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Abstract

We consider estimation of a normal mean matrix under the Frobenius loss. Motivated by
the Efron–Morris estimator, a generalization of Stein’s prior has been recently developed,
which is superharmonic and shrinks the singular values towards zero. The generalized Bayes
estimator with respect to this prior is minimax and dominates the maximum likelihood
estimator. However, here we show that it is inadmissible by using Brown’s condition.
Then, we develop two types of priors that provide improved generalized Bayes estimators
and examine their performance numerically. The proposed priors attain risk reduction
by adding scalar shrinkage or column-wise shrinkage to singular value shrinkage. Parallel
results for Bayesian predictive densities are also given.

1 Introduction

Suppose that we have independent matrix observations Y (1), . . . , Y (N) ∈ R
n×p whose entries are

independent normal random variables Y
(t)
ij ∼ N(Mij , 1), where M ∈ R

n×p is an unknown mean

matrix. In the notation of Gupta and Nagar (2000), this is expressed as Y (t) ∼ Nn,p(M, In, Ip)
for t = 1, . . . , N , where Ik denotes the k-dimensional identity matrix. We consider estimation
of M under the Frobenius loss

l(M,M̂) = ‖M̂ −M‖2F =
n∑

a=1

p∑

i=1

(M̂ai −Mai)
2.

By sufficiency reduction, it suffices to consider the average Y = (Y (1) + · · · + Y (N))/N ∼
N(M, In, N

−1Ip) in estimation of M . We assume n − p − 1 > 0 in the following. Note
that vectorization reduces this problem to estimation of a normal mean vector vec(M) from
vec(Y ) ∼ Nnp(vec(M), N−1Inp) under the quadratic loss, which has been well studied in shrink-
age estimation theory (Fourdrinier et al., 2018).

Efron and Morris (1972) proposed an empirical Bayes estimator:

M̂EM = Y

(
Ip −

n− p− 1

N
(Y ⊤Y )−1

)
. (1)

This estimator can be viewed as a generalization of the James–Stein estimator (p = 1) for a
normal mean vector. Efron and Morris (1972) showed that M̂EM is minimax and dominates the
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maximum likelihood estimator M̂ = Y under the Frobenius loss. Let Y = UΛV ⊤, U ∈ R
n×p,

V ∈ R
p×p, Λ = diag(σ1(Y ), . . . , σp(Y )) be the singular value decomposition of Y , where

U⊤U = V ⊤V = Ip and σ1(Y ) ≥ · · · ≥ σp(Y ) ≥ 0 are the singular values of Y . Stein (1974)
pointed out that M̂EM does not change the singular vectors but shrinks the singular values of
Y towards zero:

M̂EM = U Λ̂EMV ⊤, Λ̂EM = diag(σ1(M̂EM), . . . , σp(M̂EM)),

where

σi(M̂EM) =

(
1−

n− p− 1

Nσi(Y )2

)
σi(Y ), i = 1, . . . , p.

See Tsukuma and Kubokawa (2020); Yuasa and Kubokawa (2023a,b) for recent developments
around the Efron–Morris estimator.

As a Bayesian counterpart of M̂EM, Matsuda and Komaki (2015) proposed a singular value
shrinkage prior

πSVS(M) = det(M⊤M)−(n−p−1)/2, (2)

and showed that the generalized Bayes estimator M̂SVS with respect to πSVS dominates the
maximum likelihood estimator M̂ = Y under the Frobenius loss. This prior can be viewed as
a generalization of Stein’s prior π(µ) = ‖µ‖2−n for a normal mean vector µ (p = 1) by Stein
(1974). Similarly to M̂EM in (1) , M̂SVS shrinks the singular values towards zero. Thus, it
works well when the true matrix is close to low-rank. See Matsuda and Strawderman (2022)
and Matsuda (2023) for details on the risk behavior of M̂EM and M̂SVS.

In this paper, we show that the generalized Bayes estimator with respect to the singular
value shrinkage prior πSVS in (2) is inadmissible under the Frobenius loss. Then, we develop
two types of priors that provide improved generalized Bayes estimators asymptotically. The
first type adds scalar shrinkage while the second type adds column-wise shrinkage. We conduct
numerical experiments and confirm the effectiveness of the proposed priors in finite samples.
We also provide parallel results for Bayesian prediction as well as a similar improvement of the
blockwise Stein prior, which was conjectured by Brown and Zhao (2009).

This paper is organized as follows. In Section 2, we prove the inadmissibility of the gen-
eralized Bayes estimator with respect to the singular value shrinkage prior πSVS in (2). In
Sections 3 and 4, we provide two types of priors that asymptotically dominate the singular
value shrinkage prior πSVS in (2) by adding scalar or column-wise shrinkage, respectively. Nu-
merical results are also given. In Section 5, we provide parallel results for Bayesian prediction.
Technical details and similar results for the blockwise Stein prior are given in the Appendix.

2 Inadmissibility of the singular value shrinkage prior

Here, we show that the generalized Bayes estimator with respect to the singular value shrinkage
prior πSVS in (2) is inadmissible under the Frobenius loss. Since N does not affect admissibility
results, we fix N = 1 for convenience in this section.

For estimation of a normal mean vector under the quadratic loss, Brown (1971) derived
the following sufficient condition for inadmissibility of generalized Bayes estimators.
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Lemma 2.1. (Brown, 1971) In estimation of θ from Y ∼ Nd(θ, Id) under the quadratic loss,
the generalized Bayes estimator of θ with respect to a prior π(θ) is inadmissible if

∫ ∞

c
r1−dm(r)dr < ∞

for some c > 0, where

m(r) =

∫
1

mπ(y)
dUr(y),

mπ(y) =

∫
p(y | θ)π(θ)dθ,

p(y | θ) =
1

(2π)d/2
exp

(
−
‖y − θ‖2

2

)
,

and Ur is the uniform measure on the sphere of radius r in R
d.

After vectorization, estimation of a normal mean matrix M from Y ∼ Nn,p(M, In, Ip) under
the Frobenius loss reduces to estimation of a normal mean vector vec(M) from vec(Y ) ∼
Nnp(vec(M), Inp) under the quadratic loss. Then, by using Brown’s condition in Lemma 2.1,
we obtain the following.

Theorem 2.1. When p ≥ 2, the generalized Bayes estimator with respect to πSVS in (2) is
inadmissible under the Frobenius loss.

