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Spectroscopic measurements in quantum systems are subject to selection rules, usually based on
space-time symmetries, that allow or disallow transitions between states. In many-body systems,
in addition to the single-particle states, there emerge new ones due to collective excitations of
the system. Here we demonstrate the existence of a “fragile” selection rule that emerges as a
manifestation of many-body effects and outlines the conditions for collective excitations to couple
to a given spectroscopic probe beyond the usual symmetry considerations. As an example, we apply
the rule to Raman spectroscopy of multiband superconductors and settle some unresolved features
in experiments.

Introduction. Single and two-particle (collective) ex-
citations in quantum matter are important characteris-
tics that provide a glimpse into how the system interacts
with its environment or an external probe. A thorough
understanding of these excitations is essential to inter-
pret experimental data and infer valuable properties of
quantum materials. Whilst the single-particle properties
are readily derived from the knowledge of the electronic
structure, the collective excitations require more detailed
modelling involving an understanding of many-body cor-
relations. However, when discussing the coupling of these
modes to a given probe, the many-body effects are often
ignored under the assumption that they have already
been incorporated in figuring out the collective modes.
Here, we explicitly point out important modifications to
selection rules from many-body effects.

While every probe would need its own consideration, in
this work we shall study non-resonant electronic Raman
spectroscopy (eRS), which is a powerful tool to probe
collective modes in many irreducible representations (ir-
reps) of a lattice simultaneously [1, 2]. Its application
to superconductivity (SC), for instance, has enjoyed a
long history from studying the coupling of SC collec-
tive excitations to phonons [3–5], tracking the order pa-
rameter, ∆, evolution and detecting higher angular mo-
mentum pairing symmetry (in cuprates) [6–8], detecting
multiband collective modes (MgB2’s Leggett mode [9])
[10–13], to affirming the role of spin fluctuations in the
pairing mechanism in Fe-based SCs [14–16] (by tracking
Bardasis–Schrieffer (BaSh) modes [17]), to name a few.

Earlier theoretical efforts to model the eRS [12, 13, 18]
did not aptly account for the multiband nature of systems
(except for MgB2). Thus, some very prominent features
in experiments, such as comparable spectral weights of
both the coherent collective mode and the incoherent col-
lective excitations near the 2|∆| region [14, 16, 19–21]
remains unresolved to date. These theoretical studies
suggested that the coherent mode, when present, should
“steal” all the spectral weight [22, 23]. To address this,
we calculate the eRS spectrum for a general multiband
system. We discover the existence of a new selection rule
induced by the many-body correlations that is able to
explain the distribution of spectral weights between the

collective mode and the 2|∆| region as seen in experi-
ments on Li1-xFexOHFeSe and Ba1-xKxFe2As2 in all ir-
reps. We are also able to show, for the first time, that the
eRS response is actually sensitive to the sign change of
the order parameter and even the many-body interaction
matrix elements.

Internal degrees of freedom and the probe. When we en-
counter a phase transition, new quantum degrees of free-
dom emerge that correspond to fluctuations of the estab-
lished order parameter. Many-body coherence brought
to these fluctuations by some effective attractive inter-
action leads to formation of collective modes that could
couple to a probe that is sensitive to these fluctuating
components. For example, in a SC there are four types
of fluctuations of interest: amplitude (call it sector 1),
phase (sector 2), density (sector 3) and velocity (sec-
tor 0). The quantum make-up of these sectors can be
captured by representing them using the 2 × 2 identity
and Pauli matrices σ0 and {σi} for i ∈ {1, 2, 3}. If we
consider probes that involve the σ3 (density) sector, then
they can probe the system’s density sector and all the
fluctuations coupled to it. For optical conductivity, it is
the sector 0 that is relevant but sector 3 also becomes
relevant in the presence of supercurrent [24]. If we repre-

sent with γR,probe
i some physical property of the system

that couples directly to the probe through the sector i in
the Rth irrep (we call this the probe vertex), then the ad-
ditional selection rules we find dictate which fluctuations
couple to which combinations of γR,probe

i .

The many-body selection rule. In this work, we will
devise a rule for the coupling to the σ3 sector which
would be applicable to non-resonant eRS in any irrep
[2, 25], THz spectroscopy [26] and also to supercurrent-
assisted optical absorption [24, 27]. In a SC, it is the
phase fluctuations δφ (sector σ2) of the order parameter
∆ that couples to sector σ3 [28]. For a multiband sys-
tem with ∆bi = |∆bi |eiφbi , where i ∈ {1, 2, . . .} runs
over the bands, we find that a collective mode in ir-
rep R with fluctuation form factor δφR

b1
± sδφR

b2
cou-

ples to the probe via γR
3,b1

± sγR
3,b2

, respectively, where

s = − sgn(V pp
R,b1b2

∆b1∆b2) and V pp
R,b1b2

is the interaction

matrix element between bands b1 and b2 in the Rth irrep
in the particle-particle interaction channel (pp) in which
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the instability (here SC) took place. Moreover, the mode
corresponding to δφR

b1
+ sδφR

b2
would be the lower energy

mode and that to δφR
b1
−sδφR

b2
would be the higher energy

mode. In what follows, we will fix our probe to be eRS
and explicitly demonstrate the above points for A1g and
B1g spectra in two-band systems. In the B1g case, the
rule becomes approximate and hence we use the adjective
“fragile” to describe it. We even use the rule to address
eRS from disconnected multi-Fermi-pocket models where
multi-orbital physics becomes relevant. Its extension to
3-band systems and systems with broken time-reversal
symmetry is provided in a concomitant work [29].

Application to eRS. Consider a system with n bands
with energy dispersion ϵbi

k⃗
and Raman vertex γR

bi
pro-

jected onto the irrep R (this plays the role of γR,probe
n,bi

).

