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Abstract 
The thermodynamic entropy of coarse-grained (CG) models stands as one of the most important 
properties for quantifying the missing information during the CG process and for establishing 
transferable (or extendible) CG interactions. However, performing additional CG simulations on 
top of model construction often leads to significant additional computational overhead. In this 
work, we propose a simple hierarchical framework for predicting the thermodynamic entropies of 
various molecular CG systems. Our approach employs a decomposition of the CG interactions, 
enabling the estimation of the CG partition function and thermodynamic properties a priori. 
Starting from the ideal gas description, we leverage classical perturbation theory to systematically 
incorporate simple yet essential interactions, ranging from the hard sphere model to the generalized 
van der Waals model. Additionally, we propose an alternative approach based on multiparticle 
correlation functions, allowing for systematic improvements through higher-order correlations. 
Numerical applications to molecular liquids validate the high fidelity of our approach, and our 
computational protocols demonstrate that a reduced model with simple energetics can reasonably 
estimate the thermodynamic entropy of CG models without performing any CG simulations. 
Overall, our findings present a systematic framework for estimating not only the entropy but also 
other thermodynamic properties of CG models, relying solely on information from the reference 
system. 
 
TOC Graphic 

 
  



 2 

1. Introduction 
In order to gain insights into chemical and physical processes at an atomistic level, computer 
simulations have become an essential tool in the fields of chemistry, physics, and biology. 
Conventionally, this entails performing molecular dynamics (MD) or Monte Carlo (MC) 
simulations1-7 using effective Hamiltonians designed to capture a range of interactions at the 
atomistic level, i.e., non-bonded, pair-bonded, angular, and dihedral interactions.8-13 However, 
such a description at the fully atomistic level is often computationally expensive to simulate for 
complex systems over long length and time scales.14, 15 To surmount this limitation, coarse-grained 
(CG) modeling has emerged as a strategy to reduce the number of complex atomistic degrees of 
freedom, yielding a simpler system that can be simulated for effectively long times.15-25 Thus, 
eliminating unnecessary degrees of freedom can greatly enhance the spatiotemporal scales 
explored in computational simulations.26-32  
 
Since simplified CG systems should exhibit behaviors that are as close as possible to their 
corresponding fine-grained (FG) counterparts, bottom-up CG approaches have been designed to 
derive CG interactions based on FG statistics.15, 17-19, 21, 22, 24, 33, 34 These bottom-up approaches are 
rooted in statistical mechanical methodologies designed to recapitulate important structural 
correlations35, 36 rather than relying on an empirical determination from top-down approaches.34, 

37-40 In pursuit of designing bottom-up CG models, however, we note that the thermodynamic 
properties of CG systems deviate from those of the FG systems in practical scenarios—an 
inconsistency commonly known as the representability problem.21 In principle, the “exact” CG 
potential, determined by accurately integrating over the FG degrees of freedom, should be able to 
faithfully reproduce the FG free energy and thermodynamic properties through appropriate 
derivatives of the free energy. However, due to the approximate nature when determining the 
many-dimensional CG interactions and their dependence on thermodynamic variables, 
inconsistencies between the FG and the CG properties often arise. To address this issue, numerous 
attempts have been made.41-44  
 
Among various thermodynamic properties, our particular focus in this paper is on entropy. In CG 
modeling, the entropy holds privileged importance as it directly accounts for the reduced 
information resulting from the coarse-graining process. For example, relative entropy 
minimization formally demonstrates that the entropy is the target object to be optimized when 
deriving CG models.36, 45-47 Additionally, given that bottom-up CG interactions are essentially a 
many-body potential of mean force (PMF), which is a free energy quantity,48, 49 the difference 
between the FG and CG entropies amounts to the temperature dependence of the effective CG 
potentials. Therefore, a correct understanding of the so-called “missing entropy” is pivotal for 
achieving transferability of CG interactions.21, 24, 41, 50, 51 While steady effort has been directed 
toward elucidating the physical nature of this missing entropy through the development of 
theoretical and computational methodologies,42, 43, 52-54 relatively little attention has been paid to 
the CG entropy itself. Due to the non-trivial and many-body nature of CG interactions, calculating 
the CG entropy requires not only parametrizing the CG interactions but also conducting CG 
simulations and subsequently employing existing free energy methods to determine the entropy in 
a post-processing step. Such an extensive undertaking may appear contradictory to the reductionist 
philosophy inherent in CG modeling. 
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Motivated by the need to overcome this computational overhead for arbitrary CG systems, our 
primary goal in this paper is to develop a statistical mechanical framework capable of estimating 
the correct thermodynamic entropy of the CG system without necessitating CG simulations. In 
other words, we aim to develop a predictive theory that can reasonably estimate the entropy of 
complex CG molecules based solely on their model characteristics. This objective may seem 
challenging given the complexity of bottom-up CG models; however, this difficulty can be 
overcome. In particular, despite the intricate form of the parametrized CG interaction, if one could 
effectively decompose it into separate and analytically tractable CG interactions, additional CG 
simulations would become unnecessary. Since this partitioning is highly non-trivial and varies 
across different systems, we attempt to approach this problem in a systematic manner inspired by 
the classical perturbation theory of liquids. As initially proposed by Zwanzig55 and elaborated later 
by Barker and Henderson,56, 57 as well as Weeks, Chandler, and Andersen,58-60 the effective 
structure of liquids is primarily determined by their short-range repulsions, often conceived as 
“hard sphere” repulsions. In the perturbation approach, the hard sphere repulsions serve as the 
main reference interaction, while less significant long-range interactions (usually attractions) are 
treated as perturbative terms. Early efforts in computer simulations of simple, analytical liquid 
models successfully calculated thermodynamic and dynamic properties based on the hard sphere 
contributions,61, 62 with further improvements achieved by carefully incorporating perturbative 
terms. However, it is less clear if this perturbative approach can be faithfully applied to molecular 
CG models.  
 
Our starting reference is the ideal gas system, where particle interactions are absent. The entropy 
of an ideal gas is exactly determined from simple properties (number density and molecular 
weight), providing a basic estimate of the expected entropy under specific conditions. This 
assessment helps gauge the practicality of using the ideal gas approximation to estimate the 
entropy of non-ideal CG liquids. Yet, the ideal gas description has a fundamental limitation in 
describing liquid phases, given an ideal gas occupies no volume. In order to address the concept 
of free volume in condensed phases,63-65 we estimate the effective free volume by considering the 
repulsive contribution from hard spheres, allowing for the incorporation of the non-trivial volumes 
of CG liquids. While a hard sphere description may seem an extreme one for modeling CG systems 
with complex many-body interactions, we are particularly motivated by the recent findings 
indicating that a hard sphere treatment of bottom-up CG systems offers an efficient and accurate 
way to determine dynamical properties.66-68 Building upon this research, our work extends beyond 
investigating the dynamics of CG systems to the determination of the thermodynamic properties.  
 
Despite the effectiveness of hard sphere models in reproducing structural and dynamic properties, 
they may yield inaccurate thermodynamic properties due to the absence of attractive perturbations. 
For example, if we only consider repulsions and neglect attractive forces, internal energies will 
consistently appear positive, whereas in realistic systems with non-negligible attractions, they can 
be negative. In this light, hard sphere models may not be the most suitable choice for evaluating 
thermodynamic properties. Therefore, we assess the performance and necessity of addressing these 
long-range attractions within the hard sphere description. As we will discuss, incorporating long-
range attractions is considerably more complex than addressing short-range repulsions. As CG 
interactions in liquids often exhibit relatively simple interaction profiles with a few attractive or 
repulsive wells at long ranges, it becomes reasonable to approximate these contributions as 
simplified well-like interactions. Therefore, as part of our predictive framework, we will 
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incorporate attractive contributions into the van der Waals equation.69 In the generalized van der 
Waals theory,70-77 partition functions and related thermodynamic properties can be analytically 
derived, similar to the hard sphere case, assuming relatively simple attractive interactions. 
Compared to simple and commonplace atomistic force fields, such as those in molecular 
mechanics,8-13 the bottom-up nature of CG interactions makes this mapping less straightforward, 
given that CG interactions become effective free energy quantities and vary with system conditions. 
Hence, we will leverage our understanding of the temperature dependent nature of CG interactions 
to correctly capture the renormalized FG partition function. This approach aims to accurately 
approximate the CG entropy by parameterizing over different thermodynamic state points.  
 
Our hierarchical approach, ranging from the ideal gas to the hard sphere and the generalized van 
der Waals models, is designed to predict the CG entropy of molecular liquids. However, 
approximating these simplified models often requires knowledge of additional thermodynamic 
parameters in advance to estimate the thermodynamic properties from the FG statistics. 
Alternatively, a different theoretical approach, based on the work by Green78 and Wallace,79-82 can 
overcome this limitation by examining the residual entropy (sometimes referred to as “excess 
entropy” in the literature). The residual entropy is the difference between the system’s entropy and 
that of an ideal gas under the same conditions. Baranyai and Evans further pursued this direction, 
expressing the residual entropy directly as an ensemble average of many-body functions using the 
multiparticle correlation expansion.83 Since the multiparticle expansion approach avoids the need 
for strong model approximations, it is of great interest to explore whether this approach can further 
refine the generalized van der Waals treatment.   
 
Altogether, our objective in this paper is to assess the accuracy of each step in our systematic 
approach by comparing the estimated entropy with the reference (“actual”) CG entropy obtained 
from the CG simulations. Through this process, we aim to identify the most efficient and accurate 
method for evaluating the thermodynamic properties of CG models a priori. The remainder of this 
paper is organized as follows: Section 2 discusses how to map the reference CG system to the 
approximate models and how to evaluate the CG entropy within these models. Subsequently, in 
Sec. 3, we will apply this framework to the cases of liquid methanol and chloroform, respectively.   
 
2. THEORY 
2.1. Estimating the CG Entropy: Systematic Approach 
In this section, we will demonstrate the systematic nature of the proposed approach by deriving an 
expression for the CG entropy. Our focus here is on the single-site CG resolution, which 
establishes a physically intuitive correspondence between entropy in the CG and FG systems.  
 
