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Experiments often probe observables that correspond to low-dimensional projections of high-
dimensional dynamics. In such situations distinct microscopic configurations become lumped into
the same observable state. It is well known that correlations between the observable and the hidden
degrees of freedom give rise to memory effects. However, how and under which conditions these
correlations emerge remains poorly understood. Here we shed light on two fundamentally different
scenarios of the emergence of memory in minimal stationary systems, where observed and hidden
degrees of freedom evolve either cooperatively or are coupled by a hidden non-equilibrium current.
In the reversible setting strongest memory manifests when the time-scales of hidden and observed
dynamics overlap, whereas, strikingly, in the driven setting maximal memory emerges under a clear
time-scale separation. Our results hint at the possibility of fundamental differences in the way
memory emerges in equilibrium versus driven systems that may be utilized as a “diagnostic” of the
underlying hidden transport mechanism.

Observables coupled to hidden degrees of freedom that
do not relax sufficiently fast [1] or selected reaction coor-
dinates that do not locally equilibrate in meso-states [2]
generically display memory. In fact, this holds for most
high-dimensional dynamics probed on a coarse-grained
level [3–14]. Tremendous progress has been made over
the years in describing and understanding kinetic aspects
of non-Markovian dynamics [1, 12, 15–37]. More recently,
coarse-grained, partially observed dynamics have become
of great interest from the point of view of thermodynamic
inference [2, 37–52]. Namely, while efficient methods ex-
ist to detect [53–55] and quantify [55] the existence of
memory, it conversely turns out to be quite challenging
to quantify [2, 42, 44, 56] or even infer [37, 50, 51, 57] irre-
versibility from lower-dimensional, projected dynamics.
Thus, understanding potential differences in the emer-
gence of memory in equilibrium and non-equilibrium sys-
tems is a difficult task.

Considering in particular ergodic dynamics in the sense
that the probability distribution to be found in a given
microscopic state at long times relaxes to a unique sta-
tionary, equilibrium or non-equilibrium, steady state
from any initial condition, the extent of memory is neces-
sarily finite and is more prominent if the hidden degrees
of freedom are slow [1, 2, 58]. Yet, even in this “well be-
haved”, thermodynamically consistent [59] setting quite
little is known about the possible ways in which the dy-
namics of observables can become correlated with that
of hidden degrees of freedom on different time scales. A
particularly intriguing question is whether there are any
characteristic differences between how memory emerges
in reversible versus irreversible, driven systems when ob-
served dynamics is much faster than the hidden one.

Addressing this problem in full generality is a daunting
task. Here we focus on the minimal “cooperative” setting
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FIG. 1. (a) Schematics of the full Markov network for the
respective models. The upper green states are lumped to
the observed “ON” state and the lower orange ones to the
observed “OFF” state. In order to separate the time scale
of horizontal and vertical dynamics, we choose the rates (in
arbitrary units) a = 0.5 and b = 25 to make vertical process
always much faster than horizontal one. In the driven model
(see Fig. 2) we set γ1 > 1 and γ2 = 1, whereas in the reversible
“allosteric” model (Fig. 3) we chose γ1 = γ2 ≡ γ ≥ 1. A
trajectory of the full dynamics (blue) and its corresponding
projection (gray) are shown in panel (b).

[60–63], where the microscopic dynamics is a Markov pro-
cess on a planar network and we observe only the vertical
coordinate whereas the horizontal transitions are hidden
(see Fig. 1). This particular setting is important for un-
derstanding “active secondary transport”—transporter
proteins exploiting the energy stored in transmembrane
gradient of one type of molecules to transport another
type against their gradients [64–66]. Moreover, it is also
relevant as the physical basis of the sensitivity of the
flagellar motor in E. coli in sensing concentrations of its
regulator [60–62, 67], where two fundamentally different
explanations were proposed to explain the “ultrasensi-
tivity” of the motor’s response, an equilibrium allosteric
and a dissipative non-equilibrium model [61, 67, 68].
We are not interested in the biophysical implications of

