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Abstract

We consider estimation of a normal mean matrix under the Frobenius loss. Motivated by
the Efron—Morris estimator, a generalization of Stein’s prior has been recently developed,
which is superharmonic and shrinks the singular values towards zero. The generalized Bayes
estimator with respect to this prior is minimax and dominates the maximum likelihood
estimator. However, here we show that it is inadmissible by using Brown’s condition.
Then, we develop two types of priors that provide improved generalized Bayes estimators
and examine their performance numerically. The proposed priors attain risk reduction
by adding scalar shrinkage or column-wise shrinkage to singular value shrinkage. Parallel
results for Bayesian predictive densities are also given.

1 Introduction

Suppose that we have independent matrix observations YV . ... Y ™) € R"*P whose entries are
independent normal random variables Yi(jt) ~ N(M;j;,1), where M € R™*? is an unknown mean
matrix. In the notation of Gupta and Nagaxl (|2_O_Od), this is expressed as Y ~ N, (M, I, I,)
fort =1,..., N, where I denotes the k-dimensional identity matrix. We consider estimation
of M under the Frobenius loss

UM, M) = ”M - M”% = ZZ(MGZ - Mai)2'

a=1 i=1

By sufficiency reduction, it suffices to consider the average ¥ = (Y1) + ... + YIM)/N ~
N(M,I,,N711,) in estimation of M. We assume n —p — 1 > 0 in the following. Note
that vectorization reduces this problem to estimation of a normal mean vector vec(M) from
vec(Y) ~ Ny, (vec(M), N~11,,) under the quadratic loss, which has been well studied in shrink-
age estimation theory (Fourdrinier et all, w)

[Efron_and Morris (Ilf)lj) proposed an empirical Bayes estimator:

Mgy =Y (Ip . Lf\’;l(ﬂy)*) . (1)

This estimator can be viewed as a generalization of the James—Stein estimator (p = 1) for a
normal mean vector. Efron and Morris (1972) showed that Mgy is minimax and dominates the
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maximum likelihood estimator M = Y under the Frobenius loss. Let Y = UAV T, U € R™*?,
V e RPP, A = diag(o1(Y),...,0p(Y)) be the singular value decomposition of Y, where
UTU=VTV =1, and 01(Y) > --- > 5,(Y) > 0 are the singular values of Y. [Stein (1974)
pointed out that Mgy does not change the singular vectors but shrinks the singular values of
Y towards zero:

MEM = Z'JA/A\EH\/[‘/T7 AEM = diag(ol(MEM), e ,O'p(MEM)),

where

oi(Min) = <1 _ %) oY), i=1.....p

See [Tsukuma and Kubokawa (2020); [Yuasa and Kubokawa (2023ah) for recent developments
around the Efron—Morris estimator.

As a Bayesian counterpart of MEM, Matsuda and Komaki (2015) proposed a singular value
shrinkage prior

Tvs(M) = det(M T M)~ (P=1/2, o)

and showed that the generalized Bayes estimator Mgys with respect to mgys dominates the
maximum likelihood estimator M =Y under the Frobenius loss. This prior can be viewed as
a generalization of Stein’s prior m(u) = ||u/|>~™ for a normal mean vector u (p = 1) by |Stein
(1974). Similarly to Mgy in m , Mgys shrinks the singular values towards zero. Thus, it
works well when the true matrix is close to low-rank. See Matsuda and Strawderman (2022)
and Matsuda (2023) for details on the risk behavior of Mgy and Mgys.

In this paper, we show that the generalized Bayes estimator with respect to the singular
value shrinkage prior mgys in (2]) is inadmissible under the Frobenius loss. Then, we develop
two types of priors that provide improved generalized Bayes estimators asymptotically. The
first type adds scalar shrinkage while the second type adds column-wise shrinkage. We conduct
numerical experiments and confirm the effectiveness of the proposed priors in finite samples.
We also provide parallel results for Bayesian prediction as well as a similar improvement of the
blockwise Stein prior, which was conjectured by [Brown and Zhad (2009).

This paper is organized as follows. In Section 2, we prove the inadmissibility of the gen-
eralized Bayes estimator with respect to the singular value shrinkage prior mgys in ([2). In
Sections Bl and d we provide two types of priors that asymptotically dominate the singular
value shrinkage prior gyg in (2)) by adding scalar or column-wise shrinkage, respectively. Nu-
merical results are also given. In Section Bl we provide parallel results for Bayesian prediction.
Technical details and similar results for the blockwise Stein prior are given in the Appendix.

2 Inadmissibility of the singular value shrinkage prior

Here, we show that the generalized Bayes estimator with respect to the singular value shrinkage
prior msys in ([2) is inadmissible under the Frobenius loss. Since N does not affect admissibility
results, we fix NV = 1 for convenience in this section.

For estimation of a normal mean vector under the quadratic loss, [Brown (1971)) derived
the following sufficient condition for inadmissibility of generalized Bayes estimators.



Lemma 2.1. (Broun, |1971) In estimation of 6 from'Y ~ Ng4(0, 1) under the quadratic loss,
the generalized Bayes estimator of 6 with respect to a prior w(0) is inadmissible if

/ Tlfdm(r)dr < 00

for some ¢ > 0, where

1
m(r) = [ Vi),

a(y) = / Py | O)n(6)do,

1 — 0]
1 9) = G e (12570

and U, is the uniform measure on the sphere of radius r in RY.