The total entropy in the CG system 𝑆!" can be exactly expressed as 

𝑆!" = 𝑆#$%&'!" = −𝑘(%%𝑑𝐏)𝑑𝐑)𝑝(𝐏) , 𝐑)) ln[(2𝜋ℏ)*)𝑝(𝐏) , 𝐑))], 

(1) 
where 𝑝(𝐏) , 𝐑)) is the probability distribution function for the CG phase space variables. We also 
note that the Gibbs definition of the entropy [−𝑘( ∫𝑑𝐏𝑑𝐑	𝑝(𝐏, 𝐑) ln 𝑝(𝐏, 𝐑)] does not explicitly 
contain the ln[(2𝜋ℏ)*)]  term, but one should include this factor for the quantum and 
indistinguishability corrections when integrating over phase space.84 However, since this 
correction term is constant, the remaining sections will primarily consider the Gibbs definition of 
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entropy. Since 𝐏) and 𝐑) are not coupled in our CG simulations of interest, these two terms can 
be separated as 

𝑆#$%&'!" = −𝑘(〈ln7exp;−𝛽𝑇!"(𝐏))>?〉 − 𝑘(〈ln7exp;−𝛽𝑈!"(𝐑))>?〉 + 𝑘( ln 𝒬!", 
(2) 

where 𝑇!"(𝐏)) = ∑ 𝐏+,/)
+ 2𝑀+, 𝑈!"(𝐑)) is the CG configurational energy, and 𝒬!" is the full CG 

partition function. Even though the momentum contribution can be separated from the 
configurational contributions and expressed analytically as 

−𝑘(%𝑑𝐏)𝑑𝐑)𝑝(𝐏) , 𝐑)) ln7exp;−𝛽𝑇!"(𝐏))>? =
1
𝑇
〈H

𝐏+,

2𝑀+

)

+

	〉 =
3
2𝑁𝑘( , 

  (3) 
the analytical form for the configurational part −𝑘(〈ln7exp;−𝛽𝑈!"(𝐑))>?〉  is practically 
impossible to determine due to the non-trivial nature of the CG interactions 𝑈!"(𝐑)) . Our 
proposed framework approaches this problem by dividing 𝑈!"(𝐑))	into a set of simple potentials 
using a perturbative argument; in the simplest case, where there is no interaction, we can derive 
the entropy term by sequentially including the strongest interaction and other small perturbations 
in a systematic way to account for the full 𝑆#$%&'!"  contribution.  
 
Equation (2) suggests that this perturbative treatment will result in additive corrections to the 
entropy. We decompose 𝑈!"(𝐑)) into the following sub-interactions: 

𝑈!"(𝐑)) ≈ 0 + 𝑈-'(𝐑)) + 𝑈./012(𝐑)), 
(4) 

where 0 corresponds to the ideal gas interaction, 𝑈-'(𝐑)) denotes the hard sphere interaction, and 
𝑈./012(𝐑)) is the generalized van der Waals potential. Since Eq. (2) has a ln[exp(−𝛽 𝑈!"(𝐑)))] 
term, the perturbative decomposition given in Eq. (4) yields 

−𝑘(〈ln7exp;−𝛽𝑈!"(𝐑))>?〉 =
1
𝑇 7
〈0〉 + 〈𝑈-'(𝐑))〉 + 〈𝑈./012(𝐑))〉?, 

(5) 
and the free energy contribution can also be decomposed according to the classical perturbation 
argument. We will later examine the decomposition of the free energy in more detail. Altogether, 
the separability of Eq. (5) indicates that the CG entropy can be estimated in a systematic manner.  
 
2.2. Ideal Gas: Sackur-Tetrode Equation 
As discussed earlier in the Introduction, the simplest approximation one can make for the CG 
system is the ideal gas approximation, where there are no interactions between the CG particles. 
In the case of a single-site CG system, the ideal gas approximation leads to a CG entropy following 
the Sackur-Tetrode equation,85, 86 

𝑆#$&
(41) = 𝑁𝑘( Mln

𝑉
𝑁 O

2𝜋𝑚𝑘(𝑇
ℎ, R

*
,
+
5
2T, 

(6) 
where 𝑁  denotes the number of the CG particles at volume 𝑉  and temperature 𝑇 , with the 
constants 𝑘( (Boltzmann) and ℎ (Planck). Equation (6) describes all possible microstates that the 
CG particle can explore under a given system condition. This approach completely ignores the 
effective CG interactions. Therefore, the configurational integral ℤ!",  defined as 
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∫𝑑𝐑) exp[−𝛽𝑈!"(𝐑))], reduces to the volume term (𝑉)), and the ideal gas partition function is 
expressed as  

𝒬!"
(41) =

1
𝑁! O

𝑉
Λ*R

)

, 
(7) 

where Λ  denotes the thermal de Broglie length, Xℎ,/2𝜋𝑚𝑘(𝑇 , which includes only the 
momentum contribution from the ideal gas description. In Sec. 3, we will assess the reliability of 
this crude approximation for estimating entropy.  
 
2.3. Estimating the CG Entropy: Mapping to Hard Sphere 
A realistic model for predicting the CG entropy should account for the non-ideal gas nature of CG 
systems. Based on our recent findings, one possible direction would be to interpret CG particles 
as hard spheres. In this context, attractive interactions, which are typically more long-ranged than 
the repulsive ones, are effectively canceled out due to the uniformly distributed molecules in dense 
conditions. As initially proposed by Widom87 and subsequently developed by Barker and 
Henderson56, 57 as well as Weeks, Chandler, and Andersen,58-60 a hard sphere description for dense 
fluids serves as a powerful approximation for understanding various static and dynamic properties 
of dense liquids.88-91 
 
In this section, we will briefly review how to faithfully capture the hard sphere nature of CG liquids. 
Since hard sphere liquids can be defined solely based on their packing fraction 𝜂, our primary 
objective is to determine 𝜂 in a way that accurately recapitulates the structural and thermodynamic 
characteristics of the reference CG model. The simplest way to determine 𝜂 is to find the effective 
hard sphere diameter (or radius) of a CG system from the definition of the packing fraction 

𝜂 =
𝜋
6 𝜎6789

* 𝜌:, 
(8) 

where 𝜎6789 is the effective hard sphere diameter, and 𝜌: is the bulk number density. Introducing 
an additional “hard sphere layer” to CG models allows us to simplify the many-body nature of CG 
systems into a straightforward hard sphere description, and thus various complex CG properties 
can be expressed as analytic functions within the hard sphere framework.67 
 
One of the most straightforward approaches to determining the effective hard sphere diameter is 
based on the interaction profile of the CG models. Hard spheres exhibit infinite repulsions when 
the pair distance is shorter than 𝜎6789. Therefore, a physically sound method is to extract the 
“short-range repulsive interactions” from CG models that have finite repulsive interactions. Barker 
and Henderson showed that, within their perturbation theory, this amounts to the vanishing of the 
first-order correction in the free energy term of hard spheres.56, 57 This method can be extended to 
CG systems, where the effective hard sphere diameter 𝜎;7 can be defined using the effective CG 
potential 𝑈(𝑅) 

𝜎;7 = % [1 − exp(−𝛽𝑈(𝑅))] ⋅ 𝑑𝑅
<!

=
, 

(9) 
where 𝑅= is the minimum distance at which the CG interactions are no longer repulsive [𝑈(𝑅=) =
0]. 
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Equation (9) can also be understood as the effective repulsion weighted by its Boltzmann factor. 
Unlike simple analytical potentials, our CG model approximates the many-body CG PMF as a pair 
potential, denoted as 𝑈(𝑅) in Eq. (9). Due to the limited expressiveness of pairwise basis sets, this 
approach necessitates different CG pair potentials at various state points. Consequently, in order 
to represent the hard sphere nature in the reference atomistic system, we would like to emphasize 
that a thermodynamically consistent approach should estimate a temperature dependent hard 
sphere diameter from different CG pair potentials. A similar idea has been applied in describing 
CG dynamics, where temperature dependent CG potentials were utilized to estimate effective hard 
sphere diameters for an accurate recapitulation of dynamical properties.66-68 We also note that 
extracting the temperature dependent nature of interaction model parameters should be applied 
throughout this section for different hierarchies of descriptions. In this context, the difference in 
entropy between the FG model and its CG counterpart should correspond to the FG degrees of 
freedom eliminated by the CG mapping, as well as the entropic effects arising from the temperature 
dependence of 𝑈(𝑅).	Further analyses investigating this aspect can be found in Refs. 43 and 53. 
 
2.4. Estimating the CG Entropy: Hard Sphere Entropy 
There are two main advantages to approximating CG systems as hard spheres. Firstly, unlike the 
ideal gas approximation, the CG energetics (and other properties) are no longer zero, which makes 
this approach more realistic. Furthermore, due to the relatively simple nature of hard spheres, their 
thermodynamic properties can be expressed in an analytical form.88-91 
 
2.4.1. Residual Entropy of Hard Spheres. To evaluate the thermodynamic properties from the CG 
partition function introduced in Eq. (7), a common approach in perturbation theory is to separate 
the ideal gas contribution 𝒬41 from the non-ideal contribution 𝒬>? 

𝒬!" = `
1
𝑁! O

𝑉
Λ*R

)

a ⋅ O
1
𝑉)%𝑑𝐑

) exp[−𝛽𝑈!"(𝐑))]R ≔ 𝒬41𝒬>?(𝑁, 𝑉, 𝑇). 

(10) 
Then, the CG free energy 𝑊!" can be divided into ideal and non-ideal contributions: 

𝑊!" = −𝑘(𝑇 ln𝒬!" = −𝑘(𝑇 ln𝒬41 − 𝑘(𝑇 ln𝒬>? = 𝑊41 +𝑊>?. 
(11) 

Note that this decomposition of 𝑊!" demonstrates the consistency of our approach with Eq. (5) in 
Sec. 2.1. 
 
While the ideal gas contribution to the thermodynamic properties can be exactly described, the 
residual thermodynamic properties of hard spheres are often approximated using equations of state 
(EOSs). EOSs are simple relationships that describe pressure, volume, and temperature and are 
often expressed as a function of the compressibility factor  

𝑍 =
𝑃

𝜌𝑘(𝑇
. 

