.

In the bottom panel of Fig. 3, we observe that scGW improves one-shot G0W0 calcula-

tions. While the MAE of G0W0@HF is similar to the one of scGW , we see that the majority

of errors for scGW comes from nucleobases and MgO. In contrast, G0W0@PBE displays

many outliers for multiple system groups.

In the top panel of Fig. 3 and Fig. 4, we observe that adding vertex corrections to

G0W0@HF (denoted as G0W0Γ
(1)
0 @HF) makes the results consistently worse, while adding

vertex correction to G0W0@PBE (denoted as G0W0Γ
(1)
0 @PBE) improves the results, making
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Figure 3: Signed errors from ∆CCSD(T) benchmarks, of G0W0, scGW , and G0W0Γ
(1)
0

33

for the GW100 data set. Some outliers (within their own group) are labeled. Top panel:

performances of scGW and G0W0Γ
(1)
0 with different starting mean-field calculations. Bottom

panel: performance of scGW and G0W0 with different starting mean-field calculations.
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for the GW100 data set. Dashed curves are fitted Gaussian distributions. Left and right
panels: influence of Γ

(1)
0 correction on one-shot GW results with different starting mean-field

calculations. Middle panel: improvement introduced by self-consistency upon one-shot GW
results.

the MAE comparable to scGW .

The effects of different starting points, PBE and HF, on Γ
(1)
0 are analyzed in Fig. 4, where

we look at the trends in the error distribution curves for G0W0, G0W0Γ
(1)
0 , and scGW . Re-

gardless of the initial starting point used for G0W0, the vertex correction Γ
(1)
0 systematically

enlarges the value of the first IP peak by a similar amount. Because G0W0@PBE generally

gives smaller IPs than ∆CCSD(T) results, the uniform shift introduced by adding the vertex

improves the accuracy of G0W0Γ
(1)
0 @PBE. For G0W0@HF, the IPs are already more accu-

rate than those in G0W0@PBE. Consequently, adding vertex correction leads to diminished

accuracy. Based on this observation, we argue that the improvement of Γ
(1)
0 upon G0W0 is

serendipitous and the accuracy of the overall result that includes vertex correction is mostly

dictated by the starting point dependence. Similar mean-field reference dependence of the

vertex corrected results has been observed for IPs of molecules containing transition met-

als.105 In scGW , such a starting point dependence is effectively removed via the convergence

of self-consistent loops.

In Table. 1, we present statistical criteria for the data presented in Fig. 3. We find that

G0W0Γ
(1)
0 @PBE gives lower MAE than scGW when compared with ∆CCSD(T) benchmarks.
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Even though scGW does not produce the best MAE out of all cases analyzed, one could still

argue that it is more reliable to make predictions with the self-consistent scheme, because

even with the pre-existing knowledge about the performance of G0W0 on a given system, it

will still be difficult to know if Γ
(1)
0 would make improvement for such a system or not.

Table 1: MAE in eV for G0W0, G0W0Γ
(1)
0 , and scGW with ∆CCSD(T) as benchmarks for

the GW100 data set. The fluctuation in the bracket after each MAE value is the standard
deviation of absolute errors. See Table SII in Supporting Information for detailed IP values
for each molecule. ∗Calculated with data reported in Ref.33

G0W0 G0W0Γ
(1)∗
0 scGW

@PBE 0.62(±0.29) 0.20(±0.26)
0.29(±0.22)

@HF 0.35(±0.23) 0.54(±0.29)

Table 2: MAE in eV for G0W0@HF, scGW , G0W0Γ
(NL), and ∆CCSD(T) methods for the

29-molecule data set, compared with experimental benchmarks. The fluctuation in the
bracket after each MAE value is the standard deviation of absolute errors. See Table SIII in
Supporting Information for detailed IP values for each molecule and the cited literature for
experimental data. ∗Calculated with data reported in Ref.32

G0W0@HF G0W0Γ
(NL)@HF scGW ∆CCSD(T)∗

cc-pVQZ 0.65 (±0.36) 0.30 (±0.27) 0.23 (±0.32)
cc basis limit 0.88 (±0.38) 0.29 (±0.26)
finite PW∗ 0.42 (±0.37) 0.37 (±0.32)

PW basis limit∗ 0.69 (±0.40) 0.46 (±0.41)

Comparison of scGW and G0W0Γ with non-local vertex corrections

for first IP peaks

Maggio et al. calculated first IP peaks for 29 molecules using their non-local vertex correction

Γ(NL) on top of G0W0 in the plane wave (PW) basis.32 Their first IP results were extrapolated

to the PW basis set limit. Here, we compare our scGW and their G0W0Γ
(NL) for the first

IP prediction against the experimental benchmarks (see Supporting Information Table SIII).