After vectorization, estimation of a normal mean matrix M from Y ~ Ny, (M, I,,, I,) under
the Frobenius loss reduces to estimation of a normal mean vector vec(M) from vec(Y) ~
Npp(vec(M), Ip) under the quadratic loss. Then, by using Brown’s condition in Lemma 2.1]
we obtain the following.

Theorem 2.1. When p > 2, the generalized Bayes estimator with respect to msys in (2)) is
inadmissible under the Frobenius loss.

Proof. From n —p — 1 > 0 and the AM-GM inequality

p 1/p p
i=1 P

we have

P —(n—p-1)/2 P —p(n—p—1)/2
1
Tsvs(M) = <H Ui(M)2> > (2—9;@@4)2)

=1
—p(n—p—1
— Ay || M|FCPY

)

where A, , = pP(—P=1)/2  Therefore,

msys(Y) = /WSVS(M)P(Y | M)dM
—p(n—p—1
> Auy [ 1M1 Dp(y | An)dM

— A E[Y + 2|7 Y]
> A El(IY [[e + |1 Z]|e) P01, (3)

where Z = M —Y ~ N, ,(0O,I,,I,) and we used the triangle inequality. As [|Y||p — oo,

—p(n—p—1)
(14 1200)
1Y

n—p—1 —p(n—p—
1Y IE" VB lle + 1 2]le) PPV = E =1,




which yields
—p(n—p— —p(n— -1
E[(|Y]le + | Z]lr)P"~V] = O(|Y |71, (4)

Now, we apply Lemma [2.J] by noting that estimation of a normal mean matrix M from
Y ~ N, ,(M,I,,I,) under the Frobenius loss is equivalent to estimation of a normal mean
vector vec(M) from vec(Y) ~ Nyp(vec(M),Ip,) under the quadratic loss. Let U, be the
uniform measure on the sphere of radius r in R™*P, where the Frobenius norm is adopted for
radius. Then, from (B) and (@),

1 —_ S
mgys(r) = / vy U (Y) < Crp(n=p=1)
for some constant C. Therefore, since —p2 —p+1<—1whenp>2,
o 0o ,
/1 gy (r)dr < C/1 PP P < oo

From Lemma [2.7], it implies the inadmissibility of the generelized Bayes estimator with respect
to mgyvs under the Frobenius loss. O

3 Improvement by additional scalar shrinkage

Here, motivated by the result of Efron and Morris (1976), we develop a class of priors for which
the generalized Bayes estimators asymptotically dominate that with respect to the singular
value shrinkage prior 7gys in (2)). [Efron and Morrid (1976) proved that the estimator

- n—p-1 o PPHp-2
Myem =Y <Ip - T(YTY) t— WII)> (5)
F

dominates MEM in (1) under the Frobenius loss. This estimator shrinks the singular values of
Y more strongly than Mgy:

Myem = UAvieaV'T,  Avew = diag(or(Mygsm); - - -, 0p(Myewm)),
where
N n—-p—-1 p?>+p— 2> ,
o (M =(1- — oi(Y), i=1,...,p. 6

In other words, Myem adds scalar shrinkage to Mg Konno (1990, 1991) showed correspond-
ing results in the unknown covariance setting. By extending these results, [Tsukuma and Kubokawa
(2007) derived a general method for improving matrix mean estimators by adding scalar shrink-
age.

Motivated by Mygm in (), we construct priors by adding scalar shrinkage to mgys in (2):
masvs1 (M) = msvs(M)||M |57, (7)

where v > 0. Note that Tsukuma and Kubokawa (2017) studied this type of prior in the
context of Bayesian prediction. Let

mysvs1(Y) = /P(Y | M)mvsvst (M)dM

be the marginal density of Y under the prior mygvsi (M).



Lemma 3.1. If0 < v < p? + p, then mysvs1(Y) < oo for every Y.

Proof. Since mygysi(Y) is interpreted as the expectation of myvsysi (M) under M ~ Ny, (Y, I, I,),
it suffices to show that mygysi (M) is locally integrable at every M.
First, consider M # O. Since

msvs(Y) = /WSVS(M)p(Y ’ M)dM < 00

for every Y from Lemma 1 of Matsuda and Komaki (2015), msys(M) is locally integrable at M.
Also, || M||g > c for some ¢ > 0 in a neighborhood of M. Thus, mvsvsi (M) = wsys(M)|| M|z
is locally integrable at M if v > 0.

Next, consider M = O and take its neighborhood A = {M | ||M|r < €} for ¢ > 0. To
evaluate the integral on A, we use the variable transformation from M to (r,U), where r =
|M||p and U = M/r so that M = rU. We have dM = r™~!drdU. Also, from det(M ™M) =
r2P det(UTU),

masvs1 (M) = r PP D=Y dey(U T ) (=12,

Thus,

/WMSVSl(M)dM

A

- / " ppn—p= )= g, / det(UTU)~(=r=D/2qUu
0

- / Sty / det(UTU)~(=P=D/2qy.
0

The integral with respect to r is finite if p? +p — v —1 > —1, which is equivalent to v < p? + p.
The integral with respect to U is finite due to the local integrability of mgvg, which corresponds
to v =0, at M = O. Therefore, mysysi (M) is locally integrable at M = O if 0 < v < p? + p.