the model. Instead, we use the above two distinct settings
merely as a minimal model of non-Markovian 2-state dy-
namics, where we can “turn on” memory in a controlled
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manner via an equilibrium versus non-equilibrium mech-
anism. We consider the scenario, where the observed dy-
namics is faster than the hidden (see Fig. 1a) but there
is not necessarily a large time-scale separation present.
Interestingly, in the driven setting we only change the
fastest time scales, whereas in the reversible cooperative
model we alter all time scales. In both cases we find a
maximal capacity for memory, i.e. the maximal magni-
tude of memory saturates at a finite coupling and non-
equilibrium driving, respectively. Interestingly, in the re-
versible setting the memory manifests strongest when the

time-scale separation between hidden and observed tran-
sition becomes partially lifted and the hidden and observ-
able time-scales overlap, whereas in the driven setting
maximal memory occurs in the presence of a time-scale
separation. Our results provide deeper insight into the
emergence of memory in the distinct situations when ob-
served and hidden dynamics either evolve cooperatively
or become coupled by a hidden non-equilibrium current.
Setup.—We consider a 6-state continuous-time Markov

process (see Fig. 1a) with generator L, whose elements
Ln,m are transition rates between states m→ n given by

L =


−bγ1 − 2a b a 0 0 0

bγ1 −b− 2a 0 aγ2 0 0
2a 0 −b− 2a b 2a 0
0 2a b −b− a− aγ2 0 2aγ2
0 0 a 0 −b− 2a bγ1
0 0 0 a b −bγ1 − 2aγ2

, (1)

where we choose a = 1/2 and b = 25 such that in the
“baseline” model horizontal transitions are slower than
vertical ones, i.e. the hidden dynamics relax slower than
the observable ON⇄OFF transitions. We adopt the
Dirac bra-ket notation and denote the transition prob-
ability from microscopic state i to microscopic state j in
time t as G(j, t|i) ≡ ⟨j|eLt|i⟩ and the stationary proba-
bility of state j as Ps(j) = limt→∞G(j, t|i). In the base-
line model with γ1 = γ2 = 1 the dynamics is reversible
and the ON/OFF states are equi-probable in the steady
state. The parameters γ1 and γ2 are acceleration factors
when they are larger than 1. In the cooperative allosteric
regime with γ1 = γ2 ≡ γ > 1 the dynamics obeys detailed
balance, i.e. Ps(i)Lj,i = Ps(j)Lj,i, ∀i, j. Conversely, in
the driven model we set γ1 > 1, γ2 = 1; here detailed bal-
ance is violated, i.e. ∃i, j for which Ps(i)Lj,i ̸= Ps(j)Lj,i.
(that is, the model is irreversible yet thermodynamically
consistent [59]).

It turns out that L defined this way is diagonaliz-
able, i.e. we can find a bi-orthonormal basis {⟨ψL

k |, |ψR
k ⟩}

of left ⟨ψL
k | and right |ψR

k ⟩ eigenvectors with eigenvalue
−λk and k = 0, . . . , 5 and ⟨ψL

k |ψR
l ⟩ = δkl. Thus, we

have L =
∑

k −λk|ψR
k ⟩⟨ψL

k | and in turn we can ex-

pand G(j, t|i) =
∑5

k=0⟨j|ψR
k ⟩⟨ψL

k |i⟩e−λkt. In this nota-
tion the steady-state probability of state i is given by
Ps(i) = ⟨i|ψR

0 ⟩.
The eigenvalues of the baseline model are λ0 =

0, λ1 = 2a, λ2 = 4a, λ3 = 2b, λ4 = 2(a + b), λ5 =
2(2a + b). We can also determine the eigenspectrum
analytically for the driven model, which has eigenval-
ues λγ1

0 = 0, λγ1

1 = 2a, λγ1

2 = 4a, λγ1

3 = 1
2 [4a + (γ1 +

3)b −
√
16a2 + (γ1 − 1)2b2], λγ1

4 = 2a + (γ1 + 1)b, λγ1

5 =
1
2 [4a + (γ1 + 3)b +

√
16a2 + (γ1 − 1)2b2]. The reversible

allosteric model (γ > 1) cannot be diagonalized analyti-
cally and we therefore provide numerical results instead.