Note that while theoretical calculations assume vertical ionizations, this is not necessarily the

case in experiments, where vibronic effects might apply Our G0W0 and scGW calculations are
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performed starting from HF/cc-pVXZ (X = Q and 5) and then extrapolated to the complete

basis-set limit. While we cannot compare these results in a very direct manner since they are

performed in different bases, we note that the PW basis and cc basis results behave similarly

both in accuracy and basis set convergence trend, when compared against experimental

benchmarks. This is also confirmed by Maggio et al. that GTO basis (cc-pVQZ) produced

minimal numerical difference (about 100 meV) from finite PW results computed with the

same GW implementation.32

In Table 2, for the first IPs, we summarize the overall MAE and standard deviation

obtained using G0W0 and scGW and compare it against G0W0Γ
(NL) and ∆CCSD(T) results

from Ref.32 Corresponding numerical data is presented in Table SIII of SI. We observe

that by extrapolating G0W0 and G0W0Γ
(NL) results from a finite bases to their respective

limits, the accuracy deteriorates even though higher number of orbitals are included. For cc

basis sets, the MAE for our G0W0 increases from 0.65 eV (cc-pVQZ) to 0.88 eV (cc basis

limit). Similarly, for the results in plane wave basis,32 the MAE of G0W0 increases from

0.42 eV (finite plane wave) to 0.69 eV (plane wave basis limit), and the MAE of G0W0Γ
(NL)

increases from 0.37 eV (finite plane wave) to 0.46 eV (plane wave basis limit). In Ref.,32 the

extrapolated G0W0Γ
(NL) results were also coupled with convergence issue for some molecules

(lithium dimer, phosphorus dimer, and sulfur dioxide). On the other hand scGW results are

essentially converged already at the cc-pVQZ level. As a result, for scGW , cc-pVQZ results

and cc basis limit results are close for most entries (see Supporting Information Table SIII).

Table 2 shows that in the CBS limit for plane waves, vertex correction reduces the MAE

for the IPs from 0.69 eV in G0W0 to 0.46 eV. Meanwhile, in the CBS limit for the cc basis

set family, self-consistency improves the MAE from 0.88 eV at the G0W0 level to 0.29 eV.

The magnitude of improvement induced by both self-consistency and vertex correction is

illustrated in Fig. 5. In the top panel of Fig. 5, we observe that self-consistency in most cases

brings the IP values closer to experiment in comparison to G0W0. The bottom panel shows

the magnitude of the improvement brought by vertex correction on top of G0W0, which is
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only minor. Thus, its final accuracy largely depends on a good mean-field starting pointing

point of the G0W0 calculations.

Overall, we conclude that in the molecular IP domain, improvements introduced by self-

consistency is similar to, if not better than, that of vertex corrected G0W0. Moreover, the

smaller standard deviation in scGW implies more uniformity in the quality of results. This,

combined with the lack of dependence on the starting mean-field solution, makes scGW more

favorable.

Conclusion

In this work, we demonstrated the performance of our finite temperature scGW methodology

in predicting molecular valence shell IPs. In our implementation, there are no approximations

other than (a) density fitting approximation for integral generation; and (b) the Nevanlinna

analytical continuation employed to obtain spectral data from the converged Green’s function

evaluated on the imaginary axis.

Based on our calculations, performing the self-consistency generally improves upon G0W0

results and leads to convergence of calculations with different mean-field starting points. This

eliminates the ambiguity associated with the selecting a mean-field calculation used as the

reference for the GW method. The reliability of our scGW method is verified both for the

first IPs as well as the inner valence shell IPs, when examined against both theoretical and

experimental benchmarks.

For molecular systems, we presented comparisons of our scGW with another post-GW

methodology – vertex corrected G0W0 – motivated by completing the suite of Hedin’s equa-

tions. When comparing different G0W0Γ variants against scGW , we observed that scGW

consistently displays either better or comparable accuracy. The G0W0Γ results were affected

by a strong starting point dependence (inherited from G0W0) and the magnitude of error

caused by starting points is frequently larger than the correction introduced by the vertex.
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Similar dependence was also observed in vertex correction upon polarizability exclusively.45

Even though there are scattered cases where G0W0Γ based on a DFT reference outper-

forms scGW , full self-consistency is cheaper than evaluating full vertex corrections and gives

unbiased results independent of the starting point. Moreover, within the scGW framework,

the evaluation of total energies and, consequently, energy differences is possible.40,106–108 In

contrast, in the G0W0 schemes, the energy is ill defined since its value strongly depends on

the underlying reference. Additionally, the self-consistency in scGW causes relaxation of the

orbitals in the presence of correlation resulting in improved quantities such as the electron

density.40,42,109

Moreover, choosing an appropriate type of vertex correction can be a difficult task. In

this work, we analyzed three different versions of vertex corrections each employing different

approximations and we concluded that it is hard to establish a priori which type of vertex

correction should be used for a certain problem.