Hence, mysvsi (M) is locally integrable at every M if 0 < v < p? + p. O

From Lemma B.1], the generalized Bayes estimator with respect to mygvs: is well-defined
when 0 < v < p? + p. We denote it by Mysvsi-

Theorem 3.1. For every M,

(v —2p* —2p+4)

N2 (E[|| Muisvs: — MI[E] = B[l Msvs — M]IE]) —
(Ex[l|Musvst %] — Enl[Msvs ) tr(M T M)

(8)

as N — oo. Therefore, if p>2 and 0 < v < p? + p, then the generalized Bayes estimator with
respect to mvsvst in ([{) asymptotically dominates that with respect to wgys in [2)) under the
Frobenius loss.

Proof. Let K = M "M and K% be the (i, j)th entry of K~!. From

0K 1
a]\4612‘

= 0ixgMaj + 0ijMag, H—det K = K9 det K, (9)



we have

8Kjk ij
a —det K = ZaM aK :QZj:MajKJdetK.
Therefore,
i oemsvs(M) = —(n—p—1) > Mo K. (10)
j
Let ms(M) = |[M||z” = (trK)™/2. Since
0
trK = 2M,;
My
from (@), we have
9 1 (M) = —y Mg (tr )~ (11)
oM, g 7S = =7V iMai )
0 2 —2
AL logmg(M) = —y(tr K — 2M ;) (tr K) ™ =. (12)

By using (I0), (1), and (I2), we obtain

tr(Vlog msys(M) " Viogms(M)) = yp(n —p — 1)(trK)
tr(Vlog ms(M) T Vieg mg(M)) = 2 (trK) ™,
tr(&log mg(M)) = —y(np — 2)(trK)71,

where we used the matrix derivative notations (28) and (29). Therefore, from Lemma [A.2]

wml| Musvst — M|[E] — En[||Msvs — M)
1 - - - - ~
:mtr(QV log msys(M) " Vilog ms(M) + Vlog mg(M) TV log mg(M) 4+ 2Alog ws (M)
+o(N7?)

:m'y(fy —2p? — 2p +4)(tr K) "L+ o(N2).

Hence, we obtain (g]). O

From (8), the choice v = p? + p — 2 attains the minimum risk among 0 < v < p? + p.
Note that p? + p — 2 also appears in the singular value decomposition form of the modified
Efron—Morris estimator MMEM in (@).

Now, we examine the performance of mysys; in (7)) by Monte Carlo simulation. Figure [II
plots the Frobenius risk of generalized Bayes estimators with respect to mysys in (@) with
v =p*+p—2, wsys in @) and 7g(M) = |M H2 "Pwhich is Stein’s prior on the vectorization
of M, forn=10,p=3and N =1. We computed the generalized Bayes estimators by using
the random-walk Metropolis—Hastings algorithm with Gaussian proposal of variance 0.1. Note
that the Frobenius risk of these estimators depends only on the singular values of M due to
the orthogonal invariance. Similarly to the Efron—Morris estimator and wgys, mvsvs: works



well when M is close to low-rank. Also, mysyvsi attains large risk reduction when M is close
to the zero matrix like wg. Thus, mysys: has the best of both worlds. Figure [ plots the
Frobenius risk for n = 10, p = 3 and N = 10, computed by the random walk Metropolis—
Hastings algorithm with proposal variance 0.005. The risk behavior is similar to Figure [
Figure [3 plots the Frobenius risk for n = 20, p = 3 and N = 2, computed by the random walk
Metropolis—Hastings algorithm with proposal variance 0.01. Again, the risk behavior is similar
to Figure [Il Note that the value of np/N = 30 is the same with Figure [Il
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Figure 1: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 1. Left:
oy = 03 = 0. Right: 01 = 10, 03 = 0. solid: mysys: with v = p? + p — 2, dashed: 7gys, dotted:
Stein’s prior g, Note that the minimax risk is np/N = 30.

Frobenius risk

Figure 2: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 10. Left:
o9 = 03 = 0. Right: o1 = 10, o3 = 0. solid: mygyg1 with v = p? 4+ p — 2, dashed: 7gys, dotted:
Stein’s prior mg, Note that the minimax risk is np/N = 3.

Improvement by additional scalar shrinkage holds even under the matrix quadratic loss
(Matsuda and Strawderman, [2022; Matsuda, 2024).
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Figure 3: Frobenius risk of generalized Bayes estimators for n = 20, p = 3 and N = 2. Left:
o9 = 03 = 0. Right: o1 = 10, o3 = 0. solid: mygyg: with v = p? 4+ p — 2, dashed: 7gys, dotted:
Stein’s prior mg, Note that the minimax risk is np/N = 30.

Theorem 3.2. For every M,
N*(En[(Musvst — M) T (Musvs: — M)] — Ey[(Msys — M) T (Msys — M)))
— Y(trK) 72 (=2(p + 1)(trK) I, + (v + 4)K) (13)

as N — oco. Therefore, if p > 2 and 0 < v < 2p — 2, then the generalized Bayes estimator with
respect to myvsyst in ([{) asymptotically dominates that with respect to wsys in ([2)) under the
matriz quadratic loss.