(12) 
Among the numerous empirical EOSs proposed in the literature,90, 92-97 we specifically choose to 
employ the Carnahan-Starling EOS,98 denoted here as 𝑍!8,  because it provides an accurate 
description over a wide range of packing densities, spanning from stable to metastable regimes, 
with a relatively simple functional form99, 100  

𝑍!8 =
1 + 𝜂 + 𝜂, − 𝜂*

(1 − 𝜂)* . 
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(13) 
For a more detailed discussion of the EOS choices for various CG systems, interested readers may 
refer to Ref. 67. Using the Carnahan-Starling EOS, the residual thermodynamic properties can be 
calculated as follows. Since the thermodynamic properties 𝑋 of interest primarily depend on 𝑉 and 
𝑇, the residual property can be calculated as  

𝑋>?(𝑉, 𝑇) = % gO
𝜕𝑋
𝜕𝑉R@

− O
𝜕𝑋
𝜕𝑉R@

41

i 𝑑𝑉
A

B
. 

(14) 
 
In order to compute the residual entropy from the hard sphere contribution, one needs to determine 
𝑊>?(𝑉, 𝑇)  and 𝑈>?(𝑉, 𝑇)  since 𝑇𝑆>?(𝑉, 𝑇) = 𝑈>?(𝑉, 𝑇) −𝑊>?(𝑉, 𝑇) . These thermodynamic 
properties can be obtained from the residual pressure, which is calculated by applying Eqs. (13) to 
(14), resulting in 

𝑃>?(𝑉, 𝑇)
𝜌𝑘(𝑇

=
4𝜂 − 2𝜂,

(1 − 𝜂)* . 

(15) 
Using Eq. (14), the residual Helmholtz free energy and internal energy functionals are derived as 

𝑊>?(𝑉, 𝑇)
𝑅𝑇 =

4𝜂 − 3𝜂,

(1 − 𝜂), , 

(16a) 

𝑈>?(𝑉, 𝑇) = % g𝑇 `
𝜕𝑃>?(𝑉, 𝑇)

𝜕𝑇 a
@
− 𝑃>?(𝑉, 𝑇)i 𝑑𝑉

A

B
= 2𝑅𝑇, O

𝜕𝜂
𝜕𝑇	RA

%
2 + 2𝜂 − 𝜂,

(1 − 𝜂)C
1
𝑉 𝑑𝑉

A

B
. 

(16b) 
In Eq. (16b), the temperature dependence of the packing fraction (𝜕𝜂/𝜕𝑇)A can be alternatively 
expressed as the linear coefficient of expansion: 

𝑙 ≔
1

𝜎6789
O
𝜕𝜎6789
𝜕𝑇 R

A
=
1
3𝜂 O

𝜕𝜂
𝜕𝑇RA

. 

(17) 
Using 𝑙,	the expression for the residual internal energy 𝑈>?(𝑉, 𝑇) can be simplified to 

𝑈>?(𝑉, 𝑇)
𝑅𝑇,𝑙 = 6

𝜂, − 2𝜂
(1 − 𝜂)*. 

(18) 
Combining Eqs. (16a) and (18), we arrive at the final expression for the residual entropy term 

𝑆>?(𝑉, 𝑇)
𝑅 =

3𝜂, − 4𝜂
(1 − 𝜂), + 6𝑇𝑙

𝜂, − 2𝜂
(1 − 𝜂)*. 

(19) 
Therefore, the overall thermodynamic entropy for hard spheres is expressed as the sum of the ideal 
gas entropy from the Sackur-Tetrode equation 𝑆41 [Eq. (6)] and 𝑆>? [Eq. (19)] 

𝑆-' = 𝑆41 + 𝑆>?. 
(20) 

 
2.4.2. Free Volume Treatment for Condensed Phases. While Eq. (20) accounts for the hard sphere 
correction (𝑆>?) to the ideal gas entropy obtained from the Sackur-Tetrode equation (𝑆41), the 
intrinsic limitation of the Sackur-Tetrode equation implies no physical volume occupied by 



 9 

molecules. Therefore, even though this decomposition might provide a reasonable description of 
gas phase systems, it has been suggested that in condensed phases, a realistic correction to this 
ideal scenario is necessary for a better estimation of translational entropy.101 In particular, building 
on the findings from Refs. 70 and 101, 102, we introduce the free volume approach derived from 
the estimated hard sphere volume in order to correct the ideal gas volume 𝑉  to its “effective 
volume,” 𝑉-', by taking into account the influence of hard sphere repulsions. At low densities, it 
is reasonable to approximate 𝑉-' as the free volume in the system after subtracting the excluded 
volume: 

𝑉-'(𝜌 ≪ 1) = 𝑉 − O
𝑁
2R O

4𝜋
3 R 𝜎

* = 𝑉 −
2𝜋𝑁
3 𝜎*. 

(21) 
However, this approximation may not be valid for liquids with higher number densities. In such 
cases, we adopt a one-dimensional approximation for high densities based on the approach of 
Eyring and Hirschfelder,102 i.e., 

𝑉-'(𝜌 ≫ 0) = 8𝑁 MO
𝑉
𝑁R

D
*
− 𝜎T

*

. 

(22) 
Equation (22) can be intuitively understood as a three-dimensional generalization of the effective 
volume element calculated from the one-dimensional effective distance between the three hard 
sphere molecules. When both ends (1 and 3) are fixed at an averaged distance of (𝑉/𝑁)D/*, the 
central molecule (2) is only accessible to non-repulsive regions, giving a distance of 𝑑-' =
27(𝑉/𝑁)D/* − 𝜎?. The effective volume 𝑉-'(𝜌 ≫ 0) is then obtained as 𝑑-'* , resulting in Eq. (22). 
Finally, with this volume correction, the hard sphere entropy is expressed as a sum of the corrected 
ideal gas entropy using 𝑉-' and the hard sphere correction: 

𝑆-' = M−𝑅 ln `
ℎ,

2𝜋𝑀𝑘(𝑇
a

*
,
− 𝑅 ln O

𝑁
𝑉-'

R +
5
2𝑅T + g

3𝜂, − 4𝜂
(1 − 𝜂), 𝑅 + 6𝑅𝑇𝑙

𝜂, − 2𝜂
(1 − 𝜂)*i. 

(23) 
 
2.5. Estimating the CG Entropy: Generalized van der Waals Theory 
In order to account for the attractive nature of CG interactions at large distances, the generalized 
van der Waals theory is formulated by defining an effective CG interaction potential using the 
pairwise approximation. This pairwise CG interaction, denoted as 𝑈(𝑅) , gives rise to the 
configurational energy 𝑈FG&H(𝐑)) ≔ ∑ 𝑈;𝑅+I>+JI .  Alternatively, 𝑈FG&H  can be expressed as a 
structural average over the CG ensemble 

𝑈FG&H(𝑁, 𝑉, 𝑇) =
𝑁,

2𝑉%𝑈
(𝑅)𝑔(𝑅) 𝑑𝑅, 

(24) 
where 𝑅 = 𝑅+I . For liquid systems, the pairwise approximation [𝑈(𝑅)  and 𝑔(𝑅) ] typically 
provides an accurate estimation of thermodynamic quantities. Yet, as discussed in Sec. 2.3, 
limitations in pairwise basis sets necessitate the parametrization of distinct CG potentials [𝑈(𝑅)] 
at different temperatures to correctly capture the temperature dependence of 𝑈FG&H(𝑁, 𝑉, 𝑇) from 
the FG reference. From the definition of the CG partition function, the internal energy can be 
alternatively expressed as  
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𝑈(𝑁, 𝑉, 𝑇) = 𝑘(𝑇, O
𝜕 ln𝒬!"
𝜕𝑇 R

),A
. 

(25) 
Since the thermodynamic quantity in Eq. (25) is the configurational energy, 𝑈FG&H(𝑁, 𝑉, 𝑇) =
𝑈(𝑁, 𝑉, 𝑇) − 𝑈41(𝑁, 𝑉, 𝑇), we arrive at 

ln ℤ(𝑁, 𝑉, 𝑇) − ln ℤ(𝑁, 𝑉, 𝑇 = ∞) = %
𝑈FG&H(𝑁, 𝑉, 𝑇)

𝑘(𝑇,
𝑑𝑇

@

@LB

=
𝑁,

2𝑉 %
1

𝑘(𝑇,
q%𝑈(𝑅)𝑔(𝑅)𝑑𝑅r 𝑑𝑇

@

B
. 

(26) 
For clarity, from now on we denote ℤ(𝑁, 𝑉, 𝑇) as ℤ(𝑇) (since there is no change in 𝑁, 𝑉) and 
ℤ(𝑁, 𝑉, 𝑇 = ∞) as the hard sphere ℤ78(𝜂) (since only the hard-core repulsion term remains at 
𝑇 → ∞). We also define the mean potential Φ as  

Φ ≔ −
2𝑘(𝑇
𝑁 %

𝑈FG&H(𝑇)
𝑘(𝑇,

𝑑𝑇
@

B
, 

(27) 
which results in 

ℤ(𝑇) = ℤ78(𝜂) exp O−
𝑁Φ
2𝑘(𝑇

R. 

(28) 
The thermodynamic quantities deduced from Eq. (28) can be complicated since the mean potential 
Φ  encodes complex many-body interactions. To simplify this term further, we coarsen the 
attractive perturbations to a more reduced level. For example, it is reasonable to coarsen the CG 
interaction potential 𝑈(𝑅) to that of hard spheres with a single square-well form, 𝑈82(𝑅), as a 
perturbation: 

𝑈82(𝑅) = u
∞	(if	𝑅 < 𝜎6789)
−𝜖	(if	𝜎6789 < 𝑅 <
0	(otherwise)

𝑅M𝜎6789), 

(29) 
where 𝑅M  defines the width of the square-well potential. This single square-well perturbative 
model has been utilized in other studies,56, 57, 103, 104 and its feasibility will be discussed in Sec. 3.3.  
 
Using 𝑈82(𝑅), 𝑈FG&H(𝑇) can be directly computed by defining the attractive coordination number 
𝑁N ≔ 𝑁∫𝑔(𝑅) 𝑑𝐑/𝑉 that considers only 𝜎6789 < 𝑅 < 𝑅M𝜎6789: 

𝑈FG&H(𝑇) = −
𝑁,

2𝑉%𝑈82
(𝑅)𝑔(𝑅) 𝑑𝐑 = −

𝑁,𝜖
2𝑉 % 𝑔(𝑅)

<"O#$%&

O#$%&
𝑑𝐑 = −

𝑁𝜖
2 𝑁N(𝜌P , 𝑇). 

