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Figure 1: Our work DAE-Net co-segments a collection of 3D shapes into fine-grained, consistent parts. (a) The network learns
a set of part templates shared by all shapes in the collection. (b) For each shape, DAE-Net selects the required parts and
assembles them via affine transforms. (c) Each transformed part is further refined through constrained deformation. (d) The
deformed parts are finally mapped to the input shapes to obtain the shape co-segmentation. Our network is trained with a
shape reconstruction loss and several regularization losses, without any part supervision.

ABSTRACT
We present an unsupervised 3D shape co-segmentation method
which learns a set of deformable part templates from a shape collec-
tion. To accommodate structural variations in the collection, our
network composes each shape by a selected subset of template parts
which are affine-transformed. To maximize the expressive power of
the part templates, we introduce a per-part deformation network
to enable the modeling of diverse parts with substantial geometry
variations, while imposing constraints on the deformation capac-
ity to ensure fidelity to the originally represented parts. We also
propose a training scheme to effectively overcome local minima.
Architecturally, our network is a branched autoencoder , with a CNN
encoder taking a voxel shape as input and producing per-part trans-
formation matrices, latent codes, and part existence scores, and the
decoder outputting point occupancies to define the reconstruction
loss. Our network, coined DAE-Net for Deforming Auto-Encoder,

©Authors | ACM 2024. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive version of record was published in
SIGGRAPH Conference Papers ’24, https://doi.org/10.1145/3641519.3657528.

can achieve unsupervised 3D shape co-segmentation that yields
fine-grained, compact, and meaningful parts that are consistent
across diverse shapes. We conduct extensive experiments on the
ShapeNet Part dataset, DFAUST, and an animal subset of Objaverse
to show superior performance over prior methods. Code and data
are available at https://github.com/czq142857/DAE-Net.

CCS CONCEPTS
• Computing methodologies→ Shape analysis.
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1 INTRODUCTION
Co-analysis is a well-established paradigm for unsupervised learn-
ing over a data collection sharing some commonality, e.g., they
all belong to the same category [Mitra et al. 2013; Xu et al. 2016].
The central problem of co-analyzing a 3D shape collection is shape
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Figure 2: Network architecture of DAE-Net. Our network consists of 𝑁 branches representing 𝑁 parts of a 3D shape. To
reconstruct part 𝑖, the query point coordinates in world frame are first transformed into the local frame of the part using an
affine matrix that is predicted by a shape encoder network, a CNN. The transformed local coordinates are further deformed by
a deformation MLP D𝑖 conditioned on a latent code, that is both shape- and part-specific and also produced by the CNN, to
refine the part details. Finally, the deformed local coordinates are fed into a part template MLP G𝑖 to produce the occupancy of
the query point. The occupancy is multiplied by the predicted part existence score from the CNN, so that the occupancy is set
to zero if the part does not exist in the shape. We sum the occupancies from all 𝑁 parts to obtain the occupancy of the query
point on the entire shape, which is used to compute the reconstruction loss.

co-segmentation1, whose goal is to learn a consistent segmentation
of all the shapes in the collection [Chen et al. 2019; Golovinskiy and
Funkhouser 2009a; Huang and Guibas 2013; Paschalidou et al. 2019;
Sidi et al. 2011; Tulsiani et al. 2017; Yang et al. 2021; Zhu et al. 2020].
On top of a structural understanding per shape, a co-segmentation
induces part correspondences across the collection to facilitate a
variety of downstream tasks including attribute and knowledge
transfer, shape editing or co-editing with part control, and genera-
tive modeling of shape structures [Chaudhuri et al. 2020].

The most difficult challenge to shape co-segmentation arises
when there are significant structural and geometric variations
across the shape collection; see last row of Figure 1. Insisting on a
single template for part organization, even a hierarchical one [van
Kaick et al. 2013], would impose too much structural rigidity. As
a result, the learned template is necessarily coarse to fulfill the
consistency requirement across the whole collection. On the flip
side, abstraction-based methods using predefined primitives such as
cuboids or superquadrics place rigidity on the modeling of part ge-
ometries, often resulting in over-segmentation and less meaningful
correspondences between the fragmented parts.

In this work, we present an unsupervised shape co-segmentation
method which learns a set of deformable part templates from a

1It is worth distinguishing 3D shape co-segmentation from object co-segmentation
over an image collection, e.g., [Chen et al. 2012; Vicente et al. 2011]. The latter is a
special case of image segmentation with the goal of jointly segmenting or detecting
semantically similar objects out of multiple images or video frames.

collection of 3D shapes belonging to the same category. As shown
in Figure 1, each learned part template (top row) models a set of
corresponding parts in the shape collection. Our network is trained
to transform, via affine transformations, and then deform a selected
subset of the template parts to best reconstruct each shape in the
collection, without any part annotations as supervision.