We assume that the full system is prepared in a steady
state Ps(j) and only vertical ON⇄OFF transitions are
observed with observable sets ON = {2, 4, 6} and OFF =
{1, 3, 5}. We determine the non-Markovian transition

probability of the observed process k̂t, QPs
(n̂, t|m̂) with

m̂, n̂ ∈ {ON,OFF} as [1]

QPs
(n̂, t|m̂) ≡

∑6
j=1 1n̂[j]

∑6
i=1 1m̂[i]G(j, t|i)Ps(i)∑6

i=1 1m̂[i]Ps(i)
,

(2)
where 1Ω is the indicator function of the set Ω. The
non-Markovian transition probability between two fixed
observed states m̂ → n̂ as well as the observable return
probability m̂ → m̂ depend on the preparation of the
full system [69]. Moreover, in spite of the full system
being prepared in the stationary state Ps, by specifying
the initial observed state (here either “ON” or “OFF”)
we “quench” the full system out of the steady state by
conditioning on the state of the observable [1, 69]. With-
out loss of generality we will focus on the scenario where

the observable is initially in the ON state, i.e. k̂0 = ON.
To quantify the magnitude of memory in the pro-

jected dynamics, we follow [55] and construct the aux-
iliary Chapman-Kolmogorov (CK) transition density

QCK(n̂, t1 + t2|m̂) ≡
∑
k̂

QPs(n̂, t2|k̂)QPs(k̂, t1|m̂). (3)

Note that for a non-Markovian process QCK depends on
both t1 and t2. The Chapman-Kolmogorov construc-
tion QCK(n̂, t1 + t2|m̂) corresponds to a fictitious dy-
namics where we force at time t1 all hidden degrees
of freedom to their stationary distribution and thereby
erase all memory of their initial condition. When the
observed ON⇄OFF dynamics is Markovian we have
QCK(n̂, t1 + t2|m̂) = QPs

(n̂, t1 + t2|m̂), ∀t1, t2 ≥ 0 but
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the converse is not true in general [1, 55]. As soon as
QCK(n̂, t1 + t2|m̂) ̸= QPs

(n̂, t1 + t2|m̂) for some n̂, the
observable at time t1 + t2 “remembers” the state of hid-
den degrees of freedom at time t1.
We use the Kullback-Leibler divergence Dk[p||q] ≡∑
k p(k) ln[p(k)/q(k)] ≥ 0 to quantify the difference be-

tween QPs
and QCK [55]

DCK
m̂ (t1, t2) ≡ Dn̂[QPs

(n̂, t1 + t2|m̂)||QCK(n̂, t1 + t2|m̂)],
(4)

where the superscript k in Dk[p||q] denotes the indepen-
dent dummy variable of the measures p and q. In the
absence of memory DCK

m̂ (t1, t2) = 0, ∀t1, t2. Conversely,
as we are interested in ergodic dynamics prepared in a
steady state, we have thatDCK

m̂ → 0 whenever t1+t2 → 0
or t1 + t2 → ∞ [55]. Therefore, by the positivity of DCK

m̂
we will have at least one maximum in the half-space to
t1, t2 > 0. We quantify the magnitude of memory in
terms of the global maximum on t1, t2 > 0

DCK
max(m̂) ≡ sup

t1,t2>0
DCK

m̂ (t1, t2). (5)

In the baseline setting (γ1 = γ2 = 1) the observed and
hidden dynamics are decoupled (i.e. all microscopic path-
ways are equivalent). As a result, the observed dynam-
ics is Markovian and DCK

max(m̂) = 0. We are interested
in the dependence of DCK

max(m̂) as we couple the vertical
and horizontal dynamics cooperatively or by a dissipative
current, that is, on γ1 and γ in the driven and cooperative
model, respectively.

Driven setting.—We first consider the driven scenario
with γ1 > 1 and γ2 = 1. Instead of γ1 we use the steady-
state entropy production rate of the microscopic dynam-
ics Ṡ(γ1) =

∑
i,j Ps(j)Li,j ln[Ps(j)Li,j/(Ps(i)Lj,i)] to in-

dicate how far the system is driven out of equilibrium
and we change γ in equidistant units of the chemical po-
tential ln(γ1/γ2) = ln γ1 that drives the system out of
equilibrium, i.e. γ increases exponentially. We first pro-
vide some intuition about the microscopic dynamics.