Let us model the Cooper (pp) channel interaction as

V̂ pp = V̂ pp
A1g

f
A1g

θ
k⃗

+ V̂ pp
B1g

f
B1g

θ
k⃗

, where the form factors are

f
A1g

θ
k⃗

= 1 and f
B1g

θ
k⃗

=
√
2 cos 2θk⃗. θk⃗ is the angle along

the Fermi surface measured relative to the ΓX axis and
‘̂ ’ represents a matrix in the band space. We assume the
leading channel to be A1g so that the self-consistency
equations [see the supplementary material (SM)] lead us

to (∆
A1g

bi
,∆

B1g

bi
) = (∆bi , 0). The central object to study

the collective modes is the correlation function between
various degrees of freedom (sectors) m,n ∈ {0, 1, 2, 3}:

Πbi
mn(iΩm) =

∫
K

Tr[σ̂mĜbi
K σ̂nĜ

bi
K+Q], (1)

where K ≡ (iωn, k⃗), Q ≡ (iΩm, 0), σ̂m are the
Pauli matrices, acting on the particle-hole space,

∫
K

≡
T
∑

n

∫
d2k
(2π)2 , Ĝbi

K = [iωn − Ĥbi
k⃗
]−1, and Ĥbi = (ϵbi

k⃗
−

µ)σ̂3 +∆bi σ̂1. The eRS response itself can be computed
from the general formalism outlined in Refs. [15, 28]. The
Raman spectral function in the irrep R is computed as
Im[χR(Ω)], where (see SM; also, we suppress the Raman
shift Ω for brevity)

χR = −γ̂
[
Π̂33 + Π̂32{2[V̂ pp

R ]−1 − Π̂22}−1Π̂23

]
γ̂T , (2)

where γ̂ ≡ (γR
b1
, γR

b2
, . . .) is a vector of the Raman vertices

in the Rth irrep and Π̂mn ≡ diag[Πb1
mn(Ω),Π

b2
mn(Ω), . . .]

are various correlations [30]. Let us apply this formula
to a 2-band system with interactions

V̂ pp
A1g

=

[
U

A1g

b1
V A1g

V A1g U
A1g

b2

]
and V̂ pp

B1g
=

[
U

B1g

b1
V B1g

V B1g U
B1g

b2

]
. (3)

First, consider the case with identical band parame-
ters such that UR

b1
= UR

b2
, V R

b1
= V R

b2
and |γR

b1
| =

|γR
b1
|. This would lead to a ground state with ∆b2 =

− sgn(V A1g)∆b1 . The response in the Rth irrep then eval-
uates to (see SM) χR = −(Π33/2)×[

(γR
b1 + sγR

b2)
2 mR

+s

mR
+s + χ

+ (γR
b1 − sγR

b2)
2 mR

−s

mR
−s + χ

]
, (4)

where Π33 ≡ Πb1
33 = Πb2

33, χ ≡ −2νF [Ω/(2∆)]2I(Ω), νF
is the density of states at the Fermi level, ∆ = |∆bi |,
and mR

±s ≡ 2/(UA1g − |V A1g |)− 2/(UR ∓ |V R|). Here we
have introduced s ≡ sgn(V RV A1g) = − sgn(V R∆b1∆b2).
The function I(Ω) ∼ 1 for Ω away from the 2|∆| edge
threshold. The two terms above have poles that repre-

sent collective modes with mass ∝
√
mR

±s [31]. To find

the fluctuating degrees of freedom corresponding to these
modes, we leverage the fact that the Raman vertex poles
are the same as the ones of the linear response kernel
for fluctuations of the amplitude, phase and density of
SCs [29]. Whilst the eigenvalues of the kernel give the
collective mode frequencies, its eigenfunctions give the
strengths of the fluctuations of various sectors. Through
a straightforward analysis (see SM) we find that (i) the
mR

±s mode has the form factor δφR
b1
±sδφR

b2
(which means

that the mR
+ mode is the in-phase mode and mR

− mode

is the out-of-phase one), and (ii) mR
+s is the lower energy

mode.

It is clear from Eq. (4) that the spectral weight of
the modes is controlled by the probe vertices (here Ra-
man), which can lead to complete suppression of certain
modes. For instance, since mR

± couple to γR
b1
± γR

b2
, when

|γR
b1
| = |γR

b2
|, it dictates the spectral weight to be asso-

ciated either with the mR
+ or the mR

− mode. This is the
manifestation of the selection rule in eRS. Observe that
if V R = 0 then mR

+ = mR
− and the poles now appear as

independent contributions from the bands with weights
∝ (γR

b1
)2 and (γR

b2
)2 and this is how much of the data on

eRS have been modelled in the past.

Consequences for R = A1g. Here s = 1 and, hence,

m
A1g

+ is the low energy mode with the form δφb1 + δφb2

(although m
A1g

+ = 0). This is nothing but the in-
phase Bogoliubov–Anderson–Goldstone (BAG) mode of
the SC [32]. On the other hand, for the higher energy

mode m
A1g

− the form factor is δφb1 − δφb2 and m
A1g

− =

4|V A1g |/[(UA1g)2−(V A1g)2], which precisely corresponds
to the system’s out-of-phase Leggett mode [9]. The selec-
tion rule then asserts that the contribution of the BAG
mode (m

A1g

+ = 0) couples to γ
A1g

b1
+ γ

A1g

b2
. However, it

would never have a spectral weight as it is massless. The

Leggett mode (m
A1g

− ̸= 0) couples to γ
A1g

b1
−γ

A1g

b2
and will

have more prominent spectral weight in a system with
bands of the electron-hole (eh) type, where γb1γb2 < 0,
than electron-electron (ee) type [12, 13, 28, 33].

Consequences for R = B1g. In this case, the col-
lective modes are the BaSh modes and the parameter
s = sgn(V B1gV A1g) is no longer fixed. The lower energy

mode m
B1g

+s with form factor δφ
B1g

b1
+ sδφ

B1g

b1
will be in-

or out-of-phase depending on the sign of the B1g inter-
action as well as the sign of the A1g one, which is, in
turn, nothing but the sign of −∆b1∆b2 . Thus, the B1g

response is inherently sensitive to sign changes of the
order parameter. To understand the consequence of the

selectivity let us assume, for specificity, that γ
B1g

b1
= γ

B1g

b2
.
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Figure 1. Phase-sensitive B1g response for SCs with in- and

out-of-phase gaps with |V B1g | = 0.9|UA1g | and equal Raman
vertices. In (a), the equal-gaps case, the lower-energy in-gap

mode is the m+s ≡ m
B1g

+s mode (with s = ±1). Since γ
B1g

b1
=

γ
B1g

b2
, only the m+ mode couples to the eRS probe and is

undamped only for s = 1. (b) Different gaps leading to cross-
leakage of spectral weights and hence comparable collective
mode and 2∆ features (for s = −1).

Then note the following two points: (i) the low energy

m
B1g

+s mode would only be picked up by the probe for

s = 1, which corresponds to ∆b1∆b2V
d < 0 and not oth-

erwise; (ii) for the case of strong interband-driven com-

petition, |V B1g | ≫ |UB1g |, we have m
B1g

±s = 2/(UA1g −
|V A1g |) ± 2/|V B1g |. Since the A1g state is the ground

state, we need |UA1g − |V A1g || > |V B1g |, which means

that sgn(m
B1g

±s ) = ±1. This implies that a lower energy

in-gap mode (mB1g > 0) always exists while the higher
energy one is damped (mB1g < 0). However, which one
will be in-phase would depend on s with the eRS chang-
ing characteristically as shown in Fig. 1(a).