(30) 
Note that 𝑁N  is not a conventional coordination number but rather the coordination number 
originating from the attractive interactions only, as we assume that hard-sphere repulsions do not 
significantly contribute to any coordination value. Then, from Eq. (27), the mean potential 
becomes Φ = 𝑘(𝑇𝜖 ∫ 𝑁N/𝑘(𝑇,𝑑𝑇.

@
B 	In principle, since 𝑁N is still dependent on temperature and 

directly related to 𝑑𝑔(𝑇)/𝑑𝑇 , it is difficult to simplify Φ  any further. Following its original 
derivation and demonstration by Sandler et al.,72, 73 we strictly adhere to the introduction of the 
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low-density limit and derive the necessary expression here, i.e., lim
Q'→=

𝑔(𝑅; 𝜌P , 𝑇) ≈ exp(−𝛽𝑈(𝑅)). 

This approximation allows us to determine the coordination number as 

𝑁N =
𝑁
𝑉
4𝜋
3 𝜎*(𝑅M* − 1) exp[𝛽𝜖], 

(31) 
where a detailed derivation is provided in the Appendix. Equation (31) can be an alternative 
starting point for reformulating Eqs. (27)-(30) in an analytical manner. If we make the further 
approximation that 𝜕𝑁N(𝜌P , 𝑇)/𝜕𝑇 ≈ 0, we arrive at the thermodynamic quantities expressed as 

𝑈FG&H = −
𝑁𝜖𝑁N
2 , 

(32a) 

Φ = −𝑁N𝜖 =
2𝑈FG&H
𝑁 . 

(32b) 
Therefore, under this limit, we can interpret 𝑈FG&H as the effective “averaged” interactions between 
neighboring molecules within the coordination shell, accounting for double-counting, while Φ 
represents the mean potential derived from 𝑈FG&H . Altogether, the approximated configuration 
integral can be simplified as 

ℤ(𝑇) = ℤ78(𝜂) exp q−
Φ

2𝑘(𝑇
r
)

= ℤ78(𝜂) exp q−
𝑈FG&H
𝑘(𝑇

r	. 

(33) 
 
We now discuss how to obtain the thermodynamic properties under the generalized van der Waals 
framework. Since the hard-core part of the system is faithfully mapped to ℤ78(𝜂), the separability 
of partition functions [Eq. (5)] makes this tractable. The complete CG partition function is 
recovered by incorporating the momentum as 

𝒬!" =
1

𝑁! ℎ*) ℤ78
(𝜂) exp q−

𝑈FG&H
𝑘(𝑇

r ⋅ %𝑑𝐏) exp[−𝛽T(𝐏))]. 

(34) 
We note that the result from the previous subsection [Sec. 2.4] is valid for 

𝒬78(𝜂) =
1

𝑁! ℎ*) ℤ78
(𝜂)%𝑑𝐏) exp[−𝛽T(𝐏))]. 

(35) 
Then, combining Eqs. (34) and (35) allows us to rewrite the CG partition function as 𝒬!" =
𝒬78(𝜂) exp[−𝑈FG&H/𝑘(𝑇]. Since the free energy is the logarithm of the partition function, this 
decomposition gives 

𝑊!" = 𝑊78 + 𝑈FG&H. 
(36) 

Finally, the thermodynamic entropy can be formulated from 𝒬!" as 

𝑆!" = 𝑘( ln 𝒬 +
𝑘(𝑇
𝒬

𝜕𝒬
𝜕𝑇. 

(37) 
Inserting 𝒬!" into Eq. (37) gives 

𝑆!" = 𝑆78 −
𝜕𝑈FG&H
𝜕𝑇 . 
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(38) 
In other words, the hard sphere entropy description can be improved by including this additional 
term −𝜕𝑈FG&H/𝜕𝑇, which is the temperature derivative of the configurational energy originating 
from the attractive interactions.  
 
2.6. Multiparticle expansion of the CG Entropy: Pairwise Approximation 
Up to this point, we have formulated the hard sphere description of the CG entropy and 
progressively improved the hard sphere treatment by introducing a square-well attraction through 
the generalized van der Waals framework. However, these approaches are built upon several strong 
assumptions about the molecular CG interactions. Additionally, they require approximating 
several variables beforehand, e.g., 𝜂 , 𝑙,	 and 𝑈FG&H  for each system in order to compute the 
correction for the hard sphere entropy.  
 
Alternatively, as demonstrated in pioneering work by Green, the exact formulation of the residual 
entropy can be derived based on the multiparticle correlation expansion without any 
approximation.78, 79, 83, 105, 106 For a more in-depth discussion of residual entropy in CG modeling, 
readers can refer to Ref. 66. In brief, the residual entropy 𝑆>? is expressed as  

𝑆>? = 𝑆 − 𝑆41 = −
1
2𝜌�

[𝑔,(𝐑D, 𝐑,) ln[𝑔,(𝐑D, 𝐑,)] 	− 𝑔,(𝐑D, 𝐑,) + 1] 𝑑𝐑D𝑑𝐑,

−
1
6𝜌

,�𝑔*(𝐑D, 𝐑,, 𝐑*) ln[𝛿𝑔*(𝐑D, 𝐑,, 𝐑*)] 𝑑𝐑D𝑑𝐑,𝑑𝐑*

+
1
6𝜌

,�[𝑔*(𝐑D, 𝐑,, 𝐑*) − 3𝑔,(𝐑D, 𝐑,)𝑔,(𝐑,, 𝐑*) + 3𝑔,(𝐑D, 𝐑,)

− 1]𝑑𝐑D𝑑𝐑,𝑑𝐑* + 𝒪(𝑔C), 
(39) 

where 𝑔S(𝐑D, ⋯ , 𝐑S) represents the k-body distribution functions defined by the center-of-mass 
coordinates of k different molecules (vector). Note that we still denote the residual entropy as 𝑆>?, 
where the subscript is consistent with the one used in literature as the excess entropy. The radial 
distribution function (RDF), 𝑔(𝑅),  corresponds to the scalar component of the pairwise 
distribution: 𝑔(𝑅) = 𝑔,(|𝐑D − 𝐑,|) . The three-body correlation function 𝛿𝑔*(𝐑D, 𝐑,, 𝐑*)  is 
defined as 𝑔*(𝐑D, 𝐑,, 𝐑*)/𝑔,(𝐑D, 𝐑,)𝑔,(𝐑,, 𝐑*)𝑔,(𝐑D, 𝐑*). By grouping contributions from n-
particle terms, Eq. (39) can be presented in a more concise form as 

𝑆>? =H𝑆>?
(T)

TU,

, 

(40) 
where 𝑆>?

(T)  involves 𝑔S(𝐑D, ⋯ , 𝐑S) terms with 𝑘 ≤ 𝑛. Typically, higher-order terms 𝒪(𝑔C) are 
considered negligible due to the dominance of 𝑆>?

(,) and 𝑆>?
(*). In particular, in simple liquids, it is 

known that 𝑆>?
(,) accounts for the majority of the residual entropy (nearly 80-90%),83, 106-109 since 

the pair correlations are dominant in these cases. Therefore, at the simplest level of Eq. (39), we 
can approximate 𝑆>? by focusing solely on the translational component from 𝑔,(𝐑D, 𝐑,), 

𝑆>? ≈ 𝑆>?
(,) = −2𝜋𝜌% {𝑔(𝐑) ln 𝑔(𝐑) − [𝑔(𝐑) − 1]}𝐑, ⋅ 𝑑𝐑

B

=
. 

(41) 
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We will later assess whether this pairwise description [Eq. (41)] is adequate for representing the 
entire residual entropy and then evaluate its performance against the (approximate) generalized 
van der Waals approach. Since the residual entropy only accounts for configurational phase spaces, 
the overall entropy approximated at the pairwise level is given as 

𝑆 = 𝑆41 + 𝑆>?
(,). 

(42) 
2.7. Computational Details 
Based on previous studies of CG entropy in liquid systems, we select the same molecular systems 
for this study: methanol and chloroform.43 In Ref. 43, both liquids exhibit a liquid phase at a 
temperature of 300 K, and we chose this same temperature as our target temperature for this work. 
Our computational protocol closely follows the protocol used in our prior studies. To outline the 
procedure, we initially generated the FG configurations. These configurations consisted of 1000 
molecules and were created using the Packmol program package110, and the topology was 
generated by the Visual Molecular Dynamics (VMD) program.111 Starting from these initial 
configurations, we proceeded to relax structures by employing the energy minimization techniques, 
and we gradually annealed the system up to 300 K with the Nosé-Hoover thermostat112, 113 using 
𝜏VWX = 0.1 ps over 0.1 ns. We then equilibrated the target system under constant NPT dynamics 
at 1 atm using 𝜏VYX = 1.0 ps, where the Andersen barostat114 was used. Finally, we sampled the 
constant NVT configurations at every 1 ps over a duration of 5 ns of additional production 
dynamics steps using the Nosé-Hoover thermostat for constructing the CG model. Nevertheless, 
several different temperatures are needed to be sampled to calculate temperature dependent 
properties, such as 𝑙 defined in Eq. (17). The additional computational details for obtaining the 𝑙 
values will be discussed in Sec. 3.2.2-3.2.3.  
 
From the produced constant NVT runs at the FG level, we constructed the CG model by employing 
a center-of-mass mapping. From the manually mapped FG trajectories, the effective CG 
interactions were parametrized using 6th order B-splines at a resolution of 0.20 Å. We used the 
publicly available open-source software OpenMSCG.115 In order to enhance the sampling of the 
inner-core region, we additionally fitted the polynomial to a form 𝐴 ⋅ 𝒓/( at short distances.116 
Using the parametrized CG interactions, the CG simulations were performed under constant NVT 
dynamics using the Nosé-Hoover thermostat for 5 ns, and we collected the CG configuration every 
1 ps.  
 
3. Results 
3.1. Ideal Gas Approximation 
The estimation of the CG entropy in the ideal gas approximation can be readily made utilizing the 
Sackur-Tetrode equation [Eq. (6)]. We applied this equation to methanol and chloroform. Table 1 
compares the estimated CG entropy with the actual CG entropy computed using the two-phase 
thermodynamic (2PT) method for the CG trajectories. In brief, the 2PT methodology can 
efficiently compute the thermodynamic properties of a given system in a relatively short time (~ 
20 ps) while maintaining near-identical accuracy compared to other conventional free energy 
methodologies.117, 118 Reference 118 provides a detailed comparison of the 2PT method with other 
free energy approaches to estimate thermodynamic properties.   
 