Proof. We use the same notation with the proof of Theorem Bl By using (I0), (1), and ([I2),
we obtain

(Vlog mgvs (M) "Vieg mg(M)) = v(n —p — D(trK) I,
(Vg ms(M)Viogms(M)) = 2 (trK) 2K,
(Alogms(M)) = —ny(trK) " L, + 2y(tr K) 2K

Therefore, from Lemma [A.3]
E[(Musvs: — M) (Mysvst — M)] — En[(Msvs — M) (Msys — M)
:ﬁ(g% log Tsvs (M) 7% log 1(M) + ¥ log 75(M) % log m(M) + 24 log 7 (M)
+o(N7?)
= (K 2(=2p + (K, + (3 + 4)K) + o(N2).
Hence, we obtain (I3]). Since K =< (trK)I, from K > O,
2+ 1)trK) I+ (v +4)K < (v —2p+2)(trK)I, < O

if0<~y<2p—2. O



The generalized Bayes estimator with respect to mygvs: in (@) attains minimaxity in some
cases as follows.

Theorem 3.3. Ifp>2, p+2<n<2p+2—-2/pand 0 < v < —np+ 2p*> + 2p — 2, then
the generalized Bayes estimator with respect to mysysy in ([{0) is minimaz under the Frobenius
loss.

Proof. From Proposition [B.]
Amysvst (M) = y(v + np — 2p* — 2p + 2)|| M || *musvs1 (M) < 0.

Thus, mvsysi (M) is superharmonic, which indicates the minimaxity of the generalized Bayes
estimator with respect to mysvst in (@) under the Frobenius loss from Stein’s classical result
(Stein, 1974; Matsuda and Komaki, 2015). O

It is an interesting problem whether the generalized Bayes estimator with respect to mysvs:
in (7)) attains admissibility or not. In addition to Lemma 2.1 Brown (1971)) derived the follow-
ing sufficient condition for admissibility of generalized Bayes estimators, which may be useful
here. While the condition (I4]) can be verified by using a similar argument to Theorem [2.1],
the verification of the uniform boundedness of ||V log m,(y)|| seems difficult. We leave further
investigation for future work.

Lemma 3.2. (Brown, |1971) In estimation of 6 from'Y ~ Ng4(0, 1) under the quadratic loss,
the generalized Bayes estimator of 6 with respect to a prior w(0) is admissible if |V log m(y)l|

is uniformly bounded and
oo . 1—d
/ 7;—dr = 00, (14)

m(r)

where

i) = [ ma()at, )

and U, is the uniform measure on the sphere of radius r in R

4 Improvement by additional column-wise shrinkage

Here, instead of scalar shrinkage, we consider priors with additional column-wise shrinkage:
P
masvs2 (M) = meys(M) [ T I1M.[177, (15)
i=1

where ~; > 0 for every i and ||M;|| denotes the norm of the i-th column vector of M. Let

musvs2(Y) = /P(Y | M)mvsvsa (M )dM

be the marginal density of Y under the prior mygyvse(M).

Lemma 4.1. If 0 < ~; <p for every i, then mysvs2(Y) < 0o for every Y.



Proof. Similarly to Lemma [B.1], it suffices to show that mygysa(M) is locally integrable at
M = O. Consider the neighborhood of M = O defined by A ={M | |M||r < e} for e > 0. To
evaluate the integral on A, we use the variable transformation from M to (r1,...,7p, u1, ..., up),
where each r; € [0,00) and w; € R™ with ||u;|| = 1 are defined by r; = ||M,|| and w; = M.;/r;
for the i-th column vector M.; of M so that M.; = ru; (polar coordinate). Since dM.; =
T?_ldridui,

dM ==t rgfldrl coodrpdug ... dug.

Also, from M "M = D(UTU)D with D = diag(r1,...,rp) and U = (uy ... up),
p
musvsa (M) = det(D)~ PV det(UTU) VR T
i=1

P
_ HT;(nfpfl)*% . det(UTU)*(”*pfl)/Q.
i=1

Thus,
/AWMSVS2(M)C1M
P
:/ (H rf%> dry...drp / det(UTU)~=P=D/2qy, ... du,,. (16)
Irll<e \G=1
By variable transformation from r = (ry,...,rp) to s = ||r|| and v = r/s, the first integral in

([I6)) is reduced to

p
/8 sp2_2f—1%+p_1ds/ <H Uf_%) dv.
0 l[ol=1

i=1

The integral with respect to s is finite if p> — P 7 +p—1> —1, which is equivalent to
>P 7 < p*+p. The integral with respect to v is finite if p —; > 0 for every i. On the
other hand, the second integral in (I6]) is finite due to the local integrability of mwgyg, which
corresponds to v = 0, at M = O. Therefore, mygvs2(M) is locally integrable at M = O if
0 <~; <p for every i. O

From Lemma [£]] the generalized Bayes estimator with respect to mygvse is well-defined
when 0 < v < p. We denote it by Mysvse.

Theorem 4.1. For every M,

p
N*(En[[|Musvs2 — M|F] — Earll| Msys — MIIE]) = > vi(yi — 2p + 2)[| M. 2 (17)
i=1

as N — oo. Therefore, if p > 2 and 0 < v; < p for every ¢, then the generalized Bayes
estimator with respect to myvgvse in (ID) asymptotically dominates that with respect to mgys in
@) under the Frobenius loss.