Since λ1,2 are independent of γ1 and because λ3 ≃
2(a + b) for b ≫ a and γ1 ≥ 2, by increasing γ1 we
only alter λ4,5 (see Fig. 2a and Appendix B). That is,
we are essentially only tuning the fastest time scales,
whereas the slow time scales remain unaffected by the
driving. We also alter the stationary distribution Ps(m̂).
Because b ≫ a the system (even without driving) tends
to first explore vertical paths to reach a “quasi-steady
state” between observed ON-OFF states within a time
scale of approximately ∼ 1/b = 0.04 (see Fig. 2b). After-
wards, the probability redistributes horizontally within
observable states. However, because the transition rates
from state 1 to 2 and from 6 to 5 are accelerated by a
factor of γ1, transitions 2 → 1 and 6 → 5 will be in-
stantly followed by the reverse transitions 1 → 2 and
5 → 6. Thus, the probability distribution dominantly
redistributes along the microscopic path 2 ↔ 4 ↔ 3 ↔ 5,
and finally reaches a steady state “skewed” in the hidden
direction (see Fig. 2b).
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FIG. 2. Driven setting (γ1 > 1, γ2 = 1): (a) Characteristic
time-scales 1/λγ1

i , i ≥ 1 as a function of γ1 relative to the
baseline relaxation time 1/λ1

1. (b) Left: Microscopic tran-
sition probability G(j, t|ON) for γ1 = 22 at four different
times. Right: Corresponding observed transition probabil-
ity QPs(n̂, t|ON). (c) Relative entropy DCK

ON(t1, t2) in Eq. (4)
for γ1 = 24; The triangle depicts DCK

max(ON). (d) Magnitude
of memory DCK

max(ON) in Eq. (5) as a function of driving

Ṡ(γ1); the blue triangle denotes the position of maximum in
(c).

We now address the magnitude of the emerging mem-
ory via DCK

max in Eq. (5). We find that DCK
max monoton-

ically increases with γ1 (note that Ṡ is a monotonically
increasing function of γ1), and eventually at ≈ 0.02324,
where the location of the supremum approaches t1 =
t2 ≈ 0.08 as γ1 → ∞. Note that the maximal memory
is attained on a time scale that is longer than the local
vertical equilibration time ≈ 1/b = 0.04. The satura-
tion may be explained by noticing that as γ1 → ∞, only
states 2, 3, 4, 5 have a non-zero probability and acceler-
ated paths are almost never traversed. As a result, DCK

max

no longer changes with γ1.

Note that in this driven setting vertical transitions are
always much faster than horizontal ones, which maintains
a separation of time scales between observed and hidden
dynamics. The memory we observe is thus “only” a man-
ifestation of the relaxation of hidden degrees of freedom.

Reversible cooperative setting.—We now inspect the re-
versible scenario where γ1 = γ2 ≡ γ ≥ 1. As before, we
first give some insight into the microscopic dynamics. As
time evolves, in the first stage the system initially popu-
lates microscopic states 2 and 4, when γ is large especially
state 2. The accelerated transition paths do not instantly
play a role. Thus, similar to the driven model, the sys-
tem tends to first explore vertical paths (paths 2 → 1
and 4 → 3) on a time scale of 1/b ∼ 0.04. In the sec-
ond stage, also similar to the driven model, transitions
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1. Inset: λ
1
1/λ

γ
1 on a linear

scale. (b) Left: Microscopic transition probability G(j, t|ON)
for γ = 22 at four different times. Right: Correspond-
ing observed transition probability QPs(n̂, t|ON). (c) Rela-
tive entropy DCK

ON(t1, t2) in Eq. (4) for γ = 24 as a function
of t1, t2; The triangle denotes DCK

max(ON). (d) Magnitude of
memory DCK

max(ON) in Eq. (5) as a function of γ.