Remarkably, the ideal gas entropy provides values of a similar order of magnitude as the reference 
CG entropy. While the entropy values are overestimated by about 1.5 − 4 cal·mol−1·K−1 for both 
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systems, we believe that this agreement suggests that the ideal gas approximation can be a 
reasonably useful method for a rough estimation of CG entropy, suitable for quick back-of-the-
envelope calculations. In other words, since the Sackur-Tetrode equation only requires information 
about the system density and molecular characteristics, the ideal gas description can serve as an 
initial check to provide a rough estimate of the CG entropy, offering insight into the mapping 
entropy. The overestimated value of the entropy in the ideal gas description can be attributed to its 
definition, where an ideal gas is assumed to occupy all available configurations, resulting in higher 
entropy values compared to molecular systems with non-zero interactions.  
 
Table 1. Thermodynamic entropy for methanol and chloroform estimated using the ideal gas approximation 
in comparison with the reference entropy values obtained by 2PT calculations from CG trajectories. 
 

Molecule Thermodynamic Entropy Quantity (cal·mol−1·K−1) 
Actual CG Entropy Ideal gas estimation 

Methanol 21.110 23.710 
Chloroform 24.938 28.894 

 
 
 
3.2. Hard Sphere Theory 
3.2.1. Hard Sphere Mapping. To enhance the ideal gas description, we now map the CG system 
to an effective hard sphere system. The estimation of 𝜎;7 was performed using Eq. (9) with the 
parametrized CG PMFs, which were obtained through force matching and are illustrated in Fig. 1. 
 

 
Figure 1. Pairwise CG interactions obtained from force matching for (a) methanol and (b) chloroform at 
300 K. The corresponding hard sphere diameters are marked with arrows. Note that the additional repulsive 
ordering in methanol results in an unphysical Barker-Henderson diameter (red arrow), and this 
overestimated diameter can be corrected by employing the Weeks-Chandler-Andersen perturbation theory 
[Eq. (42)], which gives correct repulsive behavior at short distances (magenta arrow). 
 
Note that the methanol interactions depicted in Fig. 1(a) are slightly different from conventional 
hard sphere systems. Unlike traditional hard sphere systems, the effective CG interactions here do 

(a) (b)

�BH(CCl3H)

�BH(MeOH)
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not monotonically decay to zero after the short-range hard-core regime. This behavior in methanol 
can be attributed to additional structuring caused by its non-trivial interactions, as observed in its 
RDF. In this context, directly applying Eq. (9) yields a nonphysical hard sphere diameter value, as 
it considers contributions beyond 𝑅 > 𝑅=, resulting in a value of 4.54 Å. To address this issue, we 
use the Weeks-Chandler-Andersen approach58-60 to adjust this repulsive region by shifting the CG 
interactions according to 

𝑈78(𝑅) = 𝑈(𝑅) − 𝑈(𝑅Z4&), 
(43) 

where 𝑅Z4& represents the distance where the effective force is near zero, i.e., 𝑅Z4& = 3.46 Å, as 
observed in Fig. 1(a). This adjustment is often referred to as the hybrid Barker-Henderson 
approximation in the literature.119, 120 Using this shifted CG interaction, depicted as dashed lines 
in Fig. 1, we obtained an adjusted Barker-Henderson diameter of 3.119 Å. This value is much 
closer to 𝑅Z4& and is expected to more accurately represent the hard sphere nature of methanol. 
Nevertheless, the discrepancy between the Barker-Henderson and Weeks-Chandler-Andersen 
approaches implies that employing the hard sphere description for estimating methanol’s 
thermodynamic properties may not be straightforward. We will investigate this further in Sec. 3.  
 
Conversely, for chloroform, no such pathologies are observed in the estimate of CG interactions. 
This is consistent with the relatively spherical profile of chloroform when compared to methanol, 
giving a Barker-Henderson diameter of 4.988 Å. From the obtained hard sphere diameters, we can 
relate them to the effective packing fraction 𝜂;7 through the definition 𝜂;7 =

[
\
𝜎;7* 𝜌:.  

 
3.2.2. Temperature Dependence of Hard Sphere Diameter: Proof-of-concept. In order to 
correctly account for the hard sphere contribution to the CG entropy, one must determine the 
temperature dependence of the hard sphere diameter, denoted as 𝑙 ≔ (𝜕𝜎;7/𝜕𝑇)A/𝜎;7. Since 𝑙 is 
defined under constant volume conditions, we constructed the CG systems at different 
temperatures while maintaining the equilibrium volume at 300 K, our target temperature.  
 
Since 𝜎;7  encodes the many-body nature exhibited by the many-body CG PMF 𝑈(𝑅),  the 
analytical determination of 𝜎;7 and 𝑙 is practically impossible. Instead, we compute 𝜎;7 values 
over a wide temperature range and approximate the partial derivative through finite differences. It 
is noteworthy that, to our knowledge, such an attempt to compute the temperature response of the 
hard sphere diameter extracted from CG systems has not been reported in the literature. Thus, we 
first validate our approach with a proof-of-concept system. A similar proof-of-concept study was 
proposed to investigate the nature of the pairwise entropy contribution from the CG PMF to the 
CG entropy in Ref. 43.  
 
To ensure the isotropic symmetry of the CG site resulting from the center-of-mass mapping, we 
constructed four tetrahedral-like structures based on CCl4 while varying the non-bonded 
interactions between the FG particles. We first generated a system, which we call Xα4, where the 
non-bonded interactions are described using the Lennard-Jones (LJ) interaction with harmonic 
bonded interactions. Then, we modified one of the X-α pair interactions to be much weaker and 
shorter, i.e., from σ = 4.5 Å to 3.0 Å and ε = 0.32 kcal/mol to 0.2 kcal/mol, as detailed in Table 2. 
For these four altered systems (Xα4, Xα3β, Xα2βχ, and Xαβχδ), the bonded interactions between 
X and other atoms are modeled as 𝑑 = 1.90 Å and 𝑘 = 200 kcal/mol. In order to solely consider 
LJ interactions with harmonic bonds, we set the charges on each atom to zero.  
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Table 2. Imposed non-bonding interaction parameters (LJ σ and ε) for the proof-of-concept systems based 
on the tetrahedral motif (Xα4), where we altered X-α interactions in order to introduce heterogeneously 
bonded molecular systems.  

System LJ 
coefficient 

Non-bonding interaction 
X-α X-δ X-χ X-β X-X 

Xα4 σ (Å) 4.5 
0.32 

2.50 
ε (kcal/mol) 0.05 

Xα3β σ (Å) 4.5 
0.32 

3.0 2.50 
ε (kcal/mol) 0.2 0.05 

Xα2βχ σ (Å) 4.5 
0.32 

3.5 3.0 2.50 
ε (kcal/mol) 0.24 0.2 0.05 

Xαβχδ σ (Å) 4.5 4.0 3.5 3.0 2.50 
ε (kcal/mol) 0.32 0.28 0.24 0.2 0.05 

 
We conducted the FG simulations of these systems and constructed the CG models using the MS-
CG methodology. These CG trajectories were propagated at temperatures of 225, 250, 275, and 
300 K, where all systems exhibit liquid-like behavior. From the parametrized CG interactions, the 
Barker-Henderson diameters for the test systems were readily determined, as shown in Fig. 2. 
 
Upon introducing shorter non-bonded pair interactions, we observed a gradual decrease in the 𝜎;7 
values from Xα4 to Xαβχδ. Also, for all four systems, 𝜎;7 decreased at higher temperatures, in 
line with the typical behavior of hard spheres, where each hard sphere can overcome repulsions 
more readily at higher temperatures. The monotonically decreasing trend of 𝜎;7 with respect to 
temperature in Fig. 2(a) allows us to compute the temperature derivative term. Figure 2(b) 
compares different 𝑙  values across the test systems at 300 K, evaluated via finite difference, 
revealing that the monotonic trend persists, with the magnitude of 𝑙  increasing as the system 
becomes less strongly bound. This aligns with our design principle: the 𝜎;7 value of Xα4 should 
be less flexible than that of Xαβχδ because the altered interactions are relatively stronger than other 
X-β (χ or δ). Consequently, we find that the hard sphere diameter obtained from the Barker-
Henderson approach provides a reasonable description of the test systems, with their temperature 
responses reasonably captured using the finite difference method.  
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Figure 2. Temperature dependence of the hard sphere diameters from the prototypical tetrahedral systems: 
Xα4 (blue), Xα3β (purple), Xα2βχ (red), and Xαβχδ (orange). (a) Hard sphere diameters 𝜎!" for four test 
systems at different temperatures. (b) Temperature derivative of 𝜎!" at 300 K for the four test systems.  
 
3.2.3. Temperature dependence of Hard sphere diameter: Molecular Liquids. In order to 
calculate 𝑙 for molecular liquids, we considered the following temperature ranges: 300-400 K at 
intervals of 25 K for methanol and 250-350 K at intervals of 25 K for chloroform. Note that similar 
to the test systems, our target temperature was set at 300 K, and the volume was held constant, 
resulting in a cubic box length of 41.301 Å for methanol and 51.050 Å for chloroform. 
 
The 𝜎;7 values for the molecular liquids were subsequently determined by employing Eq. (9) for 
each PMF. For methanol, the Weeks-Chandler-Andersen treatment based on Eq. (43) was applied, 
as depicted in Fig. 3. Like the test systems, we observed a monotonically decreasing trend in 𝜎;7 
with respect to temperature for both liquids. Notably, this trend appears almost linear for all 
temperature conditions, which is expected from previous studies on hard spheres. This linearity 
also indicates the numerical stability of estimating 𝑙 using finite differences. It is worth noting that 
the non-linear trend seen in Fig. 2 might be due to the test systems not precisely representing the 
real molecular liquids, particularly in terms of missing charge interactions. Nevertheless, from the 
linearly-varying feature of 𝜎;7  in methanol and chloroform, we computed the temperature 
derivative of 𝜎;7 value, yielding 

𝑙]>^7 =
1
𝜎;7

O
𝜕𝜎;7
𝜕𝑇 R

A
=

1
3.119Å	

⋅ ;−4.944 × 10/*Å ⋅ K/D> = −1.585 × 10/*K/D, 

(44a) 

𝑙!!_(7 =
1
𝜎;7

O
𝜕𝜎;7
𝜕𝑇 R

A
=

1
4.988Å	

⋅ ;−6.964 × 10/*Å ⋅ K/D> = −1.396 × 10/*K/D. 

