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The quantum dynamical activity constitutes a thermodynamic cost in trade-off relations such as
the quantum speed limit and the quantum thermodynamic uncertainty relation. However, calcu-
lating the quantum dynamical activity has been a challenge. In this paper, we present the exact
solution for the quantum dynamical activity by deploying the continuous matrix product state
method. Moreover, using the derived exact solution, we determine the upper bound of the dynami-
cal activity, which comprises the standard deviation of the system Hamiltonian and jump operators.
We confirm the exact solution and the upper bound by performing numerical simulations.

I. INTRODUCTION

Uncertainty relations are pivotal relations that out-
line what is feasible or impractical in the real world.
The most prominent example is Heisenberg’s uncertainty
principle, which shows the uncertainty associated with
conjugate observables such as position and momentum
operators [1, 2]. Another well-studied uncertainty re-
lation in quantum systems is the quantum speed limit
(QSL) [3–5]. The QSL corresponds to the energy-time
uncertainty, which imposes a restriction on how quickly a
quantum system can transition between states. The con-
cept of a speed limit was recently generalized in classical
stochastic systems, referred to as the classical speed limit
(CSL) [6–11]. Recently, a closely related uncertainty
principle known as the thermodynamic uncertainty re-
lation (TUR) has been actively studied in the fields of
stochastic and quantum thermodynamics [12–20]. The
TUR states that achieving higher accuracy should be ac-
companied by a higher thermodynamic cost. In CSLs
and classical TURs, along with entropy production, the
most studied thermodynamic cost is the dynamical activ-
ity [21], which quantifies the activity of a Markov process
(see Eq. (10)). The dynamical activity plays a central
role in the thermodynamic costs of CSLs [6, 10] and clas-
sical TURs [14, 16].

The concept of classical dynamical activity is gener-
alized to incorporate quantum effects and referred to as
quantum dynamical activity. The quantum dynamical
activity is defined in the dynamics determined by the
Lindblad equation [Eq. (3)] and has recently been stud-
ied in quantum stochastic thermodynamics [20, 22, 23].
Suppose that the dynamics begin at t = 0 and end at
t = τ > 0. Let B(τ) be the quantum dynamical activity
within the interval [0, τ ] (defined in Eq. (13)). Consider
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the number of jump events in a continuous measurement.
The relative variance follows the quantum TUR [20]:

Var[N(τ)]

⟨N(τ)⟩2
≥ 1

B(τ)
, (1)

whereN(τ) is a counting observable that counts the num-
ber of jump events within the interval [0, τ ] and ⟨N(τ)⟩
and Var[N(τ)] are the mean and variance of N(τ), re-
spectively. The quantum TUR of Eq. (1) states that a
higher precision can be achieved provided that the system
allows for more quantum dynamical activity. Moreover,
B(τ) appears in the QSL in a continuous-measurement
setting. Let ρ(0) and ρ(τ) be the initial and final den-
sity operators governed by the Lindblad equation, and let

LD (ρ(0), ρ(τ)) ≡ arccos
[√

Fid (ρ(0), ρ(τ))
]

be the Bu-

res angle between the initial and the final states, where

Fid (ρ1, ρ2) ≡
(
Tr
√√

ρ1ρ2
√
ρ1
)2

is the quantum fidelity.
Subsequently, the following QSL holds [22]:

LD(ρ(0), ρ(τ)) ≤ 1

2

∫ τ

0

dt

√
B(t)

t
. (2)

As the Bures angle determines the distance between the
two density operators, Eq. (2) states that, for the sys-
tem to change its state more, the system demands more
quantum dynamical activity. Considering a closed quan-
tum limit, Eq. (2) is reduced to the Mandelstam-Tamm
bound [3]. The appearance of B(t) in the two distinct
uncertainty relations, given by Eqs. (1) and (2), is not
a coincidence. These are the two aspects of the same
geometric inequality [22].

Equations (1) and (2) show that the quantum dynam-
ical activity B(t) serves as a fundamental cost in systems
described by the Lindblad equation. However, deriv-
ing its exact expression remains challenging because the
quantum dynamical activity was defined using the quan-
tum Fisher information [Eq. (13)], which lacks a closed-
form representation. In this study, we derive the exact
solution for the quantum dynamical activity [Eq. (20)].
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The calculation is based on a continuous matrix product
state (cMPS), which encodes the dynamics into the quan-
tum field. Moreover, we derive the upper bounds for the
quantum dynamical activity, comprising the moments of
the Hamiltonian and jump operators. We find that the
upper bound is tight for short durations. We validate
the exact solution and the upper bound by performing
numerical simulations.

II. METHODS

The quantum dynamical activity is defined in the Lind-
blad equation. Let ρS(t) be the density operator of the
system of interest. The Lindblad equation is represented
by [24, 25] ρ̇S = LρS , where L is the Lindblad superop-
erator defined by

LρS = −i[HS , ρS ] +

NC∑
m=1

D [Lm] ρS . (3)

Here, D[L]ρS = LρSL
† − 1

2

{
L†L, ρS

}
denotes the dis-

sipator. The Lindblad equation incorporates both the
classical Markov process and the closed-quantum evolu-
tion. The classical Markov process and closed quantum
dynamics are represented by HS = 0 and Lm = 0, re-
spectively, in Eq. (3). The Lindblad equation can be
expressed using the Kraus representation:

ρS(t+ dt) =
∑
m

Vm(dt)ρS(t)Vm(dt)†, (4)

where Vm(dt) denotes the Kraus operator:

V0(dt) ≡ IS − idtHeff , (5)

Vm(dt) ≡
√
dtLm (1 ≤ m ≤ NC). (6)

Here, Heff is the effective (non-Hermitian) Hamiltonian,
defined as

Heff ≡ HS − i

2

∑
m

L†
mLm. (7)

The Kraus operator satisfies the completeness relation∑NC

m=0 Vm(dt)†Vm(dt) = IS . From the Steinspring rep-
resentation, m in Eq. (4) can be identified as the out-
put when the environment is measured. The dynamics
conditioned on the output is referred to as the quantum
trajectory. For detailed information on the continuous
measurement, see the recent review paper [26].

The matrix product state (MPS) is a mathematical
model often used to represent quantum systems com-
prising multiple particles. Recently, advancements have
been made in the use of MPS to account for single-
dimensional systems residing in continuous state spaces
[27, 28]. This development is commonly referred to as
cMPS. The cMPS has proven useful in exploring the
thermodynamics of trajectory. It has been applied in

the study of phase transitions and the influence of gauge
symmetry in both classical and quantum Markov pro-
cesses [29–31]. Additionally, we recently used cMPS to
derive quantum TURs [20, 22, 32, 33]. Consider a cMPS
for continuous measurement expressed by [27, 28]

|Ψ(τ)⟩ = V(τ) |ψS(0)⟩ ⊗ |vac⟩ . (8)

Here, V is an operator defined by

V(τ) = Te−i
∫ τ
0

dt(Heff⊗IF+
∑

m iLm⊗ϕ†
m(t)), (9)

where T denotes the time-ordering operator, IF is the
identity operator in the field, and ϕm(s) is a field op-
erator that satisfies the canonical commutation relation
[ϕm(s), ϕ†m′(s′)] = δmm′δ(s − s′). |vac⟩ is the vacuum
state that vanishes with ϕm(s) for all m. The cMPS en-
codes all the information of the continuous measurement
by creating particles by applying ϕ†m(s) to the vacuum
state. The advantage of using the cMPS for continuous
measurement is that the statistics of jump events and the
system state can be encoded into a pure state. Therefore,
we can treat the time evolution of the cMPS as described
by closed quantum dynamics.