The overall architecture of our network, as depicted in Figure 2,
is that of an 𝑁 -branch autoencoder, with 𝑁 being an upper bound
on the number of template parts for the shape category. A CNN
encoder takes a voxelized shape as input and produces the affine
matrices, part latent codes (to condition the deforming MLPs), and
part existence scores as a means to select among the part template
MLPs to reconstruct the input shape. The part templates are mod-
eled as neural implicit functions, with the decoder outputting point
occupancies to define the reconstruction loss.

Our network is coined DAE-Net for Deforming Auto-Encoders.
The key idea behind our approach arises from the stipulation that
corresponding parts in different shapes should have approximately
the same shape (or form). This is inspired by the well-known design
principle, “form follows function,” while part correspondence is
ultimately about functional correspondence. On the technical front,
the design of our template learning has been inspired by Trans-
forming Auto-encoders (TAE) [Hinton et al. 2011] for learning the
first level of Capsule networks. Like TAE, our work represents a 3D
shape via affine-transformed parts selected from a group of learned
part templates, to accommodate structural variations and produce
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a fine-grained co-segmentation. However, the limited expressive
power of affine transformations is not sufficient for faithfully rep-
resenting parts with substantial geometric variations. Our per-part
deformation alleviates such part modeling rigidity to learn diverse
parts, while imposing constraints on the deformation capacity to
ensure fidelity to the originally represented parts.

In addition, we propose a training scheme to effectively overcome
local minima encountered during training. While BAE-Net, RIM-
Net, and our method are all built on the branched auto-encoder
structure and may suffer from local minima, only our method can
adopt the proposed training scheme to overcome this issue. This is
because the training scheme includes re-initializing certain auto-
encoder branches, which is trivial in our method as it uses different
networks to represent different parts (branches). However, it is
non-trivial for the other two works since they produce all branches
by the same MLP or require complex hierarchical training.

Through extensive experiments, we show that DAE-Net can
achieve unsupervised 3D shape co-segmentation that yields fine-
grained, compact, and meaningful parts that are consistent across
diverse shapes. With comparisons conducted on the Shapenet Part
dataset [Chang et al. 2015; Yi et al. 2016], DFAUST [Bogo et al. 2017],
and an animal subset of Objaverse [Deitke et al. 2023], DAE-Net
exhibits superior performance over prior unsupervised shape seg-
mentation methods. Additionally, we demonstrate shape clustering
using the part existence score produced by our method and show-
case a controllable shape detailization application enabled by our
segmentation results.

2 RELATEDWORK
3D co-segmentation with handcrafted priors. Early works in ge-

ometry processing utilize fundamental geometric cues [Shamir
2008], such as surface area, curvature, and geodesic distance, to
derive higher-level semantic attributes for 3D shape segmentation.
Golovinskiy and Funkhouser [Golovinskiy and Funkhouser 2009b]
investigated consistent co-segmentation of 3D shapes by construct-
ing a graph connecting corresponding faces across different meshes.
The unsupervised clustering approach was later extended to feature
spaces via diffusion maps and spectral clustering [Sidi et al. 2011].
Thereafter, extensive research has been devoted to co-analysis of
sets of shapes based on various clustering strategies [Hu et al. 2012;
Huang and Guibas 2013; Huang et al. 2011; Meng et al. 2013; Xu
et al. 2010]. [Shu et al. 2016] adapted the setting by transforming
the handcrafted local features with stacked auto-encoders before
per-shape graph cuts. In contrast, our approach is an end-to-end
differentiable pipeline and free of externally introduced design
elements previously proposed for shape segmentation.

Co-segmentation via 3D shape reconstruction. To circumvent 3D
annotations, weakly-supervised and unsupervised learning schemes
utilize large collections of unlabelled data for segmentation. [Tul-
siani et al. 2017] introduced sets of cuboids to approximate a 3D
shape without supervision. [Sun et al. 2019] and [Yang and Chen
2021] improved the cuboid representation to model complex shape
structures. [Paschalidou et al. 2019] utilized superquadrics for shape
abstractions, leading to better shape parsing ability. [Deprelle et al.

2019] represented shapes as deformation and combination of ele-
mentary structures represented in point clouds for shape recon-
struction and unsupervised correspondence. BAE-Net [Chen et al.
2019] proposed a branched auto-encoder network for shape co-
segmentation, where each individual branch learns to localize part
instances across multiple samples. BSP-Net [Chen et al. 2020] and
CvxNet [Deng et al. 2020] represented shapes as convex polytopes
using neural implicit fields, allowing shape co-segmentation in the
view of commonly associated convexes. [Paschalidou et al. 2020]
built a binary tree of primitives for shape reconstruction without
part-level supervision. [Kawana et al. 2020] represented shapes as
star primitives, where each primitive is formed by a continuous
function defined on the sphere surface. Neural Parts [Paschalidou
et al. 2021] defined primitives as invertible neural networks, al-
lowing inverse mapping between a sphere and the target part for
efficient computation. RIM-Net [Niu et al. 2022] represented shapes
as hierarchical shape structures with recursive implicit fields. Part-
NeRF [Tertikas et al. 2023] represented objects as a collection of
locally defined Neural Radiance Fields (NeRFs), and designed a part-
aware generative model based on auto-encoders. DPF-Net [Shuai
et al. 2023] performed structured shape reconstruction by represent-
ing parts as deformed cuboids and cylinders. [Huang et al. 2023]
proposed to reconstruct part primitives from multi-view images
while imposing convexity regularization on the parts. Several works
[Deng et al. 2021; Kim et al. 2023; Zheng et al. 2021] coupled neural
implicit fields with neural deformation fields to learn dense corre-
spondences between shapes. Other than implicit representations,
continuous progress of co-segmentation has been made for point
clouds [Yang et al. 2022; Zhu et al. 2020].