The selection rule beyond identical bands. In reality
no two bands are identical unless they are related by
symmetry. The general form of the response is −χR =
(γR

b1
)2X+(γR

b2
)2Y +2γR

b1
γR
b2
Z = (γR

b1
+γR

b2
)2(X+Y +2Z)/4

+(γR
b1
−γR

b2
)2(X+Y −2Z)/4 +[(γR

b1
)2−(γR

b2
)2](X−Y )/2.

The particular forms of X,Y and Z are (in the SM,
but) not relevant except for that each of these terms
contains both poles, and that X → Y under b1 ↔ b2
with only Z ∝ V R. At first glance, we observe that
the selectivity is lost and the response is now a mix
of contributions from both modes. However, the se-
lectivity in the A1g channel remains exact as the self-
consistency relations always enforce X = Y and X ± Z
is such that one of the poles cancels out. This couples

m
A1g

± to γ
A1g

b1
± γ

A1g

b2
, respectively. For the B1g chan-

nel the interactions are independent and the above is no
longer true. However, (i) in most systems |γR

b1
| ≈ |γR

b2
|

even if ∆b1 ̸= ∆b2 , making the (γR
b1
)2 − (γR

b2
)2 contri-

bution negligible; (ii) for a large region of the param-

eter space of {UA1g

b1
, U

A1g

b2
, V A1g , U

B1g

b1
, U

B1g

b2
, V B1g} the

m
B1g

± modes are such that they are still largely coupled

to γ
B1g

b1
± γ

B1g

b2
, respectively, with some “cross-leakage”.

These two points result in the selection rule being ap-
proximately valid and we refer to it as being “fragile”.

This is shown in Fig. 1(b), in which both m
B1g

± modes
are present in the response. In fact, if we consider the
case of interband-driven B1g interactions where we get
one in-gap mode and a damped mode near 2|∆|, we see
that the selection rule would have only selected either the
in-gap mode or the damped mode to show up in eRS. It
is precisely the “fragility” that allows the in-gap mode to
leak into the 2|∆|-dominated spectrum, giving compara-

ble weights [see m
B1g

± for s = −1 in Fig. 1(b)]. This natu-
rally explains why in materials with dominant interband
interactions we can expect significant spectral weight at
the largest gap even in the presence of an in-gap mode.
This was an unresolved issue in Refs. [14, 16, 19, 20].

Consequences for off-Γ-point Fermi pockets. Multiple
Fermi pockets on a single band emerge from special or-
bital characters which constrain them to be related by
symmetry. Consider the example of pockets (p1 and p2)
being at the X and Y points (like in Fe-based SCs without
hybridization), where they could be viewed as two iden-

tical bands (with symmetry constraints imposed on V̂ pp

by the lattice’s point group). Since this is a 1-band sys-
tem, the only possible A1g ground state has ∆p1

= ∆p2
,

which could result, e.g. from V A1g = UA1g < 0. There
are no modes in A1g, as this is a 1-band system, but in-
teresting scenarios arise in the B1g channel. First, note

that symmetry constraints we will require γ
B1g

b1
= ±γ

B1g

b2
.

Consider first the + case, where only the γ
B1g

b1
+ γ

B1g

b2

contribution is present, selecting the m
B1g

+ mode. Thus,

if V B1g < 0, s = 1 and the m
B1g

+ mode will be the lower-

energy one and visible. However, if V B1g > 0, s = −1 and

the m
B1g

− mode would be the low-energy one, but not be

visible. The visible higher energy m
B1g

+ mode in this case

0

10

χ
′′ B

1
g 2|∆p1

| = 2|∆p2
|m

B1g
+

m
B1g
−

(a) γB1g
p1
/γB1g
p2

= +1

0 1 2 Ω/|∆max|
0

10

χ
′′ B

1
g 2|∆p1

| = 2|∆p2
|m

B1g
−

m
B1g
+

(b) γB1g
p1
/γB1g
p2

= −1

V B1g < 0 V B1g > 0

Figure 2. B1g spectra for a 2-pocket, 1-band system with

equal interactions. The ground state is given by UA1g =
V A1g < 0 and the response is different for different signs of

V B1g . Switching the sign of γ
B1g
p1 /γ

B1g
p2 [panels (a) and (b)]

switches the in-phase/out-of-phase characteristic and vertex
association of the low-energy mode.
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Figure 3. Our theoretical model fitted to (a) Li1-xFexOHFeSe (x ∼ 0.18) and (b) Ba1-xKxFe2As2 (x ∼ 0.48). The B1g response
is plotted over the experimental data reported in Refs. [21] and [16], respectively, and the insets show the associated A1g

response. The dashed vertical lines denote the ∆bi needed to get the response, while the coloured lines (and their spread)
indicates the ∆-measurements (and their uncertainties) from Refs. [34] and [35] for (a) and (b), respectively.

has a mass 1/UA1g −2/(UB1g −|V B1g |). Note that for re-

pulsive B1g interactions with UB1g ≈ V B1g , m
B1g

± → ∞,

which leads to a spectral feature ∼ 1/
√
Ω− 2|∆|. Thus,

we see that we can get characteristically different re-
sponses depending on s = sgn(V A1gV B1g), even if a BaSh
mode exists. This feature is not possible without multi-
ple pockets and is demonstrated in Fig. 2. Finally, if

γ
B1g

b1
= −γ

B1g

b2
, we would simply switch the mode that

couples to the probe in accordance with the selection
rule, vide Fig. 2(b).

Explanation of experimental data. While the appear-
ance of novel features in the A1g channel in cuprates [36–
38] and in the B1g channel pnictides [14, 16, 39] already
gave important clues about the nature of SC in those ma-
terials, the line shapes and spectral weights themselves
were not clearly understood. For example, in the B1g

response of Ba1-xKxFe2As2, the existing interpretation
[15, 22] does not explain huge the spectral weight near
2|∆| without assuming the bands to be decoupled, which
is unrealistic in interband-driven mechanisms. Similarly,
the shape of the B1g peaks as well as lack of A1g response
in Li1-xFexOHFeSe has only been speculatively analysed
using a 1-band model [21, 22].

Since we are equipped with a multiband theory [40], we
can explore these issues explicitly. In Fig. 3(a) we show
the result of fitting our model (see SM for parameters) to
the B1g data for Li1-xFexOHFeSe. The fit suggests that

|UR| ≳ |V R| which is not unexpected for 2-pocket models

[41]. Further, we now know that mostly the γ
B1g

b1
+ γ

B1g

b2
vertex will contribute, but since the gaps are different
across the hybridized pockets, the leakage leads to cou-
pling of both modes to this vertex. Since this is a system
with only (hybridized) electron pockets at the X and Y

points, it leads to γ
A1g
p1 ≈ γ

A1g
p2 . As the A1g response

couples via γ
A1g
p1 − γ

A1g
p2 which is ≈ 0 in this system, our

model explains the nearly null result in the A1g channel
in Ref. [21] [inset of Fig. 3(a)].