First, we review the classical dynamical activity. We
consider the dynamics within [0, τ ], where τ > 0. The
dynamical activity within [0, τ ] in a classical Markov pro-
cess is defined as

Acl(τ) ≡
∫ τ

0

∑
ν,µ (ν ̸=µ)

Pµ(t)Wνµ(t)dt, (10)

where Wνµ(t) is the transition rate from µth to νth state
at time t and Pµ(t) is the probability of being µth state
at time t. Acl(t) quantifies the average number of jump
events within interval [0, τ ]. The Lindblad equation de-
scribes a classical Markov process by considering HS = 0
in Eq. (3). The classical dynamical activity can then be
represented as

A(τ) ≡
∫ τ

0

∑
m

TrS [LmρS(t)L†
m]dt, (11)

where TrS is the partial trace with respect to the sys-
tem (TrF is defined analogously for the field). Equiv-
alence between Acl(τ) and A(τ) for the classical limit
can be verified by taking Lνµ =

√
Wνµ |ν⟩ ⟨µ|, where

Wνµ is the transition rate defined above and |µ⟩ corre-
sponds to the classical µth state. Let us move on to
the quantum dynamical activity. Recently, the classical
dynamical activity has been generalized to the quantum
domain, which is referred to as the quantum dynamical
activity [20, 22]. The quantum dynamical activity corre-
sponds to the quantum Fisher information for a partic-
ular parametrization of Lm and HS . Let us first recall
the quantum Fisher information in a general scenario.
Let |ψ(ϑ)⟩ be an arbitrary state vector parameterized by
parameter ϑ. The quantum Fisher information is

F(ϑ) ≡ 4
[
⟨∂ϑψ(ϑ) | ∂ϑψ(ϑ)⟩ − |⟨∂ϑψ(ϑ) | ψ(ϑ)⟩|2

]
,

(12)
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where |∂ϑψ (ϑ)⟩ ≡ ∂ϑ |ψ (ϑ)⟩. Using Eq. (12), we can in-
troduce the quantum dynamical activity. Let θ be a hy-
pothetical parameter to be estimated, defined as θ ≡ t/τ .
For a classical Markov process, the classical dynamical
activity is identical to the Fisher information of the scaled
path probability multiplied by θ2. Therefore, the quan-
tum dynamical activity is analogously defined by [22]

B(t) = 4θ2
(
⟨∂θΨ(τ ; θ)|∂θΨ(τ ; θ)⟩ − | ⟨Ψ(τ ; θ)|∂θΨ(τ ; θ)⟩ |2

)
,

(13)

where |Ψ(τ ; θ)⟩ is the cMPS parametrized by

|Ψ (τ ; θ)⟩ ≡ V (τ, 0; θ) |ψS(0)⟩ ⊗ |vac⟩ , (14)

with V(s2, s1; θ) being the operator defined as

V (s2, s1; θ) ≡ Te
∫ s2
s1

ds(−iθHeff⊗IF+
√
θ
∑

m Lm⊗ϕ†
m(s)).

(15)

For θ = 1, |Ψ(τ ; θ)⟩ is reduced to the cMPS in Eq. (8)
and B(t) becomes B(τ). Having defined the quantum
dynamical activity, we now proceed to its calculation.
The general Fisher quantum information F(ϑ) defined in
Eq. (12) can be represented as F(ϑ) = 8

dϑ2 (1 − |⟨ψ(ϑ +
dϑ) | ψ(ϑ)⟩|). Therefore, using Eq. (13), the quantum
dynamical activity can be calculated as

B(t) =
8θ2

dθ2
(1 − |⟨Ψ(τ ; θ + dθ)|Ψ(τ ; θ)⟩|) . (16)

Recall that ⟨Ψ(τ ; θ + dθ|Ψ(τ ; θ))⟩ =
TrS [|Ψ(τ ; θ)⟩ ⟨Ψ(τ ; θ + dθ)|] = TrS [ϱ(τ)], where ϱ(τ)
obeys the two-sided Lindblad equation [34]. We can
numerically calculate the quantum dynamical activity
directly using a sufficiently small dθ.

In addition to direct numerics, an asymptotic represen-
tation of B(τ) is also known. Suppose that Eq. (3) has a
steady-state solution. For τ → ∞, Ref. [20] showed that
the quantum dynamical activity B(τ) can be represented
as

B∞(τ) ≡ τ (a + bc) (τ → ∞), (17)

where the first term corresponds to the rate of the clas-
sical dynamical activity:

a ≡
∑
m

TrS
[
Lmρ

ss
SL

†
m

]
, (18)

with ρssS being the steady-state density operator of the
Lindblad equation, LρssS = 0. Equation (18) corresponds
to the classical dynamical activity [Eq. (11)]. In Eq. (17),
the second term bc quantifies the effect of coherent time
evolution in the Lindblad equation (see Appendix G for
the expression). As mentioned in the classical dynami-
cal activity, A(τ) quantifies the extent of the activity of
dynamics. The Lindblad equation consists of two con-
tributions: smooth dynamics induced by the effective
Hamiltonian Heff and discontinuous dynamics induced
by the jump operators Lm. Since A(τ) includes only the
contribution from Lm, bc reflects the dynamics of the
effective Hamiltonian. The evaluation of bc requires a
pseudo-inverse calculation in the Choi-Jamio lkowski iso-
morphism that is difficult to perform in general dynam-
ics. Equation (17) shows that, for τ → ∞, the quantum
dynamical activity is linear over time. Therefore, at least
for τ → ∞, we cannot expect superlinear scaling of the
quantum dynamical activity.

III. RESULTS

Although quantum dynamical activity plays an impor-
tant role in QSL and TUR, the calculation relies on di-
rect numerics [Eq. (16)], or asymptotic calculations for
τ → ∞ [Eq. (17)]. In this study, we derive B(t) ana-
lytically and its upper bound of B(t), which has a clear
physical interpretation. Our first result is the analyti-
cal expression of B(t). We define the adjoint Lindblad
equation for the operator O as follows:

Ȯ = L†O ≡ i [HS ,O] +

NC∑
m=1

D†[Lm]O, (19)

where L† is the adjoint superoperator with D† being
the adjoint dissipator defined by D†[L]O ≡ L†OL −
1
2

{
L†L,O

}
. The adjoint Lindblad equation is employed

for the time evolution of the Hamiltonian or jump oper-
ators as opposed to the density operators. This concept
aligns with the Heisenberg picture of quantum mechan-
ics. Subsequently, we find that the exact solution to B(τ)
is

B(τ) = A(τ) + 8

∫ τ

0

ds1

∫ s1

0

ds2Re
(

TrS

[
H†

effȞS (s1 − s2) ρS (s2)
])

− 4

(∫ τ

0

dsTrS [HSρS(s)]

)2

, (20)

where ȞS(t) ≡ eL
†tHS is the Heisenberg interpreta-

tion of the Hamiltonian HS . For example, in the closed
quantum limit Lm = 0, the operator becomes eL

†tO =
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eiHStOe−iHSt. Equation (20) represents the first result
of this study. A detailed derivation of Eq. (20) is shown
in Appendix A. Note that Eq. (20) is represented only
by the physical quantities of the primary system. Equa-
tion (20) shows that B(t) comprises the classical contri-
bution A(t) and quantum correction given by the second
and third terms. For τ → ∞, Eq. (20) is identical to
Eq. (17) (Appendix G). We now discuss the limiting cases
in Eq. (20). For the classical limit, where HS = 0, B(τ)
is reduced to A(τ). By contrast, for the closed quantum
limit, where Lm = 0, B(τ) becomes

B(τ) = 4τ2
(

TrS
[
H2

SρS
]
− TrS [HSρS ]

2
)
, (21)

which is the variance of HS multiplied by 4τ2. Substi-
tuting Eq. (21) into Eq. (2) reproduces the Mandelstam-
Tamm bound [3]. This indicates that the exact represen-
tation covers the two limiting cases (the classical limit
and the closed quantum limit).