Proof. From n− p− 1 > 0 and the AM-GM inequality

(
p∏

i=1

σi(M)2

)1/p

≤
1

p

p∑

i=1

σi(M)2,

we have

πSVS(M) =

(
p∏

i=1

σi(M)2

)−(n−p−1)/2

≥

(
1

p

p∑

i=1

σi(M)2

)−p(n−p−1)/2

= An,p‖M‖
−p(n−p−1)
F ,

where An,p = pp(n−p−1)/2. Therefore,

mSVS(Y ) =

∫
πSVS(M)p(Y | M)dM

≥ An,p

∫
‖M‖

−p(n−p−1)
F p(Y | M)dM

= An,pE[‖Y + Z‖
−p(n−p−1)
F ]

≥ An,pE[(‖Y ‖F + ‖Z‖F)
−p(n−p−1)], (3)

where Z = M − Y ∼ Nn,p(O, In, Ip) and we used the triangle inequality. As ‖Y ‖F → ∞,

‖Y ‖
p(n−p−1)
F E[(‖Y ‖F + ‖Z‖F)

−p(n−p−1)] = E

[(
1 +

‖Z‖F
‖Y ‖F

)−p(n−p−1)
]
→ 1,
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which yields

E[(‖Y ‖F + ‖Z‖F)
−p(n−p−1)] = O(‖Y ‖

−p(n−p−1)
F ). (4)

Now, we apply Lemma 2.1 by noting that estimation of a normal mean matrix M from
Y ∼ Nn,p(M, In, Ip) under the Frobenius loss is equivalent to estimation of a normal mean
vector vec(M) from vec(Y ) ∼ Nnp(vec(M), Inp) under the quadratic loss. Let Ur be the
uniform measure on the sphere of radius r in R

n×p, where the Frobenius norm is adopted for
radius. Then, from (3) and (4),

mSVS(r) =

∫
1

mSVS(Y )
dUr(Y ) ≤ Crp(n−p−1)

for some constant C. Therefore, since −p2 − p+ 1 < −1 when p ≥ 2,
∫ ∞

1
r1−npmSVS(r)dr ≤ C

∫ ∞

1
r−p2−p+1dr < ∞.

From Lemma 2.1, it implies the inadmissibility of the generelized Bayes estimator with respect
to πSVS under the Frobenius loss.

3 Improvement by additional scalar shrinkage

Here, motivated by the result of Efron and Morris (1976), we develop a class of priors for which
the generalized Bayes estimators asymptotically dominate that with respect to the singular
value shrinkage prior πSVS in (2). Efron and Morris (1976) proved that the estimator

M̂MEM = Y

(
Ip −

n− p− 1

N
(Y ⊤Y )−1 −

p2 + p− 2

N‖Y ‖2F
Ip

)
(5)

dominates M̂EM in (1) under the Frobenius loss. This estimator shrinks the singular values of
Y more strongly than M̂EM:

M̂MEM = U Λ̂MEMV ⊤, Λ̂MEM = diag(σ1(M̂MEM), . . . , σp(M̂MEM)),

where

σi(M̂MEM) =

(
1−

n− p− 1

Nσi(Y )2
−

p2 + p− 2

N‖Y ‖2F

)
σi(Y ), i = 1, . . . , p. (6)

In other words, M̂MEM adds scalar shrinkage to M̂EM. Konno (1990, 1991) showed correspond-
ing results in the unknown covariance setting. By extending these results, Tsukuma and Kubokawa
(2007) derived a general method for improving matrix mean estimators by adding scalar shrink-
age.

Motivated by M̂MEM in (5), we construct priors by adding scalar shrinkage to πSVS in (2):

πMSVS1(M) = πSVS(M)‖M‖−γ
F , (7)

where γ ≥ 0. Note that Tsukuma and Kubokawa (2017) studied this type of prior in the
context of Bayesian prediction. Let

mMSVS1(Y ) =

∫
p(Y | M)πMSVS1(M)dM

be the marginal density of Y under the prior πMSVS1(M).
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Lemma 3.1. If 0 ≤ γ < p2 + p, then mMSVS1(Y ) < ∞ for every Y .

Proof. SincemMSVS1(Y ) is interpreted as the expectation of πMSVS1(M) underM ∼ Nn,p(Y, In, Ip),
it suffices to show that πMSVS1(M) is locally integrable at every M .

First, consider M 6= O. Since

mSVS(Y ) =

∫
πSVS(M)p(Y | M)dM < ∞

for every Y from Lemma 1 of Matsuda and Komaki (2015), πSVS(M) is locally integrable atM .
Also, ‖M‖F > c for some c > 0 in a neighborhood of M . Thus, πMSVS1(M) = πSVS(M)‖M‖−γ

F

is locally integrable at M if γ ≥ 0.
Next, consider M = O and take its neighborhood A = {M | ‖M‖F ≤ ε} for ε > 0. To

evaluate the integral on A, we use the variable transformation from M to (r, U), where r =
‖M‖F and U = M/r so that M = rU . We have dM = rnp−1drdU . Also, from det(M⊤M) =
r2p det(U⊤U),

πMSVS1(M) = r−p(n−p−1)−γ det(U⊤U)−(n−p−1)/2.

Thus,

∫

A
πMSVS1(M)dM

=

∫ ε

0
r−p(n−p−1)−γ+np−1dr

∫
det(U⊤U)−(n−p−1)/2dU

=

∫ ε

0
rp

2+p−γ−1dr

∫
det(U⊤U)−(n−p−1)/2dU.

The integral with respect to r is finite if p2+ p− γ− 1 > −1, which is equivalent to γ < p2+ p.
The integral with respect to U is finite due to the local integrability of πSVS, which corresponds
to γ = 0, at M = O. Therefore, πMSVS1(M) is locally integrable at M = O if 0 ≤ γ < p2 + p.

Hence, πMSVS1(M) is locally integrable at every M if 0 ≤ γ < p2 + p.

From Lemma 3.1, the generalized Bayes estimator with respect to πMSVS1 is well-defined
when 0 ≤ γ < p2 + p. We denote it by M̂MSVS1.