In Fig. 3(b) we show the fit to the B1g data in
Ba1-xKxFe2As2. The parameters (see SM) suggest that

|V R| > |UR| which is expected for this system, as they
are driven by interband interactions. Not only the found
parameters are consistent with indications from previ-
ous microscopic calculations for the pairing [42, 43] but
our “uncontrived” model correctly captures the spectral
weights of the BaSh modes and the bumps near the 2|∆|
regions. Even if we did not have the insight from micro-
scopic calculations, we already know from this work that
the presence of a strong 2|∆| feature is a signature of
dominant repulsive interband interactions, which is true
for this material. Without any additional fitting, we also
get a finite response in the A1g channel with a feature
near the largest gap and no Leggett modes, which is ex-
actly what is seen in experiments [inset of Fig. 3(b)].

Conclusion. Although we focused on eRS due to data
availability, it should be clear to the reader that the main
contribution of this work is the identification of the ap-
propriate quantum degrees of freedom that couple to the
spectroscopic probe and accounting for many-body ef-
fects that renormalize such coupling. For eRS, we demon-
strated that, in addition to the symmetry-imposed selec-
tion rules, there are also “fragile” many-body physics-
induced ones that couple the coherent fluctuations of
various degrees of freedom to the probe in a characteris-
tic manner. We used this to simultaneously explain the
spectral weights for various features in Li1-xFexOHFeSe
and Ba1-xKxFe2As2 in both A1g and B1g irreps. This
analysis can be readily extended to other systems that
break time-reversal symmetries (vide Ref. [29]). The new
knowledge gained about the selection rules will also be
relevant to emerging techniques such as current-assisted
Raman spectroscopy [44] and optical absorption [24, 27],
and third-harmonic generation [45, 46], which all involve
coupling to the sectors outlined earlier.
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SUPPLEMENTARY MATERIAL FOR “MANY-BODY PHYSICS-INDUCED SELECTION RULES:
APPLICATION TO RAMAN SPECTROSCOPY”

A. Self-consistency equations

As in the main text (MT) [1], let us consider the normal state to be comprised of concentric bands with energy
dispersion ϵa

k⃗
(a is a band index) around the Γ point and with chemical potential µ. To address superconductivity

(SC), we will focus on the singlet channel and work in the usual BCS formalism. This means that we will not account
for the redundant spin degeneracy explicitly. Moreover, we will assume that the leading instability is in the A1g

channel and the competition is in the B1g channel of a 2D square lattice. The orthogonality of the two channels allows

for a decoupled pairing interaction which can be modelled as V̂ pp = V̂ pp
A1g

f
A1g

θ
k⃗

+ V̂ pp
B1g

f
B1g

θ
k⃗

, with form factors f
A1g

θ
k⃗

= 1

and f
B1g

θ
k⃗

=
√
2 cos(2θk⃗) and where θk⃗ is the angle along the Fermi surface measured relative to the ΓX axis. These

form factors have the property that
∫

dθ
2π (f

R
θ
k⃗
)2 = 1 for R ∈ {A1g,B1g}. The matrix structure of V̂ pp represents all the

intra- and interband interaction matrix elements in the particle-particle (pp) channel. For a band a we introduce the

order parameter ∆a(θk⃗) = ∆
A1g
a f

A1g

θ
k⃗

+∆
B1g
a f

B1g

θ
k⃗

. The assumption of the leading instability being in the A1g channel

means the problem is defined within the interaction parameter space region where ∆
B1g
a = 0 and ∆

A1g
a = ∆a become

the solution to the self-consistency equation (at temperature T = 0). That is,

∆a = −
∑
b

[V̂ pp
A1g

]ab∆bν
b
FLb, Lb ≡ ln

2Λ

|∆b|
, (S1)

where νbF is the density of states (DOS) of band b at the Fermi energy, Λ is some cut-off in the Cooper problem that
is defined by the pairing mechanism. We can invert the above self-consistency equation to obtain La in terms of the
order parameters, eliminating any explicit cut-off dependence,

νaFLa = − 1

∆a

∑
b

[V̂ pp
A1g

]−1
ab ∆b ≡ −(V eff

a,A1g
)−1. (S2)

Here we have introduced the band-wise effective pairing interaction V eff
a,A1g

from band a that enters the renormalization

of the Raman response in any irreducible representation (irrep).

B. Correlation functions

In the superconducting state there are certain correlation functions of interest [their definitions are provided in
Eq. (1)]:

density-density: Πa
33(Ω) = −2νaF Ia(Ω),

density-phase: Πa
32(Ω) = −2νaF

(
iΩ

2∆a

)
Ia(Ω) = −Πa

23(Ω) and

phase-phase: Πa
22(Ω) = −2νaFLa + χa(Ω), χa(Ω) ≡ −2νaF

(
Ω

2∆a

)2

Ia(Ω),

where Ia(Ω) ≡ sin−1[Ω/(2∆a)]

[Ω/(2|∆a|)]
√

1− [Ω/(2∆a)]2
and (S3)

La is given by Eq. (S2). These correlation functions have the property that

Πa
33χ

a + (Πa
32)

2 = Πa
33χ

a −Πa
32Π

a
23 = 0. (S4)
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C. Raman response function

We start from the general formula for the Raman response from a multiband system in the Rth irrep as given in
Ref. [2], which can be written as

−χR =
∑
a

∑
i∈{2,3}

γR∗
a Πa

3iΓ
R,a
i ,

where γR
a is the effective-mass vertex which for a band with dispersion ϵa

k⃗
is identified as follows. The k⃗-dependent

vertex is γR
a (k⃗) = GR

αβ∂kα∂kβ
ϵa
k⃗
and γR

a =
∫ dθ

k⃗

2π γR
a (k⃗)f

R
k⃗
, where GR

αβ are matrices that combine ∂kα and ∂kβ
in a way

consistent with the symmetry of the Rth irrep [3]. For example, GA1g = diag(1, 1), GB1g = diag(1,−1) et cetera. The

index i ∈ {2, 3} refers to the phase and density sectors, and ΓR,a
i is the interaction-corrected Raman vertex for band

a which has components in both the phase and density sectors that is calculated from the vertex equation∑
b,j

[
δabδ3i +

1

2
V pp
ab P b

ij

]
ΓR,b
j = γR

a δ3i, where P b
ij =

(
Πb

22 Πb
23

0 0

)
. (S5)