While scGW is generally accurate for the first IP as well as the inner valence shell

excitations, depiction of excitations with MQP character is believed to be relatively difficult

due to their correlation effects. Nevertheless, at least for the examples analyzed in the Results

section, it appears that scGW is capable of not only capturing the qualitative emergence

of MQP features but also yielding reasonably accurate excitation energies in this regime.

This is particularly advantageous in comparison to methods such as EOM-CCSD, where the

presence of satellites may lead to issues with converging the quasiparticle energies.

In summary, vertex correction is generally considered as a preferred way to improve

the quality of G0W0 results. However, we find that at least for molecules, scGW , without

vertex, already provides results that are competitive with the best G0W0Γ results analyzed

here. This, combined with the fact that scGW is essentially a black-box method, makes

self-consistency a better route to make improvements upon G0W0.

In the future, one still may want to add additional diagrammatic terms beyond scGW .

The best way of doing it, however, is an active field of research. Ideally, the implementation
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of vertex corrections should be done based on the self-consistent GW approach where the

starting point dependence is removed. Only then the approximations introduced in the

formulation of GWΓ can be meaningfully validated. The self-consistent evaluation of Hedin’s

equations with an addition of the vertex may become numerically difficult and may result in

the appearance of unphysical features such as negative spectral functions.110 When applied

within the self-consistent GW scheme, the vertex correction is responsible only for bringing

the correlation that is missing in the parent scGW approach, and it does not need to remedy

for the lack of the orbital optimization that is present in G0W0. This direction will be

explored in our future work.
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Continuation with Padé Decomposition. Chinese Phys. Lett. 2017, 34, 077102.

(82) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; Mc-

Clain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.; Chan, G. K.-L. PySCF: The

Python-based Simulations of Chemistry Framework. WIREs Computational Molecular

Science 2018, 8, e1340.

(83) Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.; Bogdanov, N. A.;

Booth, G. H.; Chen, J.; Cui, Z.-H.; Eriksen, J. J.; Gao, Y.; Guo, S.; Hermann, J.;

Hermes, M. R.; Koh, K.; Koval, P.; Lehtola, S.; Li, Z.; Liu, J.; Mardirossian, N.; Mc-

Clain, J. D.; Motta, M.; Mussard, B.; Pham, H. Q.; Pulkin, A.; Purwanto, W.; Robin-

son, P. J.; Ronca, E.; Sayfutyarova, E. R.; Scheurer, M.; Schurkus, H. F.; Smith, J.

E. T.; Sun, C.; Sun, S.-N.; Upadhyay, S.; Wagner, L. K.; Wang, X.; White, A.;

34



Whitfield, J. D.; Williamson, M. J.; Wouters, S.; Yang, J.; Yu, J. M.; Zhu, T.; Berkel-

bach, T. C.; Sharma, S.; Sokolov, A. Y.; Chan, G. K.-L. Recent Developments in the

PySCF Program Package. J. Chem. Phys. 2020, 153, 024109.

(84) Kendall, R. A.; Dunning, Jr., Thom H.; Harrison, R. J. Electron Affinities of the First-

row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys.

1992, 96, 6796–6806.

(85) Woon, D. E.; Dunning, Jr., Thom H. Gaussian Basis Sets for Use in Correlated Molec-

ular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993,

98, 1358–1371.

(86) Pritchard, B. P.; Altarawy, D.; Didier, B.; Gibson, T. D.; Windus, T. L. New Basis

Set Exchange: An Open, up-to-Date Resource for the Molecular Sciences Community.

J. Chem. Inf. Model. 2019, 59, 4814–4820.

(87) Tubman, N. M.; Lee, J.; Takeshita, T. Y.; Head-Gordon, M.; Whaley, K. B. A De-

terministic Alternative to the Full Configuration Interaction Quantum Monte Carlo

Method. J. Chem. Phys. 2016, 145, 044112.