10



Proof. Let
P
mos(M) = [ 1Ml 7.
i=1

Then,

S ogmos (M) = =i [ M., (18)

I log mas (M) = =i (|[M.a]|* — 2M3) | M| ~*. (19)

From (I0), (I8), and (13),

p
tr(Vlog msvs(M)  Vieg mes(M)) = (n—p— 1) Y 7 M| 72, (20)

=1

_ " p

tr(Vlog mos(M) ' Vieg mes(M)) = > 77 1M 72, (21)

=1

_ p
tr(Alogmes(M)) = —(n —2) > 7l Mai|| 72, (22)

=1

where we used the matrix derivative notations (28) and (29). Therefore, from Lemma [A2]
Epr[lMasvse — MIIE] — Ear[[| Msvs — M][]
1 - - - - ~
=3 tr(2Vlog msvs(M) TV log mas (M) + Vg mas(M) TV log mes (M) + 2A log wos (M)
+o(N7%)

1 & _ _
ZFZ%’(%‘—QP+2)HM4H Z+o(N7?).
i—1

Hence, we obtain (7). O

From (I7), the choice 7 = --- =, = p — 1 attains the minimum risk among 0 < y; < p.

Now, we examine the performance of mygys2 in (I5) by Monte Carlo simulation. Figure @
plots the Frobenius risk of generalized Bayes estimators with respect to mysysz in (I5) with
== =p—1, musys1 in (@) with v =p? +p — 2, msvs in @) and ws(M) = | M7 "7,
which is Stein’s prior on the vectorization of M. We computed the generalized Bayes estimators
by using the random walk Metropolis—Hastings algorithm with proposal variance 0.1. We set
M = UY, where UTU = I, and ¥ = diag(o1,...,0p). For this M, the Frobenius risk of
the estimators compared here depends only on the singular values o1, ...,0, of M. Overall,
mvsvse performs better than wgyg. Also, mysvse even dominates mysvs: and wg except when
o1 is sufficiently small. This is understood from the column-wise shrinkage effect of mygvsa.
Figure [l plots the Frobenius risk for n = 10, p = 3 and N = 10, computed by the random
walk Metropolis—Hastings algorithm with proposal variance 0.01. The risk behavior is similar
to Figure @l Figure [6] plots the Frobenius risk for n = 20, p = 3 and N = 2, computed by

11
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Figure 4: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 1 where
M =UY with UTU = I, and ¥ = diag(oy,...,0p). Left: 09 = 03 = 0. Right: o1 = 10,
o3 = 0. solid: mvsvse with 71 = --- = 7, = p — 1, dash-dotted: mysys1 with v = P> 4+p—2,
dashed: mgys, dotted: Stein’s prior 7g. Note that the minimax risk is np/N = 30.

3 e R ERAEER S
— MSVS2
e —— P == MSVSl
2 o --- SVS
= 2 L~ B N Stein
wn
=
‘g
=2
= 1] |
0 ‘ L \ \

Figure 5: Frobenius risk of generalized Bayes estimators for n = 10, p = 3 and N = 10 where
M =UY with U'U = I, and ¥ = diag(oy,...,0p). Left: o9 = 03 = 0. Right: o1 = 10,
o3 = 0. solid: mvsvse with 1 = --- = 7, = p — 1, dash-dotted: mysys1 with v = P> 4+p—2,
dashed: mgys, dotted: Stein’s prior 7g. Note that the minimax risk is np/N = 3.
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Figure 6: Frobenius risk of generalized Bayes estimators for n = 20, p = 3 and N = 2 where
M = UY with UTU = I, and ¥ = diag(o1,...,0,). Left: 0o = 03 = 0. Right: oy = 10,
o3 = 0. solid: mvsvse with 1 = --- =7, = p — 1, dash-dotted: mysys1 with v = P +p—2,
dashed: mgys, dotted: Stein’s prior 7g. Note that the minimax risk is np/N = 30.

the random walk Metropolis—Hastings algorithm with proposal variance 0.01. Again, the risk
behavior is similar to Figure[dl Note that the value of np/N = 30 is the same with Figure [l

Improvement by additional column-wise shrinkage holds even under the matrix quadratic
loss (Matsuda. and Strawderman, 2022; [Matsuda, 2024).

Theorem 4.2. For every M,
N?(Epr[(Musvs2 — M) T (Musvse — M)] — Ex[(Msvs — M) T (Msys — M)])
— —2(p—1)D+DM"MD (23)

as N — oo, where D = diag(y1||Ma| 72, ..., %l M,||72). Therefore, if p > 2 and 0 < y =
- = < 2 —2/p, then the generalized Bayes estimator with respect to mvsyse in (15
asymptotically dominates that with respect to wgys in ([2) under the matriz quadratic loss.

Proof. We use the same notation with the proof of Theorem [l By using (I0)), (I8]), and ([19),
we obtain

Vlog msys(M) "V log mos(M) = (n—p —1)D,
Vlog mes(M) "V log meg(M) = DM TMD,
Alog wes(M) = —(n—2)D.

Therefore, from Lemma [A.3]
En[(Musvsz — M) " (Mysvse — M)] — Ey[(Msys — M) " (Mgys — M)
1 - _ _ _ -
=73 (2V log msvs(M) " Viog mes(M) + Vlog mes (M) TV log mes (M) + 2A log mes (M)

+ O(N_Q)
=—2(p—-1)D+DM"MD.
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Hence, we obtain (23]).
Suppose that p > 2 and 0 <y =--- =1, < 2—2/p. Let || - | be the operater norm. Since
D = O is diagonal and |M|> < |M||Z2 = >0 | M2,

IDY2M T MDY?|| < || DV2|[||M T M ||| DY
= (max Dy)|| M |
|| M|
min; || M.; ||
?:1 HMZH2
< 7p

which yields DY2M T M DY? < 2(p — 1)I,. Therefore,
—2(p—1)D+ DM"MD = DY?(=2(p — 1)I, + DY*M "M DY?)D'/? < 0.
O

The generalized Bayes estimator with respect to mysys2 in (I3 attains minimaxity in some
cases as follows. It is an interesting future work to investigate its admissibility.