In the above formulæ, for χR we have assumed that we will only be interested in the q⃗ → 0 response, which does not
require accounting for the Coulomb interaction [2, 4]. Carrying out the operations in the {2, 3}-space explicitly, we
arrive at

−χR =
∑
a,b

γR∗
a

{
Πa

33δab +Πa
32

[
2[V̂ pp

R ]−1 − Π̂22

]−1

ab
Πb

23

}
γR
b , (S6)

where Π̂22 = diag(Πb1
22,Π

b2
22, . . .). We then use Eq. (S4) to replace Πa

33 in terms of Πa
32Π

a
23 and obtain

−χR =
∑
ab

γR
a Π

a
32[χ̂

−1 + P̂−1]abΠ
b
23γ

R
b ,

where χ̂ ≡ diag(χb1 , χb2 , . . .),

P̂ = 2[V̂ pp
R ]−1 − Π̂22 = 2

{
[V̂ pp

R ]−1 − [V̂ eff
A1g

]−1
}
− χ̂ and

V̂ eff
A1g

= diag
(
V eff
b1,A1g

, V eff
b2,A1g

, . . .
)
. (S7)

All of the correlation functions that enter the response function have a finite imaginary part for Ω > 2|∆a|. The
response, thus, has finite spectral weight at those frequencies. For Ω < 2|∆a| the spectral weight is zero unless there
are resonances due to collective modes, which show up as δ function-like features in this region. In fact, the entire
Raman response is best interpreted as a sum of responses from collective modes. These modes could be undamped
if they are realised for Ω < 2|∆min| (usually as sharp δ function-like features) or damped if realised for Ω > 2|∆min|
(with broad features), where |∆min| is the smallest gap in a multiband system.

Observe that (V̂ eff
A1g

)−1 = (V pp
A1g

)−1 for the 1-band case. Then a pole may arise from the zero of 2[(V pp
R )−1 −

(V pp
A1g

)−1] − χ = −(m + χ), where m = 2/V pp
A1g

− 2/V pp
R . We show further in Section F that for small frequencies

χ ∼ −Ω2. Thus, for the 1-band response, the denominator has the form m−Ω2. For this reason, we refer to m as the
mass term that is responsible for the finite frequency of the modes. This form yields the well-known BaSh mode of
1-band systems [2, 5, 6] for R = B1g. In general, for a multiband case, the pole condition is the existence of zeros of

the det(P̂), which can always be factored as products of (ma + χa) for appropriately defined ma’s. One can also see
that for the multiband case where interband B1g interactions are absent, the response is simply a sum of contributions

of poles from 2[(V pp
a,B1g

)−1 − (V eff
a,A1g

)−1] − χa. This is the same as in the original BaSh result, but with an effective

leading-channel interaction from each band. These results change in multiband systems.

D. Application to 2-band model

To apply the above general theory to a 2-band system (with band labels b1 and b2), we start by modelling the
interactions as (we change notations from the MT for brevity)

V̂ pp
A1g

=

(
Us
b1

V s

V s Us
b2

)
and V̂ pp

B1g
=

(
Ub1 V
V Ub2

)
, (S8)
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which leads to

νb1F Lb1 = − 1

Us
b1
Us
b2

− (V s)2

(
Us
b2 − V s∆b2

∆b1

)
and

νb2F Lb2 = − 1

Us
b1
Us
b2

− (V s)2

(
Us
b1 − V s∆b1

∆b2

)
, (S9)

with the effective leading-channel interaction being

V̂ eff
A1g

=


Us
b1
Us
b2

− (V s)2

Us
b2

− V s∆b2/∆b1

0

0
Us
b1
Us
b2

− (V s)2

Us
b1

− V s∆b1/∆b2

 . (S10)

The expression for P̂−1 then becomes, with d ≡ det[V̂ pp
B1g

] = Ub1Ub2 − V 2,

P̂−1 =
1

D


Ub1 −

d

2

(
2

V eff
b2,A1g

+ χ2

)
V

V Ub2 −
d

2

(
2

V eff
b1,A1g

+ χ1

)
 ,

where D ≡ Ub1Ub2

2

[(
2

Ub1

− 2

V eff
b1,A1g

− χb1

)(
2

Ub2

− 2

V eff
b2,A1g

− χb2

)
− V 2

Ub1Ub2

(
2

V eff
b1,A1g

+ χb1

)(
2

V eff
b2,A1g

+ χb2

)]
.

(S11)

This implies that in Eq. (S7) we get

χ̂−1 + P̂−1 =
1

D


Ub1 −

d

2

(
2

V eff
b2,A1g

+ χb2

)
+

D
χb1

V

V Ub2 −
d

2

(
2

V eff
b1,A1g

+ χb1

)
+

D
χb2

 . (S12)

Due to the structure of P̂−1, we observe that in the B1g response, χB1g
, it is the presence of V that couples the

response to the combination γ
B1g

b1
γ
B1g

b2
/(∆b1∆b2). That is, the interband interaction in the competing channel makes

the response sensitive to the phase of the ground-state order parameter ∆, to the attractive or repulsive nature of the

interband interaction, and to the electron or hole nature of the effective-mass vertices γ
B1g
a .

1. A hidden symmetry

It is worth noting the presence of a hidden symmetry in the expression for the Raman response χR. It is clear from
Eqs. (S7), (S11) and (S12) that it is the presence of the off-diagonal structure of V̂ pp

R (here V ) that is responsible for
mixing the responses from different bands. In fact, these off-diagonal terms between two bands a and b generates a
term γR

a γ
R
b Π

a
23Π

b
32 × [P̂]−1

ab . Therefore, since Πa
23 ∝ 1/∆a, vide Eq. (S3), we have that

sgn(interband ab term) = sgn(γR
a γ

R
b ∆a∆b[P̂−1]ab). (S13)

Then, the self-consistency condition in the ground state ensures that [(V pp
A1g

)−1]ab∆b/∆a is of a fixed sign (−1) and,

hence, invariant with respect to sign flips. Furthermore, we observe that [P̂−1]ab = V pp
R,abF = V F , where F is a

function containing terms that are insensitive to ∆a → −∆a or V pp
R,ab → −V pp

R,ab. Thus, the response function is

comprised of a term whose sign behaves like sgn(γR
a γ

R
b ∆a∆bV

pp
R,ab), whereas the other terms are insensitive to the

sign flips. This term can also be written as sgn(γaγbV
pp
ab,A1g

V pp
ab,B1g

) due to the self-consistency condition. These terms

allow for certain invariances in the response with respect to pairwise sign changes of the terms involved. For example,
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the response is invariant under the simultaneous action of the band b switching from electron-like to hole-like (sign
reversal of the effective-mass vertex γb) and the gap ∆b switching sign. We may refer to this invariance as a hidden
symmetry in the Raman response of superconductors. Noting that V pp

A1g,ab
→ −V pp

A1g,ab
implies ∆a∆b → −∆a∆b, and

that P−1 ∝ V pp
ab,R = V R, we can reduce Eq. (S13) to sgn(γR

a γ
R
b V

RV s). Other interesting invariances could be possible
in multiband systems with 3 or more bands, but exploring that is left for future studies.