Theorem 3.1. For every M ,

N2(EM [‖M̂MSVS1 −M‖2F]− EM [‖M̂SVS −M‖2F]) →
γ(γ − 2p2 − 2p+ 4)

tr(M⊤M)
(8)

as N → ∞. Therefore, if p ≥ 2 and 0 < γ < p2 + p, then the generalized Bayes estimator with
respect to πMSVS1 in (7) asymptotically dominates that with respect to πSVS in (2) under the
Frobenius loss.

Proof. Let K = M⊤M and Kij be the (i, j)th entry of K−1. From

∂Kjk

∂Mai
= δikMaj + δijMak,

∂

∂Kij
detK = Kij detK, (9)
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we have

∂

∂Mai
detK =

∑

j,k

∂Kjk

∂Mai

∂

∂Kjk
detK = 2

∑

j

MajK
ij detK.

Therefore,

∂

∂Mai
log πSVS(M) = −(n− p− 1)

∑

j

MajK
ij. (10)

Let πS(M) = ‖M‖−γ
F = (trK)−γ/2. Since

∂

∂Mai
trK = 2Mai

from (9), we have

∂

∂Mai
log πS(M) = −γMai(trK)−1, (11)

∂2

∂M2
ai

log πS(M) = −γ(trK − 2M2
ai)(trK)−2. (12)

By using (10), (11), and (12), we obtain

tr(∇̃ log πSVS(M)⊤∇̃ log πS(M)) = γp(n− p− 1)(trK)−1,

tr(∇̃ log πS(M)⊤∇̃ log πS(M)) = γ2(trK)−1,

tr(∆̃ log πS(M)) = −γ(np− 2)(trK)−1,

where we used the matrix derivative notations (28) and (29). Therefore, from Lemma A.2,

EM [‖M̂MSVS1 −M‖2F]− EM [‖M̂SVS −M‖2F]

=
1

N2
tr(2∇̃ log πSVS(M)⊤∇̃ log πS(M) + ∇̃ log πS(M)⊤∇̃ log πS(M) + 2∆̃ log πS(M))

+ o(N−2)

=
1

N2
γ(γ − 2p2 − 2p + 4)(trK)−1 + o(N−2).

Hence, we obtain (8).

From (8), the choice γ = p2 + p − 2 attains the minimum risk among 0 < γ < p2 + p.
Note that p2 + p − 2 also appears in the singular value decomposition form of the modified
Efron–Morris estimator M̂MEM in (6).

Now, we examine the performance of πMSVS1 in (7) by Monte Carlo simulation. Figure 1
plots the Frobenius risk of generalized Bayes estimators with respect to πMSVS1 in (7) with
γ = p2 + p− 2, πSVS in (2) and πS(M) = ‖M‖2−np

F , which is Stein’s prior on the vectorization
of M , for n = 10, p = 3 and N = 1. We computed the generalized Bayes estimators by using
the random-walk Metropolis–Hastings algorithm with Gaussian proposal of variance 0.1. Note
that the Frobenius risk of these estimators depends only on the singular values of M due to
the orthogonal invariance. Similarly to the Efron–Morris estimator and πSVS, πMSVS1 works
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well when M is close to low-rank. Also, πMSVS1 attains large risk reduction when M is close
to the zero matrix like πS. Thus, πMSVS1 has the best of both worlds. Figure 2 plots the
Frobenius risk for n = 10, p = 3 and N = 10, computed by the random walk Metropolis–
Hastings algorithm with proposal variance 0.005. The risk behavior is similar to Figure 1.
Figure 3 plots the Frobenius risk for n = 20, p = 3 and N = 2, computed by the random walk
Metropolis–Hastings algorithm with proposal variance 0.01. Again, the risk behavior is similar
to Figure 1. Note that the value of np/N = 30 is the same with Figure 1.
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Figure 1: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 1. Left:
σ2 = σ3 = 0. Right: σ1 = 10, σ3 = 0. solid: πMSVS1 with γ = p2+p−2, dashed: πSVS, dotted:
Stein’s prior πS, Note that the minimax risk is np/N = 30.
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Figure 2: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 10. Left:
σ2 = σ3 = 0. Right: σ1 = 10, σ3 = 0. solid: πMSVS1 with γ = p2+p−2, dashed: πSVS, dotted:
Stein’s prior πS, Note that the minimax risk is np/N = 3.

Improvement by additional scalar shrinkage holds even under the matrix quadratic loss
(Matsuda and Strawderman, 2022; Matsuda, 2024).
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Figure 3: Frobenius risk of generalized Bayes estimators for n = 20, p = 3 and N = 2. Left:
σ2 = σ3 = 0. Right: σ1 = 10, σ3 = 0. solid: πMSVS1 with γ = p2+p−2, dashed: πSVS, dotted:
Stein’s prior πS, Note that the minimax risk is np/N = 30.

Theorem 3.2. For every M ,

N2(EM [(M̂MSVS1 −M)⊤(M̂MSVS1 −M)]− EM [(M̂SVS −M)⊤(M̂SVS −M)])

→ γ(trK)−2(−2(p + 1)(trK)Ip + (γ + 4)K) (13)

as N → ∞. Therefore, if p ≥ 2 and 0 < γ < 2p− 2, then the generalized Bayes estimator with
respect to πMSVS1 in (7) asymptotically dominates that with respect to πSVS in (2) under the
matrix quadratic loss.

Proof. We use the same notation with the proof of Theorem 3.1. By using (10), (11), and (12),
we obtain

(∇̃ log πSVS(M)⊤∇̃ log πS(M)) = γ(n− p− 1)(trK)−1Ip,

(∇̃ log πS(M)⊤∇̃ log πS(M)) = γ2(trK)−2K,

(∆̃ log πS(M)) = −nγ(trK)−1Ip + 2γ(trK)−2K.

Therefore, from Lemma A.3,

EM [(M̂MSVS1 −M)⊤(M̂MSVS1 −M)]− EM [(M̂SVS −M)⊤(M̂SVS −M)]

=
1

N2
(2∇̃ log πSVS(M)⊤∇̃ log πS(M) + ∇̃ log πS(M)⊤∇̃ log πS(M) + 2∆̃ log πS(M))

+ o(N−2)

=
1

N2
γ(trK)−2(−2(p + 1)(trK)Ip + (γ + 4)K) + o(N−2).