(88) Holmes, A. A.; Tubman, N. M.; Umrigar, C. J. Heat-Bath Configuration Interaction:

An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sam-

pling. J. Chem. Theory Comput. 2016, 12, 3674–3680.

(89) Geertsen, J.; Rittby, M.; Bartlett, R. J. The Equation-of-Motion Coupled-Cluster

Method: Excitation Energies of Be and CO. Chem. Phys. Lett. 1989, 164, 57–62.

(90) Stanton, J. F.; Bartlett, R. J. The Equation of Motion Coupled-Cluster Method.

A Systematic Biorthogonal Approach to Molecular Excitation Energies, Transition

Probabilities, and Excited State Properties. J. Chem. Phys. 1993, 98, 7029–7039.

35



(91) Krylov, A. I. Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Elec-

tronically Excited Species: The Hitchhiker’s Guide to Fock Space. Annu. Rev. Phys.

Chem. 2008, 59, 433–462.

(92) Musia l, M.; Kucharski, S. A.; Bartlett, R. J. Equation-of-Motion Coupled Cluster

Method with Full Inclusion of the Connected Triple Excitations for Ionized States:

IP-EOM-CCSDT. J. Chem. Phys. 2003, 118, 1128–1136.

(93) Ranasinghe, D. S.; Margraf, J. T.; Perera, A.; Bartlett, R. J. Vertical Valence Ion-

ization Potential Benchmarks from Equation-of-Motion Coupled Cluster Theory and

QTP Functionals. J. Chem. Phys. 2019, 150, 074108.

(94) Matthews, D. A.; Cheng, L.; Harding, M. E.; Lipparini, F.; Stopkowicz, S.; Jagau, T.-

C.; Szalay, P. G.; Gauss, J.; Stanton, J. F. Coupled-cluster techniques for computa-

tional chemistry: The CFOUR program package. J. Chem. Phys. 2020, 152, 214108.

(95) Scuseria, G. E.; Henderson, T. M.; Bulik, I. W. Particle-Particle and Quasiparticle

Random Phase Approximations: Connections to Coupled Cluster Theory. J. Chem.

Phys. 2013, 139, 104113.

(96) McClain, J.; Lischner, J.; Watson, T.; Matthews, D. A.; Ronca, E.; Louie, S. G.;

Berkelbach, T. C.; Chan, G. K.-L. Spectral Functions of the Uniform Electron Gas

via Coupled-Cluster Theory and Comparison to the GW and Related Approximations.

Phys. Rev. B 2016, 93, 235139.

(97) Lange, M. F.; Berkelbach, T. C. On the Relation between Equation-of-Motion

Coupled-Cluster Theory and the GW Approximation. J. Chem. Theory Comput.

2018, 14, 4224–4236.

(98) Quintero-Monsebaiz, R.; Monino, E.; Marie, A.; Loos, P.-F. Connections between

Many-Body Perturbation and Coupled-Cluster Theories. J. Chem. Phys. 2022, 157,

231102.

36



(99) Tölle, J.; Kin-Lic Chan, G. Exact Relationships between the GW Approximation and

Equation-of-Motion Coupled-Cluster Theories through the Quasi-Boson Formalism.

J. Chem. Phys. 2023, 158, 124123.

(100) Cederbaum, L. S.; Domcke, W.; Schirmer, J.; von Niessen, W. Many-Body Effects in

Valence and Core Photoionization of Molecules. Phys. Scr. 1980, 21, 481–491.

(101) Guzzo, M.; Lani, G.; Sottile, F.; Romaniello, P.; Gatti, M.; Kas, J. J.; Rehr, J. J.;

Silly, M. G.; Sirotti, F.; Reining, L. Valence Electron Photoemission Spectrum of

Semiconductors: Ab Initio Description of Multiple Satellites. Phys. Rev. Lett. 2011,

107, 166401.

(102) Katharina Krause, M. E. H.; Klopper, W. Coupled-Cluster Reference Values for the

GW27 and GW100 Test Sets for the Assessment of GW Methods. Mol. Phys. 2015,

113, 1952–1960.

(103) Förster, A.; Visscher, L. GW100: A Slater-Type Orbital Perspective. J. Chem. Theory

Comput. 2021, 17, 5080–5097.

(104) Bruneval, F.; Dattani, N.; van Setten, M. J. The GW Miracle in Many-Body Pertur-

bation Theory for the Ionization Potential of Molecules. Front. Chem. 2021, 9 .

(105) Wang, Y.; Ren, X. Vertex Effects in Describing the Ionization Energies of the First-

Row Transition-Metal Monoxide Molecules. J. Chem. Phys. 2022, 157, 214115.