Our work learns the shapes of a set of part templates. In con-
trast, prior works either had no explicit guidance for defining a
part (e.g., BAE-Net, RIM-Net), merely relying on MLPs to perform
segmentation, or make much stronger assumptions about the part
templates, e.g., as cuboids, convexes, or other basic primitives. Our
template represents the “mean” shape of the parts, and we use a
subset of those templates to build each 3D shape via per-template
affine transformation and local deformation. The learned templates
also help achieve compactness of the segmentation, which is hard
for primitive templates such as cuboids.

Zero-shot 3D segmentation using pretrained models. Zero-shot
segmentation aims to make predictions for categories that are not
annotated in training. [Michele et al. 2021] extended zero-shot
semantic image segmentation [Bucher et al. 2019] to 3D, which is
followed by [Chen et al. 2022; Koo et al. 2022]. With the emergence
of NeRFs [Lombardi et al. 2019; Mildenhall et al. 2021], methods
have been developed to model semantic fields [Fan et al. 2022;
Fu et al. 2022; Hong et al. 2023; Kundu et al. 2022; Siddiqui et al.
2023; Tschernezki et al. 2022; Vora et al. 2021; Zhi et al. 2021] by
reconstructing semantic annotations from multi-view renderings.

Going beyond zero-shot learning, themore general open-vocabulary
setting [Ding et al. 2023] assumes a large vocabulary corpus is ac-
cessible during training. Recently, great strides have been made
in vision-language pretraining [Alayrac et al. 2022; Jia et al. 2021;
Saharia et al. 2022; Zhang et al. 2022] by pretraining large-scale
image-text pairs. Owing to learned rich visual concepts and no-
table zero-shot capabilities, 3D Highlighter [Decatur et al. 2023]
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and SATR [Abdelreheem et al. 2023b] proposed mesh segmentation
based on off-the-shelf CLIP [Radford et al. 2021] and GLIP [Li et al.
2022b] models, and PartSLIP [Liu et al. 2023] relied on GLIP for
point cloud segmentation. [Abdelreheem et al. 2023a] utilized large
foundation vision and language models to perform co-segmentation
between pairs of shapes. By distilling zero-shot image segmentation
models [Caron et al. 2021; Li et al. 2022a] into NeRFs, [Goel et al.
2023; Kobayashi et al. 2022; Peng et al. 2023] are able to perform
scene segmentation under open-vocabulary settings. In contrast,
our method does not rely on any pretrained image-language models
and is flexible on its own.

Transforming Auto-encoders. [Hinton et al. 2011] introduced
Transforming Auto-encoders (TAE) to learn the first level of Cap-
sule networks [Sabour et al. 2017]. TAE learns to recognize visual
entities, i.e., parts, and their poses, in an unsupervised manner by
training an auto-encoder on a set of images. Specifically, each part 𝑖
is represented by a distinct capsule, which consists of a recognition
module and a generation module. The recognition module predicts
the probability 𝑃𝑖 that the part is present in input image I, as well
as the transformation of the part with respect to its canonical pose,
e.g., translation (𝑥𝑖 , 𝑦𝑖 ). The generation module G𝑖 represents the
“shape” of the part; it inputs the transformed coordinates and out-
puts the transformed part. The reconstructed image is obtained
by

I𝑟𝑒𝑐 =
∑︁
𝑖

𝑃𝑖 · G𝑖 (𝑥𝑖 , 𝑦𝑖 ), (1)

where the parts are selected by 𝑃𝑖 and transformed by (𝑥𝑖 , 𝑦𝑖 ) to
assemble the final output image.

3 METHOD
In this section, we introduce the network architecture and loss
functions of our method. We also present a training scheme to
prevent the model from being stuck in a local minimum during
optimization. Code and data are also provided in the Supplementary.