Hence, we obtain (13). Since K � (trK)Ip from K � O,

−2(p+ 1)(trK)Ip + (γ + 4)K � (γ − 2p+ 2)(trK)Ip ≺ O

if 0 < γ < 2p − 2.
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The generalized Bayes estimator with respect to πMSVS1 in (7) attains minimaxity in some
cases as follows.

Theorem 3.3. If p ≥ 2, p + 2 ≤ n < 2p + 2 − 2/p and 0 < γ ≤ −np + 2p2 + 2p − 2, then
the generalized Bayes estimator with respect to πMSVS1 in (7) is minimax under the Frobenius
loss.

Proof. From Proposition B.1,

∆πMSVS1(M) = γ(γ + np− 2p2 − 2p+ 2)‖M‖−2
F πMSVS1(M) ≤ 0.

Thus, πMSVS1(M) is superharmonic, which indicates the minimaxity of the generalized Bayes
estimator with respect to πMSVS1 in (7) under the Frobenius loss from Stein’s classical result
(Stein, 1974; Matsuda and Komaki, 2015).

It is an interesting problem whether the generalized Bayes estimator with respect to πMSVS1

in (7) attains admissibility or not. In addition to Lemma 2.1, Brown (1971) derived the follow-
ing sufficient condition for admissibility of generalized Bayes estimators, which may be useful
here. While the condition (14) can be verified by using a similar argument to Theorem 2.1,
the verification of the uniform boundedness of ‖∇ logmπ(y)‖ seems difficult. We leave further
investigation for future work.

Lemma 3.2. (Brown, 1971) In estimation of θ from Y ∼ Nd(θ, Id) under the quadratic loss,
the generalized Bayes estimator of θ with respect to a prior π(θ) is admissible if ‖∇ logmπ(y)‖
is uniformly bounded and

∫ ∞

c

r1−d

m(r)
dr = ∞, (14)

where

m(r) =

∫
mπ(y)dUr(y)

and Ur is the uniform measure on the sphere of radius r in R
d.

4 Improvement by additional column-wise shrinkage

Here, instead of scalar shrinkage, we consider priors with additional column-wise shrinkage:

πMSVS2(M) = πSVS(M)

p∏

i=1

‖M·i‖
−γi , (15)

where γi ≥ 0 for every i and ‖M·i‖ denotes the norm of the i-th column vector of M . Let

mMSVS2(Y ) =

∫
p(Y | M)πMSVS2(M)dM

be the marginal density of Y under the prior πMSVS2(M).

Lemma 4.1. If 0 ≤ γi ≤ p for every i, then mMSVS2(Y ) < ∞ for every Y .

9



Proof. Similarly to Lemma 3.1, it suffices to show that πMSVS2(M) is locally integrable at
M = O. Consider the neighborhood of M = O defined by A = {M | ‖M‖F ≤ ε} for ε > 0. To
evaluate the integral on A, we use the variable transformation fromM to (r1, . . . , rp, u1, . . . , up),
where each ri ∈ [0,∞) and ui ∈ R

n with ‖ui‖ = 1 are defined by ri = ‖M·i‖ and ui = M·i/ri
for the i-th column vector M·i of M so that M·i = riui (polar coordinate). Since dM·i =
rn−1
i dridui,

dM = rn−1
1 . . . rn−1

p dr1 . . . drpdu1 . . . dup.

Also, from M⊤M = D(U⊤U)D with D = diag(r1, . . . , rp) and U = (u1 . . . up),

πMSVS2(M) = det(D)−(n−p−1) det(U⊤U)−(n−p−1)/2
p∏

i=1

r−γi
i

=

p∏

i=1

r
−(n−p−1)−γi
i · det(U⊤U)−(n−p−1)/2.

Thus,

∫

A
πMSVS2(M)dM

=

∫

‖r‖≤ε

(
p∏

i=1

rp−γi
i

)
dr1 . . . drp

∫
det(U⊤U)−(n−p−1)/2du1 . . . dup. (16)

By variable transformation from r = (r1, . . . , rp) to s = ‖r‖ and v = r/s, the first integral in
(16) is reduced to

∫ ε

0
sp

2−
∑p

i=1
γi+p−1ds

∫

‖v‖=1

(
p∏

i=1

vp−γi
i

)
dv.

The integral with respect to s is finite if p2 −
∑p

i=1 γi + p − 1 > −1, which is equivalent to∑p
i=1 γi < p2 + p. The integral with respect to v is finite if p − γi ≥ 0 for every i. On the

other hand, the second integral in (16) is finite due to the local integrability of πSVS, which
corresponds to γ = 0, at M = O. Therefore, πMSVS2(M) is locally integrable at M = O if
0 ≤ γi ≤ p for every i.

From Lemma 4.1, the generalized Bayes estimator with respect to πMSVS2 is well-defined
when 0 ≤ γ ≤ p. We denote it by M̂MSVS2.

Theorem 4.1. For every M ,

N2(EM [‖M̂MSVS2 −M‖2F]− EM [‖M̂SVS −M‖2F]) →

p∑

i=1

γi(γi − 2p + 2)‖M·i‖
−2 (17)

as N → ∞. Therefore, if p ≥ 2 and 0 < γi ≤ p for every i, then the generalized Bayes
estimator with respect to πMSVS2 in (15) asymptotically dominates that with respect to πSVS in
(2) under the Frobenius loss.
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Proof. Let

πCS(M) =

p∏

i=1

‖M·i‖
−γi .

Then,

∂

∂Mai
log πCS(M) = −γiMai‖M·i‖

−2, (18)

∂2

∂M2
ai

log πCS(M) = −γi
(
‖M·i‖

2 − 2M2
ai

)
‖M·i‖

−4. (19)

From (10), (18), and (19),

tr(∇̃ log πSVS(M)⊤∇̃ log πCS(M)) = (n− p− 1)

p∑

i=1

γi‖M·i‖
−2, (20)

tr(∇̃ log πCS(M)⊤∇̃ log πCS(M)) =

p∑

i=1

γ2i ‖M·i‖
−2, (21)

tr(∆̃ log πCS(M)) = −(n− 2)

p∑

i=1

γi‖M·i‖
−2, (22)

where we used the matrix derivative notations (28) and (29). Therefore, from Lemma A.2,

EM [‖M̂MSVS2 −M‖2F]− EM [‖M̂SVS −M‖2F]

=
1

N2
tr(2∇̃ log πSVS(M)⊤∇̃ log πCS(M) + ∇̃ log πCS(M)⊤∇̃ log πCS(M) + 2∆̃ log πCS(M))

+ o(N−2)

=
1

N2

p∑

i=1

γi(γi − 2p + 2)‖M·i‖
−2 + o(N−2).