(44b) 
The obtained 𝑙 values fall within the range derived by Ben-Amotz and Herschbach.121 
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Figure 3. Temperature dependence of the hard sphere diameters at different temperatures: (a) methanol 
(red) and (b) chloroform (green). 
 
Note that the packing fraction for each system can also be determined from 𝜎;7 and the number 
density, 

𝜂]>^7 =
𝜋
6 ⋅ ;3.119	Å>

* ⋅
1000

;41.301	Å>*
= 0.2256, 

(45a) 

𝜂!!_(7 =
𝜋
6 ⋅ ;4.988	Å>

* ⋅
1000

(51.050	Å)*
= 0.4883. 

(45b) 
We can now calculate each term in Eq. (23) to evaluate the CG entropy using the hard sphere 
description. As discussed earlier, in the presence of strong repulsion from the hard-core at short 
distances, an ideal gas contribution needs to be corrected using Eq. (23). For methanol, both the 
free volume and one-dimensional approximations yield similar corrected volume terms, with 
𝑉-'(𝜌 ≪ 1) = ;19.023	Å>*  and 𝑉-'(𝜌 ≫ 0) = ;20.216	Å>* . However, for chloroform, we 
observe that the naïvely estimated free volume approximation does not hold: 𝑉-'(𝜌 ≪ 1) gives a 
value of −1.174	 × 10/,`	Å* , indicating an overestimation of the excluded volume. This 
discrepancy can be attributed to the high packing fraction of chloroform, which is more than twice 
that of methanol. While the free volume approximation fails in this case, Eq. (22) can correctly 
describe the high-density behavior of chloroform, yielding 𝑉-'(𝜌 ≫ 0) = ;4.7125	Å>*. 
 
3.2.4. Results: Thermodynamic Entropy. The corrected ideal gas entropy values are presented in 
Table 3. As expected, the changes upon including hard sphere repulsions are much more 
pronounced in chloroform, with a difference of 10.248 cal·mol−1·K−1, whereas the changes in the 
methanol value are relatively smaller, approximately 1.659 cal·mol−1·K−1. While the ideal gas 
entropy term itself decreased significantly, the hard sphere correction term compensates for this 
entropy loss. For methanol, this correction term was determined to be 2.418 cal·mol−1·K−1, 
resulting in a final entropy value of 21.506 cal·mol−1·K−1. When compared to the actual CG 
entropy, the absolute error is within half a cal·mol−1·K−1, indicating that the hard sphere description 
significantly enhances entropy estimation.  
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Table 3. Thermodynamic entropy for methanol and chloroform estimated using the hard sphere approach 
in comparison with the reference entropy values obtained by 2PT calculations from CG trajectories. Note 
that ideal gas contributions are slightly different from those in Table 1 due to changes in volume, suggested 
by Eq. (22). 
 

Molecule 

Thermodynamic Entropy Quantity (cal·mol−1·K−1) 

Actual CG 
Entropy 

Hard Sphere Approach 
Volume-corrected 
ideal gas term 

Hard sphere 
correction  Overall 

Methanol 21.110 19.451 2.418 21.506 
Chloroform 24.938 14.690 13.839 28.530 

 
We arrived at a similar conclusion for chloroform. While more than 10 cal·mol−1·K−1 are lost in 
the ideal gas term due to hard sphere repulsions, the hard sphere correction term is larger than this 
loss, yielding a final value of 28.530 cal·mol−1·K−1. However, as expected given the high-density 
condition of chloroform, the hard sphere correction only marginally enhances the ideal gas 
description. The relative error for chloroform decreases from 15.86 % to 14.40 %, while for 
methanol, the relative error decreases significantly from 12.32 % to 1.877 %.  
 
In summary, we find that the CG entropy can be reasonably described by the hard sphere model 
derived from classical perturbation theory. While this approach necessitates the inclusion of 
several additional parameters beyond solely the hard sphere diameter, it allows us to avoid 
introducing any stronger assumptions and effectively recapitulates the entropy at relatively low 
densities, outperforming the ideal gas description. Overall, we believe that this approach holds 
promise for efficiently estimating the entropy of complex molecular CG liquids.  
 
3.3. Generalized van der Waals Theory 
3.3.1. Mapping the Attractive Interaction. In Table 3, we observe that the hard sphere entropies 
still exceed the reference CG entropies, and one might expect that considering the attractive nature 
of CG interactions could help mitigate this overestimation. As described in Sec. 2.5, we now 
explore this additional effect by including the perturbative attractions within a generalized van der 
Waals framework. This framework allows us to approximate the attractive part of the effective CG 
interactions as a step potential. 
 
Repulsive cores coupled with attractive stepwise potentials have been widely utilized to model 
liquids and their phase transitions.56, 57, 103, 104 In particular, the width and depth of a step potential 
plays a critical role in influencing phase transitions, as seen in pressure-temperature phase 
diagrams. A notable approach in this context is the Stell-Hemmer Hamiltonian, which originates 
from the occupied and unoccupied cells of a lattice gas model. This Hamiltonian introduces core-
softened potentials, effectively capturing second critical points.122, 123 Furthermore, core-softened 
potentials with long-range attractions have been successfully employed to investigate liquid 
systems, e.g., water, at the atomistic level.124-126 Given the extension of core-softened potentials to 
CG water,127-129 it is reasonable to expect that approximating long-range attractions as step 
potentials should yield reasonably accurate results for systems such as the molecular CG liquids 
pursued in this work.  
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We note that the generalized van der Waals approach, as outlined in Eqs. (26)-(32), was derived 
under the assumption of the low-density limit [Eq. (31)].130 To appropriately address this 
assumption, the square-well interaction is estimated from the pair potential of mean force 
(PPMF),131 which can be obtained by the FG RDF using the inverse work theorem: 𝑈b%4$(𝑅) ≔
−𝑘(𝑇 ln 𝑔(𝑅). It is important to highlight that the PPMF does not necessarily reflect the true 
physical attraction between CG molecules, as it includes environment-mediated forces along with 
pair interactions. A comprehensive discussion and analysis of the non-trivial contributions of 
higher-order environment interactions in CG interactions can be found in Refs. 132-134, and more 
recently in Ref. 135. However, in this section, we closely adhere to the low-density limit proposed 
by Refs. 72 and 130. From the obtained 𝑈b%4$(𝑅) at different temperatures, we extracted the well 
depth parameter, denoted as 𝜖. Table 4 lists the 𝜖 values computed based on the pair contributions 
of the methanol and chloroform CG interactions.  
 
Table 4. Mapped well depths and their mean temperature derivative computed by finite difference of the 
CG interactions of (a) methanol and (b) chloroform. 
 

(a) Methanol 
Temperature 𝜖 value (cal/mol) Δ𝜖/Δ𝑇 (cal/mol/K) 

300 K -190.421 

-0.817 
325 K -208.609 
350 K -228.539 
375 K -249.540 
400 K -272.073 

   
(b) Chloroform 
Temperature 𝜖 value (cal/mol) Δ𝜖/Δ𝑇 (cal/mol/K) 

300 K -315.977 

-1.124 
325 K -343.963 
350 K -371.565 
375 K -399.603 
400 K -428.348 

 
3.3.2. Results: Thermodynamic Entropy. Next, we estimate the effective coordination number 
due to the attraction, 𝑁N, from the FG RDF by numerically computing 

𝑁N ≈ 𝜌% 4𝜋𝑅,𝑔(𝑅)𝑑𝑅
<)

<*
, 

(46) 
where 𝑅D and 𝑅, correspond to the leftmost and rightmost distances, respectively, in the square 
well potential. In practice, these distances are determined from the minimum and maximum 
distances in the attractive regime where the pair contribution to the CG PMF is zero: 𝑈b%4$(𝑅D) =
𝑈b%4$(𝑅,) = 0 and 𝑅D < 𝑅,. Even though Eq. (46) accounts for the contributions from long-range 
attractions, the estimation of 𝑁N  relies on utilizing 𝑔(𝑅)	from the FG system in a bottom-up 
manner. Hence, we anticipate some deviations due to the complex interaction profiles embedded 
in the FG 𝑔(𝑅). This may have a more significant impact on non-hard sphere systems, such as 
methanol. These distances were computed to be 𝑅D = 4.04 Å and 𝑅, = 5.36 Å for methanol, and 
𝑅D = 4.58 Å and 𝑅, = 6.52 Å for chloroform.  
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In order to estimate the thermodynamic entropy using the generalized van der Waals approach in 
a tractable form, Eq. (32) assumed 𝑁N to be independent of temperature, and hence we estimated 
at the target temperature of 300 K for both methanol and chloroform. With the estimated	𝜖 and 𝑁N, 
we then computed approximate 𝑈FG&H values at different temperatures. The temperature derivative 
of 𝑈FG&H, denoted as 𝜕𝑈FG&H/𝜕𝑇, was calculated using finite differences. With these introduced 
approximations in Eqs. (26)-(32), we observe that 𝜕𝑈FG&H/𝜕𝑇 is essentially identical to  

𝜕𝑈FG&H
𝜕𝑇 = −

𝑁𝑁N
2

𝜕𝜖
𝜕𝑇 ≈ −

𝑁𝑁N
2

Δ𝜖
Δ𝑇. 

(47) 
Notably, the 𝜖 values obtained for methanol and chloroform at different temperature intervals, as 
reported in Table 4, indicate a nearly constant Δ𝜖/Δ𝑇 under these conditions. Unlike the effective 
CG interaction, where its temperature derivative becomes the effective entropic contribution, 𝜖 in 
Eq. (47) represents the PPMF, making the physical meaning underlying Δ𝜖/Δ𝑇  is less clear. 
Nevertheless, it is interesting to note the nearly identical Δ𝜖/Δ𝑇 values for the liquids studied here, 
and further investigation in future work along this line is expected to provide a clearer 
understanding of the microscopic origins underlying the PPMF and its temperature variation.  
 