Theorem 4.3. If p > 3, p+2 <n < 2p and 0 < v < —n + 2p, then the generalized Bayes
estimator with respect to mysyse in (D) is minimax under the Frobenius loss.

Proof. From Proposition [B.2]
P
Amvsvsz (M) = y(y +n — 2p) (Z HM~1‘H2> musvs2 (M) < 0.
i=1

Thus, mvsys2(M) is superharmonic, which indicates the minimaxity of the generalized Bayes
estimator with respect to mysyse in (I3) under the Frobenius loss from Stein’s classical result
(Stein, 1974; Matsuda and Komaki, 2015). O

5 Bayesian prediction

Here, we consider Bayesian prediction and provide parallel results to those in Sections [3] and
@ Suppose that we observe Y ~ N, ,(M,I,, N7'1,) and predict Y ~ N,,,(M,I,,I,) by a
predictive density p(Y | Y'). We evaluate predictive densities by the Kullback—Leibler loss:

A 1Y = [ o5 | 2 toe PO LMD 15
-MMIM%MIYD—/?WWMﬂgﬁ&wde

The Bayesian predictive density based on a prior w(M) is defined as

P=(Y | Y) = /p(ff | M)m(M | Y)dM,

14



where (M | Y) is the posterior distribution of M given Y, and it minimizes the Bayes risk
(Aitchison, 11975):

pr(Y |Y) = arg{nin/D(p(' | M), p(- | Y))p(Y | M) (M)dY dM.

The Bayesian predictive density with respect to the uniform prior is minimax. However, it is
inadmissible and dominated by Bayesian predictive densities based on superharmonic priors
(Komaki, 2001; |George, Liang and Xu, 2006). In particular, the Bayesian predictive density
based on the singular value shrinkage prior 7gyg in (2]) is minimax and dominates that based
on the uniform prior (Matsuda and Komaki, 2015).

The asymptotic expansion of the difference between the Kullback—Leibler risk of two
Bayesian predictive densities is obtained as follows.

Lemma 5.1. As N — oo, the difference between the Kullback-Leibler risk ofpm(f/ |Y) and
Poyme (Y | Y) is expanded as

Ex[D(p(Y | M), pryna(Y | V)] = En[D(p(Y | M), pry (Y | Y)]

:2;2 (2 log w1 (M) T (V log (M) + (¥ log 2(M)) T (¥ log 72 (M) + 22 log 7o (M)

+o(N72). (24)

Proof. For the normal model with known covariance, the information geometrical quantities
(Amari, [1985) are given by

9i; = 9" = 0y, Ffj =0, Tir=0.

Also, the Jeffreys prior coincides with the uniform prior 7(M) = 1. Therefore, from equation
(3) of Komaki (2006), the Kullback-Leibler risk of the Bayesian predictive density p(Y | Y)
based on a prior (M) is expanded as

Ex[D(p(Y | M),px(Y | Y))]

np

- e tr((Vlog ()T (Vlog w(M)) + 2Alog (M) + g(M) + o(N"2),  (25)

+2N

where g(M) is a function independent of w(M). Substituting @ = myme and © = 7 into (25
and taking difference, we obtain (24)). O

By comparing Lemma [5.1] to Lemma [A.2] we obtain the following connection between
estimation and prediction.

Proposition 5.1. For every M,
Jim N2(By[D(p(Y | M), pry,(V V)] = Bt [D(Y | M), i, (V | Y))))

1 - -
=- lim N*(Ey[||M™™ — M|[3] — Ex[[|M™ — M|§)).
2 N—oo

Therefore, if ™72 asymptotically dominates 6™ under the quadratic loss, then ﬁmm(f/ | Y)
asymptotically dominates pr, (Y | Y) under the Kullback—Leibler loss.

15



Therefore, Theorems Bl and [4.1] are extended to Bayesian prediction as follows. Other
results in the previous sections can be extended to Bayesian prediction similarly.

Theorem 5.1. For every M,

N*Ex[D(p(- | M), pusvsi(- | Y))] = Ex[D(p(- | M), psvs(- | Y))])

(v —2p* — 2p +4)

T 20 (MT M)

as N — oo. Therefore, if p> 2 and 0 < v < p* + p, then the Bayesian predictive density with

respect to myvsysy in ([{) asymptotically dominates that with respect to wgys in ([2)) under the
Kullback—Leibler loss.

Theorem 5.2. For every M,
N*Eyn[D(p(- | M), pusvsz(- | Y))] = Ex[D(p(- | M), psvs(- | Y))])

1< _
-5 Z%’(%’ — 2p+2)|| M|~
i=1

as N — oo. Therefore, if p > 2 and 0 < v < p, then the Bayesian predictive density with
respect to mysysz i [I5) asymptotically dominates that with respect to wsys in ([2)) under the
Kullback—Leibler loss.