After completing our calculations, we realized that
Ref. [35] analytically calculated the quantum dynamical
activity. Reference [35] presents the following expression:

B(τ) = A(τ) + 4 (I1 + I2) − 4

(∫ τ

0

dsTrS [HS(s)ρS(s)]

)2

.

(22)

Here, I1 and I2 are defined as I1 ≡∫ τ

0
ds1

∫ s1
0
ds2 TrS [K2 exp (L (s1 − s2))K1ρS (s2)] and

I2 ≡
∫ τ

0
ds1

∫ s1
0
ds2 TrS [K1 exp (L (s1 − s2))K2ρS (s2)],

respectively. Here, K1 and K2 are superoperators

defined by K1• = −iHeff • + 1
2

∑
k Lk • L†

k and

K2• = i • H†
eff + 1

2

∑
k Lk • L†

k = (L − K1)•, respec-
tively. Moreover, Ref. [35] showed that Eq. (22) can
be reduced to Eq. (17) for τ → ∞. However, the
expression in Eq. (22) is represented by superoperators
K1 and K2, which are difficult to interpret physically. In
Appendix D, we show that our result [Eq. (20)] can be
derived via Eq. (22).

Another advantage of deriving the exact representation
is that it is possible to obtain bounds with a more intu-
itive physical interpretation. Specifically, from Eq. (20),
we can obtain an upper bound to B(τ) comprising the
standard deviation of the operators in the Lindblad equa-
tion, that is, B(τ) ≤ B(τ), where B(t) denotes its upper
bound given by

B(τ) ≡ A(τ) + 8

∫ τ

0

ds1σHS
(s1)

∫ s1

0

ds2σHeff
(s2), (23)

where σO(s) ≡
√〈

(O − ⟨O⟩ (s))
†

(O − ⟨O⟩ (s))
〉

=√
⟨O†O⟩ (s) − |⟨O⟩ (s)|2 for arbitrary operator O. When

O is Hermitian, σO corresponds to the conventional stan-
dard deviation. Equation (23) is the second result of this
study, the proof of which is shown in Appendix B. Some
comments are in order. The upper bound of Eq. (23)
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FIG. 1. Comparison of quantum dynamical activity as a
function of t for the driven two-level model calculated by the
exact method B(τ) [Eq. (20)] (the solid line) and the asymp-
totic method B∞(τ) [Eq. (17)] (the dot-dashed line). We
also provide the corresponding classical dynamical activity
A(τ) [Eq. (11)] (the dotted line) and the upperbound B(τ)
[Eq. (23)] (the dashed line). Since results corresponding to
the exact and direct [Eq. (16)] methods completely agree, we
only show the result of the exact method. The parameters
are Ω = 1, κ = 0.5, and ∆ = 1.

comprises two contributions: the classical dynamical ac-
tivity A(τ) and the quantum correction given by the
standard deviations of HS and Heff . For τ ≪ 1, the
major contribution comes from the classical part, which
indicates that B(τ) is linear with respect to t for a short
time. However, for τ → ∞, B(τ) depends linearly on
t when the Lindblad equation has a single steady-state
solution [20]. Therefore, the upper bound of Eq. (23) be-
comes loose for a large τ because the second contribution
in Eq. (23) is of O(τ2). We also comment on the equality
condition when B(τ) = B(τ). Verifying that this equal-
ity is satisfied for the classical limit (HS = 0) and the
closed quantum limit (Lm = 0) is straightforward. As
mentioned previously, B(τ) is O(τ) for τ → ∞ as long as
the Lindblad equation has a single steady-state solution
while B(τ) is O(τ2). Therefore it is unlikely that equality
is satisfied in other cases (we discuss the equality condi-
tion in Appendix B.

The upper bound of Eq. (23) includes the standard
deviations ofHS andHeff . It is possible to obtain another
upper bound that uses the standard deviations of HS and∑

m L†
mLm (please see Eq. (B12) in Appendix B), which

is not as tight as Eq. (23).

IV. NUMERICAL SIMULATION

To verify the exact expression [Eq. (20)] and the upper
bound [Eq. (23)] of B(τ), we perform numerical simula-
tions. Consider a widely employed two-level atom model
driven by a classical laser field. Let |e⟩ and |g⟩ be the ex-
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cited and ground states, respectively. The Hamiltonian
and jump operators are given by

HS = ∆ |e⟩ ⟨e| +
Ω

2
(|e⟩ ⟨g| + |g⟩ ⟨e|) , (24)

L =
√
κ |g⟩ ⟨e| , (25)

where ∆, Ω, and κ are model parameters. The jump
operator L induces a jump from the excited state to
the ground state at the transition rate κ. We com-
pare B(τ) calculated using the following approaches un-
der steady-state conditions. The direct method calcu-
lates B(τ) by using the quantum Fisher information in
Eq. (16). The results of the direct method are treated
as the ground truth for the quantum dynamical activ-
ity. The exact method, which is the approach proposed
in this study, calculates the quantum dynamical activ-
ity using Eq. (20). The asymptotic method is based on
Eq. (17), which holds for τ → ∞. We also evaluate the
upper bound B(τ) defined by Eq. (23). For compari-
son, we calculate the classical dynamical activity using
Eq. (18).

Figure 1 shows the comparison of the methods. We
plot the quantum dynamical activity as a function of τ .
First, we compare the direct method [Eq. (16)] and the
exact solution [Eq. (20)] to determine whether the two
approaches agree completely. This verifies the validity of
Eq. (20). Therefore, we do not plot the direct method,
as shown in Fig. 1. In Fig. 1, the solid, dot-dashed, and
dotted lines denote the exact solution, the asymptotic so-
lution, and the classical dynamical activity, respectively.
The asymptotic method converges to the direct method
for τ → ∞. However, the two results are approximately
10 times apart for a smaller τ , indicating that the ex-
act method presented in this manuscript is important for
a short time τ . The exact result for τ → 0 is close to
that for the classical quantum dynamical activity, indi-
cating that quantumness cannot improve the precision
of the counting observable for a short time according to
the quantum TUR [Eq. (1)]. For the two limiting cases
τ → 0 and τ → ∞, the quantum dynamical activity is
linear with respect to time. In the intermediate interval,
namely from τ ∼ 10−1 to τ = 101, the quantum dy-
namical activity exhibits superlinear scaling with respect
to time. This implies that the precision of the counting
observable can be improved superlinearly. This behav-

ior broadly applies to general dynamics, as established
by the upper bound in Eq. (23). The upper bound of
the quantum dynamical activity scales as O(τ) +O(τ2).
Therefore, when τ ≪ 1, the O(τ) component dominates
the quantum dynamical activity, indicating that we can-
not expect a quantum advantage over a short time pe-
riod. Next, we consider the upper bound derived from
Eq. (23), plotted using the dashed line in Fig. 1. The up-
per bound is above the exact solution (solid line), which
verifies the accuracy of the upper bound. Because the
quantum dynamical activity is linear as a function of τ
for τ → ∞, the upper bound becomes loose for this large
time limit, because the upper bound is O(τ2).