3.1 Network architecture
The network architecture of DAE-Net is shown in Figure 2. In
our network, we use 𝑁 branches to present 𝑁 parts of the shape
V to be reconstructed, where each part 𝑖 has a dedicated MLP
G𝑖 to represent the corresponding part template as a neural im-
plicit [Chen and Zhang 2019; Joon Park et al. 2019; Mescheder et al.
2019], and a dedicated deformation MLP D𝑖 for part deformation.
The shape encoder E is a 3D CNN that takes an occupancy voxel
gridV ∈ {0, 1}64×64×64 as input and produces per-part affine trans-
formation matrices AV

𝑖
∈ R3×4, latent codes ZV

𝑖
∈ R4, and part

existence scores 𝑃V
𝑖

∈ [0, 1], for part 𝑖 .
In the following, we assume that the outputs are all from shape

V and therefore drop the superscript V for simplicity. We also
require densely sampled points from the shape V to train the
neural implicit, and we denote the occupancy of a sampled point
p ∈ R3 asV[p] ∈ {0, 1}.

To reconstruct part 𝑖 , the query point p in world coordinates is
first projected to homogeneous coordinates p′ ∈ R4, i.e., appending
1 to p, and then transformed into the local frame of the part via an

affine transformation: p𝑙𝑜𝑐𝑎𝑙
𝑖

= A𝑖p′. The local coordinates p𝑙𝑜𝑐𝑎𝑙𝑖
are further deformed by the deformation MLP D𝑖 conditioned on
the latent code Z𝑖 . Note that D𝑖 predicts the offsets of the deforma-
tion: Δp𝑙𝑜𝑐𝑎𝑙

𝑖
= D𝑖 (p𝑙𝑜𝑐𝑎𝑙𝑖

,Z𝑖 ), therefore the deformed coordinates
are p̂𝑖 = p𝑙𝑜𝑐𝑎𝑙

𝑖
+ Δp𝑙𝑜𝑐𝑎𝑙

𝑖
.

Finally, the deformed coordinates p̂𝑖 are fed into the part template
MLP G𝑖 to produce the occupancy G𝑖 (p̂𝑖 ) ∈ [0, 1]. The occupancy
is multiplied by the predicted part existence score 𝑃𝑖 , so that the
occupancy will be set to zero if the part is not deemed to exist in
the shape. The final occupancy for point p on part 𝑖 is 𝑂𝑖 (p) =

𝑃𝑖 · G𝑖 (p̂𝑖 ).
To obtain occupancy of the query point on the entire shape, we

sum the occupancies from all parts: 𝑂𝑠𝑢𝑚 (p) =
∑
𝑖 𝑂𝑖 (p). Since

the parts should ideally be non-overlapping, i.e., the per-part oc-
cupancies should be one-hot,

∑
𝑖 𝑂𝑖 (p) = max𝑖 𝑂𝑖 (p) = 1, for occu-

pied points, we also use an auxiliary shape occupancy 𝑂𝑚𝑎𝑥 (p) =
max𝑖 𝑂𝑖 (p) to compute the reconstruction losses.

3.2 Loss functions
First, we use a shape reconstruction loss,

L𝑠𝑢𝑚
𝑟𝑒𝑐𝑜𝑛 = Ep (𝑂𝑠𝑢𝑚 (p) − V[p])2 . (2)

to supervise the entire model. As mentioned, to encourage non-
overlapping parts, we use a secondary reconstruction loss,

L𝑚𝑎𝑥
𝑟𝑒𝑐𝑜𝑛 = Ep (𝑂𝑚𝑎𝑥 (p) − V[p])2 . (3)

Second, we need to constrain the per-part deformation, so that
the deformation only changes the part locally and does not trans-
form it into a different part or multiple parts. We use a simple 𝐿2
loss on the predicted deformation offsets to achieve this

L𝑑𝑒𝑓 𝑜𝑟𝑚 = EpE𝑖 | |Δp𝑙𝑜𝑐𝑎𝑙𝑖 | |22 . (4)

Finally, we have a loss to control the sparsity of the segmented
parts, which is achieved by penalizing the predicted part existence
scores. Specifically, in each training iteration, for a mini-batch of
shapes S, we have

L𝑠𝑝𝑎𝑟𝑠𝑒 = −E𝑖 (1 − EV∈S𝑃
V
𝑖 )2, (5)

where EV∈S𝑃
V
𝑖

evaluates what fraction of the shapes in S
contains part 𝑖 . If part 𝑖 is rare, EV∈S𝑃

V
𝑖

is close to zero and 𝑃𝑖 will
receive a greater penalty, therefore effectively making uncommon
parts disappear.

The overall loss is a weighted sum of the loss terms,

L = L𝑠𝑢𝑚
𝑟𝑒𝑐𝑜𝑛 + 𝛼L𝑚𝑎𝑥

𝑟𝑒𝑐𝑜𝑛 + 𝛽L𝑑𝑒𝑓 𝑜𝑟𝑚 + 𝛾L𝑠𝑝𝑎𝑟𝑠𝑒 . (6)

We set 𝛼 = 0.1 and 𝛽 = 100. 𝛾 needs to be set according to the
desired granularity of the segmentation; see Figure 6. Typically,
different shape categories require different𝛾 values to achieve desir-
able segmentation quality, therefore tuning 𝛾 is often necessary. In
our experiments, we try𝛾 = 0.02, 0.01, 0.002, and 0.001 in decreasing
order until reaching the desired granularity.