Figures [0 and [ plot the Kullback—Leibler risk of Bayesian predictive densities in similar
settings to Figures [ and M, respectively. They show that the risk behavior in prediction is
qualitatively the same with that in estimation, which is compatible with Theorems (.1l and
0.2l

55 55

KL risk

40 | | | | 40 | | | |

Figure 7: Kullback—Leibler risk of Bayesian predictive densities for n = 10, p =3 and N = 1.
Left: 09 = 03 = 0. Right: oy = 10, o3 = 0. solid: mygys: with v = p? + p — 2, dashed: 7gysg,
dotted: Stein’s prior 7g.
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KL risk

40 | | | | 40 | | | |

Figure 8: Kullback—Leibler risk of Bayesian predictive densities for n = 10, p=3 and N =1
where M = U with U'TU = I, and ¥ = diag(o1,...,0p). Left: 09 = 03 = 0. Right: o1 = 10,
o3 = 0. solid: mvsvse with 1 = --- =7, = p — 1, dash-dotted: mysys1 with v = P> +p—2,
dashed: mgyg, dotted: Stein’s prior wg.
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A Asymptotic expansion of risk

Here, we provide asymptotic expansion formulas for estimators of a normal mean vector. Con-
sider the problem of estimating # from the observation Y ~ Ng(#, N~1I;) under the quadratic
loss 1(0,0) = ||@ — 0]|2. As shown in Stein (1974), the generalized Bayes estimator 7 with
respect to a prior m(f) is expressed as

~

0"(y) =y + %Vy log ma(y),
where
malw) = [ oty | 0)x(0)a0.
The asymptotic difference between the quadratic risk of two generalized Bayes estimators as
N — oo is given as follows.

Lemma A.1. As N — oo, the difference between the quadratic risk ofé?A7r1 and ™72 s expanded
as

Eo[[|67™ — 6]1%] — Eq[Il6™* - 6]1%

1
=2 (2Vlog m1(0) " Vlog ma () + ||V log m2(0)]|? + 2A log m2(6)) + o( N ~2). (26)

Proof. By using Stein’s lemma (Fourdrinier et all, [2018) and m,(y) = 7(y) + o(1) as N — o0,
the quadratic risk of the generalized Bayes estimator 0™ is calculated as

Eo[[167 (y) — 6]I%]

=Eyly - euﬂ + e El(y — 6) TV logme(y)] + 5Bl ¥ log ma (3) ]

d
—S N2 B0V log ma (u)” + 22 log - (y)]
d _
=y N2 (IV1logm(0)]* + 2Alog () + o(N~2). (27)
Substituting 7 = mmy and m = 7 into (27)) and taking difference, we obtain (26]). O

We extend the above formula to matrices by using the matrix derivative notations from
Matsuda and Strawderman (2022). For a function f : R™*P — R, its matrix gradient Vf :
R™P — R"*P ig defined as

0

!0, (28)

(VF(X))ai =

For a C? function f : R®*P — R, its matrix Laplacian ﬁf : R"*P — RP*P is defined as

BRI =Y 5 fX). (29)
1 ai aj

Then, the above formulas can be straightforwardly extended to matrix-variate normal distri-
butions as follows.
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Lemma A.2. As N — oo, the difference between the Frobenius risk of M™ and M™™ s
expanded as

En[|M™7 — MI[E] — Ef[| ™ — M|[f]
1 - - - - ~
:ﬁtr(QV log 1 (M) TV log ma (M) + Vlog mo(M) TV log ma (M) + 2A log o (M)
+o(N72).

Lemma A.3. As N — oo, the difference between the matriz quadratic risk of M™ and M™™
1s expanded as

B (V™7 — M) T (W™ — M) — (M™ — M) (M™ — M)]
;2 (2Vlogm (M) TV log (M) + Vlog ma(M) 'V log ma(M) + 2A log m5(M))
+o(N72).

Komaki (2006) derived the asymptotic expansion of the Kullback—Leibler risk of Bayesian
predictive densities. For the normal model as discussed in Section [l the result shows that
Stein’s prior dominates the Jeffreys prior in O(N~!) term at the origin and O(N~2) term
at other points, which is reminiscent of superefficiency theory. A similar phenomenon should
exist in estimation as well. Unlike Stein’s prior, the priors for a normal mean matrix such as
mgyvs diverge at many points such as low-rank matrices. It is an interesting future problem to
investigate the asymptotic risk of such priors in detail.

B Laplacian of mysys; and mysyse

Lemma B.1. (Stein, \197); Matsuda and Strawderman, 2019) Suppose that f : R™*P — R is
represented as f(X) = f(o), where n > p and 0 = (01(X),...,0p(X)) denotes the singular
values of X. If f is twice weakly differentiable, then its Laplacian is

o, — 0
alzl 1<j ? J

0:0f |00; — 0;0f |00 1 af
SR DLLLIUELAU LI H) g Z
=1
Proposition B.1. The Laplacian of mysvs1 in (@) is given by
Amygysi (M) = y(y +np — 2p* — 2p + 2) | M || *musvst (M).