Thus far, we have discussed the effects of the difference
between classical and quantum dynamical activities on
the TUR. When considering the TUR, the lower bound
is given by the reciprocal of the dynamical activity, allow-
ing a simple understanding of the qualitative difference
between linear and superlinear scaling with respect to τ .
However, this clarity disappears with the speed limits,
because their upper bounds include the integral (right-
hand side of Eq. (2)), which obscures clear differences.
Nevertheless, a quantum system provides a larger pro-
portionality constant, resulting in a higher upper bound.

V. CONCLUSION

In this study, we derived the exact solution for the
quantum dynamical activity using cMPS. In addition,
we obtained the upper bound for the quantum dynam-
ical activity, which comprises the standard deviation of
the operators of the Lindblad equation. Numerical sim-
ulations are performed to validate the results. Our find-
ings are expected to enhance our understanding of quan-
tum nonequilibrium dynamics, considering the crucial
role of quantum dynamical activity in uncertainty rela-
tions, such as QSLs and quantum TURs.
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Appendix A: Derivation of exact solution [Eq. (20)]

1. Preparation

We derive ancillary relations to derive Eq. (20). Let us apply ϕm(s′) and ϕm(s′)† at time s′ ∈ [0, s) to |ψS(0)⟩ ⊗
|vac⟩ ⟨ψS(0)| ⊗ ⟨vac| from left and right, and denote by the resulting operator F ([0, s)). For t ≥ s, the first relations
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are given by

TrF,S [dϕm(t)F ([0, s))] = TrF,S

[
dϕ†m(t)F ([0, s))

]
= 0, (A1)

TrF,S

[
dϕm(t)dϕ†m′(t)F ([0, s))

]
= dsδm,m′TrF,S [F ([0, s))] , (A2)

where

dϕm(s) ≡
∫ s+ds

s

ds′ϕm(s′), (A3)

and TrF,S [•] denotes TrS [TrF [•]] = TrF [TrS [•]]. Equations (A1) and (A2) can be derived from the canonical
commutation relation. The second relation is the unitarity of V:

TrF,S

[
V (s, s1; θ)F ([0, s1))V (s, s1; θ)

†
]

= TrF,S [F ([0, s1))] . (A4)

Using V (s, s1; θ) = V (s, s− ds; θ)V (s− ds, s1; θ) and the cyclic property of the trace, we have

TrF,S

[
V (s, s− ds; θ)

† V (s, s− ds; θ)V (s− ds, s1; θ)F ([0, s1))V (s− ds, s1; θ)
†
]

= TrF,S

[
V (s− ds, s1; θ)F ([0, s1))V (s− ds, s1; θ)

†
]

+O(ds2), (A5)

where we use Eq. (A1) and Eq. (A2). By repeatedly using Eq. (A5), we have Eq. (A4). Since TrF [⟨Ψ (τ ; θ)| |Ψ (τ ; θ)⟩]
provides the density matrix of the time scaled by θ (Ref. [22]), the third relation is given by

TrF [|Ψ(s; θ)⟩ ⟨Ψ(s; θ)|] = ρS (θs) . (A6)

2. Derivation

By differentiating Eq. (14) with respect to θ, we obtain

|∂θΨ (τ ; θ)⟩ =

∫ τ−ds

0

V (τ, s+ ds; θ) dV (s; θ)V (s, 0; θ) |ψS(0)⟩ ⊗ |vac⟩ =

∫ τ−ds

0

V (τ, s+ ds; θ) dV (s; θ) |Ψ(s; θ)⟩ ,

(A7)

where

dV (s; θ) ≡ ∂θV (s+ ds, s; θ) = −iHeff ⊗ IF ds+
1

2
√
θ

∑
m

Lm ⊗ dϕ†m(s). (A8)

First, we calculate the term

K ≡ ⟨∂θΨ (τ ; θ) |∂θΨ (τ ; θ)⟩ = TrF,S [|∂θΨ (τ ; θ)⟩ ⟨∂θΨ (τ ; θ)|] . (A9)

Substituting Eq. (A7) into this relation, we obtain

K =

∫ τ−ds

0

∫ τ−ds

0

TrF,S

[
V (τ, s1 + ds; θ) dV (s1; θ) |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)| dV (s2; θ)

† V (τ, s2 + ds; θ)
†
]
. (A10)

Here, the first integral corresponds to s1 and the second integral corresponds to s2. We decompose K into the sum of
terms s1 = s2 and s1 ̸= s2 which are written as Ks1=s2 and Ks1 ̸=s2 . When s1 = s2 = s, from Eq. (A4), we obtain

Ks1=s2 =

∫ τ−ds

0

TrF,S

[
dV (s; θ) |Ψ(s; θ)⟩ ⟨Ψ(s; θ)| dV (s; θ)

†
]

=

∫ τ−ds

0

TrF,S

[
dV (s; θ)

†
dV (s; θ) |Ψ(s; θ)⟩ ⟨Ψ(s; θ)|

]
.

(A11)
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By using Eq. (A1), Eq. (A2) for dV (s; θ)
†
dV (s; θ), and using Eq. (A6), we obtain

Ks1=s2 =
1

4θ

∫ τ−ds

0

dsTrF,S

[∑
m

L†
mLm |Ψ(s; θ)⟩ ⟨Ψ(s; θ)|

]
=

1

4θ2

∫ t

0

ds
∑
m

TrS
[
LmρS(s)L†

m

]
=

1

4θ2
A(t). (A12)

Next, we calculate Ks1 ̸=s2 . When s1 > s2, applying Eq. (A4) to Eq. (A10), we obtain∫ τ−ds

0

∫ s1−ds

0

TrF,S

[
dV (s1; θ) |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)| dV (s2; θ)

† V (s1, s2 + ds; θ)
† V (s1 + ds, s1; θ)

†
]
. (A13)

From Tr[FG]∗ = Tr[G†F†], we find that the case of s1 < s2 is the complex conjugate of this equation. Therefore,
using the cyclic property of the trace, we obtain

Ks1 ̸=s2 = 2

∫ τ−ds

0

∫ s1−ds

0

Re
(

TrF,S

[
V (s1 + ds, s1; θ)

†
dV (s1; θ) |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)| dV (s2; θ)

† V (s1, s2 + ds; θ)
†
])
.