DAE-Net: Deforming Auto-Encoder for fine-grained shape co-segmentation

Table 1: Quantitative results on shape segmentation compared to BAE-Net [Chen et al. 2019] and RIM-Net [Niu et al. 2022],
evaluated by average per-part IOU. Best results are marked in bold.

Mean plane bag cap chair earph. guitar knife lamp laptop motor. mug pistol rocket skateb. table
BAE-Net 56.2 59.8 84.4 84.9 54.1 44.1 51.0 32.5 74.7 27.1 27.5 94.4 29.0 40.9 63.3 75.7
RIM-Net 53.6 52.7 86.1 62.6 79.2 72.9 25.7 29.5 68.3 33.2 28.5 48.6 36.2 39.5 64.9 76.0
Ours 76.9 78.0 84.4 86.3 85.5 77.2 88.4 85.8 73.2 95.0 48.1 94.2 74.6 38.7 68.2 75.5

Figure 3: Qualitative results on shape segmentation compared to BAE-Net [Chen et al. 2019] and RIM-Net [Niu et al. 2022] on
ShapeNet Part dataset [Chang et al. 2015; Yi et al. 2016]. Within the same category, same color indicates the parts are from the
same branch of the network, thus are considered to be corresponded. Since the ground truth segmentation in ShapeNet Part
dataset is on point clouds, we color the voxels in (d) using nearest neighbor.

3.3 Overcoming local minima
Since unsupervised co-segmentation via reconstruction is an ill-
posed problem, the training is often stuck in a local minimum,
where a predicted part represents multiple ground truth parts, or
a number of predicted parts represent a single ground truth part,
and further training cannot break the part apart or merge the parts
together; see Figure 5 (a).

To devise a training scheme to overcome local minima, we parti-
tion the training into 𝐾 eras, each containing 𝑀 iterations. Then
we design an operation revive(𝑖), to re-initialize the weights of D𝑖 ,
G𝑖 , and the portion of the last layer of E that affects A𝑖 , Z𝑖 , and
𝑃𝑖 . In the first era, we initialize E and revive all the branches. We
explicitly track the age of each branch, i.e., howmany eras a specific
branch has lived after its last revival. At the end of each era, we
compute EV∈S𝑃

V
𝑖

for all the training shapes S, which indicates
what fraction of the training shapes contains part 𝑖 . If the fraction
for part 𝑖 is lower than a threshold (10%), the branch is considered
“dead” and will be revived. We also revive the oldest branch, so the
part it represents has the option of breaking down into smaller
parts or being merged into other parts. Reviving the oldest branch
holds the risk that it can make the model stuck in a worse local
minimum. Therefore, at the end of each era, we also compute the
average reconstruction error evaluated by IoU (Intersection over
Union) of per-point occupancy, and compare it with the IoU of the
previous era. If the current IoU is better than the previous one, we
keep the current network weights; otherwise we load the network

weights of the previous era. This is based on the assumption that a
better segmentation should always lower the reconstruction error.

3.4 Training details
In the experiments, we train individual models for different object
categories. We set branch number 𝑁 = 16. However, for categories
with evidently less parts, such as laptops and mugs, we set 𝑁 = 8
to save training time. We train each model 2𝑁 eras with each era
consisting of 125, 000 iterations of training. In each iteration, we
set the mini-batch size to 16. The model is trained with Adam
optimizer [Kingma and Ba 2015] with a learning rate of 0.0002.
Training on one category takes 8 hours when 𝑁 = 16 and 2.5 hours
when 𝑁 = 8, on one NVIDIA V100 GPU.

4 EXPERIMENTS
Our experiments mainly focus on unsupervised co-segmentation.
Since our method predicts an existence score for each shape part,
we can group the shapes in the dataset according to which parts
they have. Finally, we show that our segmentation results can be
easily combined with DECOR-GAN [Chen et al. 2021] to achieve
shape detailization while controlling per-part geometric style.

4.1 Unsupervised shape co-segmentation
Weperform experiments on shapes from 15 categories in the ShapeNet
Part dataset [Chang et al. 2015; Yi et al. 2016]; the car category
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is excluded since its ground truth segmentation consists of non-
volumetric parts; see Section 5 and Figure 7 (a) for details. We
compare with BAE-Net [Chen et al. 2019] and RIM-Net [Niu et al.
2022], which also perform unsupervised shape co-segmentation.
There are other works that perform shape abstraction thus can
potentially be used for shape segmentation, but they either over-
segment the shape into excessive numbers of parts [Chen et al.
2020; Deng et al. 2020], or do not show consistent part correspon-
dence across shapes [Deprelle et al. 2019; Paschalidou et al. 2021,
2019], therefore they are not being compared in the experiments.
For all methods, we train an individual model on all shapes in each
shape category. All methods are trained on pre-processed voxel
data provided by [Chen et al. 2019]. We use the default settings
of BAE-Net and RIM-Net to train their models, except that their
original branch numbers are 8, therefore we try both 8 and 16 as
their branch numbers for each category and show the best results.