(106) Galitskii, V. M.; Migdal, A. B. Application of Quantum Field Theory Methods to the

Many Body Problem. Sov. Phys. JETP 1958, 7, 18.

(107) Holm, B.; Aryasetiawan, F. Total Energy from the Galitskii-Migdal Formula Using

Realistic Spectral Functions. Phys. Rev. B 2000, 62, 4858–4865.

(108) Stan, A.; Dahlen, N. E.; van Leeuwen, R. Levels of Self-Consistency in the GW Ap-

proximation. J. Chem. Phys. 2009, 130, 114105.

37



(109) Caruso, F.; Rinke, P.; Ren, X.; Rubio, A.; Scheffler, M. Self-Consistent $GW$: All-

electron Implementation with Localized Basis Functions. Phys. Rev. B 2013, 88,

075105.

(110) Pavlyukh, Y.; Stefanucci, G.; van Leeuwen, R. Dynamically Screened Vertex Correc-

tion to GW. Phys. Rev. B 2020, 102, 045121.

38



Supporting Information:

Comparing self-consistent GW and vertex

corrected G0W0 (G0W0Γ) accuracy for molecular

ionization potentials

Ming Wen,† Vibin Abraham,† Gaurav Harsha,† Avijit Shee,‡ K. Birgitta

Whaley,‡ and Dominika Zgid∗,†,¶

†Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109

‡Department of Chemistry, University of California, Berkeley, California 94720-1460

¶Department of Physics, University of Michigan, Ann Arbor, Michigan 48109

E-mail: zgid.umich@edu

1



A. Inner valence shell ionizations

In Table S1, we report our detailed data for the first and few inner valence ionization peaks

for each molecule entry. For ammonia, water, nitrogen, acetylene, and methane, G0W0ΓX

and ASCI results were reported by Mejuto-Zaera et. al.1 For G0W0, G0W0, scGW , and

ASCI, results are extrapolated to the aug-cc basis limit. The EOM columns are computed

using aug-cc-pVQZ and not extrapolated.

Table S1: First few ionization potential predictions (in eV) for molecules. G0W0, G0W0Γ,
and ASCI data cited from Ref.1 are reproduced in this table with permission, © Copyright
2024 AIP Publishing LLC. ∗Methane’s G0W0, G0W0Γ, and ASCI results were reported in cc
basis. ∗∗Unable to converge.

Molecule Peak G0W0
1 G0W0ΓX

1 scGW EOM-CCSD EOM-CCSDT ASCI1

Ethylene

1 -10.28 -10.76 -10.72
2 -13.20 -13.16 -13.10
3 -14.83 -15.01 -14.86
4 -16.36 -16.38 -16.20

Hydrogen fluoride
1-2 -16.39 -16.15 -16.10
3 -20.09 -20.06 -20.01
4 -39.57 ** **

Carbon monoxide

1 -14.20 -14.50 -14.15
2-3 -15.20 -15.63 -15.57
4 -19.64 -19.57 -19.02
5 -33.57 ** **

Ammonia
1 -11.70 -10.85 -11.00 -10.94 -10.93 -10.81

2-3 -17.12 -16.70 -16.58 -16.65 -16.61 -16.51
4 -31.08 -27.58 -28.07 -27.90 -26.97 -27.36

Water

1 -13.36 -12.94 -12.84 -12.70 -12.70 -12.75
2 -15.44 -15.03 -14.99 -14.90 -14.91 -14.90
3 -19.62 -19.20 -19.02 -19.07 -19.06 -19.10
4 -35.06 -32.02 -32.91 -32.88 -32.73 -32.99

Nitrogen
1 -17.28 -16.28 -15.69 -15.74 -15.60 -15.54

2-3 -16.82 -17.11 -16.48 -17.34 -17.05 -17.05
4 -21.14 -19.62 -19.14 ** -18.98 -18.88

Acetylene

1-2 -11.18 -11.27 -11.05 -11.66 -11.51 -11.45
3 -18.53 -17.95 -17.25 -17.34 -17.19 -17.15
4 -20.90 -19.62 -19.32 -19.21 -19.05 -19.05
5 -28.06 -24.31 -24.65 -24.57 -24.70 -24.13

Methane*
1-3 -14.83 -14.61 -14.39 -14.45 -14.36 -14.35
4 -25.69 -22.74 -23.43 -23.42 -23.12 -23.25

In Fig. S1 and S2, we present five examples of spectral functions produced from the
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scGW/aug-cc-pVQZ calculations via Nevanlinna analytical continuation. Similar spectral

functions rendered by stochastic G0W0ΓX were reported in Ref.1 Notice that in ammonia

and water we had the complicated multi-peak feature in the MQP regime. We identify the

MQP peak by increasing the broadening factor so that the complicated multi-peak feature

melted into a singular broad peak, which corresponds to the IP number we report in TABLE

S1.
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Figure S1: Spectral functions of methane and nitrogen. The spectral functions were produced
using the analytically continued data from scGW results.