(A14)

Applying Eq. (A1) and Eq. (A2) for V (s1 + ds, s1; θ)
†
dV (s1; θ), we obtain

Ks1 ̸=s2 = 2

∫ τ

0

ds1

∫ s1−ds

0

Re

(
TrF,S

[(
−iHeff +

1

2

∑
m

L†
mLm

)
|Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)| V (s2; θ)

† V (s1, s2 + ds; θ)
†

])

= −2

∫ τ

0

ds1

∫ s1−ds

0

Re
(

TrF,S

[
iHS |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)| dV (s2; θ)

† V (s1, s2 + ds; θ)
†
])
. (A15)

Considering the term proportional to dϕm(s2) in dV (s2; θ)
†

in Eq. (A15), we obtain

−
∫ τ

0

ds1

∫ s1−ds

0

Re

(
TrF,S

[
iHS |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)| 1√

θ

∑
m

L†
m ⊗ dϕm(s2)V (s1, s2 + ds; θ)

†

])
. (A16)

Using the canonical commutation relation and combining dϕm(s2) with dϕ†m(s2) in

V (s1, 0; θ) = V (s1, s2 + ds; θ)V (s2 + ds, s2; θ)V (s2, 0; θ) , (A17)

and recall that Eq. (14), Eq. (A16) yields

−
∑
m

∫ τ

0

ds1

∫ s1

0

ds2Re
(

TrF,S

[
iHSV (s1, s2 + ds; θ)Lm |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|L†

mV (s1, s2 + ds; θ)
†
])

≡ −
∑
m

∫ τ

0

ds1

∫ s1

0

ds2Re (Fm (s1, s2; θ)) . (A18)

Since Tr [F ]
∗

= Tr
[
F†], we have

F (s1, s2; θ)
∗

= −TrF,S

[
iV (s1, s2 + ds; θ)Lm |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|L†

mV (s1, s2 + ds; θ)
†
HS

]
= −F (s1, s2; θ) , (A19)

where we use the cyclic property of the trace in the second equality. From this result, we find that F (s1, s2; θ) is a
purely imaginary number and Eq. (A18) is equal to zero. Therefore, from Eq. (A8) and Eq. (A15), we obtain

Ks1 ̸=s2 = 2

∫ τ

0

ds1

∫ s1

0

ds2Re
(

TrF,S

[
HS |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)|H†

effV (s1, s2; θ)
†
])
. (A20)

From V (s1, 0; θ) = V (s1, s2; θ)V (s2, 0; θ) and Eq. (14), we obtain

Ks1 ̸=s2 = 2

∫ τ

0

ds1

∫ s1

0

ds2Re
(

TrS

[
TrF

[
HSV (s1, s2; θ) |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|H†

effV (s1, s2; θ)
†
]])

= 2

∫ τ

0

ds1

∫ s1

0

ds2Re
(

TrS

[
TrF

[
H†

effV (s1, s2; θ)
†
HSV (s1, s2; θ) |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|

]])
. (A21)
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Since Eq. (A1) and Eq. (A2) also hold for TrF [•] instead of TrF,S [•], we apply these relations to the time in [s1−ds, s1):

TrF

[
H†

effV (s1, s2; θ)
†
HSV (s1, s2; θ) |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|

]
= H†

effTrF

[
V (s1 − ds, s2; θ)

†∑
m

Vm (ds′)
†
HSVm (ds′)V (s1 − ds, s2; θ) |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|

]
, (A22)

where ds′ ≡ θds, and Vm comprises the Kraus operators, which are defined in Eq. (5) and Eq. (6). Generalizing
Eq. (A22), we obtain

TrF

[
H†

effV (s1, s2; θ)
†
HSV (s1, s2; θ) |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|

]
= H†

eff

∑
mN−1

· · ·
∑
m0

Vm0
(ds′)† · · ·VmN−1

(ds′)†HSVmN−1
(ds′) · · ·Vm0(ds′)TrF [|Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|]

= H†
eff

∑
mN−1

· · ·
∑
m0

Vm0
(ds′)† · · ·VmN−1

(ds′)†HSVmN−1
(ds′) · · ·Vm0

(ds′)ρS (θs2) , (A23)

where N ≡ (s1 − s2)/ds = θ(s1 − s2)/ds′ and we use Eq. (A6) in the last equality. Since the integration range in
Eq. (A23) is the same as [0, θ(s1 − s2)] = [0, Nds′], we find that

ȞS (θ(s1 − s2)) ≡
∑

mN−1

· · ·
∑
m0

Vm0(ds′)† · · ·VmN−1
(ds′)†HSVmN−1

(ds′) · · ·Vm0(ds′) = eL
†θ(s1−s2)HS . (A24)

Substituting Eq. (A23) and Eq. (A24) into Eq. (A21), we obtain

Ks1 ̸=s2 = 2

∫ τ

0

ds1

∫ s1

0

ds2Re
(

TrS

[
H†

effȞS (θ(s1 − s2)) ρS (θs2)
])

=
2

θ2

∫ t

0

ds1

∫ s1

0

ds2Re
(

TrS

[
H†

effȞS (s1 − s2) ρS (s2)
])
.

(A25)

By combining Eq. (A12) and Eq. (A25), we obtain

4θ2 ⟨∂θΨ (τ ; θ) |∂θΨ (τ ; θ)⟩ = A(t) + 8

∫ t

0

ds1

∫ s1

0

ds2Re
(

TrS

[
H†

effȞS (s1 − s2) ρS (s2)
])
. (A26)

Finally, we calculate the term ⟨Ψ (τ ; θ) |∂θΨ (τ ; θ)⟩. Substituting Eq. (A7) into

⟨Ψ (τ ; θ) |∂θΨ (τ ; θ)⟩ = TrF,S [|∂θΨ (τ ; θ)⟩ ⟨Ψ (τ ; θ)|] , (A27)

and using Eq. (A4), we obtain

TrF,S [|∂θΨ (τ ; θ)⟩ ⟨Ψ (τ ; θ)|] =

∫ τ−ds

0

TrF,S

[
V (τ, s+ ds; θ) dV (s; θ) |Ψ(s; θ)⟩ ⟨Ψ(s; θ)| V (s+ ds, s; θ)

† V (τ, s+ ds; θ)
†
]

=

∫ τ−ds

0

TrF,S

[
dV (s; θ) |Ψ(s; θ)⟩ ⟨Ψ(s; θ)| V (s+ ds, s; θ)

†
]

=

∫ τ−ds

0

TrF,S

[
V (s+ ds, s; θ)

†
dV (s; θ) |Ψ(s; θ)⟩ ⟨Ψ(s; θ)|

]
.

(A28)

Similarly to Eq. (A15), by using Eq. (A1), Eq. (A2) for V (s+ ds, s; θ)
†
dV (s; θ), we obtain

⟨Ψ (τ ; θ) |∂θΨ (τ ; θ)⟩ = −i
∫ τ

0

dsTrF,S [HS |Ψ(s; θ)⟩ ⟨Ψ(s; θ)|] = − i

θ

∫ t

0

dsTrS [HSρS (s)] . (A29)

Therefore, we have

4θ2| ⟨Ψ (τ ; θ) |∂θΨ (τ ; θ)⟩ |2 = 4

(∫ t

0

dsTrS [HSρS (s)]

)2

. (A30)

By substituting Eq. (A26) and Eq. (A30) into Eq. (13), we obtain Eq. (20).
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Appendix B: Derivation of upper bound [Eq. (23)]

Let F be an arbitrary operator of the primary system. We define the mean and standard deviation of F as follows:

⟨F ⟩(s) ≡ TrS [FρS(s)] , (B1)