Moreover, observe that we only need V eff
a,A1g

to get the B1g response, the precise value of interband interaction in

the ground state not being relevant to the discussion. However, we need to keep it as it controls the phase of the
ground state. The interesting cases that arise are due to different values of the interactions in the B1g channel, as we
shall discuss below.

2. Spectral weights

Next, to understand and interpret the response and the spectral weight for each mode, first note the following
algebraic identity, where γa ≡ γR:

γ2
b1X + γ2

b2Y + 2γb1γb2Z = (γb1 + γb2)
2

(
X + Y + 2Z

4

)
+ (γb1 − γb2)

2

(
X + Y − 2Z

4

)
+ (γ2

b1 − γ2
b2)

(
X − Y

2

)
.

(S14)

As can be verified with an explicit calculation starting from Eq. (S7), the response −χB1g
is precisely in the above

form with

DX =

[
Ub1 −

d

2

(
2

V eff
b2,A1g

+ χb2

)
+

D
χb1

]
Πb1

33χb1 ,

DY =

[
Ub2 −

d

2

(
2

V eff
b1,A1g

+ χb1

)
+

D
χb2

]
Πb2

33χb2 and

DZ = V
Πb1

32Π
b2
32 +Πb2

32Π
b1
32

2
= VΠb1

32Π
b2
32. (S15)

Note that the result in the Rth irrep is got by {Ub1 , Ub2 , V } → {UR
b1
, UR

b2
, V R}. Since we can get from X to Y

by b1 ↔ b2, we see that the whole expression is invariant under b1 ↔ b2, as it should be in the physical case.
Furthermore, Z is the only term sensitive to sgn(V∆b1∆b2) and it couples to γR

b1
γR
b2

as expected from the hidden
symmetry discussion. However, this explicit expression allows us to infer more about the effects of changes in sgn(V ):
it switches the association of X + Y ± 2Z with γR

b1
± γR

b2
, i.e. switches the contribution from γR

b1
+ γR

b2
and γR

b1
− γR

b2
terms. Let us understand the implication of this result by exploring some special cases. In Eq. (4), the presented
form corresponds to setting the parameters for the two bands to be identical, which results in X = Y and χa = χ. In
the MT we present a form where the parameter s = sgn(V sV ) has been drawn out from the D and migrated to the
γR’s and the mR’s. We discuss this explicitly in Sec. E.

3. Case with no interband competition: V = 0

In this case, it is easy to see that P̂−1 = −diag[1/(mb1 + χb1), 1/(mb2 + χb2)], where ma ≡ 2/V eff
a,A1g

− 2/Ua. This

leads to

−χB1g
=
∑
a

γ2
aΠ

a
33

ma

ma + χa
, (S16)

where we have used the relation Πa
33χa = Πa

32Π
a
23 and which is simply the sum of the contributions from the (indepen-

dent) bands. Since V = 0 there is no coupling of the response between the bands. Thus, the response is not sensitive
to ∆a → −∆a or γa → −γa. This is the limit in which most multi-band responses have been modelled in past fits
to experimental studies and that is why it was thought that the response would be blind to sign changes in γR

a and
∆a. As we see from the MT and the subsequent section here in this supplementary text, doing so completely misses
important interband interaction induced effects. Continuing with V = 0, we have that (and these are well known):

• If 1/ma → +∞, that is Ua ≳ V eff
a,A1g

(or |Ua| ≲ |V eff
a,A1g

| since these interactions have to be negative in order to

have competition), then we approach a B1g-instability.
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• If 1/ma → 0+, that is Ua → 0− then we have a mode at Ω ≲ 2|∆a|. That is, attractive B1g-interaction leads to
long-lived collective modes.

• If 1/ma → 0−, that is Ua → 0+ then the mode at Ω ≳ 2|∆a| is damped by the continuum of excitations. That
is, repulsive interaction leads to damped collective behaviour.

The Ω-dependent properties of Eq. (S16) which affects the line shape will discussed in Sec. F (below).

4. Effect of interband competition: V ̸= 0

The presence of a finite V turns the response sensitive to the phase of the ∆a, V and γa due to the hidden
symmetry property. However, before exploring the response, let us understand the nature of the collective modes the
poles represent. For the case where the response from individual bands were decoupled, the collective modes simply
corresponded to independent phase fluctuations of each band. Now, in the presence of the interband interaction V
(in the competing channel), the phase fluctuations of the two bands are coupled leading to the formation of in-phase
and out-of-phase fluctuation components. This is analogous to the Goldstone- and the Leggett-type fluctuations in
the leading A1g channel. The amplitude and phase fluctuations can be quantified as

δ∆a = δ[|∆a|eiφa ] = eiφaδ|∆a|︸ ︷︷ ︸
amplitude

+i |∆a|eiφaδφa︸ ︷︷ ︸
phase

.

To proceed from here, we follow the linear response treatment in Refs. [7, 8], where it is outlined how the interaction-
renormalised Raman vertex is the same as the linear response kernel involving the amplitude and phase fluctuations.
The linear response kernel is written by expanding the dynamical self-consistency equation to linear order in the
amplitude and phase fluctuations. In time-reversal symmetric superconductors, the phase sector decouples from the
amplitude sector. The eigenvalue problem for the two-band case of the linear response kernel then gives us

∆b1δφb1 =

V

2
Πb2

22

1− Ub1

2
Πb1

22

∆b2δφb2 =⇒ δφb1 =

V

2

∆b2

∆b1

Πb2
22

1− Ub1

2
Πb1

22

δφb2 . (S17)

If we focus on the sign of the terms and use the relation sgn(∆b2/∆b1) = − sgn(V s), along with the knowledge that

within the gap (Ω < 2|∆|) we have 1− UR
b1
Πb1

22/2 > 0, we obtain

sgn(δφb1δφb2) = sgn(V V s). (S18)

Noting that sgn(Vs) = − sgn(∆b1∆b2) we can introduce s ≡ sgn(V RV s) = − sgn(V R∆b1∆b2) = sgn(δφb1δφb2) and
create the form factor δφb1 +sδφb2 for the fluctuations which correspond to the modes with masses mR

s . The in-phase
mode has δφb1δφb2 > 0 whereas an out-of-phase mode has δφb1δφb2 < 0.