Hence, we obtain (17).

From (17), the choice γ1 = · · · = γp = p− 1 attains the minimum risk among 0 < γi ≤ p.
Now, we examine the performance of πMSVS2 in (15) by Monte Carlo simulation. Figure 4

plots the Frobenius risk of generalized Bayes estimators with respect to πMSVS2 in (15) with
γ1 = · · · = γp = p− 1, πMSVS1 in (7) with γ = p2 + p− 2, πSVS in (2) and πS(M) = ‖M‖2−np

F ,
which is Stein’s prior on the vectorization ofM . We computed the generalized Bayes estimators
by using the random walk Metropolis–Hastings algorithm with proposal variance 0.1. We set
M = UΣ, where U⊤U = Ip and Σ = diag(σ1, . . . , σp). For this M , the Frobenius risk of
the estimators compared here depends only on the singular values σ1, . . . , σp of M . Overall,
πMSVS2 performs better than πSVS. Also, πMSVS2 even dominates πMSVS1 and πS except when
σ1 is sufficiently small. This is understood from the column-wise shrinkage effect of πMSVS2.
Figure 5 plots the Frobenius risk for n = 10, p = 3 and N = 10, computed by the random
walk Metropolis–Hastings algorithm with proposal variance 0.01. The risk behavior is similar
to Figure 4. Figure 6 plots the Frobenius risk for n = 20, p = 3 and N = 2, computed by
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Figure 4: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 1 where
M = UΣ with U⊤U = Ip and Σ = diag(σ1, . . . , σp). Left: σ2 = σ3 = 0. Right: σ1 = 10,
σ3 = 0. solid: πMSVS2 with γ1 = · · · = γp = p − 1, dash-dotted: πMSVS1 with γ = p2 + p − 2,
dashed: πSVS, dotted: Stein’s prior πS. Note that the minimax risk is np/N = 30.
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Figure 5: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 10 where
M = UΣ with U⊤U = Ip and Σ = diag(σ1, . . . , σp). Left: σ2 = σ3 = 0. Right: σ1 = 10,
σ3 = 0. solid: πMSVS2 with γ1 = · · · = γp = p − 1, dash-dotted: πMSVS1 with γ = p2 + p − 2,
dashed: πSVS, dotted: Stein’s prior πS. Note that the minimax risk is np/N = 3.
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Figure 6: Frobenius risk of generalized Bayes estimators for n = 20, p = 3 and N = 2 where
M = UΣ with U⊤U = Ip and Σ = diag(σ1, . . . , σp). Left: σ2 = σ3 = 0. Right: σ1 = 10,
σ3 = 0. solid: πMSVS2 with γ1 = · · · = γp = p − 1, dash-dotted: πMSVS1 with γ = p2 + p − 2,
dashed: πSVS, dotted: Stein’s prior πS. Note that the minimax risk is np/N = 30.

the random walk Metropolis–Hastings algorithm with proposal variance 0.01. Again, the risk
behavior is similar to Figure 4. Note that the value of np/N = 30 is the same with Figure 4.

Improvement by additional column-wise shrinkage holds even under the matrix quadratic
loss (Matsuda and Strawderman, 2022; Matsuda, 2024).

Theorem 4.2. For every M ,

N2(EM [(M̂MSVS2 −M)⊤(M̂MSVS2 −M)]− EM [(M̂SVS −M)⊤(M̂SVS −M)])

→ −2(p− 1)D +DM⊤MD (23)

as N → ∞, where D = diag(γ1‖M·1‖
−2, . . . , γp‖M·p‖

−2). Therefore, if p ≥ 2 and 0 < γ1 =
· · · = γp < 2 − 2/p, then the generalized Bayes estimator with respect to πMSVS2 in (15)
asymptotically dominates that with respect to πSVS in (2) under the matrix quadratic loss.

Proof. We use the same notation with the proof of Theorem 4.1. By using (10), (18), and (19),
we obtain

∇̃ log πSVS(M)⊤∇̃ log πCS(M) = (n− p− 1)D,

∇̃ log πCS(M)⊤∇̃ log πCS(M) = DM⊤MD,

∆̃ log πCS(M) = −(n− 2)D.

Therefore, from Lemma A.3,

EM [(M̂MSVS2 −M)⊤(M̂MSVS2 −M)]− EM [(M̂SVS −M)⊤(M̂SVS −M)]

=
1

N2
(2∇̃ log πSVS(M)⊤∇̃ log πCS(M) + ∇̃ log πCS(M)⊤∇̃ log πCS(M) + 2∆̃ log πCS(M))

+ o(N−2)

=− 2(p − 1)D +DM⊤MD.

13



Hence, we obtain (23).
Suppose that p ≥ 2 and 0 < γ1 = · · · = γp < 2− 2/p. Let ‖ · ‖ be the operater norm. Since

D � O is diagonal and ‖M‖2 ≤ ‖M‖2F =
∑p

i=1 ‖M·i‖
2,

‖D1/2M⊤MD1/2‖ ≤ ‖D1/2‖‖M⊤M‖‖D1/2‖

= (max
i

Dii)‖M‖2

= γ1
‖M‖2

mini ‖M·i‖2

≤ γ1

∑p
i=1 ‖M·i‖

2

mini ‖M·i‖2

≤ γ1p

< 2(p − 1),

which yields D1/2M⊤MD1/2 ≺ 2(p − 1)Ip. Therefore,

−2(p− 1)D +DM⊤MD = D1/2(−2(p − 1)Ip +D1/2M⊤MD1/2)D1/2 ≺ O.

The generalized Bayes estimator with respect to πMSVS2 in (15) attains minimaxity in some
cases as follows. It is an interesting future work to investigate its admissibility.

Theorem 4.3. If p ≥ 3, p + 2 ≤ n < 2p and 0 < γ ≤ −n + 2p, then the generalized Bayes
estimator with respect to πMSVS2 in (15) is minimax under the Frobenius loss.

Proof. From Proposition B.2,

∆πMSVS2(M) = γ(γ + n− 2p)

(
p∑

i=1

‖M·i‖
−2

)
πMSVS2(M) ≤ 0.