2 → 1 will instantly go back to state 2. During this stage,
the probability redistributes in the horizontal direction.
However, since the transition rates inside the ON state
(L2,4, L4,6) are also accelerated by a factor of γ, the time
scale of the horizontal redistribution of probability is not
necessarily larger than that of vertical dynamics. Here,
the two main frequently visited vertical paths are 2 → 1
and 4 → 3.
Note that when we increase γ in this reversible setting,

such that aγ > b, part of the horizontal transition rates
exceeds vertical ones, i.e. the time scales of observable
dynamics and hidden dynamics overlap and there is no
time-scale separation. This overlapping (and “mixing”)
of hidden and observable time scales may contribute to
the appearance of two shoulders in Fig. 3d at γ ≈ 38
and γ ≈ 443. The shoulders are a result of the shift in
position of the peak ofDCK

m̂ (t1, t2) (for details see Fig. A1
in the Appendix A). As γ tends to become very large,
DCK

max saturates to ≈ 0.08471, and the location of peak
approaches t1 = t2 ≈ 0.13.

Conclusion.—In this Letter we addressed the emer-
gence of memory in a minimal setting, where the mi-
croscopic dynamics corresponds to a Markov process
on a planar network and we observe only the vertical
ON⇄OFF dynamics, whereby the horizontal dynamics
are hidden. Our aim was to gain insight into how correla-
tions between hidden and observed dynamics emerge, in
particular if and how the nature of these correlations de-

pends on whether the microscopic dynamics is reversible
(i.e. obeys detailed balance) or instead is driven. In the
former scenario, the observed and hidden degrees of free-
dom are coupled cooperatively, whereas in the latter sce-
nario the coupling emerges due to a non-equilibrium cur-
rent. We focused on quantifying the magnitude of mem-
ory while tuning cooperativity or irreversible driving.
Many features were found to be similar in both setting.
However, in the reversible setting the strongest memory
was found in the expected situation, when the time-scales
of hidden and observed dynamics overlap. Conversely, in
the driven setting maximal memory is reached under a
clear time-scale separation. Our work therefore unrav-
els qualitative differences in the way memory can emerge
in equilibrium versus driven systems. While we focused
on a simple model, our findings pave the way for more
systematic studies. From a practical, “diagnostic” per-
spective, our results imply the possibility to gain insight
about the dynamic coupling underlying active secondary
transport [64–66] from observations of memory in the
transmembrane transport of either species.
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Appendix A: Peak position of DCK in the reversible
setting.— Let (t∗1, t

∗
2) ≡ argmaxt1,t2D

CK
m̂ (t1, t2) be the

values of t1 and t2 when DCK
ON reaches its maximum

at a given γ in the reversible cooperative scenario (see
Fig. 3c). As stated in the main text, the two shoulders
in Fig. 3d are a result of discontinuities in the shift of
peak position. To visualize this, we show in Fig. A1 the
dependence of the peak position on γ. Note that GCK in
Eq. (3) is a symmetric function of t1 and t2, so the peak
of DCK

ON always occurs at t∗1 = t∗2.

100 101 102 103 104

10−3

10−2

10−1

γ

t∗ i

t∗1
t∗2

FIG. A1. Dependence of the peak position of DCK
ON, (t

∗
1, t

∗
2), on

the cooperativity parameter γ in the reversible model. Note
the two discontinuities.

Appendix B: Table of characteristic time-scales.— Ta-
ble B1 lists a part of the characteristic time-scales under
the driven and reversible settings shown in Figs. 2a and
3a, respectively.
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TABLE B1. Characteristic time-scales relative to the baseline relaxation time in driven (λ1
1/λ

γ1
k ) and reversible (λ1

1/λ
γ
k) settings.

Baseline Driven (γ1 > 1, γ2 = 1) Reversible (γ1 = γ2 = γ)
Index k γ1 = γ2 = 1 γ1 = 24 γ1 = 28 γ = 24 γ = 28

1 1 1 1 0.578 0.519
2 0.5 0.5 0.5 0.181 0.0465
3 0.02 0.0196 0.0196 0.0182 6.29× 10−3

4 0.0196 2.35× 10−3 1.56× 10−4 2.35× 10−3 1.56× 10−4

5 0.0192 2.35× 10−3 1.56× 10−4 2.27× 10−3 1.50× 10−4
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