σF (s) ≡
√〈

(F − ⟨F ⟩ (s)IS)
†

(F − ⟨F ⟩ (s)IS)
〉

=

√
⟨F †F ⟩ (s) − |⟨F ⟩ (s)|2. (B2)

In the following, we drop IS which is multiplied by constants. We derive the upper bound of Ks1 ̸=s2 . By setting θ = 1
in Eq. (A23) and Eq. (A24), we obtain

Ks1 ̸=s2 =
2

θ2

∫ t

0

ds1

∫ s1

0

ds2Re
(

TrS

[
H†

effȞS (s1 − s2) ρS (s2)
])

=
2

θ2

∫ t

0

ds1

∫ s1

0

ds2Re
(

TrS

[
TrF

[
H†

effV (s1, s2)
†
HSV (s1, s2) |Ψ(s2; θ)⟩ ⟨Ψ(s2; θ)|

]])
=

2

θ2

∫ t

0

ds1

∫ s1

0

ds2Re
(

TrF,S

[
HS |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)|H†

effV (s1, s2)
†
])
, (B3)

where V (s1, s2) ≡ V (s1, s2; 1). By using Eq. (A4) and Eq. (A6), the trace term can be written as

TrF,S

[
HS |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)|H†

effV (s1, s2)
†
]

= TrF,S

[
(HS − ⟨HS⟩(s1)) |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)| (Heff − ⟨Heff⟩(s2))

† V (s1, s2)
†
]

+ ⟨HS⟩(s1)⟨Heff⟩(s2)∗. (B4)

Therefore, we have

Ks1 ̸=s2 ≤ 2

θ2

∫ t

0

ds1

∫ s1

0

ds2

∣∣∣TrF,S

[
∆HS(s1) |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)|∆Heff(s2)†V (s1, s2)

†
]∣∣∣

+
2

θ2

∫ t

0

ds1

∫ s1

0

ds2Re (⟨HS⟩(s1)⟨Heff⟩(s2)∗) , (B5)

where ∆F (s) ≡ F − ⟨F ⟩(s). The second term on the right-hand side can be written as

2

θ2

∫ t

0

ds1

∫ s1

0

ds2Re (⟨HS⟩(s1)⟨Heff⟩(s2)∗) =
2

θ2

∫ t

0

ds1

∫ s1

0

ds2⟨HS⟩(s1)⟨HS⟩(s2) =
1

θ2

(∫ t

0

ds⟨HS⟩(s)
)2

. (B6)

Regarding the first term on the right-hand side in Eq. (B5), by applying the Cauchy-Schwarz inequality, we obtain∣∣∣TrF,S

[
∆HS(s1) |Ψ(s1; θ)⟩ ⟨Ψ(s2; θ)|∆Heff(s2)†V (s1, s2)

†
]∣∣∣ =

∣∣∣〈Ψ(s2; θ)
∣∣∣∆Heff(s2)†V (s1, s2)

†
∆HS(s1)

∣∣∣Ψ(s1; θ)
〉∣∣∣

≤
√
⟨Ψ(s1; θ) |∆HS(s1)2 |Ψ(s1; θ)⟩

√
⟨Ψ(s2; θ) |∆Heff(s2)†∆Heff(s2) |Ψ(s2; θ)⟩ = σHS

(s1)σHeff
(s2). (B7)

Here, we use Eq. (A4) (unitarity of V) in the inequality and use Eq. (A6) in the final equality. By combining this
inequality with Eq. (B1), Eq. (B5) and Eq. (B6), we obtain

Ks1 ̸=s2 ≤ 2

θ2

∫ t

0

ds1σHS
(s1)

∫ s1

0

ds2σHeff
(s2) +

1

θ2

(∫ t

0

dsTrS [HSρS(s)]

)2

. (B8)

By combining Eq. (A9), Eq. (A12) and Eq. (A30) with this inequality, we obtain

B(t) ≤ B(t) ≡ A(t) + 8

∫ t

0

ds1σHS
(s1)

∫ s1

0

ds2σHeff
(s2). (B9)

From Eq. (B2), we obtain

σHeff
(s)2 =

〈
H2

S +
1

4

(∑
m

L†
mLm

)2

+
i

2

[∑
m

L†
mLm, HS

]〉
(s) − (⟨HS⟩(s))2 −

1

4

(〈∑
m

L†
mLm

〉
(s)

)2

. (B10)
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Applying the Robertson inequality 1/2 |⟨[F,G]⟩| ≤ σFσG, we obtain

σHeff
(s)2 ≤

∣∣∣∣∣12
〈[∑

m

L†
mLm, HS

]〉
(s)

∣∣∣∣∣+ σ2
HS

(s) +
1

4
σ2
L†L(s) ≤

(
σHS

(s) +
1

2
σL†L(s)

)2

, (B11)

where σL†L(s) denotes the standard deviation of the operator
∑

m L†
mLm. Substituting this inequality into Eq. (B9),

we obtain

B(t) ≤ A(t) + 4

(∫ t

0

dsσHS
(s)

)2

+ 4

∫ t

0

ds1σHS
(s1)

∫ s1

0

ds2σL†L(s2). (B12)

When the equality holds between the exact solution Eq. (20) and the upper bound Eq. (23), the first term of the
right-hand side in Eq. (B4) must be non-negative from Eq. (B5). Furthermore, by the equality condition of the
Cauchy-Schwarz inequality, it is necessary and sufficient for one of the following conditions to hold for 0 ≤ s2 ≤ s1 ≤ t
and a(s1, s2) ∈ [0,∞).

1.

∆HS(s1) |Ψ(s1; θ)⟩ = a(s1, s2)V (s1, s2) ∆Heff(s2) |Ψ(s2; θ)⟩ , (B13)

2.

V (s1, s2) ∆Heff(s2) |Ψ(s2; θ)⟩ = 0. (B14)

Appendix C: Specific case of exact representation

By letting Gm ≡ [HS , Lm] for 1 ≤ m ≤ NC and r ∈ R, we assume that

G†
mLm + L†

mGm = 2rHS . (C1)

This condition agrees with the closed quantum system and the classical limit. In this case, the exact solution of
Eq. (20) can be simplified as follows:

B(t) = A(t) +
8

r
Re

(∫ t

0

ds (exp (r(t− s)) − 1) TrS

[
H†

effHSρS (s)
])

− 4

(∫ t

0

dsTrS [HSρS(s)]

)2

. (C2)

Since [HS , L
†
m] = −G†

m, we have

HSL
†
mLm = L†

mHSLm −G†
mLm = L†

mLmHS + L†
mGm −G†

mLm. (C3)

Using this relation for the Kraus operators [Eqs. (5) and (6)] we have∑
m

Vm(ds)†HSVm(ds) = HS − 1

2

∑
m

(
L†
mGm −G†

mLm

)
ds+

∑
m

L†
mGmds+O(ds2) = (1 + rds)HS , (C4)

where we use Eq. (C1). Generalizing Eq. (C4), we obtain

ȞS(s) = exp(rs)HS . (C5)

Substituting this relation into Eq. (20), the second term yields

8

∫ t

0

ds1

∫ s1

0

ds2Re
(

exp (r(s1 − s2)) TrS

[
H†

effHSρS (s2)
])

= 8Re

(∫ t

0

ds2

∫ t

s2

ds1 exp (r(s1 − s2)) TrS

[
H†

effHSρS (s2)
])