E. A new selection rule

Starting from the general formulae in Eqs. (S14) and (S15), let us consider the ideal case with identical Fermi
surfaces where |∆b1 | = |∆b2 |, Ub1 = Ub2 = U , V eff

b1,A1g
= V eff

b2,A1g
= VA1g

. This leads to χb1 = χb2 = χ. We also

have |γb1 | = |γb2 |. To account for the phase of the ground state, let us also introduce a factor f ∈ {−1, 1} such that
∆b2 = f∆b1 = f∆, where f = − sgn(V s), as required by the self-consistency equations. This leads to VA1g

= Us+fV s

and Πb1
32 = fΠb2

32. In this limit

D =
d

2

(
2

U + V
− c

)(
2

U − V
− c

)
, where c ≡ 2

VA1g

+ χ,
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which, in turn, leads to

−χB1g
= (γ2

b1 + γ2
b2)

[
χ

(
U − d

2
c

)
+D

]
Π33

D + 2γb1γb2 [V fχ]
Π33

D

=

[
(γb1 + γb2)

2

(
1

VA1g

− 1

U + fV

)(
c− 2

U − fV

)
+ (γb1 − γb2)

2

(
1

VA1g

− 1

U − fV

)(
c− 2

U + fV

)]
dΠ33

2D

=

[
(γb1 + γb2)

2

(
m+

m+ + χ

)
+ (γb1 − γb2)

2

(
m−

m− + χ

)]
Π33

2
, (S19)

where m± = 2/VA1g
− 2/(U ± fV ). Let us now note a couple of points: (i) The mode frequencies (∝ m±) map to

each other under V s → −V s or V → −V and hence the resonance location is not affected under these flips. But their
weights switch between (γR

a ± γR
b )

2. (ii) Since f = − sgn(V s), we can write U ± fV = U ∓ s|V |, where s = sgn(V V s).
These remarks lead us to

m± =
2

VA1g

− 2

U ∓ s|V | =⇒ m±s =
2

VA1g

− 2

U ∓ |V | .

Introducing mR
±s also requires changing γR

b1
± γR

b2
to γR

b1
± sγR

b2
. This is the form presented in the MT and represents

the selection rule which couples the m± mode to the γR
b1

± γR
b2

combinations of the probes.
Moreover, analytically, for systems with different gaps across bands, the approximate selectivity will still be found.

It is, after all, nothing but a switch of spectral weight that is also evident from Eq. (S14) where switching the sign of Z

[≡ sgn(fV )] flips the association with γR
b1
±γR

b2
, whilst maintaining a common background arising from the γR

b1

2−γR
b2

2

term.

F. Asymptotic expansions and spectral weights

In this section we perform asymptotic analysis of our expressions. It helps us understand the building blocks from
which one can understand the coupled response.

1. 1-band case

Let us investigate the possible line shapes of BaSh modes in 1-band systems. The spectrum is given by χB1g
=

−γ2Π33m/(m + χ), where m = 2/Us − 2/U . Using the forms of Π33 and χ previously given, and introducing
dimensionless interactions us ≡ νFU

s and ud ≡ νFU , we get

χB1g
= 2νF γ

2 m̌I

m̌−
(

Ω

2∆

)2

I

, where m̌ =
1

us
− 1

ud
. (S20)

The function I, defined in Eq. (S3), has the form I ≈ O(1) + 1/
√
1− Ω/(2|∆|) ≡ IR + iII for Ω ≈ 2|∆|. Since II is

finite only for Ω > 2|∆|, the spectrum, which is actually the Im(χB1g
), evaluates to

Im(χB1g
) = 2m̌2 II

(IR − m̌)2 + I2I
. (S21)

It is clear that Im(χB1g
) ≈ 0 for Ω < 2|∆| with the finite weight due to the imaginary part of Ω + i/τ . This small

weight blows up to a δ-function if, for some Ω, we get IR ∼ Ω2 = m̌. This is the condition for the presence of a BaSh
mode. Since IR > 0, we need m̌ = 1/us − 1/ud > 0 to have a BaSh mode. For us to lead to the ground state and for
ud to be competitive, we need us < 0 and ud < 0. This means that we need |ud| < |us| to get the BaSh mode. This

is the conventional result. Note that if ud → 0 then m̌ → ∞ and Im(χB1g
) = II which behaves are 1/

√
Ω/(2|∆|)− 1

for Ω ≳ 2|∆|, displaying an edge singularity. For finite m̌, two cases arise:

• There is a BaSh mode [m̌ > 0, that is, 1/m ∈ (0,∞)]: It exists for Ω < 2|∆|. Near the BaSh mode’s
frequency ΩBaSh we have Im(χB1g

) ∼ m̌2δ(Ω − ΩBaSh). Near and above the onset of the continuum, we get

Im(χB1g
) ∼ m̌2

√
Ω/(2|∆|)− 1. That is, the response starts from zero and develops as

√
x with the prefactor m̌2.
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• There is a damped BaSh mode (m̌ < 0, that is, 1/m < 0): The response is zero for Ω < 2|∆|. Near and above

2|∆| we once again have Im(χB1g
) ∼ m̌2

√
Ω/2|∆| − 1.

Although the response near 2|∆| has the same functional form and prefactor, what is different in the two cases is the
value of m̌ = 1/us − 1/ud. To have superconductivity, one needs us < 0. Thus, |m̌| = |1/|us| + 1/ud|. For repulsive
interaction in the competing channel, ud > 0, |m̌| is a larger number compared to when the interaction is attractive,
ud < 0, which also leads to a BaSh mode. This is why, in the 1-band case, the spectral weight (∝ m̌2) near 2|∆|
reduces in the presence of a BaSh mode, whereas it increases in the absence of it [vide Fig. S1]. This phenomenon has
been colloquially referred to as the collective mode “stealing” the spectral weight from the continuum, which is not
technically correct as there is no sum rule protecting the spectral weight. And this is also the limitation of modelling
systems as copies of one-band models: you either get spectral weight near 2|∆| or at the collective mode but not both.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Ω/|∆|

0

1

2

3

χ
′′ B

1
g

2|∆|

ud > 0

ud = 0

ud < 0

Figure S1. 1-band B1g response of an s-wave SC, us = −1, for different signs of |ud| = 0.9 (solid lines) and in the absence of
B1g interactions (dashed line). For repulsive ud, the 2|∆| feature softens, having smaller spectral weight when compared to the
ud = 0 case. For attractive ud, a BaSh mode is found in the gap and no feature is found at 2|∆|. Note that no spectral weight
is transferred (see text).