Table 5. Thermodynamic entropy for methanol and chloroform estimated using the generalized van der 
Waals approach in comparison with the reference entropy values obtained by employing 2PT calculations 
on actual CG trajectories. Note that for the generalized van der Waals approach, we only listed the 
correction factor 𝜕𝑈#$%&/𝜕𝑇 that can be combined with the results from Table 3 to estimate the overall 
estimated entropy values.  
 

Molecule 
Thermodynamic Entropy Quantity (cal·mol−1·K−1) 

Actual CG 
Entropy 

Hard Sphere 
Approach 

Generalized van der Waals approach 
Correction Overall 

Methanol 21.110 21.506 -1.301 20.206 
Chloroform 24.938 28.530 -2.398 26.132 

 
Finally, the correction factor from the generalized van der Waals theory was computed using  

𝑆./012FG$$ = −
𝜕𝑈FG&H
𝜕𝑇 ≈ −

Δ𝑈FG&H
Δ𝑇 ≈

𝑁𝑁N
2

Δ𝜖
Δ𝑇, 

(48) 
as presented in Table 5. In both cases, we observe that the generalized van der Waals treatment 
provides a negative correction to the hard sphere reference. This is expected due to the attractive 
nature predicted by the generalized van der Waals theory according to Eq. (48). However, due to 
the non-hard sphere nature of methanol, the generalized van der Waals approach slightly 
underestimates the attractive contribution by 0.9 cal·mol−1·K−1 compared to the reference CG 
entropy value. In contrast, the correction for chloroform is greater in value, with the final corrected 
entropy that is in closer agreement with the reference value compared to the hard sphere entropy 
reported in Table 3. The van der Waals treatment thus reduces the discrepancy from 14.40 % to 
4.79 %. Based on these findings in Table 5, we conclude that the generalized van der Waals 
approach can rectify the overly estimated entropy values from the hard sphere nature by accurately 
addressing the attractive part of the CG interactions. Nevertheless, given the simplified nature of 
the square-well interaction, this framework may be more suitable to systems exhibiting hard sphere 
characteristics akin to chloroform. In this light, we note that an additional improvement to this 
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approach is possible in which the attraction can be generalized to a more complicated shape beyond 
the square-well interaction form. 
 
3.4. Multiparticle Expansion 
3.4.1. Pairwise Contribution: CG System. Unlike the aforementioned approaches, an alternative 
expression rooted in the statistical mechanical definition of residual entropy can circumvent the 
limitations posed by model assumptions, such as hard sphere or generalized van der Waals theory. 
Equation (39) asserts that these limitations are not necessary to estimate the overall thermodynamic 
entropy of the CG system as long as one has correct structural correlations of the target system. 
Nevertheless, the aforementioned hard sphere and generalized van der Waals theory can be 
effectively folded into Eq. (39) as well, such that these two models give rise to approximate 
correlation functions such as 𝑔,(𝐫D, 𝐫,) and 𝑔*(𝐫D, 𝐫,, 𝐫*). Therefore, the multiparticle expansion 
is expected to further enhance the fidelity of entropy estimation by directly employing more 
accurate correlation functions. 
 
Even though an accurate determination of Eq. (39) requires these correlation functions from the 
CG simulations, the bottom-up nature of CG models asserts that there is no need to run CG 
simulations, since the CG correlation functions can be approximated using the FG references. For 
example, if we aim to calculate the pairwise contributions only [Eq. (41)], the residual entropy 
portion can be readily estimated from the FG statistics, given that pairwise distribution functions 
are well-captured using the MS-CG methodology. Additionally, the single-site CG model greatly 
benefits from evaluating Eq. (41) since, at the CG resolution, the 𝐑 vector is equivalent to the 
magnitude of 𝐑, |𝐑| = 𝑅. This is because the CG pair distances do not contain any orientational 
information, which is already integrated out during the CG process. We note that a correct 
estimation of the FG entropy is highly challenging even for the pairwise contribution because one 
needs to calculate the orientational contribution, 𝑆G$

(,), of molecular pairs  

𝑆G$
(,) = −2𝜋𝜌% 𝑔(,)(𝑅) ⋅ O−

1
Ω,%%𝒥

(𝜔D, 𝜔,)𝑔(𝜔D, 𝜔,|𝑅) ln 𝑔(𝜔D, 𝜔,|𝑅)𝑑𝜔D𝑑𝜔,R 𝑑𝑅
B

=
, 

(49) 
where 𝜔D, 𝜔, are the angular variables of the molecular pair, and 𝒥(𝜔D, 𝜔,) denotes the Jacobian 
associated with the angular variables. For homogeneous liquids, Eq. (49) reduces to the integration 
of five136 or six angular variables.137 Hence, while numerical integration is generally highly 
challenging, even for small molecules (e.g., water),137-140 this is not the case here. Using the FG 
RDF, we can estimate 𝑆>?

(,) for the single-site CG system as  

𝑆>?
(,) = −2𝜋𝑅𝜌% {𝑔(𝑅) ln 𝑔(𝑅) − [𝑔(𝑅) − 1]}𝑅, ⋅ 𝑑𝑅

B

=
, 

(50) 
without the need for additional CG simulations.  
 
3.4.2. Pairwise Contribution: Results. Inserting Eq. (50) into Eq. (42), we arrive at the overall CG 
entropy 
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𝑆(,) = M−𝑅 ln `
ℎ,

2𝜋𝑀𝑘(𝑇
a

*
,
− 𝑅 ln O

𝑁
𝑉R +

5
2𝑅T

+ g−2𝜋𝑅𝜌% {𝑔(𝑟) ln 𝑔(𝑟) − [𝑔(𝑟) − 1]}𝑟, ⋅ 𝑑𝑟
B

=
i. 

(51) 
In Eq. (51), the ideal gas contribution 𝑆41 does not need to be adjusted based on the hard sphere 
volume, as the entropy correction term effectively accounts for the residual entropy originating 
from the ideal contribution. Therefore unlike the situations with hard sphere and generalized van 
der Waals models, we can systematically incorporate the correction term directly into the values 
presented in Table 1. However, as noted earlier, Eq. (51) only considers the pairwise contributions 
to the residual entropy.  
 

 
Figure 4. Computed pair residual entropy for (a) methanol and (b) chloroform. We depict 𝑆'(

(*)(𝑅) as a 
function of the pair distance 𝑅, which is the upper limit of the integration of Eq. (50). The general profile 
is consistent with the reported behavior from Ref. 141. The converged values are listed in Table 6. 
 
Ideally, the total residual entropy should be smaller than 𝑆(,) due to the negative value contributed 
by higher-order residual entropy (note that the residual entropy is always a negative quantity). 
Under the pairwise approximation, the contribution from this higher-order entropy term can be 
obtained through an approximation proposed by Laird and Haymet142, 143 

𝑆b%4$ = 𝑆(,) −
1
2ℛ, 

(52) 
where ℛ is a gas constant. Since both methanol and chloroform can be regarded as pair-dominant 
liquids, we also apply Eq. (52) to see if the pairwise approximation could estimate the CG entropy 
term correctly. As shown in Fig. 4, numerical integrations of 𝑆>?

(,) were performed over the radial 
domain, and we utilized the in-house code employed in Ref. 43 to estimate the correction for the 
entropy. 𝑆>?

(,) and 𝑆b%4$ from the FG RDF at 300 K were chosen as the converged values at large 
distances, as shown in Fig. 4 and listed in Table 6.  
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Table 6. Thermodynamic entropy for methanol and chloroform estimated using the multiparticle expansion 
approach in comparison with the reference entropy values obtained by employing 2PT calculations on 
actual CG trajectories. Here, the systematic expansion up to the second order, 𝑆,-./, was considered with 
the additional correction term given by Eq. (52).  
 

Molecule 
Thermodynamic Entropy Quantity (cal·mol−1·K−1) 

Actual CG Entropy Ideal gas estimation Pairwise correction 𝑆,-./ 
Methanol 21.110 23.710 -0.714 22.002 
Chloroform 24.938 28.894 -2.244 25.656 

 
As previously discussed, the contribution solely from the ideal gas approximation consistently 
overestimates the entropy, because there are no interactions between particles. While the pairwise 
correction 𝑆>?

(,) can significantly enhance this description, having only 𝑆>?
(,) value still results in a 

slight overestimation of the overall CG entropy. For methanol, 𝑆41 + 𝑆>?
(,)  gives 22.996 

cal·mol−1·K−1, which exceeds the actual CG entropy by 1.886 cal·mol−1·K−1. A similar situation 
arises with chloroform, where 𝑆41 + 𝑆>?

(,) exceeds the reference value by 1.712 cal·mol−1·K−1. By 
approximating the remaining higher-order entropy contribution as −ℛ/2 , roughly 0.994 
cal·mol−1·K−1, the final pairwise CG entropy offers much more accurate values. As displayed in 
Table 6, 𝑆b%4$ estimates the CG entropy within 1 cal·mol−1·K−1 in comparison to the references for 
both liquids. Nevertheless, 𝑆b%4$  is slightly larger than the actual CG value, suggesting that 
explicitly calculating the higher-order entropy contributions might be needed to reduce the 
overestimated pairwise entropy.  
 
3.4.3. Three-body Contribution. The next step in the systematic framework is to explicitly include 
the three-body contribution. The three-body correction for the CG entropy can be extracted from 
Eq. (39), originally derived by Wallace and Evans.79-82 Note that the three-body correction shown 
in Eq. (39) assumes the symmetry over the triplets, i.e., 𝑆>?

(*) can be written as 

𝑆>?
(*) = −

1
6𝜌

,�𝑔*(𝐑D, 𝐑,, 𝐑*) ln[𝛿𝑔*(𝐑D, 𝐑,, 𝐑*)] 𝑑𝐑D𝑑𝐑,𝑑𝐑*

+
1
6𝜌

,�[𝑔*(𝐑D, 𝐑,, 𝐑*) − 3𝑔,(𝐑D, 𝐑,)𝑔,(𝐑,, 𝐑*) + 3𝑔,(𝐑D, 𝐑,)

− 1]𝑑𝐑D𝑑𝐑,𝑑𝐑*. 
(53) 

 
Ideally, one can generate the three-body histograms from FG statistics and compute the three-body 
correlations, which would provide an accurate estimate for 𝑆>?