Thus, πMSVS2(M) is superharmonic, which indicates the minimaxity of the generalized Bayes
estimator with respect to πMSVS2 in (15) under the Frobenius loss from Stein’s classical result
(Stein, 1974; Matsuda and Komaki, 2015).

5 Bayesian prediction

Here, we consider Bayesian prediction and provide parallel results to those in Sections 3 and
4. Suppose that we observe Y ∼ Nn,p(M, In, N

−1Ip) and predict Ỹ ∼ Nn,p(M, In, Ip) by a

predictive density p̂(Ỹ | Y ). We evaluate predictive densities by the Kullback–Leibler loss:

D(p(· | M), p̂(· | Y )) =

∫
p(Ỹ | M) log

p(Ỹ | M)

p̂(Ỹ | Y )
dỸ .

The Bayesian predictive density based on a prior π(M) is defined as

p̂π(Ỹ | Y ) =

∫
p(Ỹ | M)π(M | Y )dM,

14



where π(M | Y ) is the posterior distribution of M given Y , and it minimizes the Bayes risk
(Aitchison, 1975):

p̂π(Ỹ | Y ) = argmin
p̂

∫
D(p(· | M), p̂(· | Y ))p(Y | M)π(M)dY dM.

The Bayesian predictive density with respect to the uniform prior is minimax. However, it is
inadmissible and dominated by Bayesian predictive densities based on superharmonic priors
(Komaki, 2001; George, Liang and Xu, 2006). In particular, the Bayesian predictive density
based on the singular value shrinkage prior πSVS in (2) is minimax and dominates that based
on the uniform prior (Matsuda and Komaki, 2015).

The asymptotic expansion of the difference between the Kullback–Leibler risk of two
Bayesian predictive densities is obtained as follows.

Lemma 5.1. As N → ∞, the difference between the Kullback–Leibler risk of pπ1
(Ỹ | Y ) and

pπ1π2
(Ỹ | Y ) is expanded as

EM [D(p(Ỹ | M), pπ1π2
(Ỹ | Y ))]− EM [D(p(Ỹ | M), pπ1

(Ỹ | Y ))]

=
1

2N2
tr(2(∇̃ log π1(M))⊤(∇̃ log π2(M)) + (∇̃ log π2(M))⊤(∇̃ log π2(M)) + 2∆̃ log π2(M))

+ o(N−2). (24)

Proof. For the normal model with known covariance, the information geometrical quantities
(Amari, 1985) are given by

gij = gij = δij , Γk
ij = 0, Tijk = 0.

Also, the Jeffreys prior coincides with the uniform prior π(M) ≡ 1. Therefore, from equation
(3) of Komaki (2006), the Kullback–Leibler risk of the Bayesian predictive density pπ(Ỹ | Y )
based on a prior π(M) is expanded as

EM [D(p(Ỹ | M), pπ(Ỹ | Y ))]

=
np

2N
+

1

2N2
tr((∇̃ log π(M))⊤(∇̃ log π(M)) + 2∆̃ log π(M)) + g(M) + o(N−2), (25)

where g(M) is a function independent of π(M). Substituting π = π1π2 and π = π1 into (25)
and taking difference, we obtain (24).

By comparing Lemma 5.1 to Lemma A.2, we obtain the following connection between
estimation and prediction.

Proposition 5.1. For every M ,

lim
N→∞

N2(EM [D(p(Ỹ | M), p̂π1π2
(Ỹ | Y ))]− EM [D(p(Ỹ | M), p̂π1

(Ỹ | Y ))])

=
1

2
lim

N→∞
N2(EM [‖M̂π1π2 −M‖2F]− EM [‖M̂π1 −M‖2F]).

Therefore, if θ̂π1π2 asymptotically dominates θ̂π1 under the quadratic loss, then p̂π1π2
(Ỹ | Y )

asymptotically dominates p̂π1
(Ỹ | Y ) under the Kullback–Leibler loss.
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Therefore, Theorems 3.1 and 4.1 are extended to Bayesian prediction as follows. Other
results in the previous sections can be extended to Bayesian prediction similarly.

Theorem 5.1. For every M ,

N2(EM [D(p(· | M), p̂MSVS1(· | Y ))] − EM [D(p(· | M), p̂SVS(· | Y ))])

→
γ(γ − 2p2 − 2p + 4)

2tr(M⊤M)

as N → ∞. Therefore, if p ≥ 2 and 0 < γ < p2 + p, then the Bayesian predictive density with
respect to πMSVS1 in (7) asymptotically dominates that with respect to πSVS in (2) under the
Kullback–Leibler loss.

Theorem 5.2. For every M ,

N2(EM [D(p(· | M), p̂MSVS2(· | Y ))] − EM [D(p(· | M), p̂SVS(· | Y ))])

→
1

2

p∑

i=1

γi(γi − 2p+ 2)‖M·i‖
−2

as N → ∞. Therefore, if p ≥ 2 and 0 < γ ≤ p, then the Bayesian predictive density with
respect to πMSVS2 in (15) asymptotically dominates that with respect to πSVS in (2) under the
Kullback–Leibler loss.

Figures 7 and 8 plot the Kullback–Leibler risk of Bayesian predictive densities in similar
settings to Figures 1 and 4, respectively. They show that the risk behavior in prediction is
qualitatively the same with that in estimation, which is compatible with Theorems 5.1 and
5.2.
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Figure 7: Kullback–Leibler risk of Bayesian predictive densities for n = 10, p = 3 and N = 1.
Left: σ2 = σ3 = 0. Right: σ1 = 10, σ3 = 0. solid: πMSVS1 with γ = p2 + p− 2, dashed: πSVS,
dotted: Stein’s prior πS.
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Figure 8: Kullback–Leibler risk of Bayesian predictive densities for n = 10, p = 3 and N = 1
where M = UΣ with U⊤U = Ip and Σ = diag(σ1, . . . , σp). Left: σ2 = σ3 = 0. Right: σ1 = 10,
σ3 = 0. solid: πMSVS2 with γ1 = · · · = γp = p − 1, dash-dotted: πMSVS1 with γ = p2 + p − 2,
dashed: πSVS, dotted: Stein’s prior πS.
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A Asymptotic expansion of risk

Here, we provide asymptotic expansion formulas for estimators of a normal mean vector. Con-
sider the problem of estimating θ from the observation Y ∼ Nd(θ,N

−1Id) under the quadratic
loss l(θ, θ̂) = ‖θ̂ − θ‖2. As shown in Stein (1974), the generalized Bayes estimator θ̂π with
respect to a prior π(θ) is expressed as

θ̂π(y) = y +
1

N
∇y logmπ(y),

where

mπ(y) =

∫
p(y | θ)π(θ)dθ.