We quantitatively evaluate the co-segmentation accuracy by per-
part IOU averaged on all parts and all shapes in the category, which
is the standard evaluation metric used for shape segmentation on
the ShapeNet Part dataset. To infer segmentation from the network,
for each query point 𝑝 , its label will be assigned as the label of
the network branch that produces the maximum occupancy, i.e.,
𝑙𝑎𝑏𝑒𝑙 (𝑝) = 𝑙𝑎𝑏𝑒𝑙 (argmax𝑖 𝑂𝑖 (p)). To achieve objectiveness and
fairness in evaluation, for all methods, we use an algorithm to
automatically label each output branch of the networks with a
semantic part label so that the average IOU is maximized. The
automatic labeling algorithm is implemented by exhaustive search.
The average IOU is computed on the standard testing split of the
ShapeNet Part dataset for each category, so that the reported IOU
can be directly compared with results from other semi-supervised
or fully-supervised methods on this dataset.

As shown by the quantitative results from Table 1, our method
outperforms the compared methods by a large margin on most
categories. On the few categories where the other methods per-
formed better, our method is often less than 2% worse than the
best-performing alternative.

Importantly however, these quantitative results do not tell the
whole story, since the ground truth segmentation is coarse, e.g.,
chair is only segmented into 4 high-level parts: back, seat, leg, and
arm. DAE-Net has been designed to provide fine-grained segmen-
tation, as shown in Figure 3, while other methods either fail to
segment finer parts or have messy segmentations. We also show
the learned part templates in the Supplementary.

In addition, we trained all methods on two additional datasets:
DFAUST [Bogo et al. 2017] that contains human body shapes, and a
subset of Objaverse [Deitke et al. 2023] that contains quadruped ani-
mals. Qualitative results are shown in Figure 4 and Figure 11, where
our method has clearly better performance. Moreover, since our
method produces clean segmentation with part correspondences
between shapes, we can easily build a skeleton of the shape using
our segmentation results, as shown in Figure 4 (e) and Figure 11 (e).
Since DFAUST and Objaverse do not have ground truth segmenta-
tion, quantitative results are hard to obtain. Therefore, we provide
more details and ample qualitative results in the Supplementary.

Figure 4: Qualitative results on shape segmentation on
an animal subset of Objaverse [Deitke et al. 2023], and
DFAUST [Bogo et al. 2017]. We also show the skeletons built
upon our segmentation. More results can be found in Fig-
ure 11 and the Supplementary.

Figure 5: Qualitative results of Ablation study on airplane,
chair, and guitar. See Section 4.2 for the meaning of the ab-
breviations.

4.2 Ablation studies
Our full model is made of several components. We start from the
base model (B) where we have 𝑁 MLP branches G𝑖 , each taking
point coordinates 𝑝 and shape latent code as input and outputting
the occupancy of 𝑝 in part 𝑖; the per-part occupancies are weighted
by the predicted part existence scores 𝑃𝑖 to produce the final output.
In the base model B. we use both L𝑠𝑢𝑚

𝑟𝑒𝑐𝑜𝑛 and L𝑚𝑎𝑥
𝑟𝑒𝑐𝑜𝑛 in the loss

function. We could use only L𝑠𝑢𝑚
𝑟𝑒𝑐𝑜𝑛 for training, denoted as BS;

or only L𝑚𝑎𝑥
𝑟𝑒𝑐𝑜𝑛 , denoted as BM. Next, we introduce transforming

auto-encoder, denoted as T, where G𝑖 is no longer conditioned on
latent codes since it is now a part template shared by all shapes; and
the templates will be affine-transformed by the predicted matrices.
For both B and T, we further add the deformation networks D𝑖 to
deform each individual part, denoted as D. We include L𝑑𝑒𝑓 𝑜𝑟𝑚
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Table 2: Ablation study on shape segmentation, evaluated by average per-part IOU. See Section 4.2 for the meaning of the
abbreviations. Mean is the mean IOU on all 15 categories. We also report some IOUs on representative categories.