=
8

r
Re

(∫ t

0

ds (exp (r(t− s)) − 1) TrS

[
H†

effHSρS (s)
])

. (C6)
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Appendix D: Derivation of Eq. (20) from Ref. [35]

As mentioned in the main text, our main result [Eq. (20)] can be derived from Ref. [35], which is elaborated in this
section. Reference [35] derived the following representation:

B(t) = A(t) + 4(I1 + I2) − 4

(∫ t

0

dsTrS [HSρS(s)]

)2

, (D1)

I1 ≡
∫ t

0

ds1

∫ s1

0

ds2TrS

[
K2 exp

(
L̂(s1 − s2)

)
K1ρS(s2)

]
, (D2)

I2 ≡
∫ t

0

ds1

∫ s1

0

ds2TrS

[
K1 exp

(
L̂(s1 − s2)

)
K2ρS(s2)

]
, (D3)

where •̂ denotes the vectorization of an operator [26], and K1 and K2 are the following superoperators:

K1• = −iHeff • +
1

2

∑
k

Lk • L†
k, (D4)

K2• = i •H†
eff +

1

2

∑
k

Lk • L†
k = (L −K1) • . (D5)

For Eq. (D4) and Eq. (D5), by using the cyclic property of the trace, we have

TrS [K1•] = −iTrS [HS•] , (D6)

TrS [K2•] = iTrS [HS•] . (D7)

By representing exp
(
L̂(s− u)

)
using the Kraus operators [Eqs. (5) and (6)] and applying the cyclic property of the

trace, we obtain

I1 = i

∫ t

0

ds1

∫ s1

0

ds2TrS
[
ȞS(s1 − s2)K1ρS(s2)

]
=

∫ t

0

ds1

∫ s1

0

ds2TrS
[
ȞS(s1 − s2)HeffρS(s2)

]
+
i

2

∫ t

0

ds1

∫ s1

0

ds2
∑
k

TrS

[
ȞS(s1 − s2)LkρS(s2)L†

k

]
. (D8)

where we use Eq. (D4). Similarly, we have

I2 =

∫ t

0

ds1

∫ s1

0

ds2TrS

[
ȞS(s1 − s2)ρS(s2)H†

eff

]
− i

2

∫ t

0

ds1

∫ s1

0

ds2
∑
k

TrS

[
ȞS(s1 − s2)LkρS(s2)L†

k

]
. (D9)

Since ȞS(s) is Hermite from Eq. (A24), it follows that TrS
[
ȞS(s1 − s2)HeffρS(s2)

]∗
= TrS

[
ȞS(s1 − s2)ρS(s2)H†

eff

]
.

Hence, we have

I1 + I2 = 2

∫ t

0

ds1

∫ s1

0

ds2Re
(

TrS

[
H†

effȞS (s1 − s2) ρS (s2)
])
. (D10)

Appendix E: Vectorization of exact solution

In this section, we provide another representation of the quantum dynamical activity B(τ) with a single integral
using vectorization.

Let ρ be the density operator represented as follows:

ρ =
∑
i,j

ρij |i⟩ ⟨j| . (E1)

Using Choi-Jamio lkowski isomorphism, ρ can be represented as

|ρ⟩⟩ ≡
∑
i,j

ρij |j⟩ ⊗ |i⟩ . (E2)
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Thus, it naturally follows that ⟨⟨ρ| ≡ |ρ⟩⟩†. By adopting this notation, we can redefine the inner product to represent
the Hilbert-Schmidt inner product as follows:

Tr
[
A†B

]
= ⟨⟨A | B⟩⟩. (E3)

Moreover, the following identity holds:

|ABC⟩⟩ = (C⊤ ⊗A)|B⟩⟩. (E4)

We assume that the matrix representation of the Lindblad superoperator is diagonalizable and assume that the steady
state ρssS is unique. We define the left and right eigenvector as

L̂|xj⟩⟩ = λj |xj⟩⟩, (E5)

⟨⟨yj |L̂ = ⟨⟨yj |λj . (E6)

These satisfy the following conditions:

⟨⟨yi|xj⟩⟩ = δij . (E7)

For λ0 = 0, we have ⟨⟨y0| = ⟨⟨I| and |x0⟩⟩ = |ρssS ⟩⟩. Here, I is the identity operator in the vectorized space. The
vectorized Lindblad superoperator is decomposed as follows:

L̂ =
∑
j ̸=0

λj |xj⟩⟩⟨⟨yj |. (E8)

The matrix exponential can be written as

exp
(
L̂t
)

= |ρssS ⟩⟩⟨⟨I| +
∑
j ̸=0

exp(λjt)|xj⟩⟩⟨⟨yj |. (E9)

We represent the second term of the right-hand side of Eq. (20) using vectorization. Using the Hermitian property of
ȞS(s) and the cyclic property of the trace, we can write the second term as

8

∫ t

0

ds1

∫ s1

0

ds2Re
(
TrS

[
ȞS (s1 − s2)HeffρS (s2)

])
. (E10)

Using the cyclic property of the trace and applying the Kraus operators to HeffρS(s2), we obtain

8

∫ t

0

ds1

∫ s1

0

ds2Re⟨⟨I|ĤS exp
(
L̂(s1 − s2)

)
Ĥeff |ρS(s2⟩⟩. (E11)

Substituting Eq. (E9) into this equation and changing the order of the integral, we have

8

∫ t

0

ds2

∫ t

s2

ds1Re⟨⟨I|ĤS exp
(
L̂(s1 − s2)

)
Ĥeff |ρS(s2⟩⟩

= 8TrS [HSρ
ss
S ]

∫ t

0

ds(t− s)TrS [HSρS(s)] + 8

∫ t

0

ds2

∫ t

s2

ds1Re⟨⟨I|ĤS

∑
j ̸=0

exp (λj(s1 − s2)) |xj⟩⟩⟨⟨yj |Ĥeff |ρS(s2⟩⟩

= 8TrS [HSρ
ss
S ]

∫ t

0

ds(t− s)TrS [HSρS(s)] + 8Re

∫ t

0

ds⟨⟨I|ĤS

∑
j ̸=0

1

λj
(exp (λj (t− s)) − 1) |xj⟩⟩⟨⟨yj |Ĥeff |ρS(s)⟩⟩

= 8TrS [HSρ
ss
S ]

∫ t

0

ds(t− s)TrS [HSρS(s)] + 8Re

∫ t

0

ds⟨⟨I|ĤSL̂D
(

exp
(
L̂(t− s)

)
− 1
)
Ĥeff |ρS(s)⟩⟩, (E12)

where

L̂D ≡
∑
j ̸=0

1

λj
|xj⟩⟩⟨⟨yj |. (E13)
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L̂D is the Drazin pseudo-inverse, which satisfies

L̂DL̂ = L̂L̂D = P, (E14)

L̂D = PL̂+P, (E15)

where L̂+ denotes the Moore-Penrose pseudo-inverse, and

P ≡ I− |ρssS ⟩⟩⟨⟨I| =
∑
j ̸=0

|xj⟩⟩⟨⟨yj |. (E16)

By combining Eq. (20) and Eq. (E12), we obtain

B(t) = A(t) + 8TrS [HSρ
ss
S ]

∫ t

0

ds(t− s)TrS [HSρS(s)] + 8Re

∫ t

0

ds⟨⟨I|ĤSL̂D
(

exp
(
L̂(t− s)