The asymptotic difference between the quadratic risk of two generalized Bayes estimators as
N → ∞ is given as follows.

Lemma A.1. As N → ∞, the difference between the quadratic risk of θ̂π1 and θ̂π1π2 is expanded
as

Eθ[‖θ̂
π1π2 − θ‖2]− Eθ[‖θ̂

π1 − θ‖2]

=
1

N2
(2∇ log π1(θ)

⊤∇ log π2(θ) + ‖∇ log π2(θ)‖
2 + 2∆ log π2(θ)) + o(N−2). (26)

Proof. By using Stein’s lemma (Fourdrinier et al., 2018) and mπ(y) = π(y) + o(1) as N → ∞,
the quadratic risk of the generalized Bayes estimator θ̂π is calculated as

Eθ[‖θ̂
π(y)− θ‖2]

=Eθ[‖y − θ‖2] +
2

N
Eθ[(y − θ)⊤∇ logmπ(y)] +

1

N2
Eθ[‖∇ logmπ(y)‖

2]

=
d

N
+

1

N2
Eθ[‖∇ logmπ(y)‖

2 + 2∆ logmπ(y)]

=
d

N
+

1

N2

(
‖∇ log π(θ)‖2 + 2∆ log π(θ)

)
+ o(N−2). (27)

Substituting π = π1π2 and π = π1 into (27) and taking difference, we obtain (26).

We extend the above formula to matrices by using the matrix derivative notations from
Matsuda and Strawderman (2022). For a function f : Rn×p → R, its matrix gradient ∇̃f :
R
n×p → R

n×p is defined as

(∇̃f(X))ai =
∂

∂Xai
f(X). (28)

For a C2 function f : Rn×p → R, its matrix Laplacian ∆̃f : Rn×p → R
p×p is defined as

(∆̃f(X))ij =
n∑

a=1

∂2

∂Xai∂Xaj
f(X). (29)

Then, the above formulas can be straightforwardly extended to matrix-variate normal distri-
butions as follows.
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Lemma A.2. As N → ∞, the difference between the Frobenius risk of M̂π1 and M̂π1π2 is
expanded as

EM [‖M̂π1π2 −M‖2F]− EM [‖M̂π1 −M‖2F]

=
1

N2
tr(2∇̃ log π1(M)⊤∇̃ log π2(M) + ∇̃ log π2(M)⊤∇̃ log π2(M) + 2∆̃ log π2(M))

+ o(N−2).

Lemma A.3. As N → ∞, the difference between the matrix quadratic risk of M̂π1 and M̂π1π2

is expanded as

EM [(M̂π1π2 −M)⊤(M̂π1π2 −M)− (M̂π1 −M)⊤(M̂π1 −M)]

=
1

N2
(2∇̃ log π1(M)⊤∇̃ log π2(M) + ∇̃ log π2(M)⊤∇̃ log π2(M) + 2∆̃ log π2(M))

+ o(N−2).

Komaki (2006) derived the asymptotic expansion of the Kullback–Leibler risk of Bayesian
predictive densities. For the normal model as discussed in Section 5, the result shows that
Stein’s prior dominates the Jeffreys prior in O(N−1) term at the origin and O(N−2) term
at other points, which is reminiscent of superefficiency theory. A similar phenomenon should
exist in estimation as well. Unlike Stein’s prior, the priors for a normal mean matrix such as
πSVS diverge at many points such as low-rank matrices. It is an interesting future problem to
investigate the asymptotic risk of such priors in detail.

B Laplacian of πMSVS1 and πMSVS2

Lemma B.1. (Stein, 1974; Matsuda and Strawderman, 2019) Suppose that f : Rn×p → R is
represented as f(X) = f̃(σ), where n ≥ p and σ = (σ1(X), . . . , σp(X)) denotes the singular
values of X. If f is twice weakly differentiable, then its Laplacian is

∆f =
n∑

a=1

p∑

i=1

∂2f

∂X2
ai

= 2
∑

i<j

σi∂f̃/∂σi − σj∂f̃/∂σj
σ2
i − σ2

j

+ (n− p)

p∑

i=1

1

σi

∂f̃

∂σi
+

p∑

i=1

∂2f̃

∂σ2
i

.

Proposition B.1. The Laplacian of πMSVS1 in (7) is given by

∆πMSVS1(M) = γ(γ + np− 2p2 − 2p+ 2)‖M‖−2
F πMSVS1(M).

Proof. Let

f̃(σ) =

(
p∏

i=1

σ
−(n−p−1)
i

)(
p∑

i=1

σ2
i

)−γ/2

so that πMSVS1(M) = f̃(σ) with σ = (σ1(M), . . . , σp(M)). From Lemma B.1 and

∂f̃

∂σi
= −(n− p− 1)σ−1

i f̃ − γσi




p∑

j=1

σ2
j




−1

f̃ ,
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∂2f̃

∂σ2
i

= (n− p)(n− p− 1)σ−2
i f̃ + (2n− 2p− 3)γ




p∑

j=1

σ2
j




−1

f̃ + γ(γ + 2)σ2
i




p∑

j=1

σ2
j




−2

f̃ ,

we have

∆πMSVS1(M) = 2
∑

i<j

σi∂f̃/∂σi − σj∂f̃/∂σj
σ2
i − σ2

j

+ (n − p)

p∑

i=1

1

σi

∂f̃

∂σi
+

p∑

i=1

∂2f̃

∂σ2
i

= −2 ·
p(p− 1)

2
γ

(
p∑

i=1

σ2
i

)−1

f̃ − (n− p)(n− p− 1)

(
p∑

i=1

σ−2
i

)
f̃

− p(n− p)γ

(
p∑

i=1

σ2
i

)−1

f̃ + (n− p)(n− p− 1)

(
p∑

i=1

σ−2
i

)
f̃

+ γ(p(2n − 2p− 3) + γ + 2)

(
p∑

i=1

σ2
i

)−1

f̃

= γ(γ + np− 2p2 − 2p + 2)

(
p∑

i=1

σ2
i

)−1

f̃ .