BS BM B BD BDF T TD TDF BSR BMR BR BDR BDFR TR TDR TDFR (Full model)
Mean 59.1 45.1 58.6 62.3 57.8 61.5 68.9 68.6 69.3 60.6 73.2 72.6 70.3 74.6 74.5 76.9
Plane 56.2 30.5 53.3 71.2 62.6 60.8 65.7 73.6 71.8 53.8 71.3 74.4 72.5 75.1 78.0 78.0
Chair 73.3 49.2 60.5 69.9 73.4 69.3 74.9 76.0 84.7 57.6 84.5 83.5 84.0 85.2 84.2 85.5
Guitar 52.9 27.5 78.4 46.4 53.6 70.2 84.0 73.2 77.1 37.1 85.5 86.6 86.4 88.1 84.1 88.4

Table 3: Quantitative results on few-shot shape classification, and number of shapes for each category in ShapeNet Part dataset.

plane bag cap chair earph. guitar knife lamp laptop motor. mug pistol rocket skateb. table
Classification precision 0.93 0.79 N/A 0.97 N/A 0.96 0.83 0.86 0.96 0.84 0.76 0.87 0.44 0.30 0.91
Classification recall 0.98 0.14 0.00 0.96 0.00 0.99 0.94 0.73 1.00 0.86 0.90 0.85 0.73 0.07 0.91
Number of shapes 2,690 76 55 3,746 69 787 392 1,546 445 202 184 275 66 152 5,263

Figure 6: Ablation study on the weight 𝛾 of the sparsity loss
L𝑠𝑝𝑎𝑟𝑠𝑒 on mug, pistol, and table. The number under each
shape shows the IOU of its category when trained with a
specific 𝛾 value.

to constrain the deformation, denoted as F. Finally, we apply our
training scheme to overcome the local minima, denoted as R.

Table 2 summarizes the quantitative results, where we report
the mean IOU on all categories and some IOUs on representative
categories. We also show some qualitative results in Figure 5. Our
training scheme R plays a major role in improving the results.
Methods trained without R tend to be stuck in local minima and
cannot be improved further. BM and BMR perform much worse
than BS and BSR, showing that L𝑚𝑎𝑥

𝑟𝑒𝑐𝑜𝑛 is not as easy to optimize
as L𝑠𝑢𝑚

𝑟𝑒𝑐𝑜𝑛 since its gradient cannot be propagated to all network
branches. However, L𝑚𝑎𝑥

𝑟𝑒𝑐𝑜𝑛 can help some categories achieve better
results, as shown by BSR vs. BR. Transforming auto-encoder with
our training scheme (TR) can already achieve impressive results,
but after augmented with deforming networks (D) with constraints
(F), our full model (TDFR) performs the best.

Note that the sparsity loss L𝑠𝑝𝑎𝑟𝑠𝑒 is applied to all the cases
above. Its weight 𝛾 in the final objective function controls the gran-
ularity of the segmentation results. We vary 𝛾 for some shape
categories and show quantitative and qualitative results in Figure 6.

4.3 Shape clustering
After thresholding the predicted part existence scores 𝑃𝑖 with a
pre-defined threshold (0.5), we obtain a binary 𝑁 -d vector repre-
senting whether part 𝑖 exists in the output shape or not. We can
then group the shapes into sub-categories according to this vec-
tor. In Figure 8, we show some groups for airplane and chair. The
clustering produces groups that contain structurally similar shapes.

We additionally train a single model on all categories in the
ShapeNet Part dataset, which produces 68 groups that contain no
less than 10 shapes. We label each group with the closest category
label, as shown in Figure 9. For other groups with less than 10
shapes, we assign to them an “N/A” label. Therefore, we have effec-
tively classified all the shapes into different categories. We compare
our classification results with the ground truth to obtain the quan-
titative results provided in Table 3. Our “few-shot” classification
model has achieved decent results on categories with abundant
shapes but ignored rare categories.

4.4 Application: part-level shape detailization
DECOR-GAN [Chen et al. 2021] is a method for conditional voxel
upsampling. When trained with 𝑀 detailed shapes representing
𝑀 styles, the user can upsample an input coarse voxel grid into
a high-resolution, detailed voxel model, but with only one of the
𝑀 styles learned from the training shapes. The lack of part-level
control makes it impossible to combine styles from different shapes,
as shown in Figure 10 (a).

With our predicted segmentation, we provide DECOR-GAN the
ability to control per-part geometric styles. In the original DECOR-
GAN, each input voxel is associated with one of the𝑀 styles. But
during training, all voxels from the input shape have to be associated
with the same style because there is no part-level segmentation
available. We simply modify the training procedure to assign voxels
from different parts with different styles. We test our approach on



Zhiqin Chen, Qimin Chen, Hang Zhou, and Hao Zhang

Figure 7: Unsuccessful segmentation results.

two categories: one is a combined chair+table category, and the
other is the plant category. We use the data provided by DECOR-
GAN, which are originally from ShapeNet [Chang et al. 2015]. Some
qualitative results are shown in Figure 10.

5 CONCLUSIONS
We have introduced the Deforming Auto-Encoder, or DAE-Net,
which extends the idea in Transforming Auto-encoders for unsu-
pervised part learning. With our part-wise deformation networks
improving the shape reconstruction quality and our training scheme
effectively overcoming the local minima issue, our work is the first
to show that the TAE framework can yield high-quality, consistent,
and fine-grained 3D shape co-segmentation.