2. 2-band case

For all those cases where the response could be seen as a combination of decoupled poles (either for V = 0 or for
identical bands), its form still resembles m/(m+ χ) and the same analysis works, with the difference being that each
pole can now have its own ∆. The pole with the effective attractive interaction will host a BaSh mode with reduced
spectral weight near 2|∆| whilst the one with a repulsive interaction will have a larger spectral weight near 2|∆|. In
these cases, the only thing that is different from the 1-band case is that, in a 2-band model, we can simultaneously
have attractive and repulsive channels leading to simultaneous presence of BaSh modes and spectral weights near
2|∆|.

If we start from the case with only intraband interactions in the B1g channel, where there are two collective modes,
and introduce a weak interband component, |V | ≪ |Ua|, then the mode frequencies repel each other [6]. Depending
on the parameters, one of them could enter the in-between-the-gaps continuum of excitations and be damped with a
rate ∝ V 2. This is evident by solving the equation det(P) = 0 in this limit. Furthermore, the fragile selection rule
will bestow the spectral weight either entirely on the collective mode or on the 2|∆| region.
For strong interband-driven competition, |U | ≪ |V |, we have m±s = 2/VA1g

∓ 2/|V |. Since |VA1g
| > |V |, we get

sgn(m±s) = ±. This means that we shall always have one attractive (and, hence, in the gap) and one repulsive (and,
hence, damped near 2|∆|) modes. Once again, the attractive or repulsive nature of this interaction will switch the
spectral weights between the mode and the 2|∆| region.
Furthermore, note that, in the multiband case, the contribution for Ω > 2|∆a| is always of the type

√
Ω− 2|∆a|

for each band as well. For the smallest gap, the response starts from zero and for the largest gap, the same response
develops on the background of the spectral weight from the continuum of the band with the smaller gap. This
contribution (from the threshold of the continuum) is almost never dominant. This was also pointed out in Ref. [2].

This is significantly different from the non-interacting case where the threshold has a 1/
√
Ω− 2|∆| singularity.
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G. Experimental data and theoretical curves parameters

In this section, we elaborate on how we have fitted the experimental data of Li1-xFexOHFeSe and Ba1-xKxFe2As2
using the 2-band theoretical framework described in this work [9]. To that end we used SciPy v1.11.3’s [10] non-linear
least squares curve fit method (with unchanged defaults) and assumed the difference spectra → 0 in the high-energy
limit. We sampled, for each SC, different regions of the 2-band, A1g ground state parameter space defined by: the
interaction parameters, the SC gaps, the Raman vertices projections, the lifetime effect (disorder) parameter η and
an overall scale as to match the experimental data. η comes from analytical continuation: the frequencies Ω in the
MT are replaced, for the corresponding bands a, by Ω+ iηa. Also, an initial guess for the parameters was made with
a set whose resulting response would have features that would loosely match the experiment.

Furthermore, based on experiments and known physical constraints, we placed the following constraints to our
parameter space: (i) we imposed an upper bound for the gap values based on data reported by Ref. [11] for
Li1-xFexOHFeSe and Ref. [12] for Ba1-xKxFe2As2, and (ii) the sgn(γR

a ) was fixed to be +1 (−1) for electron (hole)
bands.

1. Li1-xFexOHFeSe

The dimensionless interaction matrices, vide Section F, found in our modelling process are

νF V̂
pp
A1g

≡
[
−0.951 −0.419
−0.419 −0.951

]
and νF V̂

pp
B1g

≡
[
−0.819 −0.240
−0.240 −0.819

]
,

where we assume the density of states to be equal across bands and the rows and columns are ordered following the
order parameter hierarchy:

∆a = +7.06meV and

∆b = +14.4meV.

Because the pockets are related by symmetry, the Raman vertices are expected to be equal in magnitude. However,
due to the nature of the hybridised electron pockets of this system, when sampling the parameter space, we allowed
the Raman vertices to change, being limited to be within 10% of each other.

The additional parameters found in our modelling process and used to produce Fig. 3(a) are compiled in Table S1.
Note that the difference response for the A1g channel is not displayed in the inset of Fig. 3(a) because it is trivial,
except for a residual line associated with a phonon shift and present due to high spectral resolution [13].

Table S1. Additional parameters, not mentioned in the text, of the model used to fit the difference spectra of Li1-xFexOHFeSe
(x ∼ 0.18).

Quantity Value

γ
B1g
a 0.900

γ
B1g

b 1.00

γ
A1g
a 0.900

γ
A1g

b 1.00

η 0.0225|∆b|
Overall factor 1.99

2. Ba1-xKxFe2As2

The dimensionless interaction matrices found in our modelling process are

νF V̂
pp
A1g

≡

−1.00 0 0
0 −0.300 +0.866
0 +0.866 −0.300

 and νF V̂
pp
B1g

≡

−0.974 0 0
0 0 +1.00
0 +1.00 0

 ,
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where we assume the density of states to be equal across bands and the rows and columns are ordered following the
order parameter hierarchy:

∆h,o = +5.80meV (outer hole pocket),

∆e = −7.55meV (electron pocket) and

∆h,i = +9.05meV (inner hole pocket).

When sampling the parameter space, the Raman vertex ratio γ
B1g
e /γ

B1g

h,i was limited to 3, as larger ratios are
unrealistic. Furthermore, although the outer hole pocket is decoupled from the other bands, we modelled a residual
interband coupling by increasing the lower bound of ηe = ηh,i to be at least 25% larger than ηh,o, as their spectral
features lay on the continuum of excitations of the band hosting the outer hole pocket.

No other constraints were imposed in our modelling and the A1g response was calculated using the parameters found

from the B1g fit, except for its Raman vertices, γA1g , which were independently chosen. The additional parameters
found in our modelling process and used to produce Fig. 3(b) are compiled in Table S2.

It is worth reiterating that only the B1g data was used in the fitting process. And we found a set of parameters with
dominant interband interactions, consistent with microscopic calculations for the pairing mechanism in this material,
which correctly captures the spectral weights in both B1g and A1g channels, vide Fig. 3(b) and its inset.

Table S2. Additional parameters, not mentioned in the text, of the model used to fit the difference spectra of Ba1-xKxFe2As2
(x ∼ 0.48).

Quantity Value

γ
B1g

h,o −0.336

γ
B1g
e 1.00

γ
B1g

h,i −0.333

γ
A1g

h,o 1.00

γ
A1g
e 1.45

γ
A1g

h,i −1.45

ηh,o 0.0500|∆h,o|
ηe = ηh,i 0.0625|∆h,i|
Overall factor 0.422
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