)
− 1
)
Ĥeff |ρS(s)⟩⟩

− 4

(∫ t

0

dsTrS [HSρS(s)]

)2

. (E17)

Appendix F: Approximations of exact solution

We provide two approximations when t is either small or large. Let ν ≡ minj>0 |Reλj | and let

γ(t) ≡ max

1

t

∑
j ̸=0

1

|λj |
, exp(−νt)

 . (F1)

We first provide an approximation of the quantum dynamical activity when γ(t) ≪ 1. From I = |ρssS ⟩⟩⟨⟨I| +∑
j ̸=0 |xj⟩⟩⟨⟨yj |, we have

|ρS(t)⟩⟩ = |ρssS ⟩⟩ +
∑
j ̸=0

exp(tλj)|xj⟩⟩⟨⟨yj |ρS(0)⟩⟩. (F2)

From Eq. (F2), the second term in Eq. (E12) can be written as

− 8tRe⟨⟨I|ĤSL̂DĤeff |ρssS ⟩⟩ + 8Re⟨⟨I|ĤS

(
L̂D
)2 (

1 − exp
(
L̂t
))

Ĥeff |ρss⟩⟩

+ 8Re

∫ t

0

ds
∑
j,k ̸=0

1

λj
(exp (λjt+ (λk − λj)s) − exp(λks)) ⟨⟨I|ĤS |xj⟩⟩⟨⟨yj |Ĥeff |xk⟩⟩⟨⟨yk|ρS(0)⟩⟩. (F3)

By integrating the third term in Eq. (F3), we obtain

8Re
∑
j ̸=0

(
t exp(λjt)

λj
− 1

λ2j
(exp(λJ t) − 1)

)
⟨⟨I|ĤS |xj⟩⟩⟨⟨yj |Ĥeff |xj⟩⟩⟨⟨yj |ρS(0)⟩⟩

+ 8Re
∑

j ̸=k; j,k ̸=0

(
1

λj(λk − λj)
(exp(λkt) − exp(λjt)) −

1

λjλk
(exp(λkt) − 1)

)
⟨⟨I|ĤS |xj⟩⟩⟨⟨yj |Ĥeff |xk⟩⟩⟨⟨yk|ρS(0)⟩⟩.

(F4)

By combining Eq. (F3) and Eq. (F4), the second term in Eq. (E12) is expressed as

−8tRe⟨⟨I|ĤSL̂DĤeff |ρssS ⟩⟩ + tO(γ(t)). (F5)

Hence, we have

B(t) = A(t) + tZ + 8TrS [HSρ
ss
S ]

∫ t

0

ds(t− s)TrS [HSρS(s)] − 4

(∫ t

0

dsTrS [HSρS(s)]

)2

+O(tγ(t)), (F6)
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where

Z ≡ −8tRe⟨⟨I|ĤSL̂DĤeff |ρssS ⟩⟩. (F7)

Note that the degree of 8TrS [HSρ
ss
S ]
∫ t

0
ds(t− s)TrS [HSρS(s)] − 4

(∫ t

0
dsTrS [HSρS(s)]

)2
is at most one with respect

to t from Eq. (F2). When ρS(0) = ρssS , the equation can be simplified as

B(t) = A(t) + tZ +O(tγ(t)). (F8)

Next, we provide an approximation when we can ignore O(t3). From exp(L̂t) − 1 ∼ L̂t and Eq. (E14), the equation
Eq. (E12) yields

8TrS [HSρ
ss
S ]

∫ t

0

ds(t− s)TrS [HSρS(s)] + 8Re

∫ t

0

ds(t− s)⟨⟨I|ĤSPĤeff |ρS(s)⟩⟩ = 8Re

∫ t

0

ds(t− s)⟨⟨I|ĤSĤeff |ρS(s)⟩⟩

= 8Re

∫ t

0

ds(t− s)TrS [HSHeffρS(s)] . (F9)

By substituting this equation into Eq. (E17), we obtain

B(t) = A(t) + 8Re

∫ t

0

ds(t− s)TrS [HSHeffρS(s)] − 4

(∫ t

0

dsTrS [HSρS(s)]

)2

+O(t3). (F10)

Furthermore, from ρS(t) = ρS(0) +O(t), we obtain

B(t) = A(t) + 4t2ReTrS [∆HS∆HeffρS(0)] +O(t3). (F11)

Since the second term includes 4t2σ2
HS

(0), this equation corresponds to the upper bound Eq. (23).

Appendix G: Asymptotic expression of B(τ)

In Ref. [20], the quantum dynamical activity B(τ) was evaluated within the limit of τ → ∞. In this section, we
review its representation.

Suppose that the Lindblad equation has a steady-state solution. Using vectorization, the quantum dynamical
activity for τ → ∞ can be represented as

B∞(τ) ≡ τ(a + bc) = τ (a + 4Z1 + 4Z2) , (G1)

where Z1 and Z2 are defined as

Z1 = −⟨⟨I|K̂1(I − |ρssS ⟩⟩⟨⟨I|)L̂+(I − |ρssS ⟩⟩⟨⟨I|)K̂2|ρssS ⟩⟩, (G2)

Z2 = −⟨⟨I|K̂2(I − |ρssS ⟩⟩⟨⟨I|)L̂+(I − |ρssS ⟩⟩⟨⟨I|)K̂1|ρssS ⟩⟩. (G3)

Here, + denotes the Moore-Penrose pseudoinverse, and I is the identity operator in the vectorized space. Using the
Drazin inverse L̂D given by Eq. (E13), we obtain

Z1 = −⟨⟨I|K̂1L̂DK̂2|ρssS ⟩⟩, (G4)

Z2 = −⟨⟨I|K̂2L̂DK̂1|ρssS ⟩⟩. (G5)

1. Equivalence of Eq. (F8) and Eq. (G1)

We show that Eq. (F8) and Eq. (G1) are equivalent. From Eq. (D4), Eq. (D5), and LρssS = 0, we have

K1ρ
ss
S = − i

2
Heffρ

ss
S − i

2
ρssSH

†
eff , (G6)

K2ρ
ss
S = −K1ρ

ss
S . (G7)
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From Eq. (D6), we obtain

⟨⟨I|K̂1 • |ρssS ⟩⟩ = TrS [K1 • ρssS ] = −i⟨⟨I|ĤS • |ρssS ⟩⟩. (G8)

By combining these relations with Eq. (G4), we obtain

Z1 = −1

2
⟨⟨I|ĤSL̂DĤeff |ρssS ⟩⟩ −

1

2
⟨⟨I|ĤSL̂D|ρssSH

†
eff⟩⟩. (G9)

From Eq. (D7) and Eq. (G7), we obtain

Z2 = Z1. (G10)

From L̂D =
∫∞
0
dt exp

(
L̂t
)

and the cyclic property of the trace, and by acting exp
(
L̂t
)

to HS , we obtain

(
⟨⟨I|ĤSL̂DĤeff |ρssS ⟩⟩

)∗
=

∫ ∞

0

dtTrS [ȞS(t)Heffρ
ss
S ]∗ =

∫ ∞

0

dtTrS [ȞS(t)ρssSH
†
eff ] = ⟨⟨I|ĤSL̂D|ρssSH

†
eff⟩⟩, (G11)

where we use the Hermitian of ȞS(t). Therefore, we obtain Z = 4Z1 + 4Z2.
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