In Fig. S3, we present the absolute deviation when changing the ASCI benchmarks1 to

EOM-CCSDT benchmarks.
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were produced using the analytically continued data from scGW results. The MQP regimes
insets are plotted in algorithmic scale.
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B. First ionization peaks

We present our validation test on the GW100 set. We compared our scGW method to

G0W0Γ
(1)
0 by Wang et al.2 while keeping the level of theory as similar as possible. Initializa-

tions for both approaches are done using HF/def2-TZVPP and PBE/def2-TZVPP. Molecules

containing elements in the fourth row or beyond are excluded, since the all-electron basis set

of def2-TZVPP for these elements was not available. Total of 93 molecules are kept.

Firstly, we need to confirm that finite temperature scGW (on the imaginary axis) and

G0W0Γ
(1)
0 (on the real axis) can produce the same results after the first iteration, i.e. the

G0W0 level. If so, we can make sure the comparison is appropriate and based on similar

theoretical footing. In Fig. S4 the G0W0 results for both schemes fit well with no obvious

outliers. Additionally, we compared our scGW with past implementation of scGW by Caruso

et al.3 This observation also supports that one can reliably recover spectral information from

the Green’s function on imaginary axis via analytical continuation.
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Table S2: First ionization potentials (in eV) calculated from G0W0@HF, G0W0@PBE, scGW ,
and ∆CCSD(T) for the GW100 set.

Index Molecule G0W0@HF G0W0@PBE scGW CCSD(T)4 Index Molecule G0W0@HF G0W0@PBE scGW CCSD(T)4