Proposition B.2. The Laplacian of πMSVS2 in (15) is given by

∆πMSVS2(M) = γ(γ + n− 2p)

(
p∑

i=1

‖M·i‖
−2

)
πMSVS2(M).

Proof. From

∆ log f =
∆f

f
− ‖∇ log f‖2

and (20), (21) and (22),

∆πMSVS2(M)

πMSVS2(M)
= ∆ log πMSVS2(M) + ‖∇ log πMSVS2(M)‖2

= ∆ log πSVS(M) + ∆ log πCS(M) + ‖∇ log πSVS(M) +∇ log πCS(M)‖2

=
∆πSVS(M)

πSVS(M)
+ (−(n− 2)γ + 2(n− p− 1)γ + γ2)

p∑

i=1

‖M·i‖
−2

= γ(γ + n− 2p)

p∑

i=1

‖M·i‖
−2,

where we used ∆πSVS(M) = 0 (Theorem 2 of Matsuda and Komaki, 2015).
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C Improving on the block-wise Stein prior

Here, we develop priors that asymptotically dominate the block-wise Stein prior in estimation
and prediction. Suppose that we observe Y ∼ Nd(θ,N

−1Id) and estimate θ or predict Ỹ ∼
Nd(θ, Id). We assume that the d-dimensional mean vector θ is split into B disjoint blocks
θ(1), . . . , θ(B) with size d1, . . . , dB , where d1 + · · · + dB = d. For example. such a situation
appears in balanced ANOVA and wavelet regression (Brown and Zhao, 2009). Then, the block-
wise Stein prior is defined as

πBS(θ) =

B∏

b=1

‖θ(b)‖Rb , Rb = −(db − 2)+, (30)

which puts Stein’s prior on each block. Since it is superharmonic, the generalized Bayes
estimator θ̂πBS with respect to πBS is minimax. However, Brown and Zhao (2009) showed
that θ̂πBS is inadmissible and dominated by an estimator with additional James–Stein type
shrinkage defined by

θ̂(y) = θ̂πBS(y)−
R# + d− 2

‖y‖2
y,

where R# =
∑

bRb > 2 − d. From this result, Brown and Zhao (2009) conjectured that the
block-wise Stein prior can be improved by multiplying a Stein-type shrinkage prior in Remark
3.2. Following their conjecture, we construct priors by adding scalar shrinkage to the block-wise
Stein priors:

πMBS(θ) = πBS(θ)‖θ‖
−γ , (31)

where γ ≥ 0. Let

mMBS(y) =

∫
p(y | θ)πMBS(θ)dθ.

Lemma C.1. If 0 ≤ γ < B(Rb + db) for every b, then mMBS(y) < ∞ for every y.

Proof. Since mMBS(y) is interpreted as the expectation of πMBS(θ) under θ ∼ Nd(y, Id), it
suffices to show that πMBS(θ) is locally integrable at every θ.

First, consider θ 6= 0. Since mBS(y) < ∞ for every y (Brown and Zhao, 2009), πBS(θ)
is locally integrable at θ. Also, ‖θ‖ > c for some c > 0 in a neighborhood of θ. Thus,
πMBS(θ) = πBS(θ)‖θ‖

−γ is locally integrable at θ.
Next, consider θ = 0 and take the neighborhood A = {θ | ‖θ(1)‖ ≤ s, . . . , ‖θ(B)‖ ≤ s} for

s > 0. From the AM-GM inequality,

‖θ‖2 =
∑

b

‖θ(b)‖2 ≥ B

(
∏

b

‖θ(b)‖2

)1/B

= B
∏

b

‖θ(b)‖2/B .

Thus,
∫

A
πMBS(θ)dθ ≤ C

∫ s

0
· · ·

∫ s

0

∏

b

r
Rb+db−1−γ/B
b dr1 · · · drB,

where rb = ‖θ(b)‖ and C is a constant. Therefore, πMBS(θ) is locally integrable at θ = 0 if
Rb + db − 1− γ/B > −1 for every b, which is equivalent to γ < B(Rb + db) for every b.
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From Lemma C.1, the generalized Bayes estimator with respect to πMBS is well-defined
when 0 ≤ γ < B(Rb + db) for every b. We denote it by θ̂MBS.

Theorem C.1. For every M ,

N2(Eθ[‖θ̂MBS − θ‖2]− Eθ[‖θ̂BS − θ‖2]) → γ(γ − 2(R# + d− 2))‖θ‖−2 (32)

as N → ∞. Therefore, if 0 < γ < 2(R# + d − 2), then the generalized Bayes estimator with
respect to πMBS in (31) asymptotically dominates that with respect to πBS in (30) under the
Frobenius loss.

Proof. Let πS(θ) = ‖θ‖−γ . By straightforward calculation, we obtain

∇ log πBS(θ)
⊤∇ log πS(θ) = −γR#‖θ‖

−2,

∇ log πS(θ)
⊤∇ log πS(θ) = γ2‖θ‖−2,

∆ log πS(θ) = −γ(d− 2)‖θ‖−2.

Therefore, from Lemma A.1,

Eθ[‖θ̂MBS − θ‖2]− Eθ[‖θ̂BS − θ‖2]

=
1

N2

(
2∇ log πBS(θ)

⊤∇ log πS(θ) + ‖∇ log πS(θ)‖
2 + 2∆ log πS(θ)

)
+ o(N−2)

=
1

N2
γ(γ − 2(R# + d− 2))‖θ‖−2 + o(N−2).

Hence, we obtain (32).

From (32), the choice γ = R# + d− 2 is optimal. As discussed in Section 5, Theorem C.1
is extended to Bayesian prediction as follows.

Theorem C.2. For every M ,

N2(Eθ[D(p(· | θ), p̂MBS(· | y))]− Eθ[D(p(· | θ), p̂BS(· | y))]) →
γ(γ − 2(R# + d− 2))

2
‖θ‖−2

as N → ∞. Therefore, if p ≥ 2 and 0 < γ < p2 + p, then the Bayesian predictive density with
respect to πMBS in (31) asymptotically dominates that with respect to πBS in (30) under the
Kullback–Leibler loss.
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