Our method segments a shape by reconstructing and deforming
individual parts of the shape. As we adopt a volumetric shape
representation, our method is unable to segment surface parts, e.g.,
hood and roof in the car category of ShapeNet; see Figure 7 (a).
Likewise, our method may not segment certain semantic parts, as it
does not have actual semantic understanding, e.g., the connecting
part of the earphone category (blue in ground truth) in Figure 3,
and the wheels (red) and head (blue) of the skateboard and rocket
categories in Figures 7 (b) and (c), respectively.

Our method also relies heavily on the quality of the training
data. Although our training data has been pre-processed to make
the voxels as solid as possible, there are still shapes that are hol-
low inside, e.g., see Figure 7 (d). These hollow shapes will not be
correctly segmented, and they may even negatively affect the seg-
mentation quality of other shapes. On a related matter, parts will
not be correctly segmented if they are not correctly reconstructed
by our method, either due to underfitting or the parts being too
small, as shown in the second rocket example in Figure 7 (c).

In the future, we could seek better granularity control by in-
troducing hierarchical structures in the shape representation, as
in RIM-Net [Niu et al. 2022]. Combining our method with open-
vocabulary semantic segmentation methods is also an interesting
future direction, which may help produce consistent and meaning-
ful cross-category co-segmentation.
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Figure 8: Shape clustering using the part existence score. Each 3x3 sub-figure shows a clustered group. The center of each
sub-figure shows a reconstructed shape representing the parts that shapes in this group should have; the rest shows the first
few shapes in the group.

Figure 9: Shape clusters when trained on all the categories
in ShapeNet Part dataset. We show all groups that contain
at least 10 shapes. For each group, we show a representative
reconstructed shape, the number of shapes it contains, and
its semantic label for computing the numbers in Table 3.

Figure 10: Part-level shape detailization on chair-table and
plant.We use different colors to distinguish different geomet-
ric styles. To generate geometric details on an input coarse
voxel shape, DECOR-GAN [Chen et al. 2021] can only adopt
the geometric style of one of the reference shapes, while our
method enables it to apply different styles to different parts.
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Figure 11: Qualitative results on shape segmentation on the quadruped animal subset of Objaverse, compared with other
methods. Within the same category, same color indicates the parts are from the same branch of the network, thus are considered
to be corresponded. Notice how semantically consistent our segmented parts are, when compared with other methods. We also
show the skeletons built upon our segmentation.
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(Supplementary Material)

A SEGMENTATION TO SKELETON
To build a skeleton, we first use our segmentation method to seg-
ment a 643 voxel representation of the shape. We then identify all
the parts in this shape. Note that for the same semantic part, we
treat each connected component as an individual part, e.g., horns in
Figure 12. We then create a node at the center of each part, denoted
as “part nodes”. We also create a node whenever two parts meet,
and consider these nodes “joint nodes”. The joint nodes are con-
nected to the corresponding part nodes. We also create additional
part nodes according to some heuristics: we create one node to join
the front legs, one to join the back legs, and one node at the far end
of each limb, as shown in Figure 12 (b). After creating the initial
skeleton, we treat the positions of all part nodes as optimizable
parameters, and minimize the symmetric chamfer distance between
the points sampled on the skeleton and the points sampled inside
the ground truth voxel shape. After optimization with gradient
decent, we obtain the final skeleton, as shown in Figure 12 (c).

B MORE QUALITATIVE RESULTS
We show qualitative results on DFAUST in Figure 13 and ShapeNet
Part dataset in Figure 14 15 16 17 18.

Figure 12: Building a skeleton from a segmented shape.
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Figure 13: Qualitative results on shape segmentation on DFAUST, compared with other methods. Within the same category,
same color indicates the parts are from the same branch of the network, thus are considered to be corresponded. We also show
the skeletons built upon our segmentation.
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Figure 14: Qualitative results on shape segmentation on the airplane, bag, and cap categories of the ShapeNet Part dataset.
Within the same category, same color indicates the parts are from the same branch of the network, thus are considered to be
corresponded.
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Figure 15: Qualitative results on shape segmentation on the chair, earphone, and guitar categories of the ShapeNet Part dataset.
Within the same category, same color indicates the parts are from the same branch of the network, thus are considered to be
corresponded.



DAE-Net: Deforming Auto-Encoder for fine-grained shape co-segmentation

Figure 16: Qualitative results on shape segmentation on the knife, lamp, and laptop categories of the ShapeNet Part dataset.
Within the same category, same color indicates the parts are from the same branch of the network, thus are considered to be
corresponded.
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Figure 17: Qualitative results on shape segmentation on the motorbike, mug, and pistol categories of the ShapeNet Part dataset.
Within the same category, same color indicates the parts are from the same branch of the network, thus are considered to be
corresponded.



DAE-Net: Deforming Auto-Encoder for fine-grained shape co-segmentation

Figure 18: Qualitative results on shape segmentation on the rocket, skateboard, and table categories of the ShapeNet Part
dataset. Within the same category, same color indicates the parts are from the same branch of the network, thus are considered
to be corresponded.
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