1 He -24.58 -23.75 -24.41 -24.51 53 HCl -12.81 -12.13 -12.28 -12.59
2 Ne -21.39 -20.49 -21.39 -21.32 54 LiF -11.37 -9.77 -11.36 -11.32
3 Ar -15.76 -15.02 -15.26 -15.54 55 MgF2 -13.79 -12.29 -13.77 -13.71
4 Kr -14.00 -13.37 -13.64 -13.94 56 TiF4 -16.17 -13.77 -15.47 -15.41
6 H2 -16.48 -15.90 -16.15 -16.40 57 AlF3 -15.63 -14.14 -15.41 -15.32
7 Li2 -5.32 -5.05 -4.97 -5.27 58 BF -11.31 -10.43 -10.61 -11.09
8 Na2 -4.97 -4.92 -4.63 -4.95 59 SF4 -13.30 -11.91 -12.49 -12.59
9 Na4 -4.29 -4.11 -3.83 -4.24 60 KBr -8.21 -7.15 -7.88 -8.13
10 Na6 -4.47 -4.25 -3.96 -4.39 61 GaCl -9.90 -9.42 -9.34 -9.77
11 K2 -4.06 -3.94 -3.73 -4.07 62 NaCl -9.24 -7.90 -8.77 -9.03
13 N2 -16.35 -14.74 -15.45 -15.48 63 MgCl2 -11.93 -10.84 -11.44 -11.66
14 P2 -10.55 -10.05 -9.73 -10.53 65 BN -11.76 -11.08 -11.03 -11.98
15 As2 -9.74 -9.34 -9.05 -9.85 66 HCN -13.87 -13.00 -13.13 -13.72
16 F2 -16.31 -14.83 -15.80 -15.58 67 PN -12.37 -10.99 -11.59 -11.81
17 Cl2 -11.77 -10.90 -11.08 -11.41 68 N2H4 -10.17 -9.21 -9.63 -9.69
18 Br2 -10.75 -9.98 -10.21 -10.52 69 CH2O -11.37 -10.17 -10.82 -10.84
20 CH4 -14.77 -13.91 -14.25 -14.37 70 CH3OH -11.57 -10.46 -11.04 -11.04
21 C2H6 -13.21 -12.35 -12.63 -12.71 71 EtOH -11.29 -10.05 -10.67 -10.69
22 C3H8 -12.63 -11.66 -12.03 -12.03 72 CH3CHO -10.81 -9.40 -10.18 -10.21
23 C4H10 -12.19 -11.23 -11.65 -11.57 73 Et2O -10.49 -9.21 -9.81 -9.82
24 C2H4 -10.71 -10.20 -10.11 -10.67 74 HCOOH -11.95 -10.59 -11.41 -11.42
25 C2H2 -11.59 -10.94 -10.86 -11.42 75 H2O2 -12.06 -10.87 -11.54 -11.52
26 C4 -11.62 -10.64 -10.69 -11.24 76 H2O -12.87 -11.94 -12.57 -12.57
27 C3H6 -11.30 -10.46 -10.59 -10.87 77 CO2 -14.21 -13.07 -13.54 -13.71
28 C6H6 -9.52 -8.87 -8.75 -9.36 78 CS2 -10.33 -9.55 -9.44 -9.98
29 C8H8 -8.67 -7.93 -7.82 -8.40 79 OCS -11.55 -10.74 -10.70 -11.17
30 C5H6 -8.86 -8.23 -8.07 -8.71 80 COSe -10.69 -10.00 -9.98 -10.47
31 C2H3F -10.79 -10.02 -10.08 -10.55 81 CO -15.06 -13.43 -13.97 -14.21
32 C2H3Cl -10.34 -9.58 -9.61 -10.09 82 O3 -13.54 -11.73 -12.57 -12.71
33 C2H3Br -9.46 -8.83 -8.84 -9.27 83 SO2 -12.94 -11.61 -12.03 -12.30
35 CF4 -16.85 -15.18 -16.55 -16.23 84 BeO -9.83 -9.16 -9.75 -9.94
36 CCl4 -12.01 -10.77 -11.14 -11.50 85 MgO -7.95 -7.05 -7.95 -7.91
37 CBr4 -10.78 -9.67 -10.12 -10.41 86 C6H5CH3 -9.16 -8.49 -8.37 -8.97
39 SiH4 -13.25 -12.28 -12.73 -12.80 87 C6H5Et -9.13 -8.43 -8.32 -8.92
40 GeH4 -12.88 -11.99 -12.37 -12.50 88 C6F6 -10.63 -9.28 -9.50 -9.93
41 Si2H6 -11.11 -10.21 -10.44 -10.65 89 C6H5OH -9.03 -8.22 -8.17 -8.70
42 Si5H12 -9.82 -8.81 -9.04 -9.27 90 C6H5NH2 -8.35 -7.49 -7.52 -8.04
43 LiH -8.17 -7.02 -7.89 -7.96 91 C5H5N -9.91 -8.87 -9.12 -9.73
44 KH -6.29 -4.81 -6.03 -6.13 92 guanine -8.44 -7.52 -7.48 -8.03
45 BH3 -13.67 -12.84 -13.18 -13.27 93 adenine -8.71 -7.80 -7.78 -8.33
46 B2H6 -12.76 -11.74 -12.17 -12.25 94 cytosine -9.28 -8.08 -8.40 -8.77
47 NH3 -11.19 -10.29 -10.77 -10.81 95 thymine -9.68 -8.49 -8.70 -9.08
48 HN3 -11.11 -10.27 -10.25 -10.68 96 uracil -10.09 -8.86 -9.13 -9.48
49 PH3 -10.81 -10.20 -10.23 -10.52 97 urea -10.68 -9.18 -10.05 -10.05
50 AsH3 -10.58 -10.04 -10.08 -10.40 99 Cu2 -7.20 -7.61 -6.96 -7.57
51 H2S -10.52 -9.92 -9.99 -10.31 100 CuCN -11.29 -9.80 -10.67 -10.85
52 HF -16.22 -15.29 -16.13 -16.03 MAE 0.32 0.62 0.29
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Figure S4: Left: Comparison of ionization potentials derived from G0W0@PBE by Wang
et al. and our finite temperature version of G0W0@PBE. Right: Comparison of ionization
potentials derived from scGW by Caruso et al. and our finite temperature version of scGW .
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We use HF/cc-pVXZ (X = Q and 5) as the starting point for our subsequent scGW

calculations for the 29-molecule data set. Then we compare these results with the vertexed

corrected G0W0 method (G0W0Γ
(NL) in the main text) propesed by Maggio et. al.5 Final

scGW results are linearly extrapolated to cc basis set limit. The cited data calculated in the

plane wave basis were also evaluated with HF starting mean field. Please refer to the original

article for their detailed description for energy cut-offs and the extrapolation technique for

the PW basis.