Proof. Let

so that musvs1 (M) = f(o) with o = (o1(M), ..., 0,(M)). From Lemma B and

-1
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P*f ¥ AN )
s = (=) —p-1o f+Cn=2-3) (Y oF | T+aly+20 Z

j=1
we have

Jiaf Jdo; — J-@f Jo; 1 0f - f
Amyisysi (M) =2 / B S +(n— Za_aa Z—
i= ! =1

i<j ( J

p -1 p
=—2-p(p2_1)7<20?> f=(n—p)n—p-1) <ZU¢2>.}F
=1

=1

7(2%2) f+m-p)n-p-1) <ZU?2> f

=1

P -1
+y(p(2n —2p —3) +~+2) <Zaf> f

1
=y(y+np—2p" —2p+2) <ZU?> f
i=1

Proposition B.2. The Laplacian of mysvse in (I5) is given by

p
Amvsvsz (M) = y(y +n — 2p) <Z HM-iH_2> msvs2(M).
i=1

Proof. From

Alog f = % |V log £

and (20), 1) and (22]),

Amygvse (M)

= Alogmsys(M) 4+ Alog mes(M) + ||V log msys (M) + V log mes (M)]?

_ Amgys(M)

N sts(M) +(_(n—2)’7+2(n—p—1)74_72);”]\[@,”2

p
=y(y+n—2p) ) M| 72,
=1

where we used Angys(M) = 0 (Theorem 2 of Matsuda and Komaki, 2015).
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C Improving on the block-wise Stein prior

Here, we develop priors that asymptotically dominate the block-wise Stein prior in estimation
and prediction. Suppose that we observe Y ~ Ng(, N~11;) and estimate § or predict Y ~
Ng4(0,17). We assume that the d-dimensional mean vector € is split into B disjoint blocks
oW ... 0B with size di,...,dg, where di + - - + dg = d. For example. such a situation
appears in balanced ANOVA and wavelet regression (Brown and Zhao,2009). Then, the block-
wise Stein prior is defined as

B
mes(0) = H 10|, Ry = —(dy — 2)4, (30)
b=1

which puts Stein’s prior on each block. Since it is superharmonic, the generalized Bayes
estimator ™3 with respect to wpg is minimax. However, Brown and Zhao (2009) showed
that ™S is inadmissible and dominated by an estimator with additional James—Stein type
shrinkage defined by

o Ry +d—2
a(y) =0 Bs(y) - #HyHQ Y,

where Ry = >, Ry > 2 — d. From this result, Brown and Zhad (2009) conjectured that the
block-wise Stein prior can be improved by multiplying a Stein-type shrinkage prior in Remark
3.2. Following their conjecture, we construct priors by adding scalar shrinkage to the block-wise
Stein priors:

muss(0) = mas(0)[10] 7, (31)
where v > 0. Let

muss(y) = /p(y | 0)mvBs(0)do.

Lemma C.1. If 0 <~ < B(Ry + dp) for every b, then myps(y) < oo for every y.

Proof. Since myps(y) is interpreted as the expectation of mypg(f) under 6 ~ Ny(y, Iy), it
suffices to show that myps(f) is locally integrable at every 6.

First, consider # # 0. Since mpsg(y) < oo for every y (Brown and Zhao, 2009), ms(6)
is locally integrable at 6. Also, ||| > ¢ for some ¢ > 0 in a neighborhood of 6. Thus,
mvps(0) = ms(0)]|0]| 7 is locally integrable at 6.

Next, consider § = 0 and take the neighborhood A = {8 | [|[6V] < s,...,||8B)|| < s} for
s > 0. From the AM-GM inequality,

1/B
1oz =" 6@ > B (H He<b>u2> = B[ 16®>%.
b b b

Thus,

/WMBS(H)dQS C/ / [Trt " dry - ar,
A 0 0y

where r, = [|0(®)|| and C is a constant. Therefore, mypg(f) is locally integrable at 6 = 0 if
Ry+dy,—1—~/B > —1 for every b, which is equivalent to v < B(Ry + dp) for every b. O
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From Lemma [C] the generalized Bayes estimator with respect to mvps is well-defined
when 0 <y < B(Ry + dp) for every b. We denote it by Oyips.

Theorem C.1. For every M,
N?(E||Onrs — 01%] — Eolll0rs — 0II*]) = (v — 2(Ry + d — 2))||6] (32)

as N — oo. Therefore, if 0 < v < 2(Ry + d — 2), then the generalized Bayes estimator with
respect to myps i BI) asymptotically dominates that with respect to wps in (BQ) under the
Frobenius loss.

Proof. Let mg(0) = ||0]|~7. By straightforward calculation, we obtain
Vlog mps(0) " Viogms(0) = —yRyll6] 2,

Vlogms(0) TV log ms(6) = +2(10]| 2,
Alogms(0) = —y(d —2)||0]| 2.

Therefore, from Lemma [A.]]
Eg[||nss — 60]%] — Eoll|0ss — 011%]
1
- (zv log 7s(0) TV log 7s(6) + |V log s (8)| + 2A log ﬂs(e)) +o(N72)

z%m — 2Ry +d—2))]0] 7%+ o(N?).

Hence, we obtain (32)). O

From (B2), the choice v = Ry + d — 2 is optimal. As discussed in Section [B, Theorem [CT]
is extended to Bayesian prediction as follows.

Theorem C.2. For every M,

1y = 2Ry +d - 2)

o —2
: o]

N*(Eg[D(p(- | 0), pnms (- | 9))] = Eg[D(p(- | 0),BBs (- | 9))]) =

as N — oo. Therefore, if p > 2 and 0 < vy < p? + p, then the Bayesian predictive density with
respect to myps i BI) asymptotically dominates that with respect to mpg in (B0) under the
Kullback—Leibler loss.
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