(*). Alternatively, several papers have 
also reported computing Eq. (53) by defining an 𝐻 function based on the work by Egelstaff144 

𝐻(𝑅, 𝑆, 𝑇) = 𝑔*(𝑅, 𝑆, 𝑇) − 𝑔,(𝑅)𝑔,(𝑆)	𝑔,(𝑇) 
(54) 

where 𝑅 = |𝐑| = |𝐑D − 𝐑,|, 𝑆 = |𝐒| = 	 |𝐑, − 𝐑*|,	and 𝑇 = |𝐑 − 𝐒|. An analytical advantage of 
𝐻 is that its Fourier-transformed counterpart 𝐻�(𝑄) decouples the triple correlations, and 𝐻�(𝑄) can 
be computed in reciprocal space 𝑄 .105 Yet, obtaining a converged 𝐻�(𝑄)  requires sufficient 
sampling and various numerical techniques, and we will leave this as a direction to pursue for 
future work. 
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Given our primary focus on simple homogeneous liquids at ambient temperatures and densities, 
we introduce the Kirkwood superposition approximation145 asserting that 𝛿𝑔*(𝐑D, 𝐑,, 𝐑*) = 1 
and therefore 𝑔*(𝐑D, 𝐑,, 𝐑*) ≈ 𝑔,(𝐑D, 𝐑,)𝑔,(𝐑,, 𝐑*)𝑔,(𝐑D, 𝐑*) .146 This approximation is 
known to hold at not too low temperatures and not too high enough densities, and it is conceivable 
that our liquid systems are suitable for employing this approximation, similar to previous work in 
CG systems of linear polymers.147 Additionally, in line with Eq. (54), the homogeneous and 
isotropic nature of single-site CG models implies that the scalar variables (𝑅, 𝑆, 𝑇),  or 
(𝑅, 𝑆, |𝑅 − 𝑆|),  are spatial variables that can effectively represent the vectors of triplet 
configurations (𝐑D, 𝐑,, 𝐑*).	Since the first term on the right-hand side of Eq. (53) vanishes, then 
𝑆>?
(*) is reduced to 

𝑆>?
(*) ≈

8𝜋,𝜌,

3 % % [𝑔,(𝑅)𝑔,(𝑆)𝑔,(|𝑅 − 𝑆|) − 3𝑔,(𝑅)𝑔,(𝑆) + 3𝑔,(𝑅) − 1]𝑅,𝑆,𝑑𝑅𝑑𝑆
B

=

B

=
. 

(55) 
It is worth noting that due to the symmetry in Eq. (55), one practically needs to include all 
contributions from (𝑅, 𝑆, 𝑇) pairs as written in the brackets [⋅].	Also, 𝑇 can be determined from 𝑅 
and 𝑆. Numerically evaluating the two-dimensional integral ∬𝑑𝑅𝑑𝑆 can be done in a similar 
manner to Eq. (50) using Simpson’s rule.  
 
Yet, even with the existence of three-body corrections, higher-order terms beyond three-body 
effects are not accounted for in Eq. (55). Similar to Laird and Haymet’s treatment of the pairwise 
entropy, we consider another correction factor proposed by Singh et al. to estimate the three-body 
CG entropy109 

𝑆#$4b_># = 𝑆(,) + 𝑆(*) −
1
3ℛ. 

(56) 
Using Eq. (56), the evaluated 𝑆(*) and 𝑆#$4b_># values for methanol and chloroform are listed in 
Table 7. It is immediately apparent that the three-body correction term 𝑆(*) is much smaller than 
the pairwise correction term 𝑆(,). The pairwise contribution takes up 78.74% of the overall entropy 
for methanol and 60.65% for chloroform, which aligns with trends reported in the literature.83, 106-

109, 148, 149 Namely, the three-body correction effect is more pronounced in chloroform than in 
methanol.  
 
Table 7. Thermodynamic entropy for methanol and chloroform estimated using the multiparticle expansion 
approach in comparison with the reference entropy values obtained by employing 2PT calculations on 
actual CG trajectories. Here, the systematic expansion up to the third order, 𝑆0/.,1'0, was considered with 
the additional correction term given by Eq. (56), while the Kirkwood superposition approximation was also 
introduced.  
 

Molecule 
Thermodynamic Entropy Quantity (cal·mol−1·K−1) 

Actual CG Entropy Ideal gas estimation Three-body correction 𝑆0/.,1'0 
Methanol 21.110 23.710 -0.193 22.141 
Chloroform 24.938 28.894 -1.456 24.531 

 
The performance of 𝑆#$4b_># in methanol and chloroform reflects how the higher-order correction 
term compares to the pairwise contribution. In the case of methanol, which is dominated by 
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pairwise correlations, 𝑆#$4b_># is quite close to 𝑆b%4$, differing by only 0.1 cal·mol−1·K−1. However, 
for chloroform, where higher-order correlations play a more significant role, the three-body 
correction greatly enhances the accuracy of CG entropy estimation. When considering only the 
pairwise correction for chloroform, there was an absolute error of 0.7-0.8 cal·mol−1·K−1, but this 
error was halved when accounting for the three-body correlations. Also, we would like to note that 
our estimation of 𝑆#$4b_># is primarily based on the Kirkwood superposition approximation, and 
thus we anticipate further improvements when considering non-trivial three-body correlations. In 
summary, the systematic treatment based on multiparticle correlation functions offers an 
alternative to the hard sphere framework and the generalized van der Waals approaches. This 
systematic approach has the potential to enhance entropy evaluation in a practical manner by 
gradually including higher-order contributions.  
 
4. Conclusions 
Amidst the ongoing effort to better understand the role of entropy in CG modeling, our work is 
specifically aimed at developing an efficient framework for efficiently predicting CG entropy 
using only the FG statistics. This eliminates the necessity for CG simulations and additional 
sampling procedures. Drawing inspiration from classical perturbation theory of liquids, we 
designed two different approaches, as illustrated in Fig. 5.  
 

 
Figure 5. Overview of the systematic framework proposed in this work. In the pursuit of the accurate 
estimation of the entropy and other thermodynamic properties of CG models, two distinct approaches are 
possible. First, one can incorporate important interactions through a perturbative treatment of CG 
interactions (interaction-based approach). Alternatively, one can also decompose the target thermodynamic 
property via a many-body expansion and incorporate higher-order contributions to the model description 
(correlation-based approach). 
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For the interaction-based approach, starting from the simplest ideal gas approximation, we 
gradually incorporate important physics to correctly describe the entropy of non-ideal CG systems. 
This is achieved through a perturbative approach, ranging from adding hard-core repulsions, then 
adding generalized van der Waals interactions, and finally utilizing multiparticle expansion. 
Within each model, accuracy can also be enhanced by improving the model descriptions. For hard 
spheres, accurate EOSs would improve the fidelity of hard sphere models, and similarly, an 
accurate description of long-range attractive interactions or even complex interaction profiles 
using a multi-basin interaction form is expected to enhance the performance of the generalized van 
der Waals model. Alternatively, we can estimate the thermodynamic properties of CG models 
using the multiparticle expansion. In this approach, we can improve the model description by 
including higher-order contributions. A major advantage of this approach is that these structural 
correlations can be estimated from the atomistic reference, greatly reducing the computational 
overhead.  In summary, we claim that achieving high fidelity predictions of thermodynamic 
properties can be accomplished by incorporating key physical descriptions of the system with 
accurate information. 
 
Furthermore, while developing this framework, the perturbative treatment raises an important 
question: What are the features necessary to represent complex, many-body CG PMFs? Our 
approach addresses this problem by focusing on two fundamental yet simple interactions: hard 
sphere repulsion and square well attraction. For more complicated CG systems, the resultant CG 
PMF may contain other non-negligible interaction terms with complex profiles that differ strongly 
from that of a simple square well. Recently, we have demonstrated that many-body CG PMFs can 
be faithfully described as a sum of hard-core repulsion and Gaussian interactions by combining 
classical perturbation theory and integral equation theory. Therefore, one possible direction would 
be to extend the generalized van der Waals framework to CG models with Gaussian basis sets, 
which is expected to describe more complex energy landscapes of bottom-up CG models, 
including polymers and biomolecules. 
 
Our findings provide valuable insights into the reliability of different physical approximations 
when estimating the entropy and other thermodynamic properties of molecular CG models. We 
have demonstrated here that the ideal gas description provides a reasonable prediction, while the 
hard sphere description performs better and yields accurate predictions for CG liquids. This is a 
noteworthy discovery considering the challenges posed by the non-trivial nature of CG interactions. 
Our proposed approach demonstrates that it is possible to construct an approximate CG partition 
function, incorporating the essential physics based on the FG statistics, through a bottom-up 
methodology. Notably, this framework’s versatility allows for a straightforward extension to 
compute other thermodynamic properties. In summary, our work underscores the significance of 
adopting minimal representations of CG PMFs when predicting thermodynamic properties.  
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We begin with the definition of the attractive coordination number, 𝑁N, introduced in Eq. (30): 

𝑁N =
𝑁
𝑉 % 𝑔(𝑅)𝑑𝑅,

%##$
 

(57) 
where ∫ 𝑑𝑅%##$  integrates only the attractive part of the underlying potential. For example, in the 
case of a square-well potential, as defined in Eq. (29), ∫ 𝑑𝑅%##$  corresponds to the volume integral  

% 𝑑𝑅 =
4𝜋
3 𝜎*(𝑅M* − 1)

<"O

O
, 

(58) 
due to spherical symmetry. Then, Eq. (58) can be simplified as 

𝑁N =
4𝜋𝑁
3𝑉 𝜎*(𝑅M* − 1)

∫ 𝑔(𝑅)𝑑𝑅%##$

∫ 𝑑𝑅%##$
	. 

(59) 
Under the low-density condition,  ∫ 𝑔(𝑅)𝑑𝑅%##$ / ∫ 𝑑𝑅%##$  can be further simplified to be an 
effective Boltzmann weight applied to the average potential of mean force over the coordination 
volume, which can then be approximated as the PPMF (𝑒cM). Combining these equations, 𝑁N is 
reduced to 

𝑁N =
4𝜋𝑁
3𝑉 𝜎*(𝑅M* − 1)𝑒M/S@ , 

(60) 
corresponding to Eq. (31). 
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