Table S3: First ionization potentials (in eV) calculated from CCSD(T), G0W0@HF, scGW ,
and G0W0Γ@HF, in cc basis and plane wave basis sets. ∗Vertical IP values are in italics.

cc-pVQZ cc basis limit finite PW5 PW basis limit5

Molecule CCSD(T)5 G0W0 scGW G0W0 scGW G0W0 G0W0Γ G0W0 G0W0Γ Experiment∗

hydrogen -16.39 -16.59 -16.24 -16.65 -16.32 -16.34 -16.25 -16.72 -16.52 -15.436

lithium dimer -5.17 -5.38 -4.94 -5.42 -4.94 -5.26 -5.16 -5.29 -4.737

nitrogen -15.49 -16.56 -15.57 -16.82 -15.66 -16.12 -16.06 -16.56 -16.39 -15.588

phosphorus dimer -10.76 -10.71 -9.85 -11.01 -9.98 -11.10 -10.92 -11.31 -10.629

chlorine -11.62 -11.98 -11.24 -12.35 -11.37 -11.65 -11.52 -12.08 -11.80 -11.49 10

methane -14.40 -14.92 -14.32 -15.05 -14.37 -14.65 -14.37 -14.95 -14.57 -13.6 11

ethylene -10.69 -10.88 -10.18 -11.04 -10.24 -10.69 -10.49 -10.91 -10.66 -10.68 11

acetylene -11.42 -11.77 -10.96 -11.95 -11.13 -11.50 -11.26 -11.73 -11.43 -11.49 11

silane -12.82 -13.35 -12.80 -13.50 -12.89 -13.12 -12.94 -13.40 -12.88 -12.3 12

lithium hydride -7.94 -8.28 -7.94 -8.39 -8.02 -8.12 -7.87 -8.26 -7.94 -7.913

ammonia -10.92 -11.40 -10.86 -11.60 -10.98 -11.10 -11.04 -11.45 -11.28 -10.82 14

phosphine -10.49 -10.92 -10.28 -11.14 -10.48 -10.64 -10.47 -10.89 -10.66 -10.59 15

hydrogen sulfide -10.43 -10.69 -10.09 -10.97 -10.15 -10.51 -10.39 -10.79 -10.60 -10.50 16

hydrogen fluoride -16.09 -16.49 -16.26 -16.79 -16.41 -15.83 -15.72 -16.29 -16.18 -16.12 17

sodium chloride -9.13 -9.43 -8.93 -9.83 -9.09 -9.14 -9.06 -9.51 -9.32 -9.80 18

hydrogen cyanide -13.64 -14.07 -13.22 -14.28 -13.44 -13.65 -13.4 -13.92 -13.61 -13.61 19

hydrazine -10.24 -10.38 -9.71 -10.61 -9.83 -10.47 -10.28 -10.86 -10.58 -8.98 20

methanol -11.08 -11.79 -11.16 -12.03 -11.33 -11.30 -11.06 -11.71 -11.39 -10.96 21

hydrogen peroxide -11.49 -12.32 -11.66 -12.62 -11.91 -11.63 -11.39 -12.12 -11.81 -11.70 22

water -12.64 -13.11 -12.73 -13.38 -12.80 -12.61 -12.55 -13.10 -12.92 -12.62 23

carbon dioxide -13.78 -14.46 -13.66 -14.78 -13.92 -13.94 -13.83 -14.35 -14.16 -13.77 24

carbon monoxide -14.05 -15.25 -14.08 -15.47 -14.17 -14.77 -14.71 -15.03 -14.89 -14.01 25

sulfur dioxide -12.41 -13.16 -12.21 -13.60 -12.48 -12.83 -12.64 -13.20 -12.50 23

chlorine fluoride -12.82 -13.29 -12.49 -13.67 -12.73 -13.21 -13.14 -13.49 -13.33 -12.77 10

chloromethane -11.41 -11.76 -11.16 -12.10 -11.24 -11.60 -11.37 -11.90 -11.56 -11.29 23

methanethiol -9.49 -9.84 -9.16 -10.12 -9.35 -9.72 -9.62 -9.93 -9.76 -9.44 26

silicon monoxide -11.55 -12.04 -11.25 -12.30 -11.35 -11.72 -11.63 -12.05 -11.78 -11.327

carbon monosulfide -11.45 -12.55 -11.34 -12.80 -11.44 -12.37 -12.29 -12.63 -12.47 -11.3328

hypochlorous acid -11.30 -11.84 -11.10 -12.20 -11.30 -11.63 -11.41 -11.96 -11.66 -11.1229

MAE from experiment 0.23 0.65 0.30 0.88 0.29 0.42 0.37 0.